1
|
Chen Y, Yan B, Chen W, Zhang X, Liu Z, Zhang Q, Li L, Hu M, Zhao X, Xu X, Lv Q, Luo Y, Cai Y, Liu Y. Development of the CRISPR-Cas12a system for editing of Pseudomonas aeruginosa phages. iScience 2024; 27:110210. [PMID: 39055914 PMCID: PMC11269290 DOI: 10.1016/j.isci.2024.110210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 04/26/2024] [Accepted: 06/04/2024] [Indexed: 07/28/2024] Open
Abstract
Pseudomonas aeruginosa is a common opportunistic pathogen. The potential efficacy of phage therapy has attracted the attention of researchers, but efficient gene-editing tools are lacking, limiting the study of their biological properties. Here, we designed a type V CRISPR-Cas12a system for the gene editing of P. aeruginosa phages. We first evaluated the active cutting function of the CRISPR-Cas12a system in vitro and discovered that it had a higher gene-cutting efficiency than the type II CRISPR-Cas9 system in three different P. aeruginosa phages. We also demonstrated the system's ability to precisely edit genes in Escherichia coli phages, Salmonella phages, and P. aeruginosa phages. Using the aforementioned strategies, non-essential P. aeruginosa phage genes can be efficiently deleted, resulting in a reduction of up to 5,215 bp (7.05%). Our study has provided a rapid, efficient, and time-saving tool that accelerates progress in phage engineering.
Collapse
Affiliation(s)
- Yibao Chen
- Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, China
- China-UK Joint Laboratory of Bacteriophage Engineering, Jinan, China
- Shandong Vamph Animal Health Products Co., LTD, Jinan, China
| | - Bingjie Yan
- Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, China
- China-UK Joint Laboratory of Bacteriophage Engineering, Jinan, China
| | - Weizhong Chen
- School of Marine Sciences, Ningbo University, Ningbo, China
| | - Xue Zhang
- Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, China
- China-UK Joint Laboratory of Bacteriophage Engineering, Jinan, China
| | - Zhengjie Liu
- Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, China
- China-UK Joint Laboratory of Bacteriophage Engineering, Jinan, China
| | - Qing Zhang
- Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, China
- China-UK Joint Laboratory of Bacteriophage Engineering, Jinan, China
| | - Lulu Li
- Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, China
- China-UK Joint Laboratory of Bacteriophage Engineering, Jinan, China
| | - Ming Hu
- Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, China
- China-UK Joint Laboratory of Bacteriophage Engineering, Jinan, China
- Shandong Vamph Animal Health Products Co., LTD, Jinan, China
| | - Xiaonan Zhao
- Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, China
- China-UK Joint Laboratory of Bacteriophage Engineering, Jinan, China
| | - Xiaohui Xu
- Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, China
- China-UK Joint Laboratory of Bacteriophage Engineering, Jinan, China
| | - Qianghua Lv
- Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, China
- China-UK Joint Laboratory of Bacteriophage Engineering, Jinan, China
| | - Yanbo Luo
- Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, China
- China-UK Joint Laboratory of Bacteriophage Engineering, Jinan, China
| | - Yumei Cai
- College of Veterinary Medicine, Shandong Agricultural University, Taian, China
| | - Yuqing Liu
- Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, China
- China-UK Joint Laboratory of Bacteriophage Engineering, Jinan, China
- Shandong Vamph Animal Health Products Co., LTD, Jinan, China
| |
Collapse
|
2
|
Ishola OA, Kublik S, Durai Raj AC, Ohnmacht C, Schulz S, Foesel BU, Schloter M. Comparative Metagenomic Analysis of Bacteriophages and Prophages in Gnotobiotic Mouse Models. Microorganisms 2024; 12:255. [PMID: 38399658 PMCID: PMC10892684 DOI: 10.3390/microorganisms12020255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/19/2024] [Accepted: 01/23/2024] [Indexed: 02/25/2024] Open
Abstract
Gnotobiotic murine models are important to understand microbiota-host interactions. Despite the role of bacteriophages as drivers for microbiome structure and function, there is no information about the structure and function of the gut virome in gnotobiotic models and the link between bacterial and bacteriophage/prophage diversity. We studied the virome of gnotobiotic murine Oligo-MM12 (12 bacterial species) and reduced Altered Schaedler Flora (ASF, three bacterial species). As reference, the virome of Specific Pathogen-Free (SPF) mice was investigated. A metagenomic approach was used to assess prophages and bacteriophages in the guts of 6-week-old female mice. We identified a positive correlation between bacteria diversity, and bacteriophages and prophages. Caudoviricetes (82.4%) were the most prominent class of phages in all samples with differing relative abundance. However, the host specificity of bacteriophages belonging to class Caudoviricetes differed depending on model bacterial diversity. We further studied the role of bacteriophages in horizontal gene transfer and microbial adaptation to the host's environment. Analysis of mobile genetic elements showed the contribution of bacteriophages to the adaptation of bacterial amino acid metabolism. Overall, our results implicate virome "dark matter" and interactions with the host system as factors for microbial community structure and function which determine host health. Taking the importance of the virome in the microbiome diversity and horizontal gene transfer, reductions in the virome might be an important factor driving losses of microbial biodiversity and the subsequent dysbiosis of the gut microbiome.
Collapse
Affiliation(s)
- Oluwaseun A. Ishola
- Research Unit for Comparative Microbiome Analysis, Helmholtz Zentrum München—German Research Center for Environmental Health, 85764 Neuherberg, Germany; (O.A.I.)
| | - Susanne Kublik
- Research Unit for Comparative Microbiome Analysis, Helmholtz Zentrum München—German Research Center for Environmental Health, 85764 Neuherberg, Germany; (O.A.I.)
| | - Abilash Chakravarthy Durai Raj
- Research Unit for Comparative Microbiome Analysis, Helmholtz Zentrum München—German Research Center for Environmental Health, 85764 Neuherberg, Germany; (O.A.I.)
| | - Caspar Ohnmacht
- Mucosal Immunology Group, Center of Allery and Environment (ZAUM), Technical University of Munich, Helmholtz Zentrum München, 85764 München, Germany
| | - Stefanie Schulz
- Research Unit for Comparative Microbiome Analysis, Helmholtz Zentrum München—German Research Center for Environmental Health, 85764 Neuherberg, Germany; (O.A.I.)
| | - Bärbel U. Foesel
- Research Unit for Comparative Microbiome Analysis, Helmholtz Zentrum München—German Research Center for Environmental Health, 85764 Neuherberg, Germany; (O.A.I.)
| | - Michael Schloter
- Research Unit for Comparative Microbiome Analysis, Helmholtz Zentrum München—German Research Center for Environmental Health, 85764 Neuherberg, Germany; (O.A.I.)
- Chair for Environmental Microbiology, TUM School of Life Science, Technical University of Munich, 85354 Freising, Germany
- Central Institute for Nutrition and Health, Technical University of Munich, 85354 Freising, Germany
| |
Collapse
|
3
|
Lin Y, Liu Y, Zhang Y, Yuan W, Wang D, Zhu W. Biological and genomic characterization of a polyvalent bacteriophage (S19cd) strongly inhibiting Salmonella enterica serovar Choleraesuis. Vet Microbiol 2023; 284:109822. [PMID: 37437367 DOI: 10.1016/j.vetmic.2023.109822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 06/08/2023] [Accepted: 06/26/2023] [Indexed: 07/14/2023]
Abstract
Bacteriophages are a promising alternative for the control of pathogenic bacteria. In this study, we isolated a virulent bacteriophage, S19cd, from pig gut that could infect both a non-pathogenic bacteria Escherichia coli 44 (EC44) and two pathogenic bacterial strains (ATCC 13312 (SC13312) and CICC 21493 (SC21493)) of Salmonella enterica serovar Choleraesuis (SC). S19cd exhibited strong lytic ability in both SC13312 and SC21493 with an optimal multiplicity of infection (MOI) of 10-6 and 10-5, respectively, and inhibited their growth at an MOI of 10-7 within 24 h. Mice pre-treated with S19cd exhibited protection against the SC13312 challenge. Moreover, S19cd has good heat resistance (80 ℃) and pH tolerance (pH 3-12). Genome analysis revealed that S19cd belongs to the Felixounavirus genus and does not contain any virulence or drug-resistance-related genes. Additionally, S19cd encodes an adenine-specific methyltransferase that has no similarity to methyltransferases from other Felixounavirus phages and shares limited similarity with other methyltransferases in the NCBI protein database. Metagenomic analysis of S19cd genomes from 500 pigs revealed that S19cd-like phages may be widespread in Chinese pig gut. In conclusion, S19cd can be a potential phage therapy targeting SC infections.
Collapse
Affiliation(s)
- Yan Lin
- National Center for International Research on Animal Gut Nutrition, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, Laboratory of Gastrointestinal Microbiology, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Yankun Liu
- National Center for International Research on Animal Gut Nutrition, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, Laboratory of Gastrointestinal Microbiology, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Yuyu Zhang
- National Center for International Research on Animal Gut Nutrition, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, Laboratory of Gastrointestinal Microbiology, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Wenyuan Yuan
- National Center for International Research on Animal Gut Nutrition, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, Laboratory of Gastrointestinal Microbiology, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Dongyang Wang
- National Center for International Research on Animal Gut Nutrition, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, Laboratory of Gastrointestinal Microbiology, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Weiyun Zhu
- National Center for International Research on Animal Gut Nutrition, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, Laboratory of Gastrointestinal Microbiology, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
4
|
Arora P, Jain A, Kumar A. Phage design and directed evolution to evolve phage for therapy. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2023; 200:103-126. [PMID: 37739551 DOI: 10.1016/bs.pmbts.2023.03.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/24/2023]
Abstract
Phage therapy or Phage treatment is the use of bacteriolysing phage in treating bacterial infections by using the viruses that infects and kills bacteria. This technique has been studied and practiced very long ago, but with the advent of antibiotics, it has been neglected. This foregone technique is now witnessing a revival due to development of bacterial resistance. Nowadays, with the awareness of genetic sequence of organisms, it is required that informed choices of phages have to be made for the most efficacious results. Furthermore, phages with the evolving genes are taken into consideration for the subsequent improvement in treating the patients for bacterial diseases. In addition, direct evolution methods are increasingly developing, since these are capable of creating new biological molecules having changed or unique activities, such as, improved target specificity, evolution of novel proteins with new catalytic properties or creation of nucleic acids that are capable of recognizing required pathogenic bacteria. This system is incorporates continuous evolution such as protein or genes are put under continuous evolution by providing continuous mutagenesis with least human intervention. Although, this system providing continuous directed evolution is very effective, it imposes some challenges due to requirement of heavy investment of time and resources. This chapter focuses on development of phage as a therapeutic agent against various bacteria causing diseases and it improvement using direct evolution of proteins and nucleic acids such that they target specific organisms.
Collapse
Affiliation(s)
- Priyancka Arora
- Department of Biotechnology, Faculty of Engineering and Technology, Rama University, Kanpur, Uttar Pradesh, India
| | - Avni Jain
- Department of Biotechnology, Faculty of Engineering and Technology, Rama University, Kanpur, Uttar Pradesh, India
| | - Ajay Kumar
- Department of Biotechnology, Faculty of Engineering and Technology, Rama University, Kanpur, Uttar Pradesh, India.
| |
Collapse
|
5
|
Bryan DW, Hudson LK, Wang J, Denes TG. Characterization of a Diverse Collection of Salmonella Phages Isolated from Tennessee Wastewater. PHAGE (NEW ROCHELLE, N.Y.) 2023; 4:90-98. [PMID: 37350991 PMCID: PMC10282790 DOI: 10.1089/phage.2023.0004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/24/2023]
Abstract
Background Salmonella enterica is one of the most prevalent bacterial foodborne pathogens. Salmonella phages are currently used in biocontrol applications and have potential for use as therapeutics. Materials and Methods Phages were enriched and purified from a diversity of Salmonella host isolates. Morphology was determined with transmission electron microscopy, host ranges were characterized using an efficiency of plaquing assay, and comparative genomic analysis was performed to determine taxonomy. Results Ten phages were isolated and characterized. Phages showed activity against 23 out of the 24 Salmonella serovars evaluated. Two phages also showed activity against Escherichia coli strain B. Phages belonged to five different genera (Ithacavirus, Gelderlandvirus, Kuttervirus, Tlsvirus, and Epseptimavirus), two established species, and eight novel species. Conclusions The phages described here further demonstrate the diversity of S. enterica phages present in wastewater effluent. This work contributes a collection of characterized phages from eastern Tennessee that may be of use in future phage-based applications targeting S. enterica.
Collapse
Affiliation(s)
- Daniel W. Bryan
- Department of Food Science, University of Tennessee, Knoxville, Tennessee, USA
| | - Lauren K. Hudson
- Department of Food Science, University of Tennessee, Knoxville, Tennessee, USA
| | - Jia Wang
- Department of Food Science, University of Tennessee, Knoxville, Tennessee, USA
| | - Thomas G. Denes
- Department of Food Science, University of Tennessee, Knoxville, Tennessee, USA
| |
Collapse
|
6
|
Gao D, Ji H, Li X, Ke X, Li X, Chen P, Qian P. Host receptor identification of a polyvalent lytic phage GSP044, and preliminary assessment of its efficacy in the clearance of Salmonella. Microbiol Res 2023; 273:127412. [PMID: 37243984 DOI: 10.1016/j.micres.2023.127412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 05/15/2023] [Accepted: 05/16/2023] [Indexed: 05/29/2023]
Abstract
Salmonella and pathogenic Escherichia coli are important foodborne pathogens. Phages are being recognized as potential antibacterial agents to control foodborne pathogens. In the current study, a polyvalent broad-spectrum phage, GSP044, was isolated from pig farm sewage. It can simultaneously lyse many different serotypes of Salmonella and E. coli, exhibiting a broad host range. Using S. Enteritidis SE006 as the host bacterium, phage GSP044 was further characterized. GSP044 has a short latent period (10 min), high stability at different temperatures and pH, and good tolerance to chloroform. Genome sequencing analysis revealed that GSP044 has a double-stranded DNA (dsDNA) genome consisting of 110,563 bp with G + C content of 39%, and phylogenetic analysis of the terminase large subunit confirmed that GSP044 belonged to the Demerecviridae family, Epseptimavirus genus. In addition, the genomic sequence did not contain any lysogenicity-related, virulence-related, or antibiotic resistance-related genes. Analysis of phage-targeted host receptors revealed that the outer membrane protein (OMP) BtuB was identified as a required receptor for phage infection of host bacteria. The initial application capability of phage GSP044 was assessed using S. Enteritidis SE006. Phage GSP044 could effectively reduce biofilm formation and degrade the mature biofilm in vitro. Moreover, GSP044 significantly decreased the viable counts of artificially contaminated S. Enteritidis in chicken feed and drinking water. In vivo tests, a mouse model of intestinal infection demonstrated that phage GSP044 was able to reduce the number of colonized S. Enteritidis in the intestine. These results suggest that phage GSP044 may be a promising candidate biologic agent for controlling Salmonella infections.
Collapse
Affiliation(s)
- Dongyang Gao
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei 430070, People's Republic of China; College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei 430070, People's Republic of China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, the Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei 430070, People's Republic of China
| | - Hongyue Ji
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei 430070, People's Republic of China; College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei 430070, People's Republic of China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, the Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei 430070, People's Republic of China
| | - Xin Li
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei 430070, People's Republic of China; College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei 430070, People's Republic of China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, the Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei 430070, People's Republic of China
| | - Xiquan Ke
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei 430070, People's Republic of China; College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei 430070, People's Republic of China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, the Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei 430070, People's Republic of China
| | - Xiangmin Li
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei 430070, People's Republic of China; College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei 430070, People's Republic of China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, the Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei 430070, People's Republic of China
| | - Pin Chen
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei 430070, People's Republic of China; College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei 430070, People's Republic of China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, the Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei 430070, People's Republic of China.
| | - Ping Qian
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei 430070, People's Republic of China; College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei 430070, People's Republic of China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, the Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei 430070, People's Republic of China.
| |
Collapse
|
7
|
Webber B, Pottker ES, Rizzo NN, Núncio AS, Peixoto CS, Mistura E, Dos Santos LR, Rodrigues LB, do Nascimento VP. Surface conditioning with bacteriophages reduces biofilm formation of Salmonella Heidelberg. FOOD SCI TECHNOL INT 2023; 29:275-283. [PMID: 35075919 DOI: 10.1177/10820132221074783] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Salmonella remains one of the most common foodborne pathogens worldwide, and its resistance to antimicrobials has increased considerably over the years. In this context, was evaluated the action of three bacteriophages isolated or combined in inhibiting the adhesion and removal of Salmonella Heidelberg biofilm on a polystyrene surface. The bacteriophages UPF_BP1, UPF_BP2, UPF_BP3 and a pool of them were used for biocontrol of Salmonella Heidelberg biofilms on polystyrene surface in the action times of 3, 6 and 9 h. Individual and combined phages exhibited reductions in Salmonella Heidelberg adhesion of up to 83.4% and up to 64.0% in removal of preformed biofilm. The use of synergistic combinations between the phages is the most indicated option due to its potential to reduce biofilms. The use of the bacteriophage pool in surface conditioning is an alternative in the control of Salmonella Heidelberg biofilms.
Collapse
Affiliation(s)
- Bruna Webber
- Center for Diagnostics and Research in Avian Pathology (CDPA), Faculty of Veterinary28124, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Emanuele S Pottker
- Center for Diagnostics and Research in Avian Pathology (CDPA), Faculty of Veterinary28124, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Natalie N Rizzo
- Center for Diagnostics and Research in Avian Pathology (CDPA), Faculty of Veterinary28124, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Adriana Sp Núncio
- Graduate Program in Bio-experimentation, 28129Graduate Program in Bio-experimentation, University of Passo Fundo (UPF), Passo Fundo, RS, Brazil
| | - Caroline S Peixoto
- Graduate Program in Bio-experimentation, 28129Graduate Program in Bio-experimentation, University of Passo Fundo (UPF), Passo Fundo, RS, Brazil
| | - Enzo Mistura
- Graduate Program in Bio-experimentation, 28129Graduate Program in Bio-experimentation, University of Passo Fundo (UPF), Passo Fundo, RS, Brazil
| | - Luciana R Dos Santos
- Graduate Program in Bio-experimentation, 28129Graduate Program in Bio-experimentation, University of Passo Fundo (UPF), Passo Fundo, RS, Brazil
| | - Laura B Rodrigues
- Graduate Program in Bio-experimentation, 28129Graduate Program in Bio-experimentation, University of Passo Fundo (UPF), Passo Fundo, RS, Brazil
| | - Vladimir P do Nascimento
- Center for Diagnostics and Research in Avian Pathology (CDPA), Faculty of Veterinary28124, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| |
Collapse
|
8
|
Nazir A, Song J, Chen Y, Liu Y. Phage-Derived Depolymerase: Its Possible Role for Secondary Bacterial Infections in COVID-19 Patients. Microorganisms 2023; 11:microorganisms11020424. [PMID: 36838389 PMCID: PMC9961776 DOI: 10.3390/microorganisms11020424] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 02/04/2023] [Accepted: 02/06/2023] [Indexed: 02/11/2023] Open
Abstract
As of 29 July 2022, there had been a cumulative 572,239,451 confirmed cases of COVID-19 worldwide, including 6,390,401 fatalities. COVID-19 patients with severe symptoms are usually treated with a combination of virus- and drug-induced immuno-suppression medicines. Critical clinical complications of the respiratory system due to secondary bacterial infections (SBIs) could be the reason for the high mortality rate in COVID-19 patients. Unfortunately, antimicrobial resistance is increasing daily, and only a few options are available in our antimicrobial armory. Hence, alternative therapeutic options such as enzymes derived from bacteriophages can be considered for treating SBIs in COVID-19 patients. In particular, phage-derived depolymerases have high antivirulent potency that can efficiently degrade bacterial capsular polysaccharides, lipopolysaccharides, and exopolysaccharides. They have emerged as a promising class of new antibiotics and their therapeutic role for bacterial infections is already confirmed in animal models. This review provides an overview of the rising incidence of SBIs among COVID-19 patients. We present a practicable novel workflow for phage-derived depolymerases that can easily be adapted for treating SBIs in COVID-19 patients.
Collapse
Affiliation(s)
| | | | - Yibao Chen
- Correspondence: (Y.C.); (Y.L.); Tel./Fax: +86-531-6665-5093 (Y.C. & Y.L.)
| | - Yuqing Liu
- Correspondence: (Y.C.); (Y.L.); Tel./Fax: +86-531-6665-5093 (Y.C. & Y.L.)
| |
Collapse
|
9
|
Zhou S, Liu Z, Song J, Chen Y. Disarm The Bacteria: What Temperate Phages Can Do. Curr Issues Mol Biol 2023; 45:1149-1167. [PMID: 36826021 PMCID: PMC9955262 DOI: 10.3390/cimb45020076] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/28/2023] [Accepted: 01/29/2023] [Indexed: 02/04/2023] Open
Abstract
In the field of phage applications and clinical treatment, virulent phages have been in the spotlight whereas temperate phages received, relatively speaking, less attention. The fact that temperate phages often carry virulent or drug-resistant genes is a constant concern and drawback in temperate phage applications. However, temperate phages also play a role in bacterial regulation. This review elucidates the biological properties of temperate phages based on their life cycle and introduces the latest work on temperate phage applications, such as on host virulence reduction, biofilm degradation, genetic engineering and phage display. The versatile use of temperate phages coupled with their inherent properties, such as economy, ready accessibility, wide variety and host specificity, make temperate phages a solid candidate in tackling bacterial infections.
Collapse
Affiliation(s)
- Shiyue Zhou
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
- Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Zhengjie Liu
- Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Jiaoyang Song
- Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Yibao Chen
- Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| |
Collapse
|
10
|
Li F, Tian F, Nazir A, Sui S, Li M, Cheng D, Nong S, Ali A, KaKar MU, Li L, Feng Q, Tong Y. Isolation and genomic characterization of a novel Autographiviridae bacteriophage IME184 with lytic activity against Klebsiella pneumoniae. Virus Res 2022; 319:198873. [PMID: 35868353 DOI: 10.1016/j.virusres.2022.198873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 07/08/2022] [Accepted: 07/17/2022] [Indexed: 10/17/2022]
Abstract
Klebsiella pneumoniae, a multidrug resistant bacterium that causes nosocomial infections including septicemia, pneumonia etc. Bacteriophages are potential antimicrobial agents for the treatment of antibiotic resistant bacteria. In this study, a novel bacteriophage IME184, was isolated from hospital sewage against clinical multi-drug resistant Klebsiella pneumoniae. Transmission electron microscopy and genomic characterization exhibited this phage belongs to the Molineuxvirinae genus, Autographiviridae family. Phage IME184 possessed a double-stranded DNA genome composed of 44,598 bp with a GC content of 50.3%. The phage genome encodes 57 open reading frames, out of 26 are hypothetical proteins while 31 had assigned putative functions. No tRNA, virulence related or antibiotic resistance genes were found in phage genome. Comparative genomic analysis showed that phage IME184 has 94% similarity with genomic sequence of Klebsiella phage K1-ULIP33 (MK380014.1). Multiplicity of infection, one step growth curve and host range of phage were also measured. According to findings, Phage IME184 is a promising biological agent that infects Klebsiella pneumoniae and can be used in future phage therapies.
Collapse
Affiliation(s)
- Fei Li
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 10029, China; Center for Clinical Laboratory,The Affiliated Taian City Central Hospital of Qingdao University, Taian 271000, Shandong, China.
| | - Fengjuan Tian
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 10029, China
| | - Amina Nazir
- Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan Industry North Road 202, Shandong Province, China
| | - Shujing Sui
- Department of Gastroenterology, The Affiliated Taian City Central Hospital of Qingdao University, Taian 271000, Shandong, China
| | - Mengzhe Li
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 10029, China
| | - Dongxiao Cheng
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 10029, China
| | - Siqin Nong
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 10029, China
| | - Azam Ali
- Institute of Molecular Biology & Biotechnology (IMBB), The University of Lahore, Lahore, Pakistan
| | - Mohib-Ullah KaKar
- Faculty of Marine Sciences, Lasbela University of Agriculture Water and Marine Sciences (LUAWMS), Uthal 90150, Balochistan, Pakistan
| | - Lu Li
- Physical and Chemical Laboratory, Taian Center for Disease Control and Prevention, Taian 271000, Shandong, China.
| | - Qiang Feng
- Center for Clinical Laboratory,The Affiliated Taian City Central Hospital of Qingdao University, Taian 271000, Shandong, China.
| | - Yigang Tong
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 10029, China.
| |
Collapse
|
11
|
Zhao M, Xie R, Wang S, Huang X, Yang H, Wu W, Lin L, Chen H, Fan J, Hua L, Liang W, Zhang J, Wang X, Chen H, Peng Z, Wu B. Identification of a broad-spectrum lytic Myoviridae bacteriophage using multidrug resistant Salmonella isolates from pig slaughterhouses as the indicator and its application in combating Salmonella infections. BMC Vet Res 2022; 18:270. [PMID: 35821025 PMCID: PMC9277904 DOI: 10.1186/s12917-022-03372-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 07/04/2022] [Indexed: 11/30/2022] Open
Abstract
Background Salmonella is a leading foodborne and zoonotic pathogen, and is widely distributed in different nodes of the pork supply chain. In recent years, the increasing prevalence of antimicrobial resistant Salmonella poses a threat to global public health. The purpose of this study is to the prevalence of antimicrobial resistant Salmonella in pig slaughterhouses in Hubei Province in China, and explore the effect of using lytic bacteriophages fighting against antimicrobial resistant Salmonella. Results We collected a total of 1289 samples including anal swabs of pigs (862/1289), environmental swabs (204/1289), carcass surface swabs (36/1289) and environmental agar plates (187/1289) from eleven slaughterhouses in seven cities in Hubei Province and recovered 106 Salmonella isolates. Antimicrobial susceptibility testing revealed that these isolates showed a high rate of antimicrobial resistance; over 99.06% (105/106) of them were multidrug resistant. To combat these drug resistant Salmonella, we isolated 37 lytic phages using 106 isolates as indicator bacteria. One of them, designated ph 2–2, which belonged to the Myoviridae family, displayed good capacity to kill Salmonella under different adverse conditions (exposure to different temperatures, pHs, UV, and/or 75% ethanol) and had a wide lytic spectrum. Evaluation in mouse models showed that ph 2–2 was safe and saved 80% (administrated by gavage) and 100% (administrated through intraperitoneal injection) mice from infections caused by Salmonella Typhimurium. Conclusions The data presented herein demonstrated that Salmonella contamination remains a problem in some pig slaughter houses in China and Salmonella isolates recovered in slaughter houses displayed a high rate of antimicrobial resistance. In addition, broad-spectrum lytic bacteriophages may represent a good candidate for the development of anti-antimicrobial resistant Salmonella agents. Supplementary Information The online version contains supplementary material available at 10.1186/s12917-022-03372-8.
Collapse
Affiliation(s)
- Mengfei Zhao
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Centre for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, 430070, China
| | - Rui Xie
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Centre for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, 430070, China
| | - Shuang Wang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Centre for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xi Huang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Centre for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, 430070, China
| | - Hao Yang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Centre for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, 430070, China
| | - Wenqing Wu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Centre for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, 430070, China
| | - Lin Lin
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Centre for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, 430070, China
| | - Hongjian Chen
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Centre for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jie Fan
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Centre for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, 430070, China
| | - Lin Hua
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Centre for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, 430070, China
| | - Wan Liang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Centre for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, 430070, China.,Present address: Hubei Jin Xu Agricultural Development Limited by Share Ltd., Wuhan, China
| | - Jianmin Zhang
- National and Regional Joint Engineering Laboratory for Medicament of Zoonoses Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Xiangru Wang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Centre for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, 430070, China
| | - Huanchun Chen
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Centre for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, 430070, China
| | - Zhong Peng
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China. .,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Centre for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, 430070, China. .,Hubei Hongshan Laboratory, Wuhan, China.
| | - Bin Wu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China. .,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Centre for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
12
|
Isolation of Three Coliphages and the Evaluation of Their Phage Cocktail for Biocontrol of Shiga Toxin-Producing Escherichia coli O157 in Milk. Curr Microbiol 2022; 79:216. [PMID: 35678865 DOI: 10.1007/s00284-022-02908-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 05/16/2022] [Indexed: 11/03/2022]
Abstract
Shiga toxin-producing Escherichia coli (STEC) O157 is a well-known foodborne pathogen and a leading cause of many intestinal diseases. In this study, we explore the use of a phage cocktail to help control STEC O157 in broth and milk. We isolated three virulent phages from sanitary sewages using a STEC O157 as the indicator bacterium. Phenotypical characterizations revealed that these three phages belong to the Myoviridae family and were stable at different temperatures and pH. They displayed a short latent period between 10 and 20 min, and a burst size (32-65 per infected cell). No virulence factors and drug resistance genes were found in their genomes. Bacterial lysis assays showed that a phage cocktail comprising these three phages was more effective (at least 4.32 log reduction) against STEC O157 at 25 °C with multiplicity of infection (MOI) = 1000 in broth medium. At 4 °C, a 3.8 log reduction in the number of viable STEC O157 after 168-h treatment with phage cocktail at MOI = 1000 was observed in milk, compared to phage-free bacterial control group. Characterizations of phages suggest they could be developed into novel therapeutic agents to control STEC O157 in milk production.
Collapse
|
13
|
Zhang B, Sun H, Zhao F, Wang Q, Pan Q, Tong Y, Ren H. Characterization and Genomic Analysis of a Novel Jumbo Bacteriophage vB_StaM_SA1 Infecting Staphylococcus aureus With Two Lysins. Front Microbiol 2022; 13:856473. [PMID: 35572667 PMCID: PMC9096886 DOI: 10.3389/fmicb.2022.856473] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 04/04/2022] [Indexed: 11/30/2022] Open
Abstract
The development of new antimicrobial agents is critically needed due to the alarming increase in antibiotic resistance in bacterial pathogens. Phages have been widely considered as effective alternatives to antibiotics. A novel phage vB_StaM_SA1 (hereinafter as SA1) that can infect multiple Staphylococcus strains was isolated from untreated sewage of a pig farm, which belonged to Myoviridae family. At MOI of 0.1, the latent period of phage SA1 was 55 min, and the final titer reached about 109 PFU/mL. The genome of phage SA1 was 260,727 bp, indicating that it can be classified as a jumbo phage. The genome of SA1 had 258 ORFs and a serine tRNA, while only 53 ORFs were annotated with functions. Phage SA1 contained a group of core genes that was characterized by multiple RNA polymerase subunits and also found in phiKZ-related jumbo phages. The phylogenetic tree showed that phage SA1 was a phiKZ-related phage and was closer to jumbo phages compared with Staphylococcus phages with small genome. Three proteins (lys4, lys210, and lys211) were predicted to be associated with lysins, and two proteins with lytic function were verified by recombinant expression and bacterial survival test. Both lys210 and lys211 possessed efficient bactericidal ability, and lys210 could lyse all test strains. The results show that phage SA1 and lys210/lys211 could be potentially used as antibiotic agents to treat Staphylococcus infection.
Collapse
Affiliation(s)
- Bingyan Zhang
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, China.,College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Huzhi Sun
- Qingdao Phagepharm Bio-tech Co., Ltd., Qingdao, China
| | - Feiyang Zhao
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, China
| | - Qian Wang
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, China
| | - Qiang Pan
- Qingdao Phagepharm Bio-tech Co., Ltd., Qingdao, China
| | - Yigang Tong
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Huiying Ren
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, China
| |
Collapse
|
14
|
Ge H, Lin C, Xu Y, Hu M, Xu Z, Geng S, Jiao X, Chen X. A phage for the controlling of Salmonella in poultry and reducing biofilms. Vet Microbiol 2022; 269:109432. [DOI: 10.1016/j.vetmic.2022.109432] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 03/05/2022] [Accepted: 04/10/2022] [Indexed: 12/12/2022]
|
15
|
Sun Z, Mandlaa, Wen H, Ma L, Chen Z. Isolation, characterization and application of bacteriophage PSDA-2 against Salmonella Typhimurium in chilled mutton. PLoS One 2022; 17:e0262946. [PMID: 35073376 PMCID: PMC8786174 DOI: 10.1371/journal.pone.0262946] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 01/08/2022] [Indexed: 12/01/2022] Open
Abstract
Salmonella is a common foodborne pathogen, especially in meat and meat products. Lytic phages are promising alternatives to conventional methods for Salmonella biocontrol in food and food processing. In this study, a virulent bacteriophage (PSDA-2) against Salmonella enterica serovar Typhimurium was isolated from the sewage and it was found that PSDA-2 belongs to Cornellvirus genus of Siphoviridae family by morphological and phylogenetic analysis. Based on the one-step growth curve, PSDA-2 has a short latent period (10 min) and a high burst size (120 PFU/cell). The stability test in vitro reveals that PSDA-2 is stable at 30–70°C and pH 3–10. Bioinformatics analysis show that PSDA-2 genome consists of 40,062 bp with a GC content of 50.21% and encodes 63 open reading frames (ORFs); no tRNA genes, lysogenic genes, drug resistance genes and virulence genes were identified in the genome. Moreover, the capacity for PSDA-2 to control Salmonella Typhimurium in chilled mutton was investigated. The results show that incubation of PSDA-2 at 4°C reduced recoverable Salmonella by 1.7 log CFU/mL and 2.1 log CFU/mL at multiplicity of infection (MOI) of 100 and 10,000 respectively, as relative to the phage-excluded control. The features of phage PSDA-2 suggest that it has the potential to be an agent to control Salmonella.
Collapse
|
16
|
The lytic siphophage vB_StyS-LmqsSP1 reduces Salmonella Typhimurium isolates on chicken skin. Appl Environ Microbiol 2021; 87:e0142421. [PMID: 34586906 DOI: 10.1128/aem.01424-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Phage-based biocontrol of bacteria is considered as a natural approach to combat food-borne pathogens. Salmonella spp. are notifiable and highly prevalent pathogens that cause foodborne diseases globally. In this study, six bacteriophages were isolated and further characterized that infect food-derived Salmonella isolates from different meat sources. The siphovirus VB_StyS-LmqsSP1, which was isolated from a cow´s nasal swab, was further subjected to in-depth characterization. Phage-host interaction investigations in liquid medium showed that vB_StyS-LmqsSP1 can suppress the growth of Salmonella spp. isolates at 37°C for ten hours and reduce the bacterial titer at 4°C significantly. A reduction of 1.4 to 3 log units was observed in investigations with two food-derived Salmonella isolates and one reference strain under cooling conditions using MOIs of 104 and 105. Phage application on chicken skin resulted in a reduction of about 2 log units in the tested Salmonella isolates from the first three hours throughout a one-week experiment at cooling temperature and an MOI of 105. The one-step growth curve analysis using vB_StyS-LmqsSP1 demonstrated a 60-min latent period and a burst size of 50-61 PFU/infected cell for all tested hosts. Furthermore, the genome of the phage was determined to be free from genes causing undesired effects. Based on the phenotypic and genotypic properties, LmqsSP1 was assigned as a promising candidate for biocontrol of Salmonella Typhimurium in food. Importance: Salmonella enterica is one of the major global causes of foodborne enteritis in humans. The use of chemical sanitizers for reducing bacterial pathogens in the food chain can result in the spread of bacterial resistance. Targeted and clean label intervention strategies can reduce Salmonella contamination in food. The significance of our research demonstrates the suitability of a bacteriophage (vB_StyS-LmqsSP1) for biocontrol of Salmonella enterica serovar Typhimurium on poultry due to its lytic efficacy under conditions prevailing in food production environments.
Collapse
|
17
|
Śliwka P, Ochocka M, Skaradzińska A. Applications of bacteriophages against intracellular bacteria. Crit Rev Microbiol 2021; 48:222-239. [PMID: 34428105 DOI: 10.1080/1040841x.2021.1960481] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Infectious diseases pose a significant threat to both human and animal populations. Intracellular bacteria are a group of pathogens that invade and survive within the interior of eukaryotic cells, which in turn protect them from antibacterial drugs and the host immune system. Limited penetration of antibacterials into host cells results in insufficient bacterial clearance and treatment failure. Bacteriophages have, over the decades, been proved to play an important role in combating bacterial infections (phage therapy), making them an important alternative to classical antibiotic strategies today. Phages have been found to be effective at killing various species of extracellular bacteria, but little is still known about how phages control intracellular infections. With advances in phage genomics and mechanisms of delivery and cell uptake, the development of phage-based antibacterial strategies to address the treatment of intracellular bacteria has general potential. In this review, we present the current state of knowledge regarding the application of bacteriophages against intracellular bacteria. We cover phage deployment against the most common intracellular pathogens with special attention to therapeutic and preventive strategies.
Collapse
Affiliation(s)
- Paulina Śliwka
- Department of Biotechnology and Food Microbiology, Faculty of Biotechnology and Food Science, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| | - Marta Ochocka
- Department of Biotechnology and Food Microbiology, Faculty of Biotechnology and Food Science, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| | - Aneta Skaradzińska
- Department of Biotechnology and Food Microbiology, Faculty of Biotechnology and Food Science, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| |
Collapse
|
18
|
Zhang W, Zhang R, Hu Y, Liu Y, Wang L, An X, Song L, Shi T, Fan H, Tong Y, Liu H. Biological characteristics and genomic analysis of a Stenotrophomonas maltophilia phage vB_SmaS_BUCT548. Virus Genes 2021; 57:205-216. [PMID: 33471272 DOI: 10.1007/s11262-020-01818-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 12/04/2020] [Indexed: 12/12/2022]
Abstract
Stenotrophomonas maltophilia (hereinafter referred to as S. maltophilia) has developed into an important opportunistic pathogenic bacterium, which is prevalent in nosocomial and community infections, and has adverse effects on patients with a compromised immune system. Phage vB_SmaS_BUCT548 was isolated from sewage of Beijing 307 Hospital with S. maltophilia (strain No.824) as a host. Phage morphology was observed by transmission electron microscopy and its biological and genomic characteristics were determined. The electron microscope shows that the bacteriophage belonged to the Siphoviridae and MOI is 0.001. One-step growth curve shows that the incubation period is 30 min and the burst size is 134 PFU/Cell. The host range is relatively wide and it can lysis 11of 13 S. maltophilia strains. Next-Generation Sequencing (NGS) results show that the genome sequence is a dsDNA with 62354 bp length, and the GC content is 56.3% (GenBank: MN937349). One hundred and two online reading frames (ORFs) are obtained after RAST online annotation and the BlastN nucleic acid comparison shows that the phage had low homology with other phages in NCBI database. This study reports a novel S. maltophilia phage named vB_SmaS_BUCT548, which has a short incubation period, strong lytic ability, and a wide host range. The main characteristic of this bacteriophage is the novelty of the genomic sequence and the analysis of the other characteristics provides basic data for further exploring the interaction mechanism between the phage and the host.
Collapse
Affiliation(s)
- Wenjing Zhang
- School of Public Health, Lanzhou University, Lanzhou, 730000, China.,Beijing Advanced Innovation Center for Soft Matter Science and Engineering (BAIC-SM), College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Rongrong Zhang
- School of Public Health, Lanzhou University, Lanzhou, 730000, China.,Beijing Advanced Innovation Center for Soft Matter Science and Engineering (BAIC-SM), College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Yunjia Hu
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering (BAIC-SM), College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Yujie Liu
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering (BAIC-SM), College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Liqin Wang
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering (BAIC-SM), College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China.,Medical College Qingdao University, Qingdao, 266071, China
| | - Xiaoping An
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering (BAIC-SM), College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Lihua Song
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering (BAIC-SM), College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Taoxing Shi
- Academy of Military Medical Sciences, Beijing, 100085, China.
| | - Huahao Fan
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering (BAIC-SM), College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China.
| | - Yigang Tong
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering (BAIC-SM), College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China.
| | - Hui Liu
- School of Public Health, Lanzhou University, Lanzhou, 730000, China.
| |
Collapse
|
19
|
Düzgüneş N, Sessevmez M, Yildirim M. Bacteriophage Therapy of Bacterial Infections: The Rediscovered Frontier. Pharmaceuticals (Basel) 2021; 14:34. [PMID: 33466546 PMCID: PMC7824886 DOI: 10.3390/ph14010034] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Revised: 12/25/2020] [Accepted: 12/29/2020] [Indexed: 12/18/2022] Open
Abstract
Antibiotic-resistant infections present a serious health concern worldwide. It is estimated that there are 2.8 million antibiotic-resistant infections and 35,000 deaths in the United States every year. Such microorganisms include Acinetobacter, Enterobacterioceae, Pseudomonas, Staphylococcus and Mycobacterium. Alternative treatment methods are, thus, necessary to treat such infections. Bacteriophages are viruses of bacteria. In a lytic infection, the newly formed phage particles lyse the bacterium and continue to infect other bacteria. In the early 20th century, d'Herelle, Bruynoghe and Maisin used bacterium-specific phages to treat bacterial infections. Bacteriophages are being identified, purified and developed as pharmaceutically acceptable macromolecular "drugs," undergoing strict quality control. Phages can be applied topically or delivered by inhalation, orally or parenterally. Some of the major drug-resistant infections that are potential targets of pharmaceutically prepared phages are Pseudomonas aeruginosa, Mycobacterium tuberculosis and Acinetobacter baumannii.
Collapse
Affiliation(s)
- Nejat Düzgüneş
- Department of Biomedical Sciences, Arthur A. Dugoni School of Dentistry, University of the Pacific, San Francisco, CA 94103, USA
| | - Melike Sessevmez
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Istanbul University, Istanbul 34116, Turkey;
| | - Metin Yildirim
- Department of Pharmacy Services, Vocational School of Health Services, Tarsus University, Mersin 33400, Turkey;
| |
Collapse
|
20
|
Kosznik-Kwaśnicka K, Grabowski Ł, Grabski M, Kaszubski M, Górniak M, Jurczak-Kurek A, Węgrzyn G, Węgrzyn A. Bacteriophages vB_Sen-TO17 and vB_Sen-E22, Newly Isolated Viruses from Chicken Feces, Specific for Several Salmonella enterica Strains. Int J Mol Sci 2020; 21:ijms21228821. [PMID: 33233449 PMCID: PMC7700153 DOI: 10.3390/ijms21228821] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 11/19/2020] [Accepted: 11/19/2020] [Indexed: 11/16/2022] Open
Abstract
Two newly discovered bacteriophages, isolated from chicken feces and infecting Salmonella enterica strains, are described in this report. These phages have been named vB_Sen-TO17 and vB_Sen-E22, and we present their molecular and functional characterization. Both studied viruses are able to infect several S. enterica strains and develop lytically, but their specific host ranges differ significantly. Electron microscopic analyses of virions have been performed, and full genome sequences were determined and characterized, along with molecular phylogenetic studies. Genomes of vB_Sen-TO17 (ds DNA of 41,658 bp) and vB_Sen-E22 (dsDNA of 108,987 bp) are devoid of homologs of any known or putative gene coding for toxins or any other proteins potentially deleterious for eukaryotic cells. Both phages adsorbed efficiently (>95% adsorbed virions) within 10 min at 42 °C (resembling chicken body temperature) on cells of most tested host strains. Kinetics of lytic development of vB_Sen-TO17 and vB_Sen-E22, determined in one-step growth experiments, indicated that development is complete within 30-40 min at 42 °C, whereas burst sizes vary from 9 to 79 progeny phages per cell for vB_Sen-TO17 and from 18 to 64 for vB_Sen-E22, depending on the host strain. Virions of both phages were relatively stable (from several percent to almost 100% survivability) under various conditions, including acidic and alkaline pH values (from 3 to 12), temperatures from -80 °C to 60 °C, 70% ethanol, chloroform, and 10% DMSO. These characteristics of vB_Sen-TO17 and vB_Sen-E22 indicate that these phages might be considered in further studies on phage therapy, particularly in attempts to eliminate S. enterica from chicken intestine.
Collapse
Affiliation(s)
- Katarzyna Kosznik-Kwaśnicka
- Laboratory of Molecular Biology, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Kładki 24, 80-822 Gdansk, Poland; (K.K.-K.); (Ł.G.)
| | - Łukasz Grabowski
- Laboratory of Molecular Biology, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Kładki 24, 80-822 Gdansk, Poland; (K.K.-K.); (Ł.G.)
| | - Michał Grabski
- Department of Molecular Biology, University of Gdansk, Wita Stwosza 59, 80-308 Gdansk, Poland; (M.G.); (M.K.); (G.W.)
- Institute of Oceanology, Polish Academy of Sciences, Powstańców Warszawy 55, 81-712 Sopot, Poland
| | - Mateusz Kaszubski
- Department of Molecular Biology, University of Gdansk, Wita Stwosza 59, 80-308 Gdansk, Poland; (M.G.); (M.K.); (G.W.)
| | - Marcin Górniak
- Department of Molecular Evolution, University of Gdansk, Wita Stwosza 59, 80-308 Gdansk, Poland; (M.G.); (A.J.-K.)
| | - Agata Jurczak-Kurek
- Department of Molecular Evolution, University of Gdansk, Wita Stwosza 59, 80-308 Gdansk, Poland; (M.G.); (A.J.-K.)
| | - Grzegorz Węgrzyn
- Department of Molecular Biology, University of Gdansk, Wita Stwosza 59, 80-308 Gdansk, Poland; (M.G.); (M.K.); (G.W.)
| | - Alicja Węgrzyn
- Laboratory of Molecular Biology, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Kładki 24, 80-822 Gdansk, Poland; (K.K.-K.); (Ł.G.)
- Correspondence: ; Tel.: +48-58-523-6024
| |
Collapse
|
21
|
Kosznik-Kwaśnicka K, Ciemińska K, Grabski M, Grabowski Ł, Górniak M, Jurczak-Kurek A, Węgrzyn G, Węgrzyn A. Characteristics of a Series of Three Bacteriophages Infecting Salmonella enterica Strains. Int J Mol Sci 2020; 21:ijms21176152. [PMID: 32858954 PMCID: PMC7503781 DOI: 10.3390/ijms21176152] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Revised: 08/18/2020] [Accepted: 08/25/2020] [Indexed: 01/07/2023] Open
Abstract
Molecular and functional characterization of a series of three bacteriophages, vB_SenM-1, vB_SenM-2, and vB_SenS-3, infecting various Salmonella enterica serovars and strains is presented. All these phages were able to develop lytically while not forming prophages. Moreover, they were able to survive at pH 3. The phages revealed different host ranges within serovars and strains of S. enterica, different adsorption rates on host cells, and different lytic growth kinetics at various temperatures (in the range of 25 to 42 °C). They efficiently reduced the number of cells in the bacterial biofilm and decreased the biofilm mass. Whole genome sequences of these phages have been determined and analyzed, including their phylogenetic relationships. In conclusion, we have demonstrated detailed characterization of a series of three bacteriophages, vB_SenM-1, vB_SenM-2, and vB_SenS-3, which reveal favorable features in light of their potential use in phage therapy of humans and animals, as well as for food protection purposes.
Collapse
Affiliation(s)
- Katarzyna Kosznik-Kwaśnicka
- Laboratory of Molecular Biology, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Kładki 24, 80-822 Gdansk, Poland; (K.K.-K.); (Ł.G.)
| | - Karolina Ciemińska
- Department of Molecular Biology, University of Gdansk, Wita Stwosza 59, 80-308 Gdansk, Poland; (K.C.); (M.G.); (G.W.)
| | - Michał Grabski
- Department of Molecular Biology, University of Gdansk, Wita Stwosza 59, 80-308 Gdansk, Poland; (K.C.); (M.G.); (G.W.)
- Institute of Oceanology, Polish Academy of Sciences, Powstańców Warszawy 55, 81-712 Sopot, Poland
| | - Łukasz Grabowski
- Laboratory of Molecular Biology, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Kładki 24, 80-822 Gdansk, Poland; (K.K.-K.); (Ł.G.)
| | - Marcin Górniak
- Department of Molecular Evolution, University of Gdansk, Wita Stwosza 59, 80-308 Gdansk, Poland; (M.G.); (A.J.-K.)
| | - Agata Jurczak-Kurek
- Department of Molecular Evolution, University of Gdansk, Wita Stwosza 59, 80-308 Gdansk, Poland; (M.G.); (A.J.-K.)
| | - Grzegorz Węgrzyn
- Department of Molecular Biology, University of Gdansk, Wita Stwosza 59, 80-308 Gdansk, Poland; (K.C.); (M.G.); (G.W.)
| | - Alicja Węgrzyn
- Laboratory of Molecular Biology, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Kładki 24, 80-822 Gdansk, Poland; (K.K.-K.); (Ł.G.)
- Correspondence: ; Tel.: +48-58-523-6024
| |
Collapse
|
22
|
Liu J, Gao S, Dong Y, Lu C, Liu Y. Isolation and characterization of bacteriophages against virulent Aeromonas hydrophila. BMC Microbiol 2020; 20:141. [PMID: 32487015 PMCID: PMC7268745 DOI: 10.1186/s12866-020-01811-w] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 05/04/2020] [Indexed: 12/15/2022] Open
Abstract
Background Aeromonas hydrophila is an important water-borne pathogen that leads to a great economic loss in aquaculture. Along with the abuse of antibiotics, drug-resistant strains rise rapidly. In addition, the biofilms formed by this bacterium limited the antibacterial effect of antibiotics. Bacteriophages have been attracting increasing attention as a potential alternative to antibiotics against bacterial infections. Results Five phages against pathogenic A. hydrophila, named N21, W3, G65, Y71 and Y81, were isolated. Morphological analysis by transmission electron microscopy revealed that phages N21, W3 and G65 belong to the family Myoviridae, while Y71 and Y81 belong to the Podoviridae. These phages were found to have broad host spectra, short latent periods and normal burst sizes. They were sensitive to high temperature but had a wide adaptability to the pH. In addition, the phages G65 and Y81 showed considerable bacterial killing effect and potential in preventing formation of A. hydrophila biofilm; and the phages G65, W3 and N21 were able to scavenge mature biofilm effectively. Phage treatments applied to the pathogenic A. hydrophila in mice model resulted in a significantly decreased bacterial loads in tissues. Conclusions Five A. hydrophila phages were isolated with broad host ranges, low latent periods, and wide pH and thermal tolerance. And the phages exhibited varying abilities in controlling A. hydrophila infection. This work presents promising data supporting the future use of phage therapy.
Collapse
Affiliation(s)
- Jin Liu
- Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Shanshan Gao
- Sucheng District Animal Husbandry and Veterinary Station, Suqian, 223800, China
| | - Yuhao Dong
- Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Chengping Lu
- Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yongjie Liu
- Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
23
|
Chen Y, Li X, Wang S, Guan L, Li X, Hu D, Gao D, Song J, Chen H, Qian P. A Novel Tail-Associated O91-Specific Polysaccharide Depolymerase from a Podophage Reveals Lytic Efficacy of Shiga Toxin-Producing Escherichia coli. Appl Environ Microbiol 2020; 86:e00145-20. [PMID: 32111587 PMCID: PMC7170472 DOI: 10.1128/aem.00145-20] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 02/12/2020] [Indexed: 12/16/2022] Open
Abstract
Shiga toxin-producing Escherichia coli (STEC) strains are important zoonotic foodborne pathogens, causing diarrhea, hemorrhagic colitis, and life-threatening hemolytic uremic syndrome (HUS) in humans. However, antibiotic treatment of STEC infection is associated with an increased risk of HUS. Therefore, there is an urgent need for early and effective therapeutic strategies. Here, we isolated lytic T7-like STEC phage PHB19 and identified a novel O91-specific polysaccharide depolymerase (Dep6) in the C terminus of the PHB19 tailspike protein. Dep6 exhibited strong hydrolase activity across wide ranges of pH (pH 4 to 8) and temperature (20 to 60°C) and degraded polysaccharides on the surface of STEC strain HB10. In addition, both Dep6 and PHB19 degraded biofilms formed by STEC strain HB10. In a mouse STEC infection model, delayed Dep6 treatment (3 h postinfection) resulted in only 33% survival, compared with 83% survival when mice were treated simultaneously with infection. In comparison, pretreatment with Dep6 led to 100% survival compared with that of the control group. Surprisingly, a single PHB19 treatment resulted in 100% survival in all three treatment protocols. Moreover, a significant reduction in the levels of proinflammatory cytokines was observed at 24 h postinfection in Dep6- or PHB19-treated mice. These results demonstrated that Dep6 or PHB19 might be used as a potential therapeutic agent to prevent STEC infection.IMPORTANCE Shiga toxin-producing Escherichia coli (STEC) is an important foodborne pathogen worldwide. The Shiga-like toxin causes diarrhea, hemorrhagic colitis, and life-threatening hemolytic uremic syndrome (HUS) in humans. Although antibiotic therapy is still used for STEC infections, this approach may increase the risk of HUS. Phages or phage-derived depolymerases have been used to treat bacterial infections in animals and humans, as in the case of the "San Diego patient" treated with a phage cocktail. Here, we showed that phage PHB19 and its O91-specific polysaccharide depolymerase Dep6 degraded STEC biofilms and stripped the lipopolysaccharide (LPS) from STEC strain HB10, which was subsequently killed by serum complement in vitro In a mouse model, PHB19 and Dep6 protected against STEC infection and caused a significant reduction in the levels of proinflammatory cytokines. This study reports the use of an O91-specific polysaccharide depolymerase for the treatment of STEC infection in mice.
Collapse
Affiliation(s)
- Yibao Chen
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, China
| | - Xiangmin Li
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, China
- Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture of the People's Republic of China, Wuhan, Hubei, China
- International Research Center for Animal Disease, Ministry of Science and Technology of the People's Republic of China, Wuhan, Hubei, China
| | - Shuang Wang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, China
| | - Lingyu Guan
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, China
| | - Xinxin Li
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, China
| | - Dayue Hu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, China
| | - Dongyang Gao
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, China
| | - Jiaoyang Song
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, China
| | - Huanchun Chen
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, China
- Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture of the People's Republic of China, Wuhan, Hubei, China
- International Research Center for Animal Disease, Ministry of Science and Technology of the People's Republic of China, Wuhan, Hubei, China
| | - Ping Qian
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, China
- Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture of the People's Republic of China, Wuhan, Hubei, China
- International Research Center for Animal Disease, Ministry of Science and Technology of the People's Republic of China, Wuhan, Hubei, China
| |
Collapse
|
24
|
Li P, Zhang X, Xie X, Tu Z, Gu J, Zhang A. Characterization and whole-genome sequencing of broad-host-range Salmonella-specific bacteriophages for bio-control. Microb Pathog 2020; 143:104119. [PMID: 32169489 DOI: 10.1016/j.micpath.2020.104119] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 03/05/2020] [Accepted: 03/06/2020] [Indexed: 12/19/2022]
Abstract
Salmonella Enteritidis (S. Enteritidis), which could cause human disease and death by consuming the contaminated food, is an important zoonotic pathogen. With the rapid increase of antibiotic resistance all over the world, bacteriophage-based bio-control has gradually attracted public attention widely. In order to find a suitable phage treating S. Enteritidis infection, four phages infecting S. Enteritidis were isolated from poultry fecal samples. Host range showed that four phages had a broad-host-range to Salmonella isolates. The morphological analysis illustrated that all of those phages were classified as the Myoviridae family. The one-step growth curve indicated that bacteriophage BPSELC-1 has a short latent period of about 10 min and a large burst size of 500 pfu/cell in comparison to the other three phages. Then phage BPSELC-1 was sequenced and conducted in vitro experiment. The genome of phage BPSELC-1 is 86,996 bp in size and has 140 putative genes containing structure proteins-encoding genes, tRNA genes and DNA replication or nucleotide metabolism genes. Importantly, no known virulence-associated, antibiotic and lysogeny-related genes were identified in the genome of BPSELC-1. In vitro experiment of phage treatment pointed out that the number of viable S. Enteritidis ATCC 13076 was reduced by 5.9×log10 at MOI of 102 after 4 h. To the best of our knowledge, the phage BPSELC-1 exhibited higher efficiency in S. Enteritidis treatment compared to previous studies. Moreover, it is promising to be used as a broad-spectrum candidate against Salmonella infections in commercial owing to its broad-host-range.
Collapse
Affiliation(s)
- Ping Li
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, PR China
| | - Xiuzhong Zhang
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, PR China
| | - Xianjun Xie
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, PR China
| | - Zunfang Tu
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, PR China
| | - Ju Gu
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, PR China
| | - Anyun Zhang
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, PR China.
| |
Collapse
|
25
|
Characteristics and complete genome sequence of the virulent Vibrio alginolyticus phage VAP7, isolated in Hainan, China. Arch Virol 2020; 165:947-953. [PMID: 32130520 DOI: 10.1007/s00705-020-04535-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Accepted: 12/27/2019] [Indexed: 02/08/2023]
Abstract
A novel Vibrio alginolyticus phage, VAP7, was isolated from seawater collected from Sanya, Hainan province, China. Whole-genome sequencing analysis revealed that phage VAP7 has a linear, double-stranded DNA genome of 144,685 bp with an average G+C content of 41.9% and a high degree of sequence similarity to Vibrio phage VP-1. Annotation results identified 193 open reading frames and one transfer RNA-encoding gene in the phage genome. The morphology and the results of phylogenetic analysis suggest that VAP7 should be classified as a new member of the family Ackermannviridae. Moreover, phage VAP7 grew over a wide pH (5.0-10.0) and temperature (4-40 °C) range. Host-range experiments revealed that VAP7 could infect 31 Vibrio alginolyticus strains. Thus, VAP7 infecting Vibrio alginolyticus strains represents a potential new candidate for use in phage therapy.
Collapse
|
26
|
Isolation and characterization of a novel temperate bacteriophage from gut-associated Escherichia within black soldier fly larvae (Hermetia illucens L. [Diptera: Stratiomyidae]). Arch Virol 2019; 164:2277-2284. [PMID: 31222428 DOI: 10.1007/s00705-019-04322-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 05/21/2019] [Indexed: 01/21/2023]
Abstract
To gain insight into the presence and nature of prophages in the black soldier fly (BSF; Hermetia illucens L. [Diptera: Stratiomyidae]) gut, we isolated and characterized a novel, temperate Escherichia bacteriophage designated vB_EcoS_PHB10 (PHB10). Electron microscopy analysis revealed that phage PHB10 has a long, flexible, non-contractile tail and belongs to the family Siphoviridae. The phage was found to be stable over a wide range of temperatures (4-37 °C) and pH values (pH 5-9), and it lysed two out of 13 Escherichia strains tested. The genome of PHB10 contains genes encoding a putative transcriptional regulator and an integrase, and it shows a high degree of similarity to a region of the Enterobacter cloacae MBRL1077 genome. Induction experiments revealed that phage PHB10 could be induced by different gut substrates, suggesting that diet might be a potential regulator of lytic/lysogenic switches in commensal lysogens.
Collapse
|
27
|
Chen Y, Batra H, Dong J, Chen C, Rao VB, Tao P. Genetic Engineering of Bacteriophages Against Infectious Diseases. Front Microbiol 2019; 10:954. [PMID: 31130936 PMCID: PMC6509161 DOI: 10.3389/fmicb.2019.00954] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 04/15/2019] [Indexed: 12/19/2022] Open
Abstract
Bacteriophages (phages) are the most abundant and widely distributed organisms on Earth, constituting a virtually unlimited resource to explore the development of biomedical therapies. The therapeutic use of phages to treat bacterial infections (“phage therapy”) was conceived by Felix d’Herelle nearly a century ago. However, its power has been realized only recently, largely due to the emergence of multi-antibiotic resistant bacterial pathogens. Progress in technologies, such as high-throughput sequencing, genome editing, and synthetic biology, further opened doors to explore this vast treasure trove. Here, we review some of the emerging themes on the use of phages against infectious diseases. In addition to phage therapy, phages have also been developed as vaccine platforms to deliver antigens as part of virus-like nanoparticles that can stimulate immune responses and prevent pathogen infections. Phage engineering promises to generate phage variants with unique properties for prophylactic and therapeutic applications. These approaches have created momentum to accelerate basic as well as translational phage research and potential development of therapeutics in the near future.
Collapse
Affiliation(s)
- Yibao Chen
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, China
| | - Himanshu Batra
- Department of Biology, The Catholic University of America, Washington, DC, United States
| | - Junhua Dong
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, China
| | - Cen Chen
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, China
| | - Venigalla B Rao
- Department of Biology, The Catholic University of America, Washington, DC, United States
| | - Pan Tao
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, China.,Department of Biology, The Catholic University of America, Washington, DC, United States
| |
Collapse
|