1
|
Review: Pro-inflammatory cytokines and hypothalamic inflammation: implications for insufficient feed intake of transition dairy cows. Animal 2020; 14:s65-s77. [PMID: 32024569 PMCID: PMC7003138 DOI: 10.1017/s1751731119003124] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Improvements in feed intake of dairy cows entering the early lactation period potentially decrease the risk of metabolic disorders, but before developing approaches targeting the intake level, mechanisms controlling and dysregulating energy balance and feed intake need to be understood. This review focuses on different inflammatory pathways interfering with the neuroendocrine system regulating feed intake of periparturient dairy cows. Subacute inflammation in various peripheral organs often occurs shortly before or after calving and is associated with increased pro-inflammatory cytokine levels. These cytokines are released into the circulation and sensed by neurons located in the hypothalamus, the key brain region regulating energy balance, to signal reduction in feed intake. Besides these peripheral humoral signals, glia cells in the brain may produce pro-inflammatory cytokines independent of peripheral inflammation. Preliminary results show intensive microglia activation in early lactation, suggesting their involvement in hypothalamic inflammation and the control of feed intake of dairy cows. On the other hand, pro-inflammatory cytokine-induced activation of the vagus nerve transmits signalling to the brain, but this pathway seems not exclusively necessary to signal feed intake reduction. Yet, less studied in dairy cows so far, the endocannabinoid system links inflammation and the hypothalamic control of feed intake. Distinct endocannabinoids exert anti-inflammatory action but also stimulate the posttranslational cleavage of neuronal proopiomelanocortin towards β-endorphin, an orexigen promoting feed intake. Plasma endocannabinoid concentrations and hypothalamic β-endorphin levels increase from late pregnancy to early lactation, but less is known about the regulation of the hypothalamic endocannabinoid system during the periparturient period of dairy cows. Dietary fatty acids may modulate the formation of endocannabinoids, which opens new avenues to improve metabolic health and immune status of dairy cows.
Collapse
|
2
|
Anand U, Yiangou Y, Akbar A, Quick T, MacQuillan A, Fox M, Sinisi M, Korchev YE, Jones B, Bloom SR, Anand P. Glucagon-like peptide 1 receptor (GLP-1R) expression by nerve fibres in inflammatory bowel disease and functional effects in cultured neurons. PLoS One 2018; 13:e0198024. [PMID: 29813107 PMCID: PMC5973579 DOI: 10.1371/journal.pone.0198024] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Accepted: 05/11/2018] [Indexed: 12/12/2022] Open
Abstract
INTRODUCTION Glucagon like-peptide 1 receptor (GLP-1R) agonists diminish appetite and may contribute to the weight loss in inflammatory bowel disease (IBD). OBJECTIVES The aim of this study was to determine, for the first time, the expression of GLP-1R by colon nerve fibres in patients with IBD, and functional effects of its agonists in cultured rat and human sensory neurons. METHODS GLP-1R and other nerve markers were studied by immunohistochemistry in colon biopsies from patients with IBD (n = 16) and controls (n = 8), human dorsal root ganglia (DRG) tissue, and in GLP-1R transfected HEK293 cells. The morphological effects of incretin hormones oxyntomodulin, exendin-4 and glucagon were studied on neurite extension in cultured DRG neurons, and their functional effects on capsaicin and ATP signalling, using calcium imaging. RESULTS Significantly increased numbers of colonic mucosal nerve fibres were observed in IBD biopsies expressing GLP-1R (p = 0.0013), the pan-neuronal marker PGP9.5 (p = 0.0008), and sensory neuropeptide CGRP (p = 0.0014). An increase of GLP-1R positive nerve fibres in IBD colon was confirmed with a different antibody to GLP-1R (p = 0.016). GLP-1R immunostaining was intensely positive in small and medium-sized neurons in human DRG, and in human and rat DRG cultured neurons. Co-localization of GLP-1R expression with neuronal markers in colon and DRG confirmed the neural expression of GLP-1R, and antibody specificity was confirmed in HEK293 cells transfected with the GLP-1R. Treatment with oxyntomodulin, exendin-4 and GLP-1 increased neurite length in cultured neurons compared with controls, but did not stimulate calcium influx directly, or affect capsaicin responses. However, exendin-4 significantly enhanced ATP responses in human DRG neurons. CONCLUSION Our results show that increased GLP-1R innervation in IBD bowel could mediate enhanced visceral afferent signalling, and provide a peripheral target for therapeutic intervention. The differential effect of GLP-1R agonists on capsaicin and ATP responses in neurons suggest they may not affect pain mechanisms mediated by the capsaicin receptor TRPV1, but may enhance the effects of purinergic agonists.
Collapse
Affiliation(s)
- Uma Anand
- Peripheral Neuropathy Unit, Centre for Clinical Translation, Department of Medicine, Imperial College London, Hammersmith Hospital, London, United Kingdom
- Nanomedicine Research Laboratory, Department of Medicine, Imperial College London, Hammersmith Hospital, London, United Kingdom
| | - Yiangos Yiangou
- Peripheral Neuropathy Unit, Centre for Clinical Translation, Department of Medicine, Imperial College London, Hammersmith Hospital, London, United Kingdom
| | - Ayesha Akbar
- Peripheral Neuropathy Unit, Centre for Clinical Translation, Department of Medicine, Imperial College London, Hammersmith Hospital, London, United Kingdom
| | - Tom Quick
- Peripheral Neuropathy Unit, Centre for Clinical Translation, Department of Medicine, Imperial College London, Hammersmith Hospital, London, United Kingdom
- Peripheral Nerve Injury Unit, Royal National Orthopaedic Hospital, Stanmore, Middlesex, United Kingdom
| | - Anthony MacQuillan
- Peripheral Neuropathy Unit, Centre for Clinical Translation, Department of Medicine, Imperial College London, Hammersmith Hospital, London, United Kingdom
- Peripheral Nerve Injury Unit, Royal National Orthopaedic Hospital, Stanmore, Middlesex, United Kingdom
| | - Mike Fox
- Peripheral Neuropathy Unit, Centre for Clinical Translation, Department of Medicine, Imperial College London, Hammersmith Hospital, London, United Kingdom
- Peripheral Nerve Injury Unit, Royal National Orthopaedic Hospital, Stanmore, Middlesex, United Kingdom
| | - Marco Sinisi
- Peripheral Neuropathy Unit, Centre for Clinical Translation, Department of Medicine, Imperial College London, Hammersmith Hospital, London, United Kingdom
- Peripheral Nerve Injury Unit, Royal National Orthopaedic Hospital, Stanmore, Middlesex, United Kingdom
| | - Yuri E. Korchev
- Peripheral Neuropathy Unit, Centre for Clinical Translation, Department of Medicine, Imperial College London, Hammersmith Hospital, London, United Kingdom
| | - Ben Jones
- Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Imperial College London, Hammersmith Hospital, London
| | - Steve R. Bloom
- Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Imperial College London, Hammersmith Hospital, London
| | - Praveen Anand
- Peripheral Neuropathy Unit, Centre for Clinical Translation, Department of Medicine, Imperial College London, Hammersmith Hospital, London, United Kingdom
| |
Collapse
|
3
|
Dysregulation of energy balance by trichothecene mycotoxins: Mechanisms and prospects. Neurotoxicology 2015; 49:15-27. [PMID: 25956358 DOI: 10.1016/j.neuro.2015.04.009] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Revised: 04/14/2015] [Accepted: 04/26/2015] [Indexed: 11/23/2022]
Abstract
Trichothecenes are toxic metabolites produced by fungi that constitute a worldwide hazard for agricultural production and both animal and human health. More than 40 countries have introduced regulations or guidelines for food and feed contamination levels of the most prevalent trichothecene, deoxynivalenol (DON), on the basis of its ability to cause growth suppression. With the development of analytical tools, evaluation of food contamination and exposure revealed that a significant proportion of the human population is chronically exposed to DON doses exceeding the provisional maximum tolerable daily dose. Accordingly, a better understanding of trichothecene impact on health is needed. Upon exposure to low or moderate doses, DON and other trichothecenes induce anorexia, vomiting and reduced weight gain. Several recent studies have addressed the mechanisms by which trichothecenes induce these symptoms and revealed a multifaceted action targeting gut, liver and brain and causing dysregulation in neuroendocrine signaling, immune responses, growth hormone axis, and central neurocircuitries involved in energy homeostasis. Newly identified trichothecene toxicosis biomarkers are just beginning to be exploited and already open up new questions on the potential harmful effects of chronic exposure to DON at apparently asymptomatic very low levels. This review summarizes our current understanding of the effects of DON and other trichothecenes on food intake and weight growth.
Collapse
|