1
|
Pradhan SS, Mahanty A, Senapati A, Mohapatra PK, Adak T. Influence of combined application of tetracycline and streptomycin on microbial diversity and function in rice soil. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:64358-64373. [PMID: 39538074 DOI: 10.1007/s11356-024-35525-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 11/03/2024] [Indexed: 11/16/2024]
Abstract
A microcosm experiment was performed to quantify the residues of antibiotics [tetracycline (TC), streptomycin (STR), and streptocycline (STC; a mixture of TC and STR)] in rice soil and to assess their impact on microbial community structure and function using Illumina-MiSeq metagenomic analysis. Antibiotics were applied at half the recommended dose (0.5RD), recommended dose (RD), and double the recommended dose (2RD). At RD, TC was degraded in soil within 9 days of its application, whereas it took 21 days for STR and STC to degrade below limit of quantification (LOQ) level. The residue data were fitted in decay models, and half-lives (DT50) were 46.5-53.3 h and 177.6-198 h for TC and STR, respectively. Soil enzyme activities (dehydrogenase, β-glucosidase, fluorescein diacetate hydrolase, acid phosphatase, alkaline phosphatase) were negatively affected in the antibiotic-treated soil. Targeted metagenomic analysis showed that the major bacterial phyla such as Chloroflexi, Actinobacteria, Planctomycetes, Crenarchaeota, and Gemmatimonadetes were suppressed by antibiotic treatments as compared to control. Shannon, Simpson, ACE, and Chao1 diversity indices showed that bacterial diversity decreased with the application of antibiotics, and decrease in bacterial diversity was more prominent in case of STC as compared to TC and STR. Overall, the combination of antibiotics negatively affected the soil microbial community structure and function in comparison to their individual application.
Collapse
Affiliation(s)
- Sophia Subhadarsini Pradhan
- ICAR-National Rice Research Institute, Cuttack, Odisha, 753006, India
- Department of Botany, Ravenshaw University, Cuttack, Odisha, 751003, India
| | - Arabinda Mahanty
- ICAR-National Rice Research Institute, Cuttack, Odisha, 753006, India
| | - Ansuman Senapati
- ICAR-National Rice Research Institute, Cuttack, Odisha, 753006, India
| | | | - Totan Adak
- ICAR-National Rice Research Institute, Cuttack, Odisha, 753006, India.
| |
Collapse
|
2
|
Chakraborty S, Ghosh S, Banerjee S, Kumar S, Bhattacharyya P. Elucidating the synergistic effect of acidity and metalloid poisoning on the microbiome through metagenomics and machine learning approaches. ENVIRONMENTAL RESEARCH 2024; 243:117885. [PMID: 38072100 DOI: 10.1016/j.envres.2023.117885] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 12/01/2023] [Accepted: 12/04/2023] [Indexed: 02/06/2024]
Abstract
The abundance and diversity of the microflora in a complex environment such as soil is everchanging. Mica mining has led to metalloid poisoning and changes in soil biogeochemistry affecting the overall produce and leading to toxic dietary exposure. The study focuses on two prominent stressors acidity and arsenic, in mining-contaminated agricultural locations. Soil samples were collected from agricultural fields at a distance of 50 m (zone 1) and 500 m (zone 2) from active mines. Mean arsenic concentration was higher in zone 1 and pH was lower. Geostatistical and self-organizing maps were employed to report that the pattern of localization of soil acidity and arsenic content is similar indicating a causal relationship. Cluster and principal component analysis were further used to materialize a negative effect of soil acidity fractions and arsenic labile pool on soil enzymatic activity (fluorescein diacetate, dehydrogenase, β-1,4-glucosidase, phosphatase, and urease), respiration and Microbial biomass carbon. Soil metagenomic analysis revealed significant differences in the abundance of microbial populations with zone 1 (contaminated zone) having lower alpha and beta diversity. Finally, the efficacy of several machine-learning tools was tested using Taylor diagrams and an effort was made to select a potent algorithm to predict the causal stressors responsible for depreciating soil microbial health. Random Forrest had superior predictive power based on numerical evidence and was therefore chosen as the best-fitted model. The aforementioned insights into soil microbial health and sustenance in stressed conditions can be beneficial for predicting remedial strategies and practicing sustainable agriculture.
Collapse
Affiliation(s)
- Shreya Chakraborty
- Agricultural and Ecological Research Unit, Indian Statistical Institute, Giridih, Jharkhand, 815301, India
| | - Saibal Ghosh
- Agricultural and Ecological Research Unit, Indian Statistical Institute, Giridih, Jharkhand, 815301, India
| | - Sonali Banerjee
- Agricultural and Ecological Research Unit, Indian Statistical Institute, Giridih, Jharkhand, 815301, India
| | - Sumit Kumar
- Agricultural and Ecological Research Unit, Indian Statistical Institute, Giridih, Jharkhand, 815301, India
| | - Pradip Bhattacharyya
- Agricultural and Ecological Research Unit, Indian Statistical Institute, Giridih, Jharkhand, 815301, India.
| |
Collapse
|
3
|
Santos-Pereira C, Sousa J, Costa ÂMA, Santos AO, Rito T, Soares P, Franco-Duarte R, Silvério SC, Rodrigues LR. Functional and sequence-based metagenomics to uncover carbohydrate-degrading enzymes from composting samples. Appl Microbiol Biotechnol 2023:10.1007/s00253-023-12627-9. [PMID: 37417976 PMCID: PMC10390414 DOI: 10.1007/s00253-023-12627-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 05/25/2023] [Accepted: 05/31/2023] [Indexed: 07/08/2023]
Abstract
The renewable, abundant , and low-cost nature of lignocellulosic biomass can play an important role in the sustainable production of bioenergy and several added-value bioproducts, thus providing alternative solutions to counteract the global energetic and industrial demands. The efficient conversion of lignocellulosic biomass greatly relies on the catalytic activity of carbohydrate-active enzymes (CAZymes). Finding novel and robust biocatalysts, capable of being active under harsh industrial conditions, is thus imperative to achieve an economically feasible process. In this study, thermophilic compost samples from three Portuguese companies were collected, and their metagenomic DNA was extracted and sequenced through shotgun sequencing. A novel multi-step bioinformatic pipeline was developed to find CAZymes and characterize the taxonomic and functional profiles of the microbial communities, using both reads and metagenome-assembled genomes (MAGs) as input. The samples' microbiome was dominated by bacteria, where the classes Gammaproteobacteria, Alphaproteobacteria, and Balneolia stood out for their higher abundance, indicating that the degradation of compost biomass is mainly driven by bacterial enzymatic activity. Furthermore, the functional studies revealed that our samples are a rich reservoir of glycoside hydrolases (GH), particularly of GH5 and GH9 cellulases, and GH3 oligosaccharide-degrading enzymes. We further constructed metagenomic fosmid libraries with the compost DNA and demonstrated that a great number of clones exhibited β-glucosidase activity. The comparison of our samples with others from the literature showed that, independently of the composition and process conditions, composting is an excellent source of lignocellulose-degrading enzymes. To the best of our knowledge, this is the first comparative study on the CAZyme abundance and taxonomic/functional profiles of Portuguese compost samples. KEY POINTS: • Sequence- and function-based metagenomics were used to find CAZymes in compost samples. • Thermophilic composts proved to be rich in bacterial GH3, GH5, and GH9 enzymes. • Compost-derived fosmid libraries are enriched in clones with β-glucosidase activity.
Collapse
Affiliation(s)
- Cátia Santos-Pereira
- CEB-Centre of Biological Engineering, Universidade Do Minho, Campus de Gualtar, 4710-057, Braga, Portugal
- LABBELS-Associate Laboratory, Guimarães, Braga, Portugal
| | - Joana Sousa
- CEB-Centre of Biological Engineering, Universidade Do Minho, Campus de Gualtar, 4710-057, Braga, Portugal
- LABBELS-Associate Laboratory, Guimarães, Braga, Portugal
| | - Ângela M A Costa
- CEB-Centre of Biological Engineering, Universidade Do Minho, Campus de Gualtar, 4710-057, Braga, Portugal
- LABBELS-Associate Laboratory, Guimarães, Braga, Portugal
| | - Andréia O Santos
- CEB-Centre of Biological Engineering, Universidade Do Minho, Campus de Gualtar, 4710-057, Braga, Portugal
- LABBELS-Associate Laboratory, Guimarães, Braga, Portugal
| | - Teresa Rito
- CBMA-Centre of Molecular and Environmental Biology, Department of Biology, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal
- IB-S-Institute of Science and Innovation for Bio-Sustainability, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal
| | - Pedro Soares
- CBMA-Centre of Molecular and Environmental Biology, Department of Biology, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal
- IB-S-Institute of Science and Innovation for Bio-Sustainability, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal
| | - Ricardo Franco-Duarte
- CBMA-Centre of Molecular and Environmental Biology, Department of Biology, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal
- IB-S-Institute of Science and Innovation for Bio-Sustainability, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal
| | - Sara C Silvério
- CEB-Centre of Biological Engineering, Universidade Do Minho, Campus de Gualtar, 4710-057, Braga, Portugal.
- LABBELS-Associate Laboratory, Guimarães, Braga, Portugal.
| | - Lígia R Rodrigues
- CEB-Centre of Biological Engineering, Universidade Do Minho, Campus de Gualtar, 4710-057, Braga, Portugal
- LABBELS-Associate Laboratory, Guimarães, Braga, Portugal
| |
Collapse
|
4
|
Liu Y, Zhang B, Zhang Y, Shen Y, Cheng C, Yuan W, Guo P. Organic Matter Decomposition in River Ecosystems: Microbial Interactions Influenced by Total Nitrogen and Temperature in River Water. MICROBIAL ECOLOGY 2023; 85:1236-1252. [PMID: 35501499 DOI: 10.1007/s00248-022-02013-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 04/11/2022] [Indexed: 05/10/2023]
Abstract
Microbes contribute to the organic matter decomposition (OMD) in river ecosystems. This study considers two aspects of OMD in river ecosystems which have not been examined in scientific studies previously, and these are the microbial interactions in OMD and the influence of environmental factors on microbial interactions. Cotton strip (CS), as a substitute for organic matter, was introduced to Luanhe River Basin in China. The results of CS assay, microbial sequencing, and redundancy analysis (RDA) showed that CS selectively enriched bacterial and fungal groups related to cellulose decomposition, achieving cotton strip decomposition (CSD). Bacterial phylum Proteobacteria and fungal phyla Rozellomycota and Ascomycota were the dominant groups associated with CSD. Network analysis and Mantel test results indicated that bacteria and fungi on CS cooperatively formed an interaction network to achieve the CSD. In the network, modules 2 and 4 were significantly positively associated with CSD, which were considered as the key modules in this study. The key modules were mainly composed of phyla Proteobacteria and Ascomycota, indicating that microbes in key modules were the effective decomposers of CS. Although keystone taxa were not directly associated with CSD, they may regulate the genera in key modules to achieve the CSD, since some keystone taxa were linked with the microbial genera associated with CSD in the key modules. Total nitrogen (TN) and temperature in water were the dominant environmental factors positively influenced CSD. The key modules 2 and 4 were positively influenced by water temperature and TN in water, respectively, and two keystone taxa were positively associated with TN. This profoundly revealed that water temperature and TN influenced the OMD through acting on the keystone taxa and key modules in microbial interactions. The research findings help us to understand the microbial interactions influenced by environmental factors in OMD in river ecosystems.
Collapse
Affiliation(s)
- Yibo Liu
- Key Laboratory of Groundwater Resources and Environment Ministry of Education, College of New Energy and Environment, Jilin University, Changchun, 130012, People's Republic of China
- Jilin Provincial Key Laboratory of Water Resources and Environment, Jilin University, Changchun, 130012, People's Republic of China
| | - Baiyu Zhang
- Department of Civil Engineering, Faculty of Engineering and Applied Science, Memorial University, St. John' s, NL, A1B 3X5, Canada
| | - Yixin Zhang
- Department of Landscape Architecture, Gold Mantis School of Architecture, Soochow University, Suzhou, China
| | - Yanping Shen
- Key Laboratory of Groundwater Resources and Environment Ministry of Education, College of New Energy and Environment, Jilin University, Changchun, 130012, People's Republic of China
- Jilin Provincial Key Laboratory of Water Resources and Environment, Jilin University, Changchun, 130012, People's Republic of China
| | - Cheng Cheng
- Key Laboratory of Groundwater Resources and Environment Ministry of Education, College of New Energy and Environment, Jilin University, Changchun, 130012, People's Republic of China
- Jilin Provincial Key Laboratory of Water Resources and Environment, Jilin University, Changchun, 130012, People's Republic of China
| | - Weilin Yuan
- Key Laboratory of Groundwater Resources and Environment Ministry of Education, College of New Energy and Environment, Jilin University, Changchun, 130012, People's Republic of China
- Jilin Provincial Key Laboratory of Water Resources and Environment, Jilin University, Changchun, 130012, People's Republic of China
| | - Ping Guo
- Key Laboratory of Groundwater Resources and Environment Ministry of Education, College of New Energy and Environment, Jilin University, Changchun, 130012, People's Republic of China.
- Jilin Provincial Key Laboratory of Water Resources and Environment, Jilin University, Changchun, 130012, People's Republic of China.
| |
Collapse
|
5
|
Wang L, Sun K, Pan S, Wang S, Yan Z, Zhu L, Yang X. Exogenous microbial antagonism affects the bioaugmentation of humus formation under different inoculation using Trichoderma reesei and Phanerochaete chrysosporium. BIORESOURCE TECHNOLOGY 2023; 373:128717. [PMID: 36773812 DOI: 10.1016/j.biortech.2023.128717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 02/05/2023] [Accepted: 02/06/2023] [Indexed: 06/18/2023]
Abstract
This study was aimed at exploring the effect of antagonism of Trichoderma reesei (T.r) and Phanerochaete chrysosporium (P.c) on humification during fermentation of rice (RS) and canola straw (CS). Results showed that exogeneous fungi accelerated straw degradation and enzyme activities of CMCase, xylanase and LiP. P.c inhibited the activity of LiP when co-existing with T.r beginning, it promoted the degradation of lignin and further increased the production of humus-like substances (HLS) and humic-like acid (HLA) in later fermentation when nutrients were insufficient. The HLS of RTP was 54.9 g/kg RS, higher than the other treatments, and displayed more complex structure and higher thermostability. Brucella and Bacillus were the main HLA bacterial producers. P.c was the HLA fungal producer, while T.r assisted FLA and polyphenol transformation. Therefore, RTP was recommended to advance technologies converting crop straw into humus resources.
Collapse
Affiliation(s)
- Lili Wang
- School of Life Science, Anhui University 230601, China.
| | - Kai Sun
- School of Life Science, Anhui University 230601, China
| | - Shuai Pan
- School of Life Science, Anhui University 230601, China
| | - Shunli Wang
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Zhongkang Yan
- Institute of Physical Science and Information Technology, Anhui University 230601, China
| | - Lianlian Zhu
- School of Life Science, Anhui University 230601, China
| | - Xingyuan Yang
- Institute of Physical Science and Information Technology, Anhui University 230601, China
| |
Collapse
|
6
|
Cheng Y, Wan W. Strong linkage between nutrient-cycling functional gene diversity and ecosystem multifunctionality during winter composting with pig manure and fallen leaves. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 867:161529. [PMID: 36634774 DOI: 10.1016/j.scitotenv.2023.161529] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 01/04/2023] [Accepted: 01/07/2023] [Indexed: 06/17/2023]
Abstract
Microorganisms play important roles in element transformation and display distinct compositional changes during composting. However, little is known about the linkage between nutrient-cycling functional gene diversity and compost ecosystem multifunctionality (EMF). This study performed winter composting with pig manure and fallen leaves and evaluated the distribution patterns and ecological roles of multiple functional genes involved in nutrient cycles. Physicochemical properties and enzyme activities presented large fluctuations during composting. Absolute abundance, composition, and diversity of functional genes participating in carbon, nitrogen, phosphorus, and sulfur cycles presented distinct dynamic changes. Stronger linkage was found between enzyme activities and temperature than other physicochemical factors, whereas total nitrogen rather than other physicochemical factors displayed closer linkage with functional gene composition and diversity. EMF targeting key nutrient (i.e., carbon, nitrogen, phosphorus, and sulfur) cycles was significantly positively correlated with temperature and notably negatively correlated with functional gene diversity. Enzyme activities rather than functional gene diversity showed a greater potential effect on phosphorus availability. Consequently, the available phosphorus (AP) content increased from initial 0.50 g/kg to final 1.43 g/kg. To our knowledge, this is the first study that deciphered ecological roles of nutrient-cycling functional gene diversity during composting, and the final compost can serve as a potential phosphorus fertilizer.
Collapse
Affiliation(s)
- Yarui Cheng
- College of Chemistry and Environmental Engineering, Hanjiang Normal University, Shiyan 442000, PR China
| | - Wenjie Wan
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, PR China; Danjiangkou Wetland Ecosystem Field Scientific Observation and Research Station, Chinese Academy of Sciences & Hubei Province, Wuhan 430074, PR China.
| |
Collapse
|
7
|
Zhang X, Chen X, Li S, Bello A, Liu J, Gao L, Fan Z, Wang S, Liu L, Ma B, Li H. Mechanism of differential expression of β-glucosidase genes in functional microbial communities in response to carbon catabolite repression. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2022; 15:3. [PMID: 35418139 PMCID: PMC8756671 DOI: 10.1186/s13068-021-02101-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 12/29/2021] [Indexed: 11/10/2022]
Abstract
Abstract
Background
β-Glucosidase is the rate-limiting enzyme of cellulose degradation. It has been stipulated and established that β-glucosidase-producing microbial communities differentially regulate the expression of glucose/non-glucose tolerant β-glucosidase genes. However, it is still unknown if this differential expression of functional microbial community happens accidentally or as a general regulatory mechanism, and of what biological significance it has. To investigate the composition and function of microbial communities and how they respond to different carbon metabolism pressures and the transcriptional regulation of functional genes, the different carbon metabolism pressure was constructed by setting up the static chamber during composting.
Results
The composition and function of functional microbial communities demonstrated different behaviors under the carbon metabolism pressure. Functional microbial community up-regulated glucose tolerant β-glucosidase genes expression to maintain the carbon metabolism rate by enhancing the transglycosylation activity of β-glucosidase to compensate for the decrease of hydrolysis activity under carbon catabolite repression (CCR). Micrococcales play a vital role in the resistance of functional microbial community under CCR. The transcription regulation of GH1 family β-glucosidase genes from Proteobacteria showed more obvious inhibition than other phyla under CCR.
Conclusion
Microbial functional communities differentially regulate the expression of glucose/non-glucose tolerant β-glucosidase genes under CCR, which is a general regulatory mechanism, not accidental. Furthermore, the differentially expressed β-glucosidase gene exhibited species characteristics at the phylogenetic level.
Collapse
|
8
|
Gladkov GV, Kimeklis AK, Afonin AM, Lisina TO, Orlova OV, Aksenova TS, Kichko AA, Pinaev AG, Andronov EE. The Structure of Stable Cellulolytic Consortia Isolated from Natural Lignocellulosic Substrates. Int J Mol Sci 2022; 23:ijms231810779. [PMID: 36142684 PMCID: PMC9501375 DOI: 10.3390/ijms231810779] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 08/31/2022] [Accepted: 09/04/2022] [Indexed: 10/27/2022] Open
Abstract
Recycling plant matter is one of the challenges facing humanity today and depends on efficient lignocellulose degradation. Although many bacterial strains from natural substrates demonstrate cellulolytic activities, the CAZymes (Carbohydrate-Active enZYmes) responsible for these activities are very diverse and usually distributed among different bacteria in one habitat. Thus, using microbial consortia can be a solution to rapid and effective decomposition of plant biomass. Four cellulolytic consortia were isolated from enrichment cultures from composting natural lignocellulosic substrates—oat straw, pine sawdust, and birch leaf litter. Enrichment cultures facilitated growth of similar, but not identical cellulose-decomposing bacteria from different substrates. Major components in all consortia were from Proteobacteria, Actinobacteriota and Bacteroidota, but some were specific for different substrates—Verrucomicrobiota and Myxococcota from straw, Planctomycetota from sawdust and Firmicutes from leaf litter. While most members of the consortia were involved in the lignocellulose degradation, some demonstrated additional metabolic activities. Consortia did not differ in the composition of CAZymes genes, but rather in axillary functions, such as ABC-transporters and two-component systems, usually taxon-specific and associated with CAZymes. Our findings show that enrichment cultures can provide reproducible cellulolytic consortia from various lignocellulosic substrates, the stability of which is ensured by tight microbial relations between its components.
Collapse
Affiliation(s)
- Grigory V. Gladkov
- All-Russian Research Institute of Agricultural Microbiology, 196608 Saint Petersburg, Russia
- Correspondence: ; Tel.: +7-921-402-65-16
| | - Anastasiia K. Kimeklis
- All-Russian Research Institute of Agricultural Microbiology, 196608 Saint Petersburg, Russia
- Department of Applied Ecology, Saint-Petersburg State University, 199034 Saint Petersburg, Russia
| | - Alexey M. Afonin
- All-Russian Research Institute of Agricultural Microbiology, 196608 Saint Petersburg, Russia
| | - Tatiana O. Lisina
- All-Russian Research Institute of Agricultural Microbiology, 196608 Saint Petersburg, Russia
| | - Olga V. Orlova
- All-Russian Research Institute of Agricultural Microbiology, 196608 Saint Petersburg, Russia
| | - Tatiana S. Aksenova
- All-Russian Research Institute of Agricultural Microbiology, 196608 Saint Petersburg, Russia
| | - Arina A. Kichko
- All-Russian Research Institute of Agricultural Microbiology, 196608 Saint Petersburg, Russia
| | - Alexander G. Pinaev
- All-Russian Research Institute of Agricultural Microbiology, 196608 Saint Petersburg, Russia
| | - Evgeny E. Andronov
- All-Russian Research Institute of Agricultural Microbiology, 196608 Saint Petersburg, Russia
- Dokuchaev Soil Science Institute, 119017 Moscow, Russia
| |
Collapse
|
9
|
Alfonzo A, Laudicina VA, Muscarella SM, Badalucco L, Moschetti G, Spanò GM, Francesca N. Cellulolytic bacteria joined with deproteinized whey decrease carbon to nitrogen ratio and improve stability of compost from wine production chain by-products. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 304:114194. [PMID: 34864414 DOI: 10.1016/j.jenvman.2021.114194] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 11/10/2021] [Accepted: 11/25/2021] [Indexed: 06/13/2023]
Abstract
Composting residues from wine and dairy chains would contribute to increase the environmental sustainability of the production. The aim of this study was to evaluate the effects of deproteinized whey combined with bioactivators on the composting process. Bacillus velezensis and Kocuria rhizophila, bacteria with cellulolytic activity, were isolated from raw materials and inoculated in the organic mass to be composted. Piles moistened with deproteinized whey showed the highest reduction of total and dissolved organic carbon due to the stimulation of bacterial activity by nitrogen compounds held within deproteinized whey. Such findings were also confirmed by the speed up of the microbial carbon mineralization. Bioactivators and deproteinized whey speeded up the composting process and returned compost characterized by high stability and quality. The addition of available N is crucial to improve the composting process and can act even better if combined with cellulolytic bacteria.
Collapse
Affiliation(s)
- Antonio Alfonzo
- Department of Agricultural, Food and Forest Sciences, University of Palermo, Viale Delle Scienze 4, 90128, Palermo, Italy
| | - Vito Armando Laudicina
- Department of Agricultural, Food and Forest Sciences, University of Palermo, Viale Delle Scienze 4, 90128, Palermo, Italy.
| | - Sofia Maria Muscarella
- Department of Agricultural, Food and Forest Sciences, University of Palermo, Viale Delle Scienze 4, 90128, Palermo, Italy
| | - Luigi Badalucco
- Department of Agricultural, Food and Forest Sciences, University of Palermo, Viale Delle Scienze 4, 90128, Palermo, Italy
| | - Giancarlo Moschetti
- Department of Agricultural, Food and Forest Sciences, University of Palermo, Viale Delle Scienze 4, 90128, Palermo, Italy
| | - Giacomo Massimo Spanò
- Cantine Europa Società Cooperativa Agricola, SS 115 Km 42.400, Petrosino, 91020, Italy
| | - Nicola Francesca
- Department of Agricultural, Food and Forest Sciences, University of Palermo, Viale Delle Scienze 4, 90128, Palermo, Italy
| |
Collapse
|
10
|
Zhong B, An X, An W, Xiao X, Li H, Xia X, Zhang Q. Effect of bioaugmentation on lignocellulose degradation and antibiotic resistance genes removal during biogas residues composting. BIORESOURCE TECHNOLOGY 2021; 340:125742. [PMID: 34426239 DOI: 10.1016/j.biortech.2021.125742] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Revised: 08/05/2021] [Accepted: 08/07/2021] [Indexed: 06/13/2023]
Abstract
In this study, six strains belonging to Alcaligenes, Enterobacter and Bacillus were employed to enhance the composting process of biogas residues and agricultural wastes. The dynamic changes of dissolved organic matter (DOM), microbial community and functional genes in composting was monitored. It was found bioaugmentation reduced the content of lignocellulose in the compost by 27.14-66.30%, and increased the seed germination index (GI) of the compost by 37.59%. Metagenomics analysis of the composting process indicated Proteobacteria (35.38%-64.19%), Actinobacteria (11.24%-28.93%) and Bacteroidetes (3.65%-9.57%) are the dominant microorganisms during the bioaugmented composting. The abundance of genes associated with glycoside hydrolase was obviously enhanced and the antibiotic resistance genes (ARGs) was significantly reduced during the bioaugmented composting. Following nursery investigation indicated the seedling substrates composed of bioaugmented compost increased the dry weight of tomato seedlings by 1.7 times, revealing obvious large-scale application potential in the resource utilization of agricultural wastes.
Collapse
Affiliation(s)
- Bin Zhong
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Jiangxi Engineering Laboratory for the Development and Utilization of Agricultural Microbial Resources, Nanchang, 330045, PR China
| | - Xuejiao An
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Jiangxi Engineering Laboratory for the Development and Utilization of Agricultural Microbial Resources, Nanchang, 330045, PR China
| | - Weijuan An
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Jiangxi Engineering Laboratory for the Development and Utilization of Agricultural Microbial Resources, Nanchang, 330045, PR China
| | - Xiaoshuang Xiao
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Jiangxi Engineering Laboratory for the Development and Utilization of Agricultural Microbial Resources, Nanchang, 330045, PR China
| | - Hanguang Li
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Jiangxi Engineering Laboratory for the Development and Utilization of Agricultural Microbial Resources, Nanchang, 330045, PR China
| | - Xiang Xia
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Jiangxi Engineering Laboratory for the Development and Utilization of Agricultural Microbial Resources, Nanchang, 330045, PR China
| | - Qinghua Zhang
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Jiangxi Engineering Laboratory for the Development and Utilization of Agricultural Microbial Resources, Nanchang, 330045, PR China.
| |
Collapse
|
11
|
Bobul'ská L, Espíndola SP, Coelho MA, Ferreira AS. Impact of land use on soil function and bacterial community in the Brazilian savanna. AN ACAD BRAS CIENC 2021; 93:e20201906. [PMID: 34550206 DOI: 10.1590/0001-3765202120201906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 03/20/2021] [Indexed: 11/21/2022] Open
Abstract
Land use systems have a great impact on soil function and microbial diversity in tropical soils. Our study aimed to evaluate soil biochemical indicators and community composition and to assess the relationship between soil biochemical and microbial indicators and bacterial diversity of three agroecosystems (pine forest, soya and sugarcane) and native Cerrado forest in the Brazilian savanna. Soil biochemical indicators (soil organic matter and enzymes) and high-throughput sequencing of 16S rDNA were performed in two topsoil depths (0-5 cm and 5-10 cm). Soil microbial and enzyme activity showed that agricultural soil usage has a negative impact on soil function compared to native and pine forests. Results also revealed higher enzyme activities in 0-5 cm depth compared to 5-10 cm depth, but enzymatic activities depend on land use systems. Soil bacterial community was affected by land use systems and depth, revealing changes in structure and abundance of bacterial composition. Alpha-diversity indexes were higher in the agricultural systems than in the forests, however they showed a significant negative correlation with most of the studied soil microbial and biochemical indicators. Our research had brought new relevant information about the relationship between the soil biochemical indicators and the bacterial diversity in the Brazilian Cerrado.
Collapse
Affiliation(s)
- Lenka Bobul'ská
- University of Prešov in Prešov, Department of Ecology, Faculty of Humanities and Natural Sciences, 17, November 1, Prešov 080 01, Slovakia
| | - Suéllen P Espíndola
- Universidade Federal de Uberlândia, Instituto de Ciências Agrárias, Campus Glória, Bloco CCG, 38410-337 Uberlândia, MG, Brazil
| | - Michelle A Coelho
- Universidade Federal de Uberlândia, Instituto de Ciências Agrárias, Campus Glória, Bloco CCG, 38410-337 Uberlândia, MG, Brazil
| | - Adão S Ferreira
- Universidade Federal de Uberlândia, Instituto de Ciências Agrárias, Campus Glória, Bloco CCG, 38410-337 Uberlândia, MG, Brazil
| |
Collapse
|
12
|
Zhang X, Su E, Li S, Chen X, Fan Z, Liu M, Ma B, Li H. Molecular analyses of the diversity and function of the family 1 β-glucosidase-producing microbial community in compost. Can J Microbiol 2021; 67:713-723. [PMID: 33905664 DOI: 10.1139/cjm-2020-0576] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The diversity and transcription efficiency of GH1 family β-glucosidase genes were investigated in natural and inoculated composts using a DNA clone library and real-time qPCR. Compositional differences were observed in the functional community between both composting processes. Proteobacteria, Actinobacteria, Firmicutes, and Chloroflexi were the dominant phyla. Twenty representative β-glucosidase genes were quantitatively analyzed from DNA and RNA pools. Principal component analysis and Pearson's correlation analysis showed that cellulose degradation is correlated with the composition and succession of functional microbial communities, and this correlation was mainly observed in Proteobacteria and Actinobacteria. Compared with inoculated compost, the functional microbial communities in natural compost with a low diversity index exhibited weak buffering capacity for function in response to environmental changes. This may explain the consistency and dysfunction of cellulose degradation and transcriptional regulation by dominant β-glucosidase genes. Except for the β-glucosidase genes encoding constitutive enzymes, individual β-glucosidase genes responded to environmental changes more drastically than the group β-glucosidase genes. Correlation results suggested that β-glucosidase genes belonging to Micrococcales played an important role in the regulation of intracellular β-glucosidase. These results indicated that the responses of functional microorganisms were different during both composting processes, and were reflected at both the individual and group levels.
Collapse
Affiliation(s)
- Xinyue Zhang
- Northeast Agricultural University, 12430, Harbin, China;
| | - Erlie Su
- Northeast Agricultural University, 12430, Harbin, China;
| | - Shanshan Li
- Northeast Agricultural University, 12430, Harbin, China;
| | - Xiehui Chen
- Northeast Agricultural University, 12430, Harbin, China;
| | - Zhihua Fan
- Northeast Agricultural University, 12430, Harbin, China;
| | - Meiting Liu
- Northeast Agricultural University, 12430, Harbin, Harbin, China;
| | - Bo Ma
- Northeast Agricultural University, 12430, Harbin, China, 150030;
| | - Hongtao Li
- Northeast Agricultural University, 12430, Harbin, China, 150030;
| |
Collapse
|
13
|
Effects of Exogenous Microbial Agents on Soil Nutrient and Microbial Community Composition in Greenhouse-Derived Vegetable Straw Composts. SUSTAINABILITY 2021. [DOI: 10.3390/su13052925] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Vegetable waste causes resource waste and environmental pollution, giving rise to the spread of harmful organisms and causing disease in normal vegetable cultivation. Random distribution of vegetable waste can increase the risk of non-point agricultural pollution and explore the feasibility of its resource utilization. This study was designed to evaluate the effects of different doses of exogenous microbial agents on soil microbial communities after in situ composting of cucumber straw on plots with biodegradable mulch films. The cucumber straw and chicken manure were used as the base materials, and the next generation sequencing was used to analyze changes in the microbiome following composting. The results demonstrate that the addition of exogenous microbial agents had prolonged the high-temperature duration, reduced the total organic carbon (TOC) content, and accelerated the decline in the C/N ratio, ensuring compost maturity and effectively shortening the composting time. The predominant bacterial phyla of the four treatment groups were Proteobacteria and Firmicutes; while among fungal phyla, these treatments decreased the relative abundance of Ascomycota. The treatment of 300 t/ha microbial agents significantly increased the richness and diversity of both the bacterial and fungal communities. Redundancy analysis suggested that soil total nitrogen (TN) content had a significant effect on the bacterial community, while TN content, pH, and temperature influenced the fungal community in these samples. Collectively, the treatment of 300 t/ha exogenous microbial agents improved the quality of composting and promoted microbiome diversity.
Collapse
|
14
|
Chiba A, Uchida Y, Kublik S, Vestergaard G, Buegger F, Schloter M, Schulz S. Soil Bacterial Diversity Is Positively Correlated with Decomposition Rates during Early Phases of Maize Litter Decomposition. Microorganisms 2021; 9:microorganisms9020357. [PMID: 33670245 PMCID: PMC7916959 DOI: 10.3390/microorganisms9020357] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 02/07/2021] [Accepted: 02/09/2021] [Indexed: 12/16/2022] Open
Abstract
This study aimed to investigate the effects of different levels of soil- and plant-associated bacterial diversity on the rates of litter decomposition, and bacterial community dynamics during its early phases. We performed an incubation experiment where soil bacterial diversity (but not abundance) was manipulated by autoclaving and reinoculation. Natural or autoclaved maize leaves were applied to the soils and incubated for 6 weeks. Bacterial diversity was assessed before and during litter decomposition using 16S rRNA gene metabarcoding. We found a positive correlation between litter decomposition rates and soil bacterial diversity. The soil with the highest bacterial diversity was dominated by oligotrophic bacteria including Acidobacteria, Nitrospiraceae, and Gaiellaceae, and its community composition did not change during the incubation. In the less diverse soils, those taxa were absent but were replaced by copiotrophic bacteria, such as Caulobacteraceae and Beijerinckiaceae, until the end of the incubation period. SourceTracker analysis revealed that litter-associated bacteria, such as Beijerinckiaceae, only became part of the bacterial communities in the less diverse soils. This suggests a pivotal role of oligotrophic bacteria during the early phases of litter decomposition and the predominance of copiotrophic bacteria at low diversity.
Collapse
Affiliation(s)
- Akane Chiba
- Research Faculty of Agriculture, Hokkaido University, Sapporo 060-8589, Japan; (A.C.); (Y.U.)
- Research Unit Comparative Microbiome Analysis, Helmholtz Zentrum München, German Research Centre for Environmental Health, 85764 Neuherberg, Germany; (S.K.); (G.V.); (M.S.)
- Crop Physiology, TUM School of Life Science, Technical University of Munich, 85354 Freising, Germany
| | - Yoshitaka Uchida
- Research Faculty of Agriculture, Hokkaido University, Sapporo 060-8589, Japan; (A.C.); (Y.U.)
| | - Susanne Kublik
- Research Unit Comparative Microbiome Analysis, Helmholtz Zentrum München, German Research Centre for Environmental Health, 85764 Neuherberg, Germany; (S.K.); (G.V.); (M.S.)
| | - Gisle Vestergaard
- Research Unit Comparative Microbiome Analysis, Helmholtz Zentrum München, German Research Centre for Environmental Health, 85764 Neuherberg, Germany; (S.K.); (G.V.); (M.S.)
- Section of Bioinformatics, Department of Health Technology, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Franz Buegger
- Institute of Biochemical Plant Pathology, Helmholtz Zentrum München, German Research Centre for Environmental Health, 85764 Neuherberg, Germany;
| | - Michael Schloter
- Research Unit Comparative Microbiome Analysis, Helmholtz Zentrum München, German Research Centre for Environmental Health, 85764 Neuherberg, Germany; (S.K.); (G.V.); (M.S.)
- TUM School of Life Science, Technical University of Munich, 85354 Freising, Germany
| | - Stefanie Schulz
- Research Unit Comparative Microbiome Analysis, Helmholtz Zentrum München, German Research Centre for Environmental Health, 85764 Neuherberg, Germany; (S.K.); (G.V.); (M.S.)
- Correspondence: ; Tel.: +49-(0)89-3187-3054
| |
Collapse
|
15
|
Jiang Z, Meng Q, Niu Q, Wang S, Yan H, Li Q. Understanding the key regulatory functions of red mud in cellulose breakdown and succession of β-glucosidase microbial community during composting. BIORESOURCE TECHNOLOGY 2020; 318:124265. [PMID: 33099095 DOI: 10.1016/j.biortech.2020.124265] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 10/05/2020] [Accepted: 10/10/2020] [Indexed: 06/11/2023]
Abstract
The purpose of this research was to explore the effects of red mud on cellulose degradation and the succession of β-glucosidase microbial community in composting to better enhance the quality of compost. The activity of β-glucosidase in the treatment group with red mud (T) was 0.42-1.07 times higher than that in the control group without red mud (CK) from day 7 to 21 of composting. The final cellulose degradation ratios of the T (84.73%) were 10.02% higher than that of the CK (74.71%). In addition, Proteobacteria, Actinobacteria, Firmicutes, and Ascomycota were the most dominant β-glucosidase-producing microbes, and these microbes were also the phyla causing composting performances differences in the high temperature, cooling, and maturity periods of CK and T. These results indicated that adding red mud can improve β-glucosidase activity and boost the breakdown of cellulose in composting process.
Collapse
Affiliation(s)
- Zhiwei Jiang
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
| | - Qingran Meng
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
| | - Qiuqi Niu
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
| | - Susu Wang
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
| | - Hailong Yan
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
| | - Qunliang Li
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China.
| |
Collapse
|
16
|
Qu J, Zhang L, Zhang X, Gao L, Tian Y. Biochar combined with gypsum reduces both nitrogen and carbon losses during agricultural waste composting and enhances overall compost quality by regulating microbial activities and functions. BIORESOURCE TECHNOLOGY 2020; 314:123781. [PMID: 32652451 DOI: 10.1016/j.biortech.2020.123781] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 06/25/2020] [Accepted: 07/01/2020] [Indexed: 06/11/2023]
Abstract
Composting is an efficient method for treating agricultural wastes. This study investigated the effects of the addition of biochar (B) and gypsum (G) to straw mixed with chicken manure (SC) (i.e. SC, SC + B, SC + G and SC + B + G) on composting performance at different initial C/N ratios (20, 25 and 30). In general, biochar combined with gypsum (BCG) efficiently shortened composting time and reduced N loss, C loss and potential ecological risk. It also enhanced lignocellulose decomposition, nutrient retention and the overall compost quality expressed by a compost quality index (CQI), and increased the biomass of four different test crops. The BCG-induced increase in CQI was closely associated with microbial enzyme activities and C catabolic profiles. These results indicated that the combination of biochar and gypsum is more effective than each single additive during composting, and emphasized that microbial activities and functions play pivotal roles in determining compost quality and thereby agronomic performance.
Collapse
Affiliation(s)
- Jisong Qu
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, College of Horticulture, China Agricultural University, Yuanmingyuan West Road No. 2, Haidian District, Beijing 100193, China; Institute of Germplasm Resources, Ningxia Academy of Agriculture and Forestry Science, Huanghe East Road No. 590, Jinfeng District, Yinchuan 750002, China
| | - Lijuan Zhang
- Institute of Germplasm Resources, Ningxia Academy of Agriculture and Forestry Science, Huanghe East Road No. 590, Jinfeng District, Yinchuan 750002, China
| | - Xu Zhang
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, College of Horticulture, China Agricultural University, Yuanmingyuan West Road No. 2, Haidian District, Beijing 100193, China
| | - Lihong Gao
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, College of Horticulture, China Agricultural University, Yuanmingyuan West Road No. 2, Haidian District, Beijing 100193, China.
| | - Yongqiang Tian
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, College of Horticulture, China Agricultural University, Yuanmingyuan West Road No. 2, Haidian District, Beijing 100193, China.
| |
Collapse
|
17
|
Eswaran R, Khandeparker L. Influence of salinity stress on bacterial community composition and β-glucosidase activity in a tropical estuary: Elucidation through microcosm experiments. MARINE ENVIRONMENTAL RESEARCH 2020; 159:104997. [PMID: 32662433 DOI: 10.1016/j.marenvres.2020.104997] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 04/16/2020] [Accepted: 04/16/2020] [Indexed: 06/11/2023]
Abstract
The influence of changing salinity on community composition and functional activity (Bacterial Production (BP) and ectoenzyme activity) of major bacterial taxa was evaluated using microcosm experiments in a tropical monsoon influenced estuary. Natural bacterial inocula at different salinities, representing marine, brackish, and freshwater, were inter-transferred and elucidated their response with an emphasis on community composition and β-Glucosidase (BGase) activity. The results revealed a significant decrease in the total bacterial count (TBC) and BP on the translocation of bacterial inocula to different salinity conditions in the case of freshwater bacteria. However, a significant increase in BGase activity coupled with shifts in the studied bacterial groups was evident in the case of marine as well as freshwater bacteria. Quantitative PCR (qPCR) revealed a shift in major bacterial taxa upon translocation to different waters, which was dependent on salinity and the source of inocula. Redundancy and qPCR analyses showed that members belonging to Gammaproteobacteria and Betaproteobacteria were higher, and possibly influenced BGase activity in marine and freshwater, respectively. Translocation of marine inocula to brackish and freshwater resulted in an emergence of Bacteroidetes, Actinobacteria, and Betaproteobacteria, respectively. Whereas, when freshwater inocula were translocated to marine or brackish water, Alphaproteobacteria and Gammaproteobacteria taxa emerged, and this was coupled with increased BGase activity. In contrast, brackish water bacteria showed a strong persistence in bacterial community composition when translocated to different salinities within this estuary. Such phylogenetic persistence or changes suggests species level shifts in specific bacterial taxa, and unravelling the same using different functional gene markers would ascertain their role in organic matter processing and is way forward.
Collapse
Affiliation(s)
- Ranjith Eswaran
- CSIR - National Institute of Oceanography, Dona Paula, Goa, India; School of Earth, Ocean and Atmospheric Sciences, Goa University, Taleigao, Goa, India
| | | |
Collapse
|
18
|
Ma L, Zhao Y, Meng L, Wang X, Yi Y, Shan Y, Liu B, Zhou Y, Lü X. Isolation of Thermostable Lignocellulosic Bacteria From Chicken Manure Compost and a M42 Family Endocellulase Cloning From Geobacillus thermodenitrificans Y7. Front Microbiol 2020; 11:281. [PMID: 32174898 PMCID: PMC7054444 DOI: 10.3389/fmicb.2020.00281] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 02/07/2020] [Indexed: 01/01/2023] Open
Abstract
The composting ecosystem provides a potential resource for finding new microorganisms with the capability for cellulose degradation. In the present study, Congo red method was used for the isolating of thermostable lignocellulose-degrading bacteria from chicken manure compost. A thermophilic strain named as Geobacillus thermodenitrificans Y7 with acid-resident property was successfully isolated and employed to degrade raw switchgrass at 60°C for 5 days, which resulted in the final degradation rates of cellulose, xylan, and acid-insoluble lignin as 18.64, 12.96, and 17.21%, respectively. In addition, GC-MS analysis about aromatic degradation affirm the degradation of lignin by G. thermodenitrificans Y7. Moreover, an endocellulase gene belong to M42 family was successfully cloned from G. thermodenitrificans Y7 and expressed in Escherichia coli BL21. Recombinant enzyme Cel-9 was purified by Ni-NTA column based the His-tag, and the molecular weight determined as 40.4 kDa by SDA-PAGE. The characterization of the enzyme Cel-9 indicated that the maximum enzyme activity was realized at 50°C and pH 8.6 and, Mn2+ could greatly improve the CMCase enzyme activity of Cel-9 at 10 mM, which was followed by Fe2+ and Co2+. Besides, it also found that the β-1,3-1,4, β-1,3, β-1,4, and β-1,6 glucan linkages all could be hydrolyzed by enzyme Cel-9. Finally, during the application of enzyme Cel-9 to switchgrass, the saccharification rates achieved to 1.81 ± 0.04% and 2.65 ± 0.03% for 50 and 100% crude enzyme, respectively. All these results indicated that both the strain G. thermodenitrificans Y7 and the recombinant endocellulase Cel-9 have the potential to be applied to the biomass industry.
Collapse
Affiliation(s)
- Lingling Ma
- Laboratory of Bioresources, College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Yuchun Zhao
- Laboratory of Bioresources, College of Food Science and Engineering, Northwest A&F University, Yangling, China
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Limin Meng
- Laboratory of Bioresources, College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Xin Wang
- Laboratory of Bioresources, College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Yanglei Yi
- Laboratory of Bioresources, College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Yuanyuan Shan
- Laboratory of Bioresources, College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Bianfang Liu
- Laboratory of Bioresources, College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Yuan Zhou
- Laboratory of Bioresources, College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Xin Lü
- Laboratory of Bioresources, College of Food Science and Engineering, Northwest A&F University, Yangling, China
| |
Collapse
|
19
|
Zhang X, Ma B, Liu J, Chen X, Li S, Su E, Gao L, Li H. β-Glucosidase genes differentially expressed during composting. BIOTECHNOLOGY FOR BIOFUELS 2020; 13:174. [PMID: 33088344 PMCID: PMC7570026 DOI: 10.1186/s13068-020-01813-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Accepted: 10/07/2020] [Indexed: 05/06/2023]
Abstract
BACKGROUND Cellulose degradation by cellulase is brought about by complex communities of interacting microorganisms, which significantly contribute to the cycling of carbon on a global scale. β-Glucosidase (BGL) is the rate-limiting enzyme in the cellulose degradation process. Thus, analyzing the expression of genes involved in cellulose degradation and regulation of BGL gene expression during composting will improve the understanding of the cellulose degradation mechanism. Based on our previous research, we hypothesized that BGL-producing microbial communities differentially regulate the expression of glucose-tolerant BGL and non-glucose-tolerant BGL to adapt to the changes in cellulose degradation conditions. RESULTS To confirm this hypothesis, the structure and function of functional microbial communities involved in cellulose degradation were investigated by metatranscriptomics and a DNA library search of the GH1 family of BGLs involved in natural and inoculated composting. Under normal conditions, the group of non-glucose-tolerant BGL genes exhibited higher sensitivity to regulation than the glucose-tolerant BGL genes, which was suppressed during the composting process. Compared with the expression of endoglucanase and exoglucanase, the functional microbial communities exhibited a different transcriptional regulation of BGL genes during the cooling phase of natural composting. BGL-producing microbial communities upregulated the expression of glucose-tolerant BGL under carbon catabolite repression due to the increased glucose concentration, whereas the expression of non-glucose-tolerant BGL was suppressed. CONCLUSION Our results support the hypothesis that the functional microbial communities use multiple strategies of varying effectiveness to regulate the expression of BGL genes to facilitate adaptation to environmental changes.
Collapse
Affiliation(s)
- Xinyue Zhang
- College of Resources and Environmental Sciences, Northeast Agricultural University, Harbin, 150030 China
| | - Bo Ma
- School of Animal Medicine, Northeast Agricultural University, Harbin, 150030 China
- Northeastern Science Inspection Station, China Ministry of Agriculture Key Laboratory of Animal Pathogen Biology, Harbin, 150030 China
| | - Jiawen Liu
- College of Resources and Environmental Sciences, Northeast Agricultural University, Harbin, 150030 China
| | - Xiehui Chen
- College of Resources and Environmental Sciences, Northeast Agricultural University, Harbin, 150030 China
| | - Shanshan Li
- College of Resources and Environmental Sciences, Northeast Agricultural University, Harbin, 150030 China
| | - Erlie Su
- College of Resources and Environmental Sciences, Northeast Agricultural University, Harbin, 150030 China
| | - Liyuan Gao
- College of Resources and Environmental Sciences, Northeast Agricultural University, Harbin, 150030 China
| | - Hongtao Li
- College of Resources and Environmental Sciences, Northeast Agricultural University, Harbin, 150030 China
| |
Collapse
|
20
|
Transformation of Corn Stalk Residue to Humus-Like Substances during Solid-State Fermentation. SUSTAINABILITY 2019. [DOI: 10.3390/su11236771] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Lignocellulase production from straw fermentation has been widely investigated but the research has neglected to quantify fermentation-derived residue transformation to the humus-like substance (HULIS). To investigate the conversion efficacy of corn stalk residue to HULIS, the amount of HULIS associated with chemical composition and structural changes of humic acid-like substances (HAL) was investigated in a 30 L solid-state fermentation tank during a short period of eight days. The results show that the highest decomposition rate of corn stalk and the highest activity of cellulase, xylanase, and β-glucosidase appeared at the fourth day. At the end of fermenting process, the amount of humic acid-like substances (HAL) and the percentage of HAL in humus acid (PQ value) increased 17.5% and 8.9%, respectively, indicating Trichoderma reesei facilitates the transformation of corn stalk residue to HAL. Fatty acids decreased while aromatic carbon and carboxyl content significantly increased during the ongoing fermentation, which had a positive impact on the HAL thermal stability. The FTIR spectral and thermal analysis revealed an improvement in HAL degrees of condensation, oxidation, and aromatization. The present study suggests that the residue of corn stalks fermented with T. reesei might be a good fertilizer to improve soil characteristics.
Collapse
|
21
|
Hu T, Wang X, Zhen L, Gu J, Zhang K, Wang Q, Ma J, Peng H, Lei L, Zhao W. Effects of inoculating with lignocellulose-degrading consortium on cellulose-degrading genes and fungal community during co-composting of spent mushroom substrate with swine manure. BIORESOURCE TECHNOLOGY 2019; 291:121876. [PMID: 31377509 DOI: 10.1016/j.biortech.2019.121876] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 07/19/2019] [Accepted: 07/22/2019] [Indexed: 06/10/2023]
Abstract
Composting is used widely for recycling spent mushroom substrate (SMS). This study investigated the effects of inoculating a lignocellulose-degrading consortium at two levels comprising 0% (control: CK) and 10% (T) on the fungal community and cellulose-degrading genes during SMS co-composting with swine manure. Lignocellulose degradation rate in T was 8.77-34.45% higher compared with CK. Inoculation affected the distribution of the fungal community, increased the community diversity, and inhibited pathogens. Network analysis showed that inoculation changed the co-occurrence patterns of the fungal communities and made the co-composting system more stable. The relative abundances of glycoside hydrolase genes GH3E (fungal GH3), GH6, and GH7 were 0.45, 0.09, and 0.39 logs higher in T, respectively, than CK. Partial least-squares path modeling suggested that the variations in cellulose-degrading genes were driven mainly by changes in the fungal community during co-composting. Therefore, the lignocellulose-degrading consortium accelerated the transformation of lignocellulose to facilitate safer composting.
Collapse
Affiliation(s)
- Ting Hu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China; Shaanxi Province Institute of Microbiology, Xian, Shaanxi 710043, China
| | - Xiaojuan Wang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Lisha Zhen
- Shaanxi Province Institute of Microbiology, Xian, Shaanxi 710043, China
| | - Jie Gu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China; Research Center of Recycle Agricultural Engineering and Technology of Shaanxi Province, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Kaiyu Zhang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Qianzhi Wang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jiyue Ma
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Huiling Peng
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Liusheng Lei
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Wenya Zhao
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| |
Collapse
|
22
|
Xu J, Jiang Z, Li M, Li Q. A compost-derived thermophilic microbial consortium enhances the humification process and alters the microbial diversity during composting. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2019; 243:240-249. [PMID: 31100660 DOI: 10.1016/j.jenvman.2019.05.008] [Citation(s) in RCA: 98] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 04/30/2019] [Accepted: 05/02/2019] [Indexed: 05/21/2023]
Abstract
This work was conducted to assess the influence of a compost-born multifunctional thermophilic microbial consortium (CTMC) on the physico-chemical parameters, organic matter (OM) transformation and dynamic succession of microbial communities in dairy manure-sugarcane leaves co-composting. The results revealed that CTMC inoculation not only improved the bio-degradation of OM and lignocellulose but also distinctly enhanced the aromaticity and stability degrees of dissolved organic matter and humic substance (HS). Additionally, the complexity and diversity of bacterial and fungal community increased after inoculation. Redundancy analysis indicated that the microbial communities compositions and the physico-chemical parameters interacted with each other in humification process. The dominated bacterial and fungal species related to lignocellulose degradation and humification process were also detected. Accordingly, this research could put forward a possible optimized inoculation strategy to enhance the mineralization of organic carbon, accelerate the lignocellulose degradation and promote the humification process in solid organic waste composting.
Collapse
Affiliation(s)
- Jiaqi Xu
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, PR China
| | - Zhiwei Jiang
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, PR China
| | - Mingqi Li
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, PR China
| | - Qunliang Li
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, PR China; Key Laboratory of Guangxi Biorefinery, Guangxi University, Nanning 530004, China.
| |
Collapse
|
23
|
Yin Y, Gu J, Wang X, Tuo X, Zhang K, Zhang L, Guo A, Zhang X. Effects of copper on the composition and diversity of microbial communities in laboratory-scale swine manure composting. Can J Microbiol 2018; 64:409-419. [DOI: 10.1139/cjm-2017-0622] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
This study investigated the effects of adding copper at 3 treatment levels (0 (control: CK), 200 (low: L), and 2000 (high: H) mg·kg−1 treatments) on the bacterial communities during swine manure composting. The abundances of the bacteria were determined by quantitative PCR and their compositions were evaluated by high-throughput sequencing. The results showed that the abundance of bacteria was inhibited by the H treatment during days 7–35, and principal component analysis clearly separated the H treatment from the CK and L treatments. Actinobacteria, Firmicutes, and Proteobacteria were the dominant bacterial taxa, and a high copper concentration decreased the abundances of bacteria that degrade cellulose and lignin (e.g., class Bacilli and genus Truepera), especially in the mesophilic and thermophilic phases. Moreover, network analysis showed that copper might alter the co-occurrence patterns of bacterial communities by changing the properties of the networks and the keystone taxa, and increase the competition by increasing negative associations between bacteria during composting. Temperature, water-soluble carbohydrates, and copper significantly affected the variations in the bacterial community according to redundancy analysis. The copper content mainly contributed to the bacterial community in the thermophilic and cooling phases, where it had positive relationships with potentially pathogenic bacteria (e.g., Corynebacterium_1 and Acinetobacter).
Collapse
Affiliation(s)
- Yanan Yin
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, People’s Republic of China
| | - Jie Gu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, People’s Republic of China
- Research Center of Recycle Agricultural Engineering and Technology of Shaanxi Province, Northwest A&F University, Yangling, Shaanxi 712100, People’s Republic of China
| | - Xiaojuan Wang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, People’s Republic of China
- Research Center of Recycle Agricultural Engineering and Technology of Shaanxi Province, Northwest A&F University, Yangling, Shaanxi 712100, People’s Republic of China
| | - Xiaxia Tuo
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, People’s Republic of China
| | - Kaiyu Zhang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, People’s Republic of China
| | - Li Zhang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, People’s Republic of China
| | - Aiyun Guo
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, People’s Republic of China
| | - Xin Zhang
- College of Science, Northwest A&F University, Yangling, Shaanxi 712100, People’s Republic of China
| |
Collapse
|