1
|
Yu F, Wang X, Ren H, Chang J, Guo J, He Z, Shi R, Hu X, Jin Y, Lu S, Li Y, Liu Z, Hu P. Lactobacillus paracasei Jlus66 relieves DSS-induced ulcerative colitis in a murine model by maintaining intestinal barrier integrity, inhibiting inflammation, and improving intestinal microbiota structure. Eur J Nutr 2024; 63:2185-2197. [PMID: 38733401 DOI: 10.1007/s00394-024-03419-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 04/29/2024] [Indexed: 05/13/2024]
Abstract
PURPOSE Ulcerative colitis (UC) is a serious health problem with increasing morbidity and prevalence worldwide. The pathogenesis of UC is complex, currently believed to be influenced by genetic factors, dysregulation of the host immune system, imbalance in the intestinal microbiota, and environmental factors. Currently, UC is typically managed using aminosalicylates, immunosuppressants, and biologics as adjunctive therapies, with the risk of relapse and development of drug resistance upon discontinuation. Therefore, further research into the pathogenesis of UC and exploration of potential treatment strategies are necessary to improve the quality of life for affected patients. According to previous studies, Lactobacillus paracasei Jlus66 (Jlus66) reduced inflammation and may help prevent or treat UC. METHODS We used dextran sulfate sodium (DSS) to induce a mouse model of UC to assess the effect of Jlus66 on the progression of colitis. During the experiment, we monitored mouse body weight, food and water consumption, as well as rectal bleeding. Hematoxylin-eosin staining was performed to assess intestinal pathological damage. Protein imprinting and immunohistochemical methods were used to evaluate the protein levels of nuclear factor-kappa B (NF-κB), mitogen-activated protein kinase (MAPK), and tight junction (TJ) proteins in intestinal tissues. Fecal microbiota was analyzed based on partial 16S rRNA gene sequencing. RESULTS Jlus66 supplementation reduced the degree of colon tissue damage, such as colon shortening, fecal occult blood, colon epithelial damage, and weight loss. Supplementation with Jlus66 reduced DSS-induced upregulation of cytokine levels such as TNF-α, IL-1β, and IL-6 (p < 0.05). The NF-κB pathway and MAPK pathway were inhibited, and the expression of TJ proteins (ZO-1, Occludin, and Claudin-3) was upregulated. 16S rRNA sequencing of mouse cecal contents showed that Jlus66 effectively regulated the structure of the intestinal biota. CONCLUSION In conclusion, these data indicate that Jlus66 can alter the intestinal biota and slow the progression of UC, providing new insights into potential therapeutic strategies for UC.
Collapse
Affiliation(s)
- Fazheng Yu
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, 130062, China
| | - Xiaoxu Wang
- Institute of Special Animal and Plant Sciences of Chinese Academy of Agricultural Sciences, Changchun, Jilin, 130112, China
| | - Honglin Ren
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, 130062, China
| | - Jiang Chang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, 130062, China
| | - Jian Guo
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, 130062, China
| | - Zhaoqi He
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, 130062, China
| | - Ruoran Shi
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, 130062, China
| | - Xueyu Hu
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, 130062, China
| | - Yuanyuan Jin
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, 130062, China
| | - Shiying Lu
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, 130062, China
| | - Yansong Li
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, 130062, China
| | - Zengshan Liu
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, 130062, China
| | - Pan Hu
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, 130062, China.
| |
Collapse
|
2
|
Munteanu C, Schwartz B. Interactions between Dietary Antioxidants, Dietary Fiber and the Gut Microbiome: Their Putative Role in Inflammation and Cancer. Int J Mol Sci 2024; 25:8250. [PMID: 39125822 PMCID: PMC11311432 DOI: 10.3390/ijms25158250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 07/19/2024] [Accepted: 07/25/2024] [Indexed: 08/12/2024] Open
Abstract
The intricate relationship between the gastrointestinal (GI) microbiome and the progression of chronic non-communicable diseases underscores the significance of developing strategies to modulate the GI microbiota for promoting human health. The administration of probiotics and prebiotics represents a good strategy that enhances the population of beneficial bacteria in the intestinal lumen post-consumption, which has a positive impact on human health. In addition, dietary fibers serve as a significant energy source for bacteria inhabiting the cecum and colon. Research articles and reviews sourced from various global databases were systematically analyzed using specific phrases and keywords to investigate these relationships. There is a clear association between dietary fiber intake and improved colon function, gut motility, and reduced colorectal cancer (CRC) risk. Moreover, the state of health is reflected in the reciprocal and bidirectional relationships among food, dietary antioxidants, inflammation, and body composition. They are known for their antioxidant properties and their ability to inhibit angiogenesis, metastasis, and cell proliferation. Additionally, they promote cell survival, modulate immune and inflammatory responses, and inactivate pro-carcinogens. These actions collectively contribute to their role in cancer prevention. In different investigations, antioxidant supplements containing vitamins have been shown to lower the risk of specific cancer types. In contrast, some evidence suggests that taking antioxidant supplements can increase the risk of developing cancer. Ultimately, collaborative efforts among immunologists, clinicians, nutritionists, and dietitians are imperative for designing well-structured nutritional trials to corroborate the clinical efficacy of dietary therapy in managing inflammation and preventing carcinogenesis. This review seeks to explore the interrelationships among dietary antioxidants, dietary fiber, and the gut microbiome, with a particular focus on their potential implications in inflammation and cancer.
Collapse
Affiliation(s)
- Camelia Munteanu
- Department of Plant Culture, Faculty of Agriculture, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania
| | - Betty Schwartz
- The Institute of Biochemistry, Food Science and Nutrition, The School of Nutritional Sciences, Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 7610001, Israel
| |
Collapse
|
3
|
Kang M, Kang M, Lee J, Yoo J, Lee S, Oh S. Allium tuberosum-derived nanovesicles with anti-inflammatory properties prevent DSS-induced colitis and modify the gut microbiome. Food Funct 2024; 15:7641-7657. [PMID: 38953279 DOI: 10.1039/d4fo01366b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/03/2024]
Abstract
Edible plant-derived nanovesicles (ePDNs) have shown potential as a non-pharmacological option for inflammatory bowel disease (IBD) by maintaining gut health and showing anti-inflammatory effects. However, the effects of Allium tuberosum-derived nanovesicles (ADNs) on colitis have not been studied to date. Here, we extracted exosome-like nanovesicles from Allium tuberosum and investigated whether they have an anti-inflammatory effect in RAW 264.7 cells and colitis mice. The results showed that ADNs reduced the elevated levels of inflammatory factors such as IL-1β, IL-6, TNF-α, and NF-κB pathway-related proteins as a consequence of lipopolysaccharide (LPS) stimulation in RAW 264.7 cells. Furthermore, our mouse experiments demonstrated that ADNs could ameliorate dextran sulfate sodium (DSS)-induced colitis symptoms (e.g., increased disease activity index score, intestinal permeability, and histological appearance). Additionally, ADNs counteracted DSS-induced colitis by downregulating the expression of serum amyloid A (SAA), IL-1β, IL-6, and TNF-α and increasing the expression of tight junction proteins (ZO-1 and occludin) and the anti-inflammatory cytokine IL-10. 16S rRNA gene sequencing showed that ADN intervention restored the gut microbial composition, which was similar to that of the DSS non-treated group, by decreasing the ratio of Firmicutes to Bacteroidetes and the relative abundance of Proteobacteria. Furthermore, ADNs induced acetic acid production along with an increase in the abundance of Lactobacillus. Overall, our findings suggest that ADN supplementation has a crucial role in maintaining gut health and is a novel preventive therapy for IBD.
Collapse
Affiliation(s)
- Minkyoung Kang
- Department of Environmental Science and Biotechnology, Jeonju University, Jeonju 55069, Republic of Korea.
| | - Minji Kang
- Department of Environmental Science and Biotechnology, Jeonju University, Jeonju 55069, Republic of Korea.
| | - Juyeon Lee
- Department of Environmental Science and Biotechnology, Jeonju University, Jeonju 55069, Republic of Korea.
| | - Jiseon Yoo
- Department of Environmental Science and Biotechnology, Jeonju University, Jeonju 55069, Republic of Korea.
| | - Sujeong Lee
- Department of Environmental Science and Biotechnology, Jeonju University, Jeonju 55069, Republic of Korea.
| | - Sangnam Oh
- Department of Environmental Science and Biotechnology, Jeonju University, Jeonju 55069, Republic of Korea.
- Department of Food and Nutrition, Jeonju University, Jeonju 55069, Republic of Korea
| |
Collapse
|
4
|
Zhang Z, Hu Y, Zhang N, Li J, Lu J, Wei H. Dietary supplementation with non-digestible isomaltooligosaccharide and Lactiplantibacillus plantarum ZDY2013 ameliorates DSS-induced colitis via modulating intestinal barrier integrity and the gut microbiota. Food Funct 2024; 15:5908-5920. [PMID: 38738338 DOI: 10.1039/d4fo00421c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2024]
Abstract
Non-digestible oligosaccharides have attracted attention due to their critical role in maintaining the balance of a host's gut microbiota. Lactiplantibacillus plantarum ZDY2013 was isolated from traditional fermented acid beans, which could metabolize many complex carbohydrates and had intestinal immunomodulatory effects. In our study, the ameliorative effect of a combination of non-digestible isomaltooligosaccharide (IMO) and L. plantarum ZDY2013 was investigated in dextran sulfate sodium (DSS)-induced colitis mice. The results showed that IMO could specifically promote L. plantarum ZDY2013 intestinal colonization after five days of gavage and ameliorate the symptoms of colitis (survival rate, DAI score, colon length, etc.) as well as colon tissue integrity. IMO combined with L. plantarum ZDY2013 increased the levels of intestinal tight junction proteins (ZO-1 and claudin) and mucin (MUC-2), followed by alleviation of inflammatory responses (decreased the expression of IL-1β, TNF-α, and IL-6 and increased the expression of IL-10 and IL-22) and the level of oxidative stress (decreased the level of COX-2 and iNOS and increased the expression of T-AOC and SOD). Furthermore, the combination increased the diversity of the gut microbiota and modulated the microbial structural component (decreased the abundance of Escherichia and Helicobacter and increased the abundance of Lactobacillus and SCFA-producing related species). Taken together, our results suggested that the consumption of IMO and L. plantarum ZDY2013 could improve the symptoms of colitis in mice by improving the intestinal barrier along with regulating the composition and metabolites of the gut microbiota.
Collapse
Affiliation(s)
- Zhihong Zhang
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
- Sino-German Joint Research Institute, Nanchang University, 235 Nanjing East Road, Nanchang 330047, China.
- Chongqing Research Institute, Nanchang University, Chongqing 402660, China
| | - Yingsheng Hu
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
| | - Na Zhang
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
| | - Jinmei Li
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
| | - Jinlin Lu
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
| | - Hua Wei
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
- Sino-German Joint Research Institute, Nanchang University, 235 Nanjing East Road, Nanchang 330047, China.
| |
Collapse
|
5
|
Rezaie N, Aghamohammad S, Haj Agha Gholizadeh Khiavi E, Khatami S, Sohrabi A, Rohani M. The comparative anti-oxidant and anti-inflammatory efficacy of postbiotics and probiotics through Nrf-2 and NF-kB pathways in DSS-induced colitis model. Sci Rep 2024; 14:11560. [PMID: 38773299 PMCID: PMC11109304 DOI: 10.1038/s41598-024-62441-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 05/16/2024] [Indexed: 05/23/2024] Open
Abstract
IBD is a disorder which could be caused by oxidative stress. This investigation aims to determine if probiotics and postbiotics can control oxidative stress and inflammation and compare the effectiveness of these two probiotic and postbiotic mixtures of substances. 88 strains of Lactobacillus and Bifidobacterium were tested for antioxidant activity. Male wild-type C57BL/6 mice were divided into four experimental groups, namely high fat diet (HFD) + PBS, HFD + DSS, HFD + DSS + 109 cfu/ml of probiotics, and HFD + DSS + 109 cfu/ml of postbiotics. The phenotypical indices and pathological scores were assessed. The expression of genes related to NF-kB and Nrf2 signaling pathways and enzymes associated with oxidant/anti-oxidant activities, and proinflammatory/inflammatory cytokines were assessed. In contrast to the groups exposed to DSS, mice treated with probiotics mixture and postbiotics mixture alongside DSS displayed alleviation of DSS-induced adverse effects on phenotypical characteristics, as well as molecular indices such as the Nrf2 and NF-kB related genes, with a greater emphasis on the postbiotics component. In accordance with the findings of the present investigation, it can be inferred that even in using a high-fat dietary regimen as an inducer of oxidative stress, the emergence of inflammation can be effectively addressed through the utilization of probiotics and, more specifically, postbiotics.
Collapse
Affiliation(s)
- Niloofar Rezaie
- Department of Bacteriology, Pasteur Institute of Iran, Tehran, Iran
| | | | | | - Shohreh Khatami
- Department of Biochemistry, Pasteur Institute of Iran, Tehran, Iran
| | - Aria Sohrabi
- Department of Epidemiology and Biostatistics, Research Centre for Emerging and Re-Emerging Infectious Diseases, Pasteur Institute of Iran, Tehran, Iran
| | - Mahdi Rohani
- Department of Bacteriology, Pasteur Institute of Iran, Tehran, Iran.
| |
Collapse
|
6
|
Ma Y, Yang D, Huang J, Liu K, Liu H, Wu H, Bao C. Probiotics for inflammatory bowel disease: Is there sufficient evidence? Open Life Sci 2024; 19:20220821. [PMID: 38585636 PMCID: PMC10998680 DOI: 10.1515/biol-2022-0821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 11/26/2023] [Accepted: 12/11/2023] [Indexed: 04/09/2024] Open
Abstract
Inflammatory bowel disease (IBD) refers to chronic inflammatory disorders of the gut. Ulcerative colitis (UC) and Crohn's disease (CD) are two subtypes of IBD. Evidence suggests that the intestinal microbiota plays a role in the pathogenesis of IBD, so probiotics have garnered a lot of interest as a potential treatment or prevention for IBD. However, clinical evidence of the efficacy of probiotics is still debatable. We performed a literature review. An advanced search considered clinical studies on probiotic for IBD from inception to 2023 in PubMed, Embase, Cochrane Library, and Web of Science. In the treatment of UC with probiotics, only Escherichia coli Nissle 1917 for maintenance treatment of UC in remission, and Bifidobacterium and VSL#3 for induction of remission in patients with mild to moderately active UC have shown strong evidence. Currently, there are no definitive conclusions regarding the effectiveness of probiotics in CD. The mechanism of probiotic treatment for IBD may be related to reducing oxidative stress, repairing the intestinal barrier, regulating intestinal flora balance, and modulating intestinal immune response. Differences in the benefits of probiotics between CD and UC may be attributable to the different lesion extent and immune-mediated pathophysiology. More robust randomized clinical trials are required to validate the efficacy and safety of diverse probiotic strains in IBD.
Collapse
Affiliation(s)
- Yueying Ma
- Yueyang Hospital of Integrated Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai200437, China
- Shanghai University of Traditional Chinese Medicine, Shanghai201203, China
| | - Dandan Yang
- Hong Kong Baptist University, Hong Kong999077, China
| | - Jin Huang
- Yueyang Hospital of Integrated Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai200437, China
- Shanghai University of Traditional Chinese Medicine, Shanghai201203, China
| | - Kunli Liu
- Yueyang Hospital of Integrated Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai200437, China
- Shanghai University of Traditional Chinese Medicine, Shanghai201203, China
| | - Huirong Liu
- Yueyang Hospital of Integrated Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai200437, China
- Key Laboratory of Acupuncture and Immunological Effects, Shanghai University of Traditional Chinese Medicine, Shanghai200030, China
| | - Huangan Wu
- Yueyang Hospital of Integrated Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai200437, China
- Key Laboratory of Acupuncture and Immunological Effects, Shanghai University of Traditional Chinese Medicine, Shanghai200030, China
| | - Chunhui Bao
- Yueyang Hospital of Integrated Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai200437, China
- Key Laboratory of Acupuncture and Immunological Effects, Shanghai University of Traditional Chinese Medicine, Shanghai200030, China
| |
Collapse
|
7
|
Liu Y, Liu G, Fang J. Progress on the mechanisms of Lactobacillus plantarum to improve intestinal barrier function in ulcerative colitis. J Nutr Biochem 2024; 124:109505. [PMID: 37890709 DOI: 10.1016/j.jnutbio.2023.109505] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 10/22/2023] [Accepted: 10/24/2023] [Indexed: 10/29/2023]
Abstract
Ulcerative colitis (UC) is a chronic, non-specific inflammatory sickness of the intestinal tract, chiefly implicating the rectum and colon, which is characterized by chronic or subacute diarrhea, mucopurulent stools, and abdominal pain. The pathogeny of UC is still uncertain, and it is thought that multiple factors interact to cause the disease, such as environment, genetics, gut microbes, and immunity. Injuring the intestinal barrier is one of the most significant features of UC and includes mechanical, chemical, immune, and biological barriers. Plenty of research has shown that probiotics, as profitable bacteria in the gut, can play a prominent role in the treatment of UC by improving gut barrier function and modulating gut immunity. Lactobacillus plantarum (L. plantarum), a common probiotic, has made outstanding contributions to food and medicine, and many studies in recent years have shown that L. plantarum has great preventive and therapeutic effects on ulcerative colitis and restores the intestinal barrier. This paper reviews the mechanisms of L. plantarum for improving the intestinal barrier function of UC organisms, mainly including regulating the immune response, inhibiting oxidative stress, raising the expression of tight junction (TJ) proteins, promoting the formation of mucin, improving the composition of gut flora, and raising the levels of short-chain fatty acids (SCFAs), which offers some help for the clinical therapy of UC.
Collapse
Affiliation(s)
- Yihui Liu
- College of Bioscience and Biotechnology, Hunan Provincial Engineering Research Center of Applied Microbial Resources Development for Livestock and Poultry, Hunan Agricultural University, 1 Nongda Road, Changsha, Hunan 410128, China
| | - Gang Liu
- College of Bioscience and Biotechnology, Hunan Provincial Engineering Research Center of Applied Microbial Resources Development for Livestock and Poultry, Hunan Agricultural University, 1 Nongda Road, Changsha, Hunan 410128, China.
| | - Jun Fang
- College of Bioscience and Biotechnology, Hunan Provincial Engineering Research Center of Applied Microbial Resources Development for Livestock and Poultry, Hunan Agricultural University, 1 Nongda Road, Changsha, Hunan 410128, China.
| |
Collapse
|
8
|
Pan Y, Zhang H, Li M, He T, Guo S, Zhu L, Tan J, Wang B. Novel approaches in IBD therapy: targeting the gut microbiota-bile acid axis. Gut Microbes 2024; 16:2356284. [PMID: 38769683 PMCID: PMC11110704 DOI: 10.1080/19490976.2024.2356284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 05/13/2024] [Indexed: 05/22/2024] Open
Abstract
Inflammatory bowel disease (IBD) is a chronic and recurrent condition affecting the gastrointestinal tract. Disturbed gut microbiota and abnormal bile acid (BA) metabolism are notable in IBD, suggesting a bidirectional relationship. Specifically, the diversity of the gut microbiota influences BA composition, whereas altered BA profiles can disrupt the microbiota. IBD patients often exhibit increased primary bile acid and reduced secondary bile acid concentrations due to a diminished bacteria population essential for BA metabolism. This imbalance activates BA receptors, undermining intestinal integrity and immune function. Consequently, targeting the microbiota-BA axis may rectify these disturbances, offering symptomatic relief in IBD. Here, the interplay between gut microbiota and bile acids (BAs) is reviewed, with a particular focus on the role of gut microbiota in mediating bile acid biotransformation, and contributions of the gut microbiota-BA axis to IBD pathology to unveil potential novel therapeutic avenues for IBD.
Collapse
Affiliation(s)
- Yinping Pan
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, PR China
| | - Haojie Zhang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, PR China
| | - Minghui Li
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, PR China
| | - Tingjing He
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, PR China
| | - Sihao Guo
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, PR China
| | - Liancai Zhu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, PR China
| | - Jun Tan
- Chongqing Key Laboratory of Medicinal Resources in the Three Gorges Reservoir Region, School of Biological & Chemical engineering, Chongqing University of Education, Chongqing, PR China
| | - Bochu Wang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, PR China
| |
Collapse
|
9
|
de Oliveira Vieira KC, da Silva ABB, Felício SA, Lira FS, de Figueiredo C, Bezirtzoglou E, Pereira VC, Nakagaki WR, Nai GA, Winkelströter LK. Orange juice containing Pediococcus acidilactici CE51 modulates the intestinal microbiota and reduces induced inflammation in a murine model of colitis. Sci Rep 2023; 13:18513. [PMID: 37898635 PMCID: PMC10613252 DOI: 10.1038/s41598-023-45819-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Accepted: 10/24/2023] [Indexed: 10/30/2023] Open
Abstract
The management of inflammatory bowel diseases has been widely investigated, especially ulcerative colitis. Thus, studies with the application of new probiotic products are needed in the prevention/treatment of these clinical conditions. The objective of this work was to evaluate the effects of probiotic orange juice containing Pediococcus acidilactici CE51 in a murine model of colitis. 45 male Swiss lineage mice were used, divided into five groups (n = 9): control, colitis, colitis + probiotic (probiotic orange juice containing CE51), colitis + placebo (orange juice) and colitis + sulfasalazine (10 mg/kg/Weight). The induction of colitis was performed with dextran sodium sulfate (3%). The treatment time was 5 and 15 days after induction. Histopathological analysis, serum measurements of TNF-α and C-reactive protein and metagenomic analysis of feces were performed after euthanasia. Probiotic treatment reduced inflammation in the small intestine, large intestine and spleen. The probiotic did not alter the serum dosages of TNF-α and C-reactive protein. Their use maintained the quantitative ratio of the phylum Firmicutes/Bacteroidetes and increased Lactobacillus helveticus with 15 days of treatment (p < 0.05). The probiotic orange juice containing P. acidilactici CE51 positively modulated the gut microbiota composition and attenuated the inflammation induced in colitis.
Collapse
Affiliation(s)
- Karolinny Cristiny de Oliveira Vieira
- Health Sciences Faculty, UNOESTE (University of Western Sao Paulo), 700, Jose Bongiovani St., Cidade Universitária, Presidente Prudente, Sao Paulo, 19050-920, Brazil
| | - Ana Beatriz Batista da Silva
- Master in Health Science, UNOESTE (University of Western Sao Paulo), 700, Jose Bongiovani St., Presidente Prudente, Sao Paulo, 19050-920, Brazil
| | - Suelen Aparecida Felício
- Master in Health Science, UNOESTE (University of Western Sao Paulo), 700, Jose Bongiovani St., Presidente Prudente, Sao Paulo, 19050-920, Brazil
| | - Fábio Santos Lira
- Department of Physical Education, Faculdade de Ciências e Tecnologia, Universidade Estadual Paulista, UNESP, Rua Roberto Simonsen, 305, Presidente Prudente, Sao Paulo, 19060-900, Brazil
| | - Caíque de Figueiredo
- Department of Physical Education, Faculdade de Ciências e Tecnologia, Universidade Estadual Paulista, UNESP, Rua Roberto Simonsen, 305, Presidente Prudente, Sao Paulo, 19060-900, Brazil
| | - Eugenia Bezirtzoglou
- Laboratory of Hygiene and Environmental Protection, Department of Medicine, Democritus University of Thrace, Dragana, 68100, Alexandroupolis, Greece
| | - Valéria Cataneli Pereira
- Health Sciences Faculty, UNOESTE (University of Western Sao Paulo), 700, Jose Bongiovani St., Cidade Universitária, Presidente Prudente, Sao Paulo, 19050-920, Brazil
- Master in Health Science, UNOESTE (University of Western Sao Paulo), 700, Jose Bongiovani St., Presidente Prudente, Sao Paulo, 19050-920, Brazil
| | - Wilson Romero Nakagaki
- Health Sciences Faculty, UNOESTE (University of Western Sao Paulo), 700, Jose Bongiovani St., Cidade Universitária, Presidente Prudente, Sao Paulo, 19050-920, Brazil
- Master in Health Science, UNOESTE (University of Western Sao Paulo), 700, Jose Bongiovani St., Presidente Prudente, Sao Paulo, 19050-920, Brazil
| | - Gisele Alborghetti Nai
- Health Sciences Faculty, UNOESTE (University of Western Sao Paulo), 700, Jose Bongiovani St., Cidade Universitária, Presidente Prudente, Sao Paulo, 19050-920, Brazil
| | - Lizziane Kretli Winkelströter
- Health Sciences Faculty, UNOESTE (University of Western Sao Paulo), 700, Jose Bongiovani St., Cidade Universitária, Presidente Prudente, Sao Paulo, 19050-920, Brazil.
- Master in Health Science, UNOESTE (University of Western Sao Paulo), 700, Jose Bongiovani St., Presidente Prudente, Sao Paulo, 19050-920, Brazil.
| |
Collapse
|
10
|
Wang J, Qin Y, Jiang J, Shan H, Zhao C, Li S. The Effect of Theaflavins on the Gut Microbiome and Metabolites in Diabetic Mice. Foods 2023; 12:3865. [PMID: 37893758 PMCID: PMC10606624 DOI: 10.3390/foods12203865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 10/19/2023] [Accepted: 10/20/2023] [Indexed: 10/29/2023] Open
Abstract
With the development of diabetes, the gut microbiome falls into a state of dysbiosis, further affecting its progression. Theaflavins (TFs), a type of tea polyphenol derivative, show anti-diabetic properties, but their effect on the gut microbiome in diabetic mice is unclear. It is unknown whether the improvement of TFs on hyperglycemia and hyperlipidemia in diabetic mice is related to gut microbiota. Therefore, in this study, different concentrations of TFs were intragastrically administered to mice with diabetes induced by a high-fat-diet to investigate their effects on blood glucose, blood lipid, and the gut microbiome in diabetic mice, and the plausible mechanism underlying improvement in diabetes was explored from the perspective of the gut microbiome. The results showed that the TFs intervention significantly improved the hyperglycemia and hyperlipidemia of diabetic mice and affected the structure of the gut microbiome by promoting the growth of bacteria positively related to diabetes and inhibiting those negatively related to diabetes. The changes in short-chain fatty acids in mice with diabetes and functional prediction analysis suggested that TFs may affect carbohydrate metabolism and lipid metabolism by regulating the gut microbiome. These findings emphasize the ability of TFs to shape the diversity and structure of the gut microbiome in mice with diabetes induced by a high-fat diet combined with streptozotocin and have practical implications for the development of functional foods with TFs.
Collapse
Affiliation(s)
- Jun Wang
- School of Tourism and Cuisine, Yangzhou University, Yangzhou 225127, China; (J.W.)
| | - Yixin Qin
- School of Tourism and Cuisine, Yangzhou University, Yangzhou 225127, China; (J.W.)
| | - Jingjing Jiang
- School of Tourism and Cuisine, Yangzhou University, Yangzhou 225127, China; (J.W.)
| | - Hongyan Shan
- School of Tourism and Cuisine, Yangzhou University, Yangzhou 225127, China; (J.W.)
| | - Changyu Zhao
- School of Tourism and Cuisine, Yangzhou University, Yangzhou 225127, China; (J.W.)
| | - Songnan Li
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
11
|
Zhao J, Zhao F, Li X, Yuan J, Zhang K, Liu H, Wang Y. Multi-omics reveals the mechanisms underlying Lactiplantibacillus plantarum P8-mediated attenuation of oxidative stress in broilers challenged with dexamethasone. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2023; 14:281-302. [PMID: 37600839 PMCID: PMC10432922 DOI: 10.1016/j.aninu.2023.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 05/31/2023] [Accepted: 06/14/2023] [Indexed: 08/22/2023]
Abstract
Oxidative stress is a common phenomenon in poultry production. Several molecules, including antioxidant genes, miRNAs, and gut microbiota metabolites, have been reported to participate in redox regulation. Lactiplantibacillus plantarum P8 (P8) was shown to improve the antioxidant capacity of chickens, but the specific molecular mechanisms remain unclear. In this study, 400 broilers were allocated to 4 treatment groups: control diet (Con group), control diet + dexamethasone injection (DEX group), control diet containing 1 × 108 CFU/g P8 (P8 group), and control diet containing 1 × 108 CFU/g P8 + DEX injection (DEX_P8 group). Integrated analysis of the microbiome, metabolomics, and miRNAomics was conducted to investigate the roles of P8 in oxidative stress in broilers. Results demonstrated that P8 supplementation significantly improved growth performance, jejunal morphology, and antioxidant function in DEX-treated broilers. Analysis of the gut microbiota revealed a higher abundance of Barnesiella (P = 0.01) and Erysipelatoclostridium (P = 0.05) in the DEX_P8 group than in the DEX group. Functional prediction indicated that certain pathways, including the phenylacetate degradation pathway, were enriched in the DEX_P8 group compared to the DEX group. Metabolites in the cecal contents were distinct between the groups. P8 supplementation increased the content of metabolites with antioxidant capacity, e.g., urobilinogen (P < 0.01), and decreased that of metabolites related to oxidative stress, e.g., genistein (P < 0.01). Functional prediction indicated that metabolites that differed between the DEX_P8 and DEX groups were enriched in pathways including "tryptophan metabolism" and "primary bile acid biosynthesis". The miRNAomics analysis further showed that, compared to the DEX group, several miRNAs in the jejunum, such as gga-miR-21-3p (P = 0.03), were increased, whereas gga-miR-455-3p (P = 0.02) was decreased in the DEX_P8 group. The PI3K-Akt, Ras, and Rap1 signaling pathways were enriched in the DEX_P8 group compared to the DEX group through KEGG analysis. Correlation analysis revealed potential interactions between growth performance, oxidation/antioxidation, jejunal morphology, gut microbiota, cecal content metabolites, and jejunal miRNAs. Overall, our results indicate that P8 supplementation may improve the growth performance, jejunal morphology and antioxidant capacity of DEX-treated broilers by regulating gut microbiota, its metabolites, and intestinal miRNAs.
Collapse
Affiliation(s)
| | | | - Xuemin Li
- College of Animal Science and Technology, Qingdao Agricultural University, 266109, Qingdao, China
| | - Junmeng Yuan
- College of Animal Science and Technology, Qingdao Agricultural University, 266109, Qingdao, China
| | - Kai Zhang
- College of Animal Science and Technology, Qingdao Agricultural University, 266109, Qingdao, China
| | - Huawei Liu
- College of Animal Science and Technology, Qingdao Agricultural University, 266109, Qingdao, China
| | - Yang Wang
- College of Animal Science and Technology, Qingdao Agricultural University, 266109, Qingdao, China
| |
Collapse
|
12
|
Hu B, Shi Y, Lu C, Chen H, Zeng Y, Deng J, Zhang L, Lin Q, Li W, Chen Y, Zhong F, Xia X. Raspberry polyphenols alleviate neurodegenerative diseases: through gut microbiota and ROS signals. Food Funct 2023; 14:7760-7779. [PMID: 37555470 DOI: 10.1039/d3fo01835k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2023]
Abstract
Neurodegenerative diseases are neurological disorders that become more prevalent with age, usually caused by damage or loss of neurons or their myelin sheaths, such as Alzheimer's disease and epilepsy. Reactive oxygen species (ROS) are important triggers for neurodegenerative disease development, and mitigation of oxidative stress caused by ROS imbalance in the human body is important for the treatment of these diseases. As a widespread delicious fruit, the raspberry is widely used in the field of food and medicine because of its abundant polyphenols and other bioactive substances. Polyphenols from a wide variety of raspberry sources could alleviate neurodegenerative diseases. This review aims to summarize the current roles of these polyphenols in maintaining neurological stability by regulating the composition and metabolism of the intestinal flora and the gut-brain axis signal transmission. Especially, we discuss the therapeutic effects on neurodegenerative diseases of raspberry polyphenols through intestinal microorganisms and ROS signals, by means of summary and analysis. Finally, methods of improving the digestibility and utilization of raspberry polyphenols are proposed, which will provide a potential way for raspberry polyphenols to guarantee the health of the human nervous system.
Collapse
Affiliation(s)
- Boyong Hu
- National Engineering Research Center of Rice and Byproduct Deep Processing, Hunan Province Key Laboratory of Edible Forestry Resources Safety and Processing Utilization, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, Hunan, China.
| | - Yi Shi
- National Engineering Research Center of Rice and Byproduct Deep Processing, Hunan Province Key Laboratory of Edible Forestry Resources Safety and Processing Utilization, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, Hunan, China.
| | - Chunyue Lu
- National Engineering Research Center of Rice and Byproduct Deep Processing, Hunan Province Key Laboratory of Edible Forestry Resources Safety and Processing Utilization, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, Hunan, China.
| | - Haixin Chen
- National Engineering Research Center of Rice and Byproduct Deep Processing, Hunan Province Key Laboratory of Edible Forestry Resources Safety and Processing Utilization, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, Hunan, China.
| | - Yuqing Zeng
- National Engineering Research Center of Rice and Byproduct Deep Processing, Hunan Province Key Laboratory of Edible Forestry Resources Safety and Processing Utilization, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, Hunan, China.
| | - Jing Deng
- National Engineering Research Center of Rice and Byproduct Deep Processing, Hunan Province Key Laboratory of Edible Forestry Resources Safety and Processing Utilization, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, Hunan, China.
| | - Lin Zhang
- National Engineering Research Center of Rice and Byproduct Deep Processing, Hunan Province Key Laboratory of Edible Forestry Resources Safety and Processing Utilization, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, Hunan, China.
| | - Qinlu Lin
- National Engineering Research Center of Rice and Byproduct Deep Processing, Hunan Province Key Laboratory of Edible Forestry Resources Safety and Processing Utilization, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, Hunan, China.
| | - Wen Li
- National Engineering Research Center of Rice and Byproduct Deep Processing, Hunan Province Key Laboratory of Edible Forestry Resources Safety and Processing Utilization, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, Hunan, China.
| | - Yuan Chen
- School of Life Science, Huizhou University, Huizhou 516007, China
| | - Feifei Zhong
- National Engineering Research Center of Rice and Byproduct Deep Processing, Hunan Province Key Laboratory of Edible Forestry Resources Safety and Processing Utilization, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, Hunan, China.
- Changsha Institute for Food and Drug Control, Changsha 410016, Hunan, China
| | - Xu Xia
- Huaihua Academy of Agricultural Sciences, Huaihua 418000, Hunan, China
| |
Collapse
|
13
|
Wang A, Guan C, Wang T, Mu G, Tuo Y. Changes in Intracellular and Extracellular Metabolites of Mixed Lactobacillus Strains Enhance Inhibition of Pathogenic Bacterial Growth and Lipopolysaccharide-Induced Alleviation of RAW264.7 Cellular Inflammation. Probiotics Antimicrob Proteins 2023:10.1007/s12602-023-10132-z. [PMID: 37632677 DOI: 10.1007/s12602-023-10132-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/27/2023] [Indexed: 08/28/2023]
Abstract
It is important to explore whether there are antagonistic and synergistic effects between different strains of Lactobacillus when developing mixed Lactobacillus strain products. In this study, we investigated the antagonistic and symbiotic effects of co-cultured Lactobacillus strains, as well as their amelioratory effects on lipopolysaccharide (LPS)-induced inflammation and oxidative stress in RAW264.7 cells. The Lactobacillus strains tested in this paper showed no antagonism. Co-culture of Lactiplantibacillus plantarum Y44 and L. plantarum AKS-WS9 was found to show inhibiting effects on the growth of Escherichia coli and Staphylococcus aureus. Additionally, the co-cultured Lactiplantibacillus plantarum Y44 and L. plantarum AKS-WS9 relieved inflammation in RAW264.7 cells induced by LPS by inhibiting the activation of NF-κB and P38 signaling pathways and down-regulating the expression of pro-inflammatory cytokines NO, ROS, iNOs and TNF-α. And the co-cultured Lactobacillus strains activated the Nrf2 signaling pathway in the LPS-induced RAW264.7 cells to promote the expression of antioxidant enzymes in response to oxidative stress. There was a difference in intracellular and extracellular metabolites between single or co-cultured Lactobacillus strains, and the co-cultured Lactobacillus strains significantly increased extracellular metabolites 4-chlorobenzaldehyde, psoromic acid, and 2-dodecylbenzenesulfonic acid and intracellular metabolites 9(S)-HODE, pyocyanin, and LysoPA. We inferred that the better antibacterial and anti-inflammatory ability of the co-cultured Lactobacillus strains were related to the changes in the metabolites of the co-cultured Lactobacillus strains. The co-cultured L. plantarum Y44 and L. plantarum AKS-WS9 strains exhibited better anti-inflammatory abilities and had the potential to alleviate the symptoms of inflammatory diseases as mixed probiotics.
Collapse
Affiliation(s)
- Arong Wang
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, 116034, People's Republic of China
- Dalian Probiotics, Function Research Key Laboratory, Dalian Polytechnic University, Dalian, 116034, People's Republic of China
| | - Chen Guan
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, 116034, People's Republic of China
- Dalian Probiotics, Function Research Key Laboratory, Dalian Polytechnic University, Dalian, 116034, People's Republic of China
| | - Tieqi Wang
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, 116034, People's Republic of China
- Dalian Probiotics, Function Research Key Laboratory, Dalian Polytechnic University, Dalian, 116034, People's Republic of China
| | - Guangqing Mu
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, 116034, People's Republic of China
- Dalian Probiotics, Function Research Key Laboratory, Dalian Polytechnic University, Dalian, 116034, People's Republic of China
| | - Yanfeng Tuo
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, 116034, People's Republic of China.
- Dalian Probiotics, Function Research Key Laboratory, Dalian Polytechnic University, Dalian, 116034, People's Republic of China.
| |
Collapse
|
14
|
Yan Y, Wang Z, Zhou YL, Gao Z, Ning L, Zhao Y, Xuan B, Ma Y, Tong T, Huang X, Hu M, Fang JY, Cui Z, Chen H, Hong J. Commensal bacteria promote azathioprine therapy failure in inflammatory bowel disease via decreasing 6-mercaptopurine bioavailability. Cell Rep Med 2023; 4:101153. [PMID: 37586320 PMCID: PMC10439275 DOI: 10.1016/j.xcrm.2023.101153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 06/07/2023] [Accepted: 07/18/2023] [Indexed: 08/18/2023]
Abstract
Azathioprine (AZA) therapy failure, though not the primary cause, contributes to disease relapse and progression in inflammatory bowel disease (IBD). However, the role of gut microbiota in AZA therapy failure remains poorly understood. We found a high prevalence of Blautia wexlerae in patients with IBD with AZA therapy failure, associated with shorter disease flare survival time. Colonization of B. wexlerae increased inflammatory macrophages and compromised AZA's therapeutic efficacy in mice with intestinal colitis. B. wexlerae colonization reduced 6-mercaptopurine (6-MP) bioavailability by enhancing selenium-dependent xanthine dehydrogenase (sd-XDH) activity. The enzyme sd-XDH converts 6-MP into its inactive metabolite, 6-thioxanthine (6-TX), thereby impairing its ability to inhibit inflammation in mice. Supplementation with Bacillus (B.) subtilis enriched in hypoxanthine phosphoribosyltransferase (HPRT) effectively mitigated B. wexlerae-induced AZA treatment failure in mice with intestinal colitis. These findings emphasize the need for tailored management strategies based on B. wexlerae levels in patients with IBD.
Collapse
Affiliation(s)
- Yuqing Yan
- State Key Laboratory for Oncogenes and Related Genes, NHC Key Laboratory of Digestive Diseases, Division of Gastroenterology and Hepatology, Shanghai Institute of Digestive Disease, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 145 Middle Shandong Road, Shanghai 200001, China
| | - Zhenhua Wang
- State Key Laboratory for Oncogenes and Related Genes, NHC Key Laboratory of Digestive Diseases, Division of Gastroenterology and Hepatology, Shanghai Institute of Digestive Disease, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 145 Middle Shandong Road, Shanghai 200001, China
| | - Yi-Lu Zhou
- State Key Laboratory for Oncogenes and Related Genes, NHC Key Laboratory of Digestive Diseases, Division of Gastroenterology and Hepatology, Shanghai Institute of Digestive Disease, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 145 Middle Shandong Road, Shanghai 200001, China
| | - Ziyun Gao
- State Key Laboratory for Oncogenes and Related Genes, NHC Key Laboratory of Digestive Diseases, Division of Gastroenterology and Hepatology, Shanghai Institute of Digestive Disease, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 145 Middle Shandong Road, Shanghai 200001, China
| | - Lijun Ning
- State Key Laboratory for Oncogenes and Related Genes, NHC Key Laboratory of Digestive Diseases, Division of Gastroenterology and Hepatology, Shanghai Institute of Digestive Disease, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 145 Middle Shandong Road, Shanghai 200001, China
| | - Ying Zhao
- State Key Laboratory for Oncogenes and Related Genes, NHC Key Laboratory of Digestive Diseases, Division of Gastroenterology and Hepatology, Shanghai Institute of Digestive Disease, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 145 Middle Shandong Road, Shanghai 200001, China
| | - Baoqin Xuan
- State Key Laboratory for Oncogenes and Related Genes, NHC Key Laboratory of Digestive Diseases, Division of Gastroenterology and Hepatology, Shanghai Institute of Digestive Disease, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 145 Middle Shandong Road, Shanghai 200001, China
| | - Yanru Ma
- State Key Laboratory for Oncogenes and Related Genes, NHC Key Laboratory of Digestive Diseases, Division of Gastroenterology and Hepatology, Shanghai Institute of Digestive Disease, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 145 Middle Shandong Road, Shanghai 200001, China
| | - Tianying Tong
- State Key Laboratory for Oncogenes and Related Genes, NHC Key Laboratory of Digestive Diseases, Division of Gastroenterology and Hepatology, Shanghai Institute of Digestive Disease, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 145 Middle Shandong Road, Shanghai 200001, China
| | - Xiaowen Huang
- State Key Laboratory for Oncogenes and Related Genes, NHC Key Laboratory of Digestive Diseases, Division of Gastroenterology and Hepatology, Shanghai Institute of Digestive Disease, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 145 Middle Shandong Road, Shanghai 200001, China
| | - Muni Hu
- State Key Laboratory for Oncogenes and Related Genes, NHC Key Laboratory of Digestive Diseases, Division of Gastroenterology and Hepatology, Shanghai Institute of Digestive Disease, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 145 Middle Shandong Road, Shanghai 200001, China
| | - Jing-Yuan Fang
- State Key Laboratory for Oncogenes and Related Genes, NHC Key Laboratory of Digestive Diseases, Division of Gastroenterology and Hepatology, Shanghai Institute of Digestive Disease, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 145 Middle Shandong Road, Shanghai 200001, China
| | - Zhe Cui
- Department of Gastrointestinal Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, 145 Middle Shandong Road, Shanghai 200001, China.
| | - Haoyan Chen
- State Key Laboratory for Oncogenes and Related Genes, NHC Key Laboratory of Digestive Diseases, Division of Gastroenterology and Hepatology, Shanghai Institute of Digestive Disease, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 145 Middle Shandong Road, Shanghai 200001, China.
| | - Jie Hong
- State Key Laboratory for Oncogenes and Related Genes, NHC Key Laboratory of Digestive Diseases, Division of Gastroenterology and Hepatology, Shanghai Institute of Digestive Disease, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 145 Middle Shandong Road, Shanghai 200001, China.
| |
Collapse
|
15
|
Huang C, Hao W, Wang X, Zhou R, Lin Q. Probiotics for the treatment of ulcerative colitis: a review of experimental research from 2018 to 2022. Front Microbiol 2023; 14:1211271. [PMID: 37485519 PMCID: PMC10358780 DOI: 10.3389/fmicb.2023.1211271] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 06/22/2023] [Indexed: 07/25/2023] Open
Abstract
Ulcerative colitis (UC) has become a worldwide public health problem, and the prevalence of the disease among children has been increasing. The pathogenesis of UC has not been elucidated, but dysbiosis of the gut microbiota is considered the main cause of chronic intestinal inflammation. This review focuses on the therapeutic effects of probiotics on UC and the potential mechanisms involved. In animal studies, probiotics have been shown to alleviate symptoms of UC, including weight loss, diarrhea, blood in the stool, and a shortened colon length, while also restoring intestinal microecological homeostasis, improving gut barrier function, modulating the intestinal immune response, and attenuating intestinal inflammation, thereby providing theoretical support for the development of probiotic-based microbial products as an adjunctive therapy for UC. However, the efficacy of probiotics is influenced by factors such as the bacterial strain, dose, and form. Hence, the mechanisms of action need to be investigated further. Relevant clinical trials are currently lacking, so the extension of animal experimental findings to clinical application requires a longer period of consideration for validation.
Collapse
Affiliation(s)
- Cuilan Huang
- Wuxi People’s Hospital Affiliated to Nanjing Medical University, Wuxi Children’s Hospital, Wuxi, China
| | - Wujuan Hao
- Department of Digestive, Affiliated Children’s Hospital of Jiangnan University, Wuxi, China
| | - Xuyang Wang
- Wuxi People’s Hospital Affiliated to Nanjing Medical University, Wuxi Children’s Hospital, Wuxi, China
| | - Renmin Zhou
- Department of Digestive, Affiliated Children’s Hospital of Jiangnan University, Wuxi, China
| | - Qiong Lin
- Wuxi People’s Hospital Affiliated to Nanjing Medical University, Wuxi Children’s Hospital, Wuxi, China
| |
Collapse
|
16
|
Li XY, Meng L, Shen L, Ji HF. Regulation of gut microbiota by vitamin C, vitamin E and β-carotene. Food Res Int 2023; 169:112749. [PMID: 37254375 DOI: 10.1016/j.foodres.2023.112749] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 01/04/2023] [Accepted: 03/19/2023] [Indexed: 06/01/2023]
Abstract
Vitamin C (VC), vitamin E (VE) and β-carotene (βC) are representative dietary antioxidants, which exist in daily diet and can increase the antioxidant capacity of body fluids, cells and tissues. The health benefits of vitamins like VC, VE and βC are widely demonstrated. Given that the strong associations between the gut microbiota and host health or a range of diseases has been extensively reported, it is important to explore the modulatory effects of known vitamins on the gut microbiota. Herein, this article reviews the effects of VC, VE and βC on the gut microbiota. Totally, 19 studies were included, of which eight were related to VC, nine to VE, and six to βC. Overall, VC, VE and βC can provide health benefits to the host by modulating the composition and metabolic activity of the gut microbiota, improving intestinal barrier function and maintaining the normal function of the immune system. Two perspectives are proposed for future studies: i) roles of known antioxidant activity of vitamins in regulating the gut microbiota and its molecular mechanism need to be further studied; ii) causal relationships between the regulatory effects of vitamins on gut microbiota and host health still remains to be further verified.
Collapse
Affiliation(s)
- Xin-Yu Li
- Institute of Biomedical Research, School of Life Sciences and Medicine, Shandong University of Technology, Zibo, Shandong, People's Republic of China
| | - Lei Meng
- Institute of Biomedical Research, School of Life Sciences and Medicine, Shandong University of Technology, Zibo, Shandong, People's Republic of China
| | - Liang Shen
- Institute of Biomedical Research, School of Life Sciences and Medicine, Shandong University of Technology, Zibo, Shandong, People's Republic of China.
| | - Hong-Fang Ji
- Institute of Biomedical Research, School of Life Sciences and Medicine, Shandong University of Technology, Zibo, Shandong, People's Republic of China; School of Life Sciences, Ludong University, Yantai, People's Republic of China.
| |
Collapse
|
17
|
Zhang N, Li J, Zhan Y, Wang K, Zhan Z, Wei H, Zhang Z. Acid-tolerant Lactiplantibacillus plantarum ZDY2013 shows a colonization niche preference and interacts with enterotoxigenic Bacillus cereus in specific-pathogen-free mice. Food Funct 2023. [PMID: 37366339 DOI: 10.1039/d3fo01468a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2023]
Abstract
Probiotics have long been utilized as functional food and modulate gut microbial homeostasis, but their colonization niche is mostly unclear and transient, which restrains the development of microbiome-targeted strategies. Lactiplantibacillus (L.) plantarum ZDY2013 is an allochthonous species of the human gastrointestinal tract with acid-tolerant properties. It serves as an antagonistic agent against the food-borne pathogen Bacillus (B.) cereus and a potent regulator of the gut microbiota. However, there is a knowledge gap regarding the colonization dynamics of L. plantarum ZDY2013 in the host intestine and the colonization niche of its interaction with pathogens. Here, we designed a pair of specific primers targeting L. plantarum ZDY2013 based on its whole genome sequence. We evaluated their accuracy and sensitivity with other host-derived strains and confirmed their availability with artificially spiked fecal samples from different mouse models. Additionally, the content of L. plantarum ZDY2013 was quantified by qPCR in fecal samples from BALB/c mice, followed by the analysis of its colonization niche preference. Moreover, the interactions between L. plantarum ZDY2013 and enterotoxigenic B. cereus HN001 were also elucidated. The results revealed that the newly designed primers could identify L. plantarum ZDY2013 with high specificity and were resistant to the influence of the complex fecal matrix and gut microbes from different hosts. Interestingly, the content of mixed L. plantarum ZDY2013 and B. cereus HN001 when orally administered remained higher when compared with the single strain group in BALB/c mice upon discontinuation of intragastric administration. In addition, L. plantarum ZDY2013 was mainly enriched in the large intestine during the ingestion period and maintained the highest content in the stomach after discontinuing supplementation on day 7. Moreover, L. plantarum ZDY2013 colonization neither damaged the intestine nor ameliorated the damage triggered by B. cereus in BALB/c mice. Overall, our study constructed two efficient specific primers targeting L. plantarum ZDY2013 and provided the potential to explore the underlying mechanism of competition between L. plantarum ZDY2013 and pathogens in host species.
Collapse
Affiliation(s)
- Na Zhang
- State Key Laboratory of Food Science and Resources, Nanchang University, 235 Nanjing East Road, Nanchang 330047, China.
| | - Jinmei Li
- State Key Laboratory of Food Science and Resources, Nanchang University, 235 Nanjing East Road, Nanchang 330047, China.
| | - Ying Zhan
- State Key Laboratory of Food Science and Resources, Nanchang University, 235 Nanjing East Road, Nanchang 330047, China.
| | - Kaiming Wang
- Department of Physiology, CEGIIR, University of Alberta, Edmonton T6G 2E1, Canada
| | - Zhongxu Zhan
- Jiangxi General Institute of Testing and Certification Food Testing Institute, Nanchang, 330200, China
| | - Hua Wei
- State Key Laboratory of Food Science and Resources, Nanchang University, 235 Nanjing East Road, Nanchang 330047, China.
- Sino-German Joint Research Institute, Nanchang University, Nanchang 330047, China
| | - Zhihong Zhang
- State Key Laboratory of Food Science and Resources, Nanchang University, 235 Nanjing East Road, Nanchang 330047, China.
- International Institute of Food Innovation, Nanchang University, Nanchang, 330299, China
| |
Collapse
|
18
|
Jin W, Ai H, Huang Q, Li C, He X, Jin Z, Zuo Y. Preclinical evidence of probiotics in ulcerative colitis: a systematic review and network meta-analysis. Front Pharmacol 2023; 14:1187911. [PMID: 37361217 PMCID: PMC10288114 DOI: 10.3389/fphar.2023.1187911] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 05/30/2023] [Indexed: 06/28/2023] Open
Abstract
The imbalance of gastrointestinal microbial composition has been identified as the main factor of chronic inflammatory diseases. At present, probiotics have a beneficial effect on the microbial composition of the human gastrointestinal tract, but it is still controversial and the specific mechanism is unknown. The purpose of this network meta-analysis is to compare the mechanism of different probiotics on ulcerative colitis. PubMed, Embase, and Web of Science were searched till 16 November 2022. The SYRCLE risk bias assessment tool was used to assess the quality of the research studies. A total of 42 studies, 839 ulcerative colitis models, and 24 kinds of probiotics were finally included. The results showed that L. rhamnosus has the best effect in relieving weight loss and improving the Shannon index in the ulcerative colitis model. E. faecium has the best effect in reducing colon injury; L. reuteri has the best effect in reducing the DAI; L. acidophilus has the best effect in reducing the HIS index and increasing the expression of tight junction protein ZO-1; and L. coryniformis has the best effect in reducing the content of serum pro-inflammatory factor TNF-α. It indicated that probiotics can improve ulcerative colitis by improving histopathological manifestations, reducing inflammatory reaction, and repairing the mucosal barrier, and different probiotics showed different effects. However, considering the limitations of this study, preclinical studies that require more large samples and high-quality and more reliable and rigorous experimental designs and reports need to be conducted in the future. Systematic Review Registration: https://www.crd.york.ac.uk/prospero/#record details, identifier CRD42022383383.
Collapse
Affiliation(s)
- Wenqin Jin
- Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Huangping Ai
- Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qingqing Huang
- Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Chuncai Li
- Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiang He
- Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Zhao Jin
- Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yuling Zuo
- Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
19
|
Jeong JJ, Ganesan R, Jin YJ, Park HJ, Min BH, Jeong MK, Yoon SJ, Choi MR, Choi J, Moon JH, Min U, Lim JH, Lee DY, Han SH, Ham YL, Kim BY, Suk KT. Multi-strain probiotics alleviate loperamide-induced constipation by adjusting the microbiome, serotonin, and short-chain fatty acids in rats. Front Microbiol 2023; 14:1174968. [PMID: 37333632 PMCID: PMC10272585 DOI: 10.3389/fmicb.2023.1174968] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 05/15/2023] [Indexed: 06/20/2023] Open
Abstract
Constipation is one of the most common gastrointestinal (GI) disorders worldwide. The use of probiotics to improve constipation is well known. In this study, the effect on loperamide-induced constipation by intragastric administration of probiotics Consti-Biome mixed with SynBalance® SmilinGut (Lactobacillus plantarum PBS067, Lactobacillus rhamnosus LRH020, Bifidobacterium animalis subsp. lactis BL050; Roelmi HPC), L. plantarum UALp-05 (Chr. Hansen), Lactobacillus acidophilus DDS-1 (Chr. Hansen), and Streptococcus thermophilus CKDB027 (Chong Kun Dang Bio) to rats was evaluated. To induce constipation, 5 mg/kg loperamide was intraperitoneally administered twice a day for 7 days to all groups except the normal control group. After inducing constipation, Dulcolax-S tablets and multi-strain probiotics Consti-Biome were orally administered once a day for 14 days. The probiotics were administered 0.5 mL at concentrations of 2 × 108 CFU/mL (G1), 2 × 109 CFU/mL (G2), and 2 × 1010 CFU/mL (G3). Compared to the loperamide administration group (LOP), the multi-strain probiotics not only significantly increased the number of fecal pellets but also improved the GI transit rate. The mRNA expression levels of serotonin- and mucin-related genes in the colons that were treated with the probiotics were also significantly increased compared to levels in the LOP group. In addition, an increase in serotonin was observed in the colon. The cecum metabolites showed a different pattern between the probiotics-treated groups and the LOP group, and an increase in short-chain fatty acids was observed in the probiotic-treated groups. The abundances of the phylum Verrucomicrobia, the family Erysipelotrichaceae and the genus Akkermansia were increased in fecal samples of the probiotic-treated groups. Therefore, the multi-strain probiotics used in this experiment were thought to help alleviate LOP-induced constipation by altering the levels of short-chain fatty acids, serotonin, and mucin through improvement in the intestinal microflora.
Collapse
Affiliation(s)
- Jin-Ju Jeong
- Institute for Liver and Digestive Disease, Hallym University, Chuncheon, Republic of Korea
| | - Raja Ganesan
- Institute for Liver and Digestive Disease, Hallym University, Chuncheon, Republic of Korea
| | - Yoo-Jeong Jin
- R&D Center, Chong Kun Dang Healthcare, Seoul, Republic of Korea
| | - Hee Jin Park
- Institute for Liver and Digestive Disease, Hallym University, Chuncheon, Republic of Korea
| | - Byeong Hyun Min
- Institute for Liver and Digestive Disease, Hallym University, Chuncheon, Republic of Korea
| | - Min Kyo Jeong
- Institute for Liver and Digestive Disease, Hallym University, Chuncheon, Republic of Korea
| | - Sang Jun Yoon
- Institute for Liver and Digestive Disease, Hallym University, Chuncheon, Republic of Korea
| | - Mi Ran Choi
- Institute for Liver and Digestive Disease, Hallym University, Chuncheon, Republic of Korea
| | - Jieun Choi
- Department of Agricultural Biotechnology, Center for Food and Bioconvergence, Research Institute of Agricultural and Life Sciences, Seoul National University, Seoul, Republic of Korea
| | - Ji Hyun Moon
- Department of Agricultural Biotechnology, Center for Food and Bioconvergence, Research Institute of Agricultural and Life Sciences, Seoul National University, Seoul, Republic of Korea
| | - Uigi Min
- R&D Center, Chong Kun Dang Healthcare, Seoul, Republic of Korea
| | - Jong-Hyun Lim
- R&D Center, Chong Kun Dang Healthcare, Seoul, Republic of Korea
| | - Do Yup Lee
- Department of Agricultural Biotechnology, Center for Food and Bioconvergence, Research Institute of Agricultural and Life Sciences, Seoul National University, Seoul, Republic of Korea
| | - Sang Hak Han
- Department of Pathology, Hallym University College of Medicine, Chuncheon, Republic of Korea
| | - Young Lim Ham
- Department of Nursing, Daewon University College, Jecheon, Republic of Korea
| | - Byung-Yong Kim
- R&D Center, Chong Kun Dang Healthcare, Seoul, Republic of Korea
| | - Ki Tae Suk
- Institute for Liver and Digestive Disease, Hallym University, Chuncheon, Republic of Korea
| |
Collapse
|
20
|
Li L, Peng P, Ding N, Jia W, Huang C, Tang Y. Oxidative Stress, Inflammation, Gut Dysbiosis: What Can Polyphenols Do in Inflammatory Bowel Disease? Antioxidants (Basel) 2023; 12:antiox12040967. [PMID: 37107341 PMCID: PMC10135842 DOI: 10.3390/antiox12040967] [Citation(s) in RCA: 27] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 04/12/2023] [Accepted: 04/18/2023] [Indexed: 04/29/2023] Open
Abstract
Inflammatory bowel disease (IBD) is a long-term, progressive, and recurrent intestinal inflammatory disorder. The pathogenic mechanisms of IBD are multifaceted and associated with oxidative stress, unbalanced gut microbiota, and aberrant immune response. Indeed, oxidative stress can affect the progression and development of IBD by regulating the homeostasis of the gut microbiota and immune response. Therefore, redox-targeted therapy is a promising treatment option for IBD. Recent evidence has verified that Chinese herbal medicine (CHM)-derived polyphenols, natural antioxidants, are able to maintain redox equilibrium in the intestinal tract to prevent abnormal gut microbiota and radical inflammatory responses. Here, we provide a comprehensive perspective for implementing natural antioxidants as potential IBD candidate medications. In addition, we demonstrate novel technologies and stratagems for promoting the antioxidative properties of CHM-derived polyphenols, including novel delivery systems, chemical modifications, and combination strategies.
Collapse
Affiliation(s)
- Lei Li
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Peilan Peng
- West China School of Basic Medical Sciences and Forensic Medicine, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital and Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu 610041, China
| | - Ning Ding
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Wenhui Jia
- West China School of Basic Medical Sciences and Forensic Medicine, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital and Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu 610041, China
| | - Canhua Huang
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
- West China School of Basic Medical Sciences and Forensic Medicine, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital and Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu 610041, China
| | - Yong Tang
- School of Health and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China
| |
Collapse
|
21
|
Liu Y, Dong Y, Shen W, DU J, Sun Q, Yang Y, Yin D. Platycodon grandiflorus polysaccharide regulates colonic immunity through mesenteric lymphatic circulation to attenuate ulcerative colitis. Chin J Nat Med 2023; 21:263-278. [PMID: 37120245 DOI: 10.1016/s1875-5364(23)60435-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Indexed: 05/01/2023]
Abstract
Platycodon grandiflorus polysaccharide (PGP) is one of the main components of P. grandiflorus, but the mechanism of its anti-inflammatory effect has not been fully elucidated. The aim of this study was to evaluate the therapeutic effect of PGP on mice with dextran sodium sulfate (DSS)-induced ulcerative colitis (UC) and explore the underlying mechanisms. The results showed that PGP treatment inhibited the weight loss of DSS-induced UC mice, increased colon length, and reduced DAI, spleen index, and pathological damage within the colon. PGP also reduced the levels of pro-inflammatory cytokines and inhibited the enhancement of oxidative stress and MPO activity. Meanwhile, PGP restored the levels of Th1, Th2, Th17, and Treg cell-related cytokines and transcription factors in the colon to regulate colonic immunity. Further studies revealed that PGP regulated the balance of colonic immune cells through mesenteric lymphatic circulation. Taken together, PGP exerts anti-inflammatory and anti-oxidant effect and regulates colonic immunity to attenuate DSS-induced UC through mesenteric lymphatic circulation.
Collapse
Affiliation(s)
- Yang Liu
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Yahui Dong
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Wei Shen
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China; Engineering Technology Research Center of Modernized Pharmaceutics, Anhui Education Department (AUCM), Hefei 230012, China
| | - Jiahui DU
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Quanwei Sun
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Ye Yang
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China; Anhui Provincial Key Laboratory of Pharmaceutical Preparation Technology and Application, Hefei 230021, China.
| | - Dengke Yin
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China; Engineering Technology Research Center of Modernized Pharmaceutics, Anhui Education Department (AUCM), Hefei 230012, China; Anhui Provincial Key Laboratory of Pharmaceutical Preparation Technology and Application, Hefei 230021, China; Anhui Provincial Key Laboratory of Research & Development of Chinese Medicine, Hefei 230021, China.
| |
Collapse
|
22
|
Liu S, Loo YT, Li Z, Ng K. Alginate-inulin-chitosan based microspheres alter metabolic fate of encapsulated quercetin, promote short chain fatty acid production, and modulate pig gut microbiota. Food Chem 2023; 418:135802. [PMID: 36965386 DOI: 10.1016/j.foodchem.2023.135802] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 02/21/2023] [Accepted: 02/24/2023] [Indexed: 03/13/2023]
Abstract
Quercetin loaded alginate microspheres, fabricated with the inclusion of inulin as a prebiotic source and chitosan as protective coating (ALINCH-Q), were subjected to in vitro colonic fermentation using pig fecal microbiota, with empty microspheres ALINCH-E, unencapsulated quercetin UQ and media only Blank as parallel studies. ALINCH-Q altered quercetin biotransformation towards higher production of 3-hydroxyphenylpropionic acid and 3-hydroxyphenylacetic acid, and further metabolism of 3,4-dihydroxyphenylacetic acid and 4-hydroxyphenylacetic acid compared to UQ. In addition, ALINCH-Q but not ALINCH-E or UQ significantly promoted SCFAs production compared to Blank. Furthermore, the ALINCH-Q microspheres altered the microbial compositions, increased the relative abundance of Lactobacillus, Turicibacter, Eubacterium, and Clostridium, while decreased that of the potentially pathogenic Enterococcus. The results suggest an interplay between the dietary fiber matrix and quercetin in producing these effects, and that ALINCH-Q could serve as a potential targeted delivery vehicle for quercetin to exert beneficial biological effects in the colon.
Collapse
Affiliation(s)
- Siyao Liu
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Yit Tao Loo
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Zhenzhao Li
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Ken Ng
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC 3010, Australia.
| |
Collapse
|
23
|
Aggarwal N, Kitano S, Puah GRY, Kittelmann S, Hwang IY, Chang MW. Microbiome and Human Health: Current Understanding, Engineering, and Enabling Technologies. Chem Rev 2023; 123:31-72. [PMID: 36317983 PMCID: PMC9837825 DOI: 10.1021/acs.chemrev.2c00431] [Citation(s) in RCA: 87] [Impact Index Per Article: 87.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Indexed: 01/12/2023]
Abstract
The human microbiome is composed of a collection of dynamic microbial communities that inhabit various anatomical locations in the body. Accordingly, the coevolution of the microbiome with the host has resulted in these communities playing a profound role in promoting human health. Consequently, perturbations in the human microbiome can cause or exacerbate several diseases. In this Review, we present our current understanding of the relationship between human health and disease development, focusing on the microbiomes found across the digestive, respiratory, urinary, and reproductive systems as well as the skin. We further discuss various strategies by which the composition and function of the human microbiome can be modulated to exert a therapeutic effect on the host. Finally, we examine technologies such as multiomics approaches and cellular reprogramming of microbes that can enable significant advancements in microbiome research and engineering.
Collapse
Affiliation(s)
- Nikhil Aggarwal
- NUS
Synthetic Biology for Clinical and Technological Innovation (SynCTI), National University of Singapore, Singapore 117456, Singapore
- Synthetic
Biology Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117456, Singapore
| | - Shohei Kitano
- NUS
Synthetic Biology for Clinical and Technological Innovation (SynCTI), National University of Singapore, Singapore 117456, Singapore
- Synthetic
Biology Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117456, Singapore
| | - Ginette Ru Ying Puah
- NUS
Synthetic Biology for Clinical and Technological Innovation (SynCTI), National University of Singapore, Singapore 117456, Singapore
- Synthetic
Biology Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117456, Singapore
- Wilmar-NUS
(WIL@NUS) Corporate Laboratory, National
University of Singapore, Singapore 117599, Singapore
- Wilmar
International Limited, Singapore 138568, Singapore
| | - Sandra Kittelmann
- Wilmar-NUS
(WIL@NUS) Corporate Laboratory, National
University of Singapore, Singapore 117599, Singapore
- Wilmar
International Limited, Singapore 138568, Singapore
| | - In Young Hwang
- NUS
Synthetic Biology for Clinical and Technological Innovation (SynCTI), National University of Singapore, Singapore 117456, Singapore
- Synthetic
Biology Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117456, Singapore
- Department
of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117596, Singapore
- Singapore
Institute of Technology, Singapore 138683, Singapore
| | - Matthew Wook Chang
- NUS
Synthetic Biology for Clinical and Technological Innovation (SynCTI), National University of Singapore, Singapore 117456, Singapore
- Synthetic
Biology Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117456, Singapore
- Wilmar-NUS
(WIL@NUS) Corporate Laboratory, National
University of Singapore, Singapore 117599, Singapore
- Department
of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117596, Singapore
| |
Collapse
|
24
|
ZAHRANI AJA, SHORI AB. Improve the antioxidant activity and viability of B. longum and B. animalis subsp lactis in fermented soy and almond milk. FOOD SCIENCE AND TECHNOLOGY 2023. [DOI: 10.1590/fst.118122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
25
|
Chaudhary P, Kathuria D, Suri S, Bahndral A, Kanthi Naveen A. Probiotics- its functions and influence on the ageing process: A comprehensive review. FOOD BIOSCI 2023. [DOI: 10.1016/j.fbio.2023.102389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
26
|
Sampath V, Song JH, Jeong J, Mun S, Han K, Kim IH. Nourishing neonatal piglets with synthetic milk and Lactobacillus sp. at birth highly modifies the gut microbial communities at the post-weaning stage. Front Microbiol 2022; 13:1044256. [PMID: 36532479 PMCID: PMC9748437 DOI: 10.3389/fmicb.2022.1044256] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 11/03/2022] [Indexed: 03/07/2024] Open
Abstract
The importance of probiotics in pig production is widely recognized. However, the precise role of probiotics in regulating the gut microbiota of piglets has not been assessed extensively. Therefore, we intend to examine whether suckling pigs ingesting with synthetic milk (SM) and probiotics along with mother milk has a carryover effect on its growth and gut health at the post-weaning stage. A total of 40 [Duroc× (Yorkshire× Landrace)] neonates with an initial BW of 1.49 ± 0.28 kg were assigned to one of two treatments groups: control (CON) and treatment (TRT). Control group piglets were nourished with synthetic milk, while TRT group piglets were nourished SM with (1 × 109 CFU/g) Lactobacillus sp. probiotics. The treatment group piglets showed higher (p < 0.05) body weight and daily gain at week 3 than the CON group piglets. 16S metagenome sequencing showed average demultiplexed reads and denoised reads counts of 157,399 and 74,945, respectively. The total ASV taxonomy number classified with a confidence threshold > 70% (default) on sequence alignment with the SILVA v138 reference database was 4,474. During week 1, Escherichia-Shigella, Clostridium sensu stricto 1, and Bacteroides were confirmed as the major dominant bacterial genera in both the groups at the genus level. However, during week 2, the relative proportion of Escherichia-Shigella, Clostridium sensu stricto 1, and Proteobacteria was decreased, while that of Lactobacillus and Bacteroidota was increased in pigs receiving the probiotic supplement. During weeks 2 and 3, Firmicutes, Proteobacteria, and Bacteroidota phyla were dominant in both groups. During week 6, the relative proportion of Proteobacteria was slightly increased in both groups. Furthermore, Prevotella was confirmed as the major dominant bacterial genus in both groups during weeks 3 and 6. This study suggests that nourishing neonatal piglets with synthetic milk and Lactobacillus sp. probiotics from birth to 21 days would be beneficial to enhance the gut health of piglets and to overcome post-weaning mortality.
Collapse
Affiliation(s)
- Vetriselvi Sampath
- Department of Animal Resource and Science, Dankook University, Cheonan, South Korea
| | - Jun Ho Song
- Department of Animal Resource and Science, Dankook University, Cheonan, South Korea
| | - Jinuk Jeong
- Department of Bio-Convergence Engineering, Dankook University, Cheonan, South Korea
| | - Seyoung Mun
- Department of Bio-Convergence Engineering, Dankook University, Cheonan, South Korea
- Department of Microbiology, College of Science and Technology, Dankook University, Cheonan, South Korea
| | - Kyudong Han
- Department of Bio-Convergence Engineering, Dankook University, Cheonan, South Korea
- Department of Microbiology, College of Science and Technology, Dankook University, Cheonan, South Korea
- Center for Bio Medical Engineering Core Facility, Dankook University, Cheonan, South Korea
| | - In Ho Kim
- Department of Animal Resource and Science, Dankook University, Cheonan, South Korea
| |
Collapse
|
27
|
Zhang P, Li B, Mu J, Liu D, Zhang G, Mao X, Huang K, Waldron KJ, Chen X. The therapeutic and preventive effects of a canine-origin VB 12 -producing Lactobacillus on DSS-induced colitis in mice. J Anim Physiol Anim Nutr (Berl) 2022; 106:1368-1382. [PMID: 36045638 DOI: 10.1111/jpn.13767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 08/01/2022] [Accepted: 08/05/2022] [Indexed: 11/28/2022]
Abstract
Vitamin B12 (VB12 ) plays vital roles as a cofactor in reactions related to biosynthesis and metabolic regulation. Animals with diarrhoea from intestinal inflammation are susceptible to VB12 deficiency due to dysfunctional absorption. No current medications for canine intestinal inflammation can simultaneously act as VB12 supplements. Here we have tested a strain of VB12 -producing Lactobacillus, to investigate its safety in healthy dogs and test for hypothesized therapeutic and preventive effects on murine colitis. Results from enzyme-linked immunosorbent assay, histopathological analysis, and quantitative polymerase chain reaction showed normal physical conditions of healthy dogs given Lactobacillus, and blood biochemical indices showed no significant differences in markers, indicating safety of Lactobacillus to healthy dogs. The microbiota in animals receiving VB12 -producing Lactobacillus probiotic exhibited decreased abundance of Escherichia coli and concomitant increase in Lactobacillus. The probiotic supplement also resulted in downregulation of proinflammatory cytokines in murine colon tissues, reduced myeloperoxidase activity and malondialdehyde level, and significantly increased serum VB12 level and decreased homocysteine in therapeutic and preventive experiments. Moreover, Lactobacillus supplement decreased colonic inflammation and injury, improved gut microbiota, and ameliorated VB12 deficiency as an adjunctive therapy. We conclude this product is potentially beneficial for efficient therapy and prevention of VB12 deficiency form intestinal inflammation in canine clinical practice.
Collapse
Affiliation(s)
- Ping Zhang
- Institute of Animal Nutritional Health, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province, China
| | - Benrui Li
- Institute of Animal Nutritional Health, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province, China
| | - Jiaxin Mu
- Institute of Animal Nutritional Health, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province, China
| | - Dandan Liu
- Institute of Animal Nutritional Health, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province, China
| | - Guoying Zhang
- Department of Clinical Laboratory, Nanjing Integrated Traditional Chinese and Western Medicine Hospital, Nanjing University of Traditional Chinese Medicine, Nanjing, Jiangsu Province, China
| | - Xinru Mao
- Institute of Animal Nutritional Health, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province, China
| | - Kehe Huang
- Institute of Animal Nutritional Health, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province, China
| | - Kevin J Waldron
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Xingxiang Chen
- Institute of Animal Nutritional Health, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province, China
| |
Collapse
|
28
|
Gao J, Sadiq FA, Zheng Y, Zhao J, He G, Sang Y. Biofilm-based delivery approaches and specific enrichment strategies of probiotics in the human gut. Gut Microbes 2022; 14:2126274. [PMID: 36175161 PMCID: PMC9542427 DOI: 10.1080/19490976.2022.2126274] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The use of probiotics has been one of the effective strategies to restructure perturbed human gut microbiota following a disease or metabolic disorder. One of the biggest challenges associated with the use of probiotic-based gut modulation strategies is to keep the probiotic cells viable and stable during the gastrointestinal transit. Biofilm-based probiotics delivery approaches have emerged as fascinating modes of probiotic delivery in which probiotics show significantly greater tolerance and biotherapeutic potential, and interestingly probiotic biofilms can be developed on food-grade surfaces too, which is ideal for the growth and proliferation of bacterial cells for incorporation into food matrices. In addition, biofilms can be further encapsulated with food-grade materials or with bacterial self-produced biofilms. This review presents a newly emerging and unprecedently discussed techniques for the safe delivery of probiotics based on biofilms and further discusses newly emerging prebiotic materials which target specific gut microbiota groups for growth and proliferation.
Collapse
Affiliation(s)
- Jie Gao
- Collge of Food Science and Technology, Hebei Agricultural University, Baoding, China
| | - Faizan Ahmed Sadiq
- Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Technology & Food Sciences Unit, Melle, Belgium
| | - Yixin Zheng
- Collge of Food Science and Technology, Hebei Agricultural University, Baoding, China
| | - Jinrong Zhao
- Collge of Food Science and Technology, Hebei Agricultural University, Baoding, China
| | - Guoqing He
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China,CONTACT Guoqing He College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
| | - Yaxin Sang
- Collge of Food Science and Technology, Hebei Agricultural University, Baoding, China,Yaxin Sang Collge of Food Science and Technology, Hebei Agricultural University, Baoding, China
| |
Collapse
|
29
|
Gu Q, Yin Y, Yan X, Liu X, Liu F, McClements DJ. Encapsulation of multiple probiotics, synbiotics, or nutrabiotics for improved health effects: A review. Adv Colloid Interface Sci 2022; 309:102781. [DOI: 10.1016/j.cis.2022.102781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 09/20/2022] [Accepted: 09/20/2022] [Indexed: 11/01/2022]
|
30
|
Effects of Probiotic Supplementation during Pregnancy on the Future Maternal Risk of Metabolic Syndrome. Int J Mol Sci 2022; 23:ijms23158253. [PMID: 35897822 PMCID: PMC9330652 DOI: 10.3390/ijms23158253] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 07/21/2022] [Accepted: 07/23/2022] [Indexed: 12/12/2022] Open
Abstract
Probiotics are live microorganisms that induce health benefits in the host. Taking probiotics is generally safe and well tolerated by pregnant women and their children. Consumption of probiotics can result in both prophylactic and therapeutic effects. In healthy adult humans, the gut microbiome is stable at the level of the dominant taxa: Bacteroidetes, Firmicutes and Actinobacteria, and has a higher presence of Verrucomicrobia. During pregnancy, an increase in the number of Proteobacteria and Actinobacteria phyla and a decrease in the beneficial species Roseburia intestinalis and Faecalibacterium prausnitzii are observed. Pregnancy is a "window" to the mother's future health. The aim of this paper is to review studies assessing the potentially beneficial effects of probiotics in preventing the development of diseases that appear during pregnancy, which are currently considered as risk factors for the development of metabolic syndrome, and consequently, reducing the risk of developing maternal metabolic syndrome in the future. The use of probiotics in gestational diabetes mellitus, preeclampsia and excessive gestational weight gain is reviewed. Probiotics are a relatively new intervention that can prevent the development of these disorders during pregnancy, and thus, would reduce the risk of metabolic syndrome resulting from these disorders in the mother's future.
Collapse
|
31
|
Li Q, Zhou S, Wang Y, Cong J. Changes of intestinal microbiota and microbiota-based treatments in IBD. Arch Microbiol 2022; 204:442. [PMID: 35776212 DOI: 10.1007/s00203-022-03069-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 06/13/2022] [Indexed: 12/15/2022]
Abstract
Inflammatory bowel disease (IBD) has gained increasing attention from researchers in terms of its pathophysiology as a global disease with a growing incidence. Although the exact etiology of IBD is still unknown currently, various studies have made us realize that it is related to the dysbiosis of intestinal microbiota and the link between the two may not just be a simple causal relationship, but also a dynamic and complicated one. The intestinal microbiota has been confirmed to be closely related to the occurrence, development, and treatment of IBD. Therefore, this review focuses on the changes in the structure, function, and metabolites of intestinal bacteria, fungi, and viruses in influencing IBD, as well as various approaches to IBD treatment by changing disordered intestinal microbiota. Ultimately, more clinical studies will be needed to focus on the efficacy of intestinal microbiota-based treatments in IBD, because of the existence of both advantages and disadvantages.
Collapse
Affiliation(s)
- Qianyu Li
- College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao, 266042, People's Republic of China
| | - Siyu Zhou
- College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao, 266042, People's Republic of China
| | - Yanna Wang
- Department of Oncology, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Jing Cong
- College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao, 266042, People's Republic of China.
| |
Collapse
|
32
|
Zhang D, Xiang M, Jiang Y, Wu F, Chen H, Sun M, Zhang L, Du X, Chen L. The Protective Effect of Polysaccharide SAFP from Sarcodon aspratus on Water Immersion and Restraint Stress-Induced Gastric Ulcer and Modulatory Effects on Gut Microbiota Dysbiosis. Foods 2022; 11:1567. [PMID: 35681318 PMCID: PMC9180856 DOI: 10.3390/foods11111567] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 05/12/2022] [Accepted: 05/13/2022] [Indexed: 02/04/2023] Open
Abstract
Sarcodon aspratus is a popular edible fungus for its tasty flavour and can be used as a dietary supplement for its functional substances. This study was conducted to evaluate the potential health benefits of Sarcodon aspratus polysaccharides (SAFP) on water immersion and restraint stress (WIRS)-induced gastric ulcer in rats. The results indicated that SAFP could decrease myeloperoxidase (MPO) activity and plasma corticosterone levels, as well as enhance Prostaglandin E2 (PGE2) and Nitrate/nitrite (NOx) concentration in rats. Furthermore, SAFP significantly attenuated the stress damage, inflammation, pathological changes and gastric mucosal lesion in rats. Moreover, high-throughput pyrosequencing of 16S rRNA suggested that SAFP modulated the dysbiosis of gut microbiota by enhancing the relative abundance of probiotics, decreasing WIRS-triggered bacteria proliferation. In summary, these results provided the evidence that SAFP exerted a beneficial effect on a WIRS-induced gastric ulcer via blocking the TLR4 signaling pathway and activating the Nrf2 signaling pathway. Notably, SAFP could modulate the WIRS-induced dysbiosis of gut microbiota. Thus, SAFP might be explored as a natural gastric mucosal protective agent in the prevention of gastric ulcers and other related diseases in the food and pharmaceutical industries.
Collapse
Affiliation(s)
- Dongjing Zhang
- Anhui Key Laboratory of Eco-Engineering and Biotechnology, School of Life Sciences, Anhui University, Hefei 230601, China; (D.Z.); (M.X.); (Y.J.); (F.W.); (H.C.); (M.S.)
- School of Biological and Food Engineering, Suzhou University, Suzhou 234000, China
| | - Ming Xiang
- Anhui Key Laboratory of Eco-Engineering and Biotechnology, School of Life Sciences, Anhui University, Hefei 230601, China; (D.Z.); (M.X.); (Y.J.); (F.W.); (H.C.); (M.S.)
| | - Yun Jiang
- Anhui Key Laboratory of Eco-Engineering and Biotechnology, School of Life Sciences, Anhui University, Hefei 230601, China; (D.Z.); (M.X.); (Y.J.); (F.W.); (H.C.); (M.S.)
| | - Fen Wu
- Anhui Key Laboratory of Eco-Engineering and Biotechnology, School of Life Sciences, Anhui University, Hefei 230601, China; (D.Z.); (M.X.); (Y.J.); (F.W.); (H.C.); (M.S.)
| | - Huaqun Chen
- Anhui Key Laboratory of Eco-Engineering and Biotechnology, School of Life Sciences, Anhui University, Hefei 230601, China; (D.Z.); (M.X.); (Y.J.); (F.W.); (H.C.); (M.S.)
| | - Min Sun
- Anhui Key Laboratory of Eco-Engineering and Biotechnology, School of Life Sciences, Anhui University, Hefei 230601, China; (D.Z.); (M.X.); (Y.J.); (F.W.); (H.C.); (M.S.)
| | - Lingzhi Zhang
- Anhui Cordyceps Source Biotechnology Co., Ltd., Huainan 232000, China;
| | - Xianfeng Du
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei 230036, China
| | - Lei Chen
- Anhui Key Laboratory of Eco-Engineering and Biotechnology, School of Life Sciences, Anhui University, Hefei 230601, China; (D.Z.); (M.X.); (Y.J.); (F.W.); (H.C.); (M.S.)
| |
Collapse
|
33
|
Lactiplantibacillus plantarum attenuates 2,4,6-trinitrobenzenesulfonic acid-induced ulcerative colitis in rats by regulating the inflammatory response, T helper 17 immune response, and intestinal permeability. Biologia (Bratisl) 2022. [DOI: 10.1007/s11756-022-01111-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
34
|
Zhang N, Jin M, Wang K, Zhang Z, Shah NP, Wei H. Functional oligosaccharide fermentation in the gut: Improving intestinal health and its determinant factors-A review. Carbohydr Polym 2022; 284:119043. [PMID: 35287885 DOI: 10.1016/j.carbpol.2021.119043] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 12/21/2021] [Accepted: 12/21/2021] [Indexed: 12/17/2022]
|
35
|
Lu X, Jing Y, Zhang N, Cao Y. Eurotium cristatum, a Probiotic Fungus from Fuzhuan Brick Tea, and Its Polysaccharides Ameliorated DSS-Induced Ulcerative Colitis in Mice by Modulating the Gut Microbiota. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:2957-2967. [PMID: 35201766 DOI: 10.1021/acs.jafc.1c08301] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Eurotium cristatum is a potential probiotic fungus that is used to enhance Fuzhuan tea quality through fermentation and could reduce obesity by modulating gut dysbiosis. This study aimed to investigate the effects and possible mechanisms of killed E. cristatum (KEC) and its polysaccharides (ECP) in ulcerative colitis (UC) relief. KEC and ECP were administered to mice with dextran sulfate sodium-induced UC. The results showed that UC severity, intestinal inflammation, and tight junction protein levels were greatly improved. Furthermore, 16S rRNA sequencing results showed that Escherichia coli, Enterococcus faecium, Clostridium perfringens, Bacteroides caccae, Rothia aeria, and Prevotella melaninogenica were depleted, while Alistipes finegoldii and Bacteroides stercorirosoris were enriched. A fecal microbial transplantation trial confirmed that KEC and ECP ameliorated UC by regulating gut dysbiosis. Thus, this research suggests that KEC and ECP are novel, potent, food-based anti-inflammatory agents that relieve UC by modulating gut dysbiosis.
Collapse
Affiliation(s)
- Xiaojie Lu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun 130062, People's Republic of China
| | - Yue Jing
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun 130062, People's Republic of China
| | - Naisheng Zhang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun 130062, People's Republic of China
| | - Yongguo Cao
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun 130062, People's Republic of China
| |
Collapse
|
36
|
Singh V, Ahlawat S, Mohan H, Gill SS, Sharma KK. Balancing reactive oxygen species generation by rebooting gut microbiota. J Appl Microbiol 2022; 132:4112-4129. [PMID: 35199405 DOI: 10.1111/jam.15504] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 02/16/2022] [Accepted: 02/17/2022] [Indexed: 11/30/2022]
Abstract
Reactive oxygen species (ROS; free radical form O2 •‾ , superoxide radical; OH• , hydroxyl radical; ROO• , peroxyl; RO• , alkoxyl and non-radical form 1 O2 , singlet oxygen; H2 O2 , hydrogen peroxide) are inevitable companions of aerobic life with crucial role in gut health. But, overwhelming production of ROS can cause serious damage to biomolecules. In this review, we have discussed several sources of ROS production that can be beneficial or dangerous to the human gut. Microorganisms, organelles and enzymes play crucial role in ROS generation, where, NOX1 is the main intestinal enzyme, which produce ROS in the intestine epithelial cells. Previous studies have reported that probiotics play significant role in gut homeostasis by checking the ROS generation, maintaining the antioxidant level, immune system and barrier protection. With current knowledge, we have critically analyzed the available literature and presented the outcome in the form of bubble maps to suggest the probiotics that help in controlling the ROS-specific intestinal diseases, such as inflammatory bowel disease (IBD) and colon cancer. Finally, it has been concluded that rebooting of the gut microbiota with probiotics, postbiotics or fecal microbiota transplantation (FMT) can have crucial implications in the structuring of gut communities for the personalized management of the gastrointestinal (GI) diseases.
Collapse
Affiliation(s)
- Vandna Singh
- Department of Medical Biotechnology, Maharshi Dayanand University, Rohtak, Haryana, India
| | - Shruti Ahlawat
- Laboratory of Enzymology and Recombinant DNA Technology, Department of Microbiology, Maharshi Dayanand University, Rohtak, Haryana, India.,Presently at SGT University, Badli Road Chandu, Budhera, Gurugr, Gurgaon, Haryana, India
| | - Hari Mohan
- Department of Medical Biotechnology, Maharshi Dayanand University, Rohtak, Haryana, India
| | - Sarvajeet Singh Gill
- Department of Plant Biotechnology, Maharshi Dayanand University, Rohtak, Haryana, India
| | - Krishna Kant Sharma
- Laboratory of Enzymology and Recombinant DNA Technology, Department of Microbiology, Maharshi Dayanand University, Rohtak, Haryana, India
| |
Collapse
|
37
|
Hao H, Zhang X, Tong L, Liu Q, Liang X, Bu Y, Gong P, Liu T, Zhang L, Xia Y, Ai L, Yi H. Effect of Extracellular Vesicles Derived From Lactobacillus plantarum Q7 on Gut Microbiota and Ulcerative Colitis in Mice. Front Immunol 2021; 12:777147. [PMID: 34925349 PMCID: PMC8674835 DOI: 10.3389/fimmu.2021.777147] [Citation(s) in RCA: 90] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 11/16/2021] [Indexed: 12/12/2022] Open
Abstract
Probiotics plays an important role in regulating gut microbiota and maintaining intestinal homeostasis. Extracellular vesicles (EVs) derived from probiotics have emerged as potential mediators of host immune response and anti-inflammatory effect. However, the anti-inflammatory effect and mechanism of probiotics derived EVs on inflammatory bowel disease (IBD) remains unclear. In this study, the effect of Lactobacillus plantarum Q7-derived extracellular vesicles (Q7-EVs) on gut microbiota and intestinal inflammation was investigated in C57BL/6J mice. The results showed that Q7-EVs alleviated DSS-induced colitis symptoms, including colon shortening, bleeding, and body weight loss. Consumption of Q7-EVs reduced the degree of histological damage. DSS-upregulated proinflammatory cytokine levels including IL-6, IL-1β, IL-2 and TNF-α were reduced significantly by Q7-EVs (p < 0.05). 16S rRNA sequencing results showed that Q7-EVs improved the dysregulation of gut microbiota and promoted the diversity of gut microbiota. It was observed that the pro-inflammatory bacteria (Proteobacteria) were reduced and the anti-inflammatory bacteria (Bifidobacteria and Muribaculaceae) were increased. These findings indicated that Q7-EVs might alleviate DSS-induced ulcerative colitis by regulating the gut microbiota.
Collapse
Affiliation(s)
- Haining Hao
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Xinyi Zhang
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Lingjun Tong
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Qiqi Liu
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Xi Liang
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Yushan Bu
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Pimin Gong
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Tongjie Liu
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Lanwei Zhang
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Yongjun Xia
- Shanghai Engineering Research Center of Food Microbiology, School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Lianzhong Ai
- Shanghai Engineering Research Center of Food Microbiology, School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Huaxi Yi
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| |
Collapse
|
38
|
Microbiota Targeted Interventions of Probiotic Lactobacillus as an Anti-Ageing Approach: A Review. Antioxidants (Basel) 2021; 10:antiox10121930. [PMID: 34943033 PMCID: PMC8750034 DOI: 10.3390/antiox10121930] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 11/23/2021] [Accepted: 11/26/2021] [Indexed: 12/14/2022] Open
Abstract
With the implementation of modern scientific protocols, the average human lifespan has significantly improved, but age-related problems remain a challenge. With the advent of ageing, there are alterations in gut microbiota and gut barrier functions, weak immune responses, increased oxidative stress, and other age-related disorders. This review has highlighted and discussed the current understanding on the significance of gut microbiota dysbiosis and ageing and its inherent effects against age-related oxidative stress as well as on the gut health and gut-brain axis. Further, we have discussed the key mechanism of action of Lactobacillus strains in the longevity of life, alleviating gut dysbiosis, and improving oxidative stress and inflammation to provide an outline of the role of Lactobacillus strains in restoration of gut microbiota dysbiosis and alleviating certain conditions during ageing. Microbiota-targeted interventions of some characterized strains of probiotic Lactobacillus for the restoration of gut microbial community are considered as a potential approach to improve several neurological conditions. However, very limited human studies are available on this alarmed issue and recommend further studies to identify the unique Lactobacillus strains with potential anti-ageing properties and to discover its novel core microbiome-association, which will help to increase the therapeutic potential of probiotic Lactobacillus strains to ageing.
Collapse
|
39
|
Jiang S, Hou Y, Meng L, Pu X, Zhu X, Tuo Y, Qian F, Mu G. Effect of Lactiplantibacillus plantarum HM-22 on immunoregulation and intestinal microbiota in α-lactalbumin-induced allergic mice. Food Funct 2021; 12:8887-8898. [PMID: 34606539 DOI: 10.1039/d1fo01703a] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Milk protein is one of the eight major allergens, and α-lactalbumin (α-LA) is one of the major allergens of bovine milk protein. Our previous studies found that Lactiplantibacillus plantarum HM-22 (L. plantarum HM-22) showed a good gastrointestinal survival rate and intestinal colonization. To investigate the effect of L. plantarum HM-22 on intestinal inflammation and intestinal microbiota in α-LA-induced allergic mice, in this study, L. plantarum HM-22 at low and high doses was intragastrically administered to α-LA-induced allergic mice for 5 weeks. The results showed that L. plantarum HM-22 significantly relieved the weight loss and organ index of α-LA-induced allergic mice (p < 0.05). L. plantarum HM-22 increased the levels of interleukin-10 (IL-10), interferon-γ (IFN-γ) and transforming growth factor-β (TGF-β) in the serum of α-LA-induced allergic mice and decreased the levels of total immunoglobulin E (IgE) and the proinflammatory factor interleukin-4 (IL-4) (p < 0.05). The crypt structure of the colon tissues of α-LA-induced allergic mice changed, goblet cells decreased, and the phenomenon of a large number of inflammatory corpuscles that appeared was improved and alleviated with the intervention of L. plantarum HM-22 by hematoxylin-eosin (HE) staining. Western blot analysis showed that L. plantarum HM-22 significantly increased the expression of occludin and claudin-1 in the colon of α-LA-induced allergic mice and decreased the expression of the inflammatory proteins p65 and IκBα (p < 0.05). The intestinal microbiota of mice in each group was determined by 16S rRNA amplicon sequencing, and the results showed that intervention with L. plantarum HM-22 improved the intestinal microbes of α-LA-induced allergic mice. Spearman's correlation analysis revealed the correlation between intestinal microbiota changes and the α-LA-induced allergy-related index. This study provides a theoretical basis for probiotics to prevent allergies by changing the intestinal microbiota.
Collapse
Affiliation(s)
- Shujuan Jiang
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, 116034, China.
| | - Yaqi Hou
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, 116034, China.
| | - Lingying Meng
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, 116034, China.
| | - Xueli Pu
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, 116034, China.
| | - Xuemei Zhu
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, 116034, China.
| | - Yanfeng Tuo
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, 116034, China.
| | - Fang Qian
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, 116034, China.
| | - Guangqing Mu
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, 116034, China.
| |
Collapse
|
40
|
Bacillus amyloliquefaciens SC06 Induced AKT-FOXO Signaling Pathway-Mediated Autophagy to Alleviate Oxidative Stress in IPEC-J2 Cells. Antioxidants (Basel) 2021; 10:antiox10101545. [PMID: 34679680 PMCID: PMC8533163 DOI: 10.3390/antiox10101545] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 09/09/2021] [Accepted: 09/25/2021] [Indexed: 11/16/2022] Open
Abstract
Autophagy is a conserved proteolytic mechanism, which degrades and recycles damaged organs and proteins in cells to resist external stress. Probiotics could induce autophagy; however, its underlying molecular mechanisms remain elusive. Our previous study has found that BaSC06 could alleviate oxidative stress by inducing autophagy in rats. This research aimed to verify whether Bacillus amyloliquefaciens SC06 can induce autophagy to alleviate oxidative stress in IPEC-J2 cells, as well as explore its mechanisms. IPEC-J2 cells were first pretreated with 108 CFU/mL BaSC06, and then were induced to oxidative stress by the optimal dose of diquat. The results showed that BaSC06 significantly triggered autophagy, indicated by the up-regulation of LC3 and Beclin1 along with downregulation of p62 in IPEC-J2 cells. Further analysis revealed that BaSC06 inhibited the AKT-FOXO signaling pathway by inhibiting the expression of p-AKT and p-FOXO and inducing the expression of SIRT1, resulting in increasing the transcriptional activity of FOXO3 and gene expression of the ATG5-ATG12 complex to induce autophagy, which alleviated oxidative stress and apoptosis. Taken together, BaSC06 can induce AKT-FOXO-mediated autophagy to alleviate oxidative stress-induced apoptosis and cell damage, thus providing novel theoretical support for probiotics in the prevention and treatment of oxidative damage.
Collapse
|
41
|
Su L, Su Y, An Z, Zhang P, Yue Q, Zhao C, Sun X, Zhang S, Liu X, Li K, Zhao L. Fermentation products of Danshen relieved dextran sulfate sodium-induced experimental ulcerative colitis in mice. Sci Rep 2021; 11:16210. [PMID: 34376708 PMCID: PMC8355158 DOI: 10.1038/s41598-021-94594-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 06/29/2021] [Indexed: 12/19/2022] Open
Abstract
With the increased incidence and recognition, ulcerative colitis (UC) has become a global public health problem in the world. Although many immunosuppressant and biological drugs have been used for UC treatment, the cure rate is still very low. It is necessary to find some safe and long-term used medicine for UC cure. Recently, the Chinese traditional herb Danshen has been investigated in the treatment of UC. However, it is a limitation of Danshen that many of the active components in Danshen are not easily absorbed by the human body. Probiotics could convert macromolecules into smaller molecules to facilitate absorption. Thus, Lactobacillus rhamnosus (F-B4-1) and Bacillus subtillis Natto (F-A7-1) were screened to ferment Danshen in this study. The fermented Danshen products were gavaged in the dextran sulfate sodium (DSS)-induced UC model mice. Danshen had better results to attenuate symptoms of DSS-induced UC after fermented with F-B4-1 and F-A7-1. Loss of body weight and disease activity index (DAI) were reduced. The abnormally short colon lengths and colonic damage were recovered. And fermented Danshen had the better inhibitory effect than Danshen itself on pro-inflammatory cytokine expression during DSS-induced UC. The results indicated that compared with Danshen, fermented Danshen relieved DSS-induced UC in mice more effectively. Danshen fermented by probiotics might be an effective treatment to UC in clinic stage in the future.
Collapse
Affiliation(s)
- Le Su
- State Key Laboratory of Biobased Material and Green Papermaking, School of Bioengineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, 250353, China
| | - Yue Su
- State Key Laboratory of Biobased Material and Green Papermaking, School of Bioengineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, 250353, China
| | - Zaiyong An
- State Key Laboratory of Biobased Material and Green Papermaking, School of Bioengineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, 250353, China
| | - Ping Zhang
- State Key Laboratory of Biobased Material and Green Papermaking, School of Bioengineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, 250353, China
| | - Qiulin Yue
- State Key Laboratory of Biobased Material and Green Papermaking, School of Bioengineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, 250353, China
| | - Chen Zhao
- Shandong Provincial Key Laboratory of Food and Fermentation Engineering, Shandong Food Ferment Industry Research and Design Institute, Qilu University of Technology, Shandong Academy of Sciences, Jinan, 250013, China
| | - Xin Sun
- State Key Laboratory of Biobased Material and Green Papermaking, School of Bioengineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, 250353, China
| | - Song Zhang
- State Key Laboratory of Biobased Material and Green Papermaking, School of Bioengineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, 250353, China
| | - Xinli Liu
- State Key Laboratory of Biobased Material and Green Papermaking, School of Bioengineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, 250353, China
| | - Kunlun Li
- Jinan Hangchen Biotechnology Co., Ltd., Jinan, 250353, China
| | - Lin Zhao
- State Key Laboratory of Biobased Material and Green Papermaking, School of Bioengineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, 250353, China.
| |
Collapse
|
42
|
Cai SS, Zhou Y, Ye BC. Reducing the reproductive toxicity activity of Lactiplantibacillus plantarum: a review of mechanisms and prospects. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:36927-36941. [PMID: 34036511 DOI: 10.1007/s11356-021-14403-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 05/10/2021] [Indexed: 06/12/2023]
Abstract
Food pollution can cause a variety of negative effects on human health, especially reproductive toxicity. Common food contaminants include biological contaminants, chemical contaminants, and physical contaminants, among which endocrine disruptors, pesticides, and heavy metals have the greatest reproductive toxicity in chemical contaminants. Humans mainly solve food pollution through three aspects: decreasing the pollution of food raw materials, lowering the pollution in food processing, and reducing the harm to the human body after food pollutants enter the human body. With more and more research on probiotics, not only beneficial effects, but also the ability to reduce the toxicity of food contaminants is found. Thus, microbial treatment has been proved to be a more effective way to deal with food pollution. Recent research shows that several strains of Lactiplantibacillus plantarum can adsorb or degrade some chemical pollutants and relieve inflammation and oxidative stress caused by them. This review summarized the research to explore the possible role of Lactiplantibacillus plantarum in protecting human reproductive ability and maintaining food safety.
Collapse
Affiliation(s)
- Shu-Shan Cai
- Lab of Biosystems and Microanalysis, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong RD, Shanghai, 200237, China
| | - Ying Zhou
- Lab of Biosystems and Microanalysis, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong RD, Shanghai, 200237, China.
| | - Bang-Ce Ye
- Lab of Biosystems and Microanalysis, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong RD, Shanghai, 200237, China.
| |
Collapse
|
43
|
Tong T, Niu X, Li Q, Ling Y, Li Z, Liu J, Zhang M, Bai Z, Xia R, Wu Z, Liu X. The Effect of Lactobacillus plantarum BW2013 on The Gut Microbiota in Mice Analyzed by 16S rRNA Amplicon Sequencing. Pol J Microbiol 2021; 70:235-243. [PMID: 34349813 PMCID: PMC8326986 DOI: 10.33073/pjm-2021-022] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 05/16/2021] [Accepted: 05/17/2021] [Indexed: 12/17/2022] Open
Abstract
Lactobacillus plantarum BW2013 was isolated from the fermented Chinese cabbage. This study aimed to test the effect of this strain on the gut microbiota in BALB/c mice by 16S rRNA amplicon sequencing. The mice were randomly allocated to the control group and three treatment groups of L. plantarum BW2013 (a low-dose group of 108 CFU/ml, a medium-dose group of 109 CFU/ml, and a high-dose group of 1010 CFU/ml). The weight of mice was recorded once a week, and the fecal samples were collected for 16S rRNA amplicon sequencing after 28 days of continuous treatment. Compared with the control group, the body weight gain in the treatment groups was not significant. The 16S rRNA amplicon sequencing analysis showed that both the Chao1 and ACE indexes increased slightly in the medium-dose group compared to the control group, but the difference was not significant. Based on PCoA results, there was no significant difference in β diversity between the treatment groups. Compared to the control group, the abundance of Bacteroidetes increased in the low-dose group. The abundance of Firmicutes increased in the medium-dose group. At the genus level, the abundance of Alloprevotella increased in the low-dose group compared to the control group. The increased abundance of Ruminococcaceae and decreased abundance of Candidatus_Saccharimonas was observed in the medium-dose group. Additionally, the abundance of Bacteroides increased, and Alistipes and Candidatus_Saccharimonas decreased in the high-dose group. These results indicated that L. plantarum BW2013 could ameliorate gut microbiota composition, but its effects vary with the dose.
Collapse
Affiliation(s)
- Tong Tong
- Beijing Key Laboratory of Bioactive Substances and Functional Foods and Department of Food Science, College of Biochemical Engineering, Beijing Union University, Beijing, China
| | - Xiaohui Niu
- Beijing Key Laboratory of Bioactive Substances and Functional Foods and Department of Food Science, College of Biochemical Engineering, Beijing Union University, Beijing, China
| | - Qian Li
- Beijing Key Laboratory of Bioactive Substances and Functional Foods and Department of Food Science, College of Biochemical Engineering, Beijing Union University, Beijing, China
| | - Yuxi Ling
- Beijing Key Laboratory of Bioactive Substances and Functional Foods and Department of Food Science, College of Biochemical Engineering, Beijing Union University, Beijing, China
| | - Zuming Li
- Beijing Key Laboratory of Bioactive Substances and Functional Foods and Department of Food Science, College of Biochemical Engineering, Beijing Union University, Beijing, China
| | - Jia Liu
- Internal Trade Food Science and Technology (Beijing) Co., Ltd, Beijing, China
| | - Michael Zhang
- Department of Physics and Astronomy, University of Manitoba, Winnipeg, Canada
| | - Zhihui Bai
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
| | - Ran Xia
- Department of Physics and Astronomy, University of Manitoba, Winnipeg, Canada
| | - Zhichao Wu
- Department of Physics and Astronomy, University of Manitoba, Winnipeg, Canada
| | - Xiu Liu
- China National Research Institute of Food and Fermentation Industies Co., Ltd, Beijing, China
| |
Collapse
|
44
|
Yang L, Xie X, Li Y, Wu L, Fan C, Liang T, Xi Y, Yang S, Li H, Zhang J, Ding Y, Xue L, Chen M, Wang J, Wu Q. Evaluation of the Cholesterol-Lowering Mechanism of Enterococcus faecium Strain 132 and Lactobacillus paracasei Strain 201 in Hypercholesterolemia Rats. Nutrients 2021; 13:nu13061982. [PMID: 34207558 PMCID: PMC8228983 DOI: 10.3390/nu13061982] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 06/05/2021] [Accepted: 06/06/2021] [Indexed: 01/04/2023] Open
Abstract
Hypercholesterolemia can cause many diseases, but it can effectively regulated by Lactobacillus. This study aimed to evaluate the cholesterol-lowering mechanism of Enterococcus faecium strain 132 and Lactobacillusparacasei strain 201. These results showed that both the strains decreased serum total cholesterol (TC), low-density lipoprotein cholesterol (LDL-C), triglycerides (TG), liver TC and TG and increased fecal TC, TG and total bile acid (TBA) levels. Additionally, both strains also reduced glutamic-pyruvic transaminase (ALT), glutamic oxaloacetic transaminase (AST) and levels of tissue inflammation levels to improve the lipid profile, and they reduced fat accumulation partially by alleviating inflammatory responses. Furthermore, both strains regulated the expression of the CYP8B1, CYP7A1, SREBP-1, SCD1 and LDL-R gene to promote cholesterol metabolism and reduce TG accumulation. Interventions with both strains also altered the gut microbiota, and decreasing the abundance of Veillonellaceae, Erysipelotrichaceae and Prevotella. Furthermore, fecal acetic acid and propionic acid were increased by this intervention. Overall, the results suggested that E. faecium strain 132 and L. paracasei strain 201 can alleviate hypercholesterolemia in rats and might be applied as a new type of hypercholesterolemia agent in functional foods.
Collapse
Affiliation(s)
- Lingshuang Yang
- College of Food Science, South China Agricultural University, Guangzhou 510642, China;
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China; (X.X.); (Y.L.); (L.W.); (C.F.); (T.L.); (Y.X.); (S.Y.); (H.L.); (J.Z.); (Y.D.); (L.X.); (M.C.)
| | - Xinqiang Xie
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China; (X.X.); (Y.L.); (L.W.); (C.F.); (T.L.); (Y.X.); (S.Y.); (H.L.); (J.Z.); (Y.D.); (L.X.); (M.C.)
| | - Ying Li
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China; (X.X.); (Y.L.); (L.W.); (C.F.); (T.L.); (Y.X.); (S.Y.); (H.L.); (J.Z.); (Y.D.); (L.X.); (M.C.)
| | - Lei Wu
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China; (X.X.); (Y.L.); (L.W.); (C.F.); (T.L.); (Y.X.); (S.Y.); (H.L.); (J.Z.); (Y.D.); (L.X.); (M.C.)
| | - Congcong Fan
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China; (X.X.); (Y.L.); (L.W.); (C.F.); (T.L.); (Y.X.); (S.Y.); (H.L.); (J.Z.); (Y.D.); (L.X.); (M.C.)
| | - Tingting Liang
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China; (X.X.); (Y.L.); (L.W.); (C.F.); (T.L.); (Y.X.); (S.Y.); (H.L.); (J.Z.); (Y.D.); (L.X.); (M.C.)
| | - Yu Xi
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China; (X.X.); (Y.L.); (L.W.); (C.F.); (T.L.); (Y.X.); (S.Y.); (H.L.); (J.Z.); (Y.D.); (L.X.); (M.C.)
| | - Shuanghong Yang
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China; (X.X.); (Y.L.); (L.W.); (C.F.); (T.L.); (Y.X.); (S.Y.); (H.L.); (J.Z.); (Y.D.); (L.X.); (M.C.)
| | - Haixin Li
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China; (X.X.); (Y.L.); (L.W.); (C.F.); (T.L.); (Y.X.); (S.Y.); (H.L.); (J.Z.); (Y.D.); (L.X.); (M.C.)
| | - Jumei Zhang
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China; (X.X.); (Y.L.); (L.W.); (C.F.); (T.L.); (Y.X.); (S.Y.); (H.L.); (J.Z.); (Y.D.); (L.X.); (M.C.)
| | - Yu Ding
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China; (X.X.); (Y.L.); (L.W.); (C.F.); (T.L.); (Y.X.); (S.Y.); (H.L.); (J.Z.); (Y.D.); (L.X.); (M.C.)
| | - Liang Xue
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China; (X.X.); (Y.L.); (L.W.); (C.F.); (T.L.); (Y.X.); (S.Y.); (H.L.); (J.Z.); (Y.D.); (L.X.); (M.C.)
| | - Moutong Chen
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China; (X.X.); (Y.L.); (L.W.); (C.F.); (T.L.); (Y.X.); (S.Y.); (H.L.); (J.Z.); (Y.D.); (L.X.); (M.C.)
| | - Juan Wang
- College of Food Science, South China Agricultural University, Guangzhou 510642, China;
- Correspondence: (J.W.); (Q.W.)
| | - Qingping Wu
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China; (X.X.); (Y.L.); (L.W.); (C.F.); (T.L.); (Y.X.); (S.Y.); (H.L.); (J.Z.); (Y.D.); (L.X.); (M.C.)
- Correspondence: (J.W.); (Q.W.)
| |
Collapse
|
45
|
Ashaolu TJ, Fernández-Tomé S. Gut mucosal and adipose tissues as health targets of the immunomodulatory mechanisms of probiotics. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.04.040] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
46
|
Peng L, Zhao K, Chen S, Ren Z, Wei H, Wan C. Whole genome and acid stress comparative transcriptome analysis of Lactiplantibacillus plantarum ZDY2013. Arch Microbiol 2021; 203:2795-2807. [PMID: 33725139 DOI: 10.1007/s00203-021-02240-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 02/08/2021] [Accepted: 02/11/2021] [Indexed: 11/29/2022]
Abstract
Previous study has reported that Lactiplantibacillus plantarum ZDY2013 which was screened from traditional Chinese fermented soybeans has a strong acid resistance. The purpose of this study was to uncover the genes potentially related to its genetic adaptation and probiotic profiles, based on comparative genomic and comparative transcriptome analysis. We got the basic information about L. plantarum ZDY2013 and identified genes which are related to genetic adaptation and probiotic profiles, including carbohydrate transport and metabolism, cell wall/membrane/envelope biogenesis, proteolytic enzyme systems and amino acid biosynthesis, CRISPR adaptive immunity, stress responses, ability to adhere to the host intestinal wall, exopolysaccharide (EPS) biosynthesis, and bacteriocin biosynthesis. Comparative transcriptome showed CK group (normal MRS culture L. plantarum ZDY2013) and SCL group (pH 3.0 MRS culture L. plantarum ZDY2013) had 652 significant differentially expressed genes including 310 up-regulated genes and 342 down-regulated genes. Besides that, these genes had been classified through KEGG and GO functional annotation. In addition, we also found top 20 KEGG pathways adjusted to acid stress. Then, some genes were selected to verify the transcriptome analysis and explore the mechanism of how L. plantarum ZDY2013 tolerate acid stress. We found that some genes of ABC transporter, phosphotransferase system, oxidation reduction process, membrane transporter and phosphorylation metabolism process had a significant change. These results suggested that comparative characterization of the L. plantarum ZDY2013 genome and transcriptome provided the genetic basis for further elucidating the functional mechanisms of it.
Collapse
Affiliation(s)
- Lingling Peng
- Jiangxi-OAI Joint Research Institute, Nanchang University, 235 Nanjing East Road, Nanchang, 330047, Jiangxi, China
| | - Kui Zhao
- Sino-German Joint Research Institute, Nanchang University, Nanchang, 330047, People's Republic of China
| | - Shufang Chen
- Jiangxi-OAI Joint Research Institute, Nanchang University, 235 Nanjing East Road, Nanchang, 330047, Jiangxi, China
| | | | - Hua Wei
- Jiangxi-OAI Joint Research Institute, Nanchang University, 235 Nanjing East Road, Nanchang, 330047, Jiangxi, China.,Sino-German Joint Research Institute, Nanchang University, Nanchang, 330047, People's Republic of China
| | - Cuixiang Wan
- Jiangxi-OAI Joint Research Institute, Nanchang University, 235 Nanjing East Road, Nanchang, 330047, Jiangxi, China. .,Sino-German Joint Research Institute, Nanchang University, Nanchang, 330047, People's Republic of China.
| |
Collapse
|
47
|
Antioxidant and Anti-Inflammatory Properties of Recombinant Bifidobacterium bifidum BGN4 Expressing Antioxidant Enzymes. Microorganisms 2021; 9:microorganisms9030595. [PMID: 33805797 PMCID: PMC7998161 DOI: 10.3390/microorganisms9030595] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 03/08/2021] [Accepted: 03/11/2021] [Indexed: 12/14/2022] Open
Abstract
Bifidobacterium bifidum BGN4-SK (BGN4-SK), a recombinant strain which was constructed from B. bifidum BGN4 (BGN4) to produce superoxide dismutase (SOD) and catalase, was analyzed to determine its antioxidant and anti-inflammatory properties in vitro. Culture conditions were determined to maximize the SOD and catalase activities of BGN4-SK. The viability, intracellular radical oxygen species (ROS) levels, intracellular antioxidant enzyme activities, and pro-inflammatory cytokine levels were determined to evaluate the antioxidant and anti-inflammatory activities of BGN4-SK in human intestinal epithelial cells (HT-29) and murine macrophage cells (RAW 264.7). Antioxidant enzymes (SOD and catalase) were produced at the highest levels when BGN4-SK was cultured for 24 h in a medium containing 500 μM MnSO4 and 30 μM hematin, with glucose as the carbon source. The viability and intracellular antioxidant enzyme activities of H2O2-stimulated HT-29 treated with BGN4-SK were significantly higher (p < 0.05) than those of cells treated with BGN4. The intracellular ROS levels of H2O2-stimulated HT-29 cells treated with BGN4-SK were significantly lower (p < 0.05) than those of cells treated with BGN4. BGN4-SK more significantly suppressed the production of interleukin (IL)-6 (p < 0.05), tumor necrosis factor-α (p < 0.01), and IL-8 (p < 0.05) in lipopolysaccharide (LPS)-stimulated HT-29 and LPS-stimulated RAW 264.7 cells compared to BGN4. These results suggest that BGN4-SK may have enhanced antioxidant activities against oxidative stress in H2O2-stimulated HT-29 cells and enhanced anti-inflammatory activities in LPS-stimulated HT-29 and RAW 264.7 cells.
Collapse
|
48
|
Zhou X, Sun H, Tan F, Yi R, Zhou C, Deng Y, Mu J, Zhao X. Anti-aging effect of Lactobacillus plantarum HFY09-fermented soymilk on D-galactose-induced oxidative aging in mice through modulation of the Nrf2 signaling pathway. J Funct Foods 2021. [DOI: 10.1016/j.jff.2021.104386] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
49
|
Ding S, Yan W, Fang J, Jiang H, Liu G. Potential role of Lactobacillus plantarum in colitis induced by dextran sulfate sodium through altering gut microbiota and host metabolism in murine model. SCIENCE CHINA-LIFE SCIENCES 2021; 64:1906-1916. [DOI: 10.1007/s11427-020-1835-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 09/28/2020] [Indexed: 02/06/2023]
|
50
|
Hu T, Fan Y, Long X, Pan Y, Mu J, Tan F, Zhao X. Protective effect of Lactobacillus plantarum YS3 on dextran sulfate sodium-induced colitis in C57BL/6J mice. J Food Biochem 2021; 45:e13632. [PMID: 33527475 DOI: 10.1111/jfbc.13632] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 01/03/2021] [Accepted: 01/12/2021] [Indexed: 12/18/2022]
Abstract
The protective effect of Lactobacillus plantarum YS3 (LP-YS3) on ulcerative colitis (UC) was assessed using a mouse model of dextran sodium sulfate (DSS)-induced colitis. Different concentrations of LP-YS4 were administered to the experimental mice by daily gavage. Several inflammatory and biochemical indices, such as interleukin-2 (IL-2), interleukin-10 (IL-10), interleukin-6 (IL-6), interleukin-1 beta (IL-1β), tumor necrosis factor-alpha (TNF-α), glutathione (GSH), malondialdehyde (MDA), myeloperoxidase (MPO), and nitric oxide (NO), were examined in mouse serum and colon tissue. The mRNA and protein expression levels of c-Kit, CXC chemokine receptor type 2 (CXCR2), interleukin-8 (IL-8), and stem cell factor (SCF) in mouse colon tissue were assessed using Western blot and quantitative polymerase chain reaction (qPCR) assays. The findings indicated that LP-YS3 remarkably decreased the disease activity index (DAI) of UC mice (p < .05), inhibited colon length shortening induced by UC, and elevated the value of colon weight/length ratio. LP-YS3 could also markedly reduce (p < .05) the activities of MDA, MPO, and NO; while an increase in the GSH content in the colonic tissue of UC mice. Moreover, LP-YS3 remarkably increased (p < .05) the serum level of IL-2 in UC mice, while reduced those of IL-10, IL-6, IL-1β, TNF-α cytokines. qPCR data revealed that LP-YS3 could markedly upregulate the expression levels of c-Kit and SCF, while downregulate those of CXCR2 and IL-8 in the colonic tissue of UC mice (p < .05). LP-YS3 exerted an outstanding protective effect on DSS-induced colitis in C57BL/6J mice, especially at higher concentrations. PRACTICAL APPLICATIONS: Lactobacillus plantarum YS3 is a newly isolated and identified lactic acid bacteria. This study confirmed that L. plantarum YS3 can inhibit colitis and has good probiotic potential, which needs further development and utilization.
Collapse
Affiliation(s)
- Tiantian Hu
- Chongqing Collaborative Innovation Center for Functional Food, Chongqing Engineering Research Center of Functional Food, Chongqing Engineering Laboratory for Research and Development of Functional Food, Chongqing University of Education, Chongqing, China
| | - Yang Fan
- Department of Clinical Nutrition, Daping Hospital, Army Medical University, Third Military Medical University), Chongqing, China
| | - Xingyao Long
- Chongqing Collaborative Innovation Center for Functional Food, Chongqing Engineering Research Center of Functional Food, Chongqing Engineering Laboratory for Research and Development of Functional Food, Chongqing University of Education, Chongqing, China
| | - Yanni Pan
- Chongqing Collaborative Innovation Center for Functional Food, Chongqing Engineering Research Center of Functional Food, Chongqing Engineering Laboratory for Research and Development of Functional Food, Chongqing University of Education, Chongqing, China
| | - Jianfei Mu
- Chongqing Collaborative Innovation Center for Functional Food, Chongqing Engineering Research Center of Functional Food, Chongqing Engineering Laboratory for Research and Development of Functional Food, Chongqing University of Education, Chongqing, China
| | - Fang Tan
- Department of Public Health, Our Lady of Fatima University, Valenzuela, Philippines
| | - Xin Zhao
- Chongqing Collaborative Innovation Center for Functional Food, Chongqing Engineering Research Center of Functional Food, Chongqing Engineering Laboratory for Research and Development of Functional Food, Chongqing University of Education, Chongqing, China
| |
Collapse
|