1
|
Chauhan P, Wadhwa K, Mishra R, Gupta S, Ahmad F, Kamal M, Iqbal D, Alsaweed M, Nuli MV, Abomughaid MM, Almutary AG, Mishra PC, Jha SK, Ojha S, Nelson VK, Dargar A, Singh G, Jha NK. Investigating the Potential Therapeutic Mechanisms of Puerarin in Neurological Diseases. Mol Neurobiol 2024; 61:10747-10769. [PMID: 38780722 DOI: 10.1007/s12035-024-04222-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 04/18/2024] [Indexed: 05/25/2024]
Abstract
Plants and their derived phytochemicals have a long history of treating a wide range of illnesses for several decades. They are believed to be the origin of a diverse array of medicinal compounds. One of the compounds found in kudzu root is puerarin, a isoflavone glycoside commonly used as an alternative medicine to treat various diseases. From a biological perspective, puerarin can be described as a white needle crystal with the chemical name of 7-hydroxy-3-(4-hydroxyphenyl)-1-benzopyran-4-one-8-D-glucopyranoside. Besides, puerarin is sparingly soluble in water and produces no color or light yellow solution. Multiple experimental and clinical studies have confirmed the significant therapeutic effects of puerarin. These effects span a wide range of pharmacological effects, including neuroprotection, hepatoprotection, cardioprotection, immunomodulation, anticancer properties, anti-diabetic properties, anti-osteoporosis properties, and more. Puerarin achieves these effects by interacting with various cellular and molecular pathways, such as MAPK, AMPK, NF-κB, mTOR, β-catenin, and PKB/Akt, as well as different receptors, enzymes, and growth factors. The current review highlights the molecular mechanism of puerarin as a neuroprotective agent in the treatment of various neurodegenerative and neurological diseases. Extensive cellular, animal, and clinical research has provided valuable insights into its effectiveness in conditions such as Alzheimer's disease, Parkinson's disease, epilepsy, cerebral stroke, depression, and more.
Collapse
Affiliation(s)
- Payal Chauhan
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak, 124001, Haryana, India
| | - Karan Wadhwa
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak, 124001, Haryana, India
| | - Richa Mishra
- Department of Computer Engineering, Faculty of Engineering and Technology, Parul University, Gujrat, Vadodara, 391760, India
| | - Saurabh Gupta
- Department of Biotechnology, GLA University, Mathura, Uttar Pradesh, India
| | - Fuzail Ahmad
- Respiratory Care Department, College of Applied Sciences, Almaarefa University, Diriya, Riyadh, 13713, Saudi Arabia
| | - Mehnaz Kamal
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj, 11942, Saudi Arabia
| | - Danish Iqbal
- Department of Health Information Management, College of Applied Medical Sciences, Buraydah Private Colleges, Buraydah, 51418, Saudi Arabia
| | - Mohammed Alsaweed
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Majmaah, 11952, Saudi Arabia
| | - Mohana Vamsi Nuli
- Raghavendra Institute of Pharmaceutical Education and Research, Anantapur, India
| | - Mosleh Mohammad Abomughaid
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, University of Bisha, Bisha, 61922, Saudi Arabia
| | - Abdulmajeed G Almutary
- Department of Biomedical Sciences, College of Health Sciences, Abu Dhabi University, Abu Dhabi, P.O. Box 59911, United Arab Emirates
| | - Prabhu Chandra Mishra
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Greater Noida, India
| | - Saurabh Kumar Jha
- Department of Zoology, Kalindi College, University of Delhi, Delhi, India
| | - Shreesh Ojha
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, P.O. Box 15551, United Arab Emirates
| | - Vinod Kumar Nelson
- Raghavendra Institute of Pharmaceutical Education and Research, Anantapur, India.
| | - Abha Dargar
- Kalasalingam Academy of Research and Education, Anand Nagar, Krishnankoil, Virudhunagar, Tamilnadu, India
| | - Govind Singh
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak, 124001, Haryana, India.
| | - Niraj Kumar Jha
- Centre for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India.
- School of Bioengineering & Biosciences, Lovely Professional University, Phagwara, 144411, India.
- Department of Biotechnology, School of Applied & Life Sciences (SALS), Uttaranchal University, Dehradun, 248007, India.
- Department of Biotechnology Engineering and Food Technology, Chandigarh University, Mohali, India.
| |
Collapse
|
2
|
Shehata NI, Abd EL-Salam DM, Hussein RM, Rizk SM. Effect of safranal or candesartan on 3-nitropropionicacid-induced biochemical, behavioral and histological alterations in a rat model of Huntington's disease. PLoS One 2023; 18:e0293660. [PMID: 37910529 PMCID: PMC10619823 DOI: 10.1371/journal.pone.0293660] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 10/17/2023] [Indexed: 11/03/2023] Open
Abstract
3-nitropropionic acid (3-NP) is a potent mitochondrial inhibitor mycotoxin. Systemic administration of 3-NP can induce Huntington's disease (HD)-like symptoms in experimental animals. Safranal (Safr) that is found in saffron essential oil has antioxidant, anti-inflammatory and anti-apoptotic actions. Candesartan (Cands) is an angiotensin receptor blocker that has the potential to prevent cognitive deficits. The present study aims to investigate the potential neuroprotective efficacy of Safr or Cands in 3-NP-induced rat model of HD. The experiments continued for nine consecutive days. Rats were randomly assigned into seven groups. The first group (Safr-control) was daily intraperitoneally injected with paraffin oil. The second group (Cands- and 3-NP-control) daily received an oral dose of 0.5% carboxymethylcellulose followed by an intraperitoneal injection of 0.9% saline. The third and fourth groups received a single daily dose of 50 mg/kg Safr (intraperitoneal) and 1 mg/kg Cands (oral), respectively. The sixth group was daily treated with 50 mg Safr kg/day (intraperitoneal) and was intraperitoneally injected with 20 mg 3-NP/ kg, from the 3rd till the 9th day. The seventh group was daily treated with 1 mg Cands /kg/day (oral) and was intraperitoneally injected with 20 mg 3-NP/ kg, from the 3rd till the 9th day. The present results revealed that 3-NP injection induced a considerable body weight loss, impaired memory and locomotor activity, reduced striatal monoamine levels. Furthermore, 3-NP administration remarkably increased striatal malondialdehyde and nitric oxide levels, whereas markedly decreased the total antioxidant capacity. Moreover, 3-NP significantly upregulated the activities of inducible nitric oxide synthase and caspase-3 as well as the Fas ligand, in striatum. On the contrary, Safr and Cands remarkably alleviated the above-mentioned 3-NP-induced alterations. In conclusion, Safr and Cands may prevent or delay the progression of HD and its associated impairments through their antioxidant, anti-inflammatory, anti-apoptotic and neuromodulator effects.
Collapse
Affiliation(s)
| | | | | | - Sherine Maher Rizk
- Faculty of Pharmacy, Biochemistry Department, Cairo University, Cairo, Egypt
| |
Collapse
|
3
|
Liu X, Huang R, Wan J. Puerarin: a potential natural neuroprotective agent for neurological disorders. Biomed Pharmacother 2023; 162:114581. [PMID: 36966665 DOI: 10.1016/j.biopha.2023.114581] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 03/18/2023] [Accepted: 03/21/2023] [Indexed: 03/30/2023] Open
Abstract
Puerarin is an isoflavone compound derived from Pueraria lobata in traditional Chinese medicine. Accumulating evidence has indicated that puerarin demonstrates multiple pharmacological effects and exhibits treatment potential for various neurological disorders. Based on the latest research progress on puerarin as a neuroprotective agent, its pharmacological activity, molecular mechanism, and therapeutic application were systematically reviewed with emphasis on pre-clinical studies. The related information was extracted and compiled from major scientific databases, including PubMed, ScienceDirect, SpringerLink, and Chinese National Knowledge Infrastructure, using 'Puerarin', 'Neuroprotection', 'Apoptosis', 'Autophagy', 'Antioxidant', 'Mitochondria', 'Anti-inflammation' as keywords. This review complied with The Preferred Reporting Items for Systematic Reviews criteria. Forty-three articles met established inclusion and exclusion criteria. Puerarin has shown neuroprotective effects against a variety of neurological disorders, including ischemic cerebrovascular disease, subarachnoid hemorrhage, epilepsy, cognitive disorders, traumatic brain injury, Parkinson's disease, Alzheimer's disease, anxiety, depression, diabetic neuropathy, and neuroblastoma/glioblastoma. Puerarin demonstrates anti-apoptosis, proinflammatory mediator inhibitory, autophagy regulatory, anti-oxidative stress, mitochondria protection, Ca2+ influx inhibitory, and anti-neurodegenerative activities. Puerarin exerts noticeable neuroprotective effects on various models of neurological disorders in vivo (animal). This review will contribute to the development of puerarin as a novel clinical drug candidate for the treatment of neurological disorders. However, well-designed, high-quality, large-scale, multicenter randomized clinical studies are needed to determine the safety and clinical utility of puerarin in patients with neurological disorders.
Collapse
Affiliation(s)
- Xue Liu
- Department of Cardiology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Rui Huang
- Department of Neurology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Jiye Wan
- Department of Cardiology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China.
| |
Collapse
|
4
|
Singh A, Kukal S, Kanojia N, Singh M, Saso L, Kukreti S, Kukreti R. Lipid Mediated Brain Disorders: A Perspective. Prostaglandins Other Lipid Mediat 2023; 167:106737. [PMID: 37086954 DOI: 10.1016/j.prostaglandins.2023.106737] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 04/10/2023] [Accepted: 04/18/2023] [Indexed: 04/24/2023]
Abstract
The brain, one of the most resilient organs of the body is highly enriched in lipid content, suggesting the essential role of lipids in brain physiological activities. Lipids constitute an important structural part of the brain and act as a rich source of metabolic energy. Besides, lipids in their bioactive form (known as bioactive lipids) play an essential signaling and regulatory role, facilitating neurogenesis, synaptogenesis, and cell-cell communication. Brain lipid metabolism is thus a tightly regulated process. Any alteration/dysregulation of lipid metabolism greatly impact brain health and activity. Moreover, since central nervous system (CNS) is the most metabolically active system and lacks an efficient antioxidative defence system, it acts as a hub for the production of reactive oxygen species (ROS) and subsequent lipid peroxidation. These peroxidation events are reported during pathological changes such as neuronal tissue injury and inflammation. Present review is a modest attempt to gain insights into the role of dysregulated bioactive lipid levels and lipid oxidation status in the pathogenesis and progression of neurodegenerative disorders. This may open up new avenues exploiting lipids as the therapeutic targets for improving brain health, and treatment of nervous system disorders.
Collapse
Affiliation(s)
- Anju Singh
- Department of Chemistry, Ramjas College, University of Delhi, Delhi 110007, India; Nucleic Acids Research Lab, Department of Chemistry, University of Delhi (North Campus), Delhi 110007, India
| | - Samiksha Kukal
- Genomics and Molecular Medicine Unit, CSIR-Institute of Genomics and Integrative Biology (IGIB), Mall Road, Delhi 110007, India; Academy of Scientific and Innovative Research (AcSIR), CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB) Campus, Delhi 110007, India
| | - Neha Kanojia
- Genomics and Molecular Medicine Unit, CSIR-Institute of Genomics and Integrative Biology (IGIB), Mall Road, Delhi 110007, India; Academy of Scientific and Innovative Research (AcSIR), CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB) Campus, Delhi 110007, India
| | - Mahak Singh
- Department of Chemistry, Ramjas College, University of Delhi, Delhi 110007, India
| | - Luciano Saso
- Department of Physiology and Pharmacology "Vittorio Erspamer", Sapienza University of Rome, P. le Aldo Moro 5, 00185 Rome, Italy
| | - Shrikant Kukreti
- Nucleic Acids Research Lab, Department of Chemistry, University of Delhi (North Campus), Delhi 110007, India
| | - Ritushree Kukreti
- Genomics and Molecular Medicine Unit, CSIR-Institute of Genomics and Integrative Biology (IGIB), Mall Road, Delhi 110007, India; Academy of Scientific and Innovative Research (AcSIR), CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB) Campus, Delhi 110007, India.
| |
Collapse
|
5
|
Bhat SA, Ahamad S, Dar NJ, Siddique YH, Nazir A. The Emerging Landscape of Natural Small-molecule Therapeutics for Huntington's Disease. Curr Neuropharmacol 2023; 21:867-889. [PMID: 36797612 PMCID: PMC10227909 DOI: 10.2174/1570159x21666230216104621] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 11/12/2022] [Accepted: 11/18/2022] [Indexed: 02/18/2023] Open
Abstract
Huntington's disease (HD) is a rare and fatal neurodegenerative disorder with no diseasemodifying therapeutics. HD is characterized by extensive neuronal loss and is caused by the inherited expansion of the huntingtin (HTT) gene that encodes a toxic mutant HTT (mHTT) protein having expanded polyglutamine (polyQ) residues. Current HD therapeutics only offer symptomatic relief. In fact, Food and Drug Administration (FDA) approved two synthetic small-molecule VMAT2 inhibitors, tetrabenazine (1) and deutetrabenazine (2), for managing HD chorea and various other diseases in clinical trials. Therefore, the landscape of drug discovery programs for HD is evolving to discover disease- modifying HD therapeutics. Likewise, numerous natural products are being evaluated at different stages of clinical development and have shown the potential to ameliorate HD pathology. The inherent anti-inflammatory and antioxidant properties of natural products mitigate the mHTT-induced oxidative stress and neuroinflammation, improve mitochondrial functions, and augment the anti-apoptotic and pro-autophagic mechanisms for increased survival of neurons in HD. In this review, we have discussed HD pathogenesis and summarized the anti-HD clinical and pre-clinical natural products, focusing on their therapeutic effects and neuroprotective mechanism/s.
Collapse
Affiliation(s)
| | - Shakir Ahamad
- Department of Chemistry, Aligarh Muslim University, Aligarh, U.P., India
| | - Nawab John Dar
- School of Medicine, UT Health San Antonio, Texas, TX, USA
| | | | - Aamir Nazir
- Division of Neuroscience and Ageing Biology, CSIR-Central Drug Research Institute, Lucknow, U.P., India
- Academy of Scientific and Innovative Research, New Delhi, India
| |
Collapse
|
6
|
Ahamad S, Bhat SA. The Emerging Landscape of Small-Molecule Therapeutics for the Treatment of Huntington's Disease. J Med Chem 2022; 65:15993-16032. [PMID: 36490325 DOI: 10.1021/acs.jmedchem.2c00799] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Huntington's disease (HD) is a progressive neurodegenerative disorder caused by a CAG repeat expansion in the huntingtin gene (HTT). The new insights into HD's cellular and molecular pathways have led to the identification of numerous potent small-molecule therapeutics for HD therapy. The field of HD-targeting small-molecule therapeutics is accelerating, and the approval of these therapeutics to combat HD may be expected in the near future. For instance, preclinical candidates such as naphthyridine-azaquinolone, AN1, AN2, CHDI-00484077, PRE084, EVP4593, and LOC14 have shown promise for further optimization to enter into HD clinical trials. This perspective aims to summarize the advent of small-molecule therapeutics at various stages of clinical development for HD therapy, emphasizing their structure and design, therapeutic effects, and specific mechanisms of action. Further, we have highlighted the key drivers involved in HD pathogenesis to provide insights into the basic principle for designing promising anti-HD therapeutic leads.
Collapse
Affiliation(s)
- Shakir Ahamad
- Department of Chemistry, Aligarh Muslim University, Aligarh, Uttar Pradesh202002, India
| | - Shahnawaz A Bhat
- Department of Zoology, Aligarh Muslim University, Aligarh, Uttar Pradesh202002, India
| |
Collapse
|
7
|
Edible Pueraria lobata-Derived Exosomes Promote M2 Macrophage Polarization. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27238184. [PMID: 36500277 PMCID: PMC9735656 DOI: 10.3390/molecules27238184] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 11/19/2022] [Accepted: 11/21/2022] [Indexed: 11/25/2022]
Abstract
Pueraria lobata (known as Gegen) is an edible and medicinal herb that is a nutritious medicine food homology plant in China. Previous studies indicated that P. lobata plays an essential role in controlling cytokines. However, the exact mechanism of the inflammation response is still unknown. In this study, we observed the uptake of P. lobata-derived exosomes (Exos) in isolated mouse macrophages. Our results show that P. lobata-derived Exos shift M1 macrophages toward the M2. These data present that P. lobata and puerarin might exert and enhance anti-inflammatory effects through the activation of exosomes and shifts in macrophage polarization, providing strong evidence for the application of P. lobata as novel an anti-inflammatory therapeutic biomaterial.
Collapse
|
8
|
Li RL, Wang LY, Duan HX, Zhang Q, Guo X, Wu C, Peng W. Regulation of mitochondrial dysfunction induced cell apoptosis is a potential therapeutic strategy for herbal medicine to treat neurodegenerative diseases. Front Pharmacol 2022; 13:937289. [PMID: 36210852 PMCID: PMC9535092 DOI: 10.3389/fphar.2022.937289] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 08/11/2022] [Indexed: 11/13/2022] Open
Abstract
Neurodegenerative disease is a progressive neurodegeneration caused by genetic and environmental factors. Alzheimer’s disease (AD), Parkinson’s disease (PD), and Huntington’s disease (HD) are the three most common neurodegenerative diseases clinically. Unfortunately, the incidence of neurodegenerative diseases is increasing year by year. However, the current available drugs have poor efficacy and large side effects, which brings a great burden to the patients and the society. Increasing evidence suggests that occurrence and development of the neurodegenerative diseases is closely related to the mitochondrial dysfunction, which can affect mitochondrial biogenesis, mitochondrial dynamics, as well as mitochondrial mitophagy. Through the disruption of mitochondrial homeostasis, nerve cells undergo varying degrees of apoptosis. Interestingly, it has been shown in recent years that the natural agents derived from herbal medicines are beneficial for prevention/treatment of neurodegenerative diseases via regulation of mitochondrial dysfunction. Therefore, in this review, we will focus on the potential therapeutic agents from herbal medicines for treating neurodegenerative diseases via suppressing apoptosis through regulation of mitochondrial dysfunction, in order to provide a foundation for the development of more candidate drugs for neurodegenerative diseases from herbal medicine.
Collapse
Affiliation(s)
- Ruo-Lan Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ling-Yu Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Hu-Xinyue Duan
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qing Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiaohui Guo
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
- *Correspondence: Xiaohui Guo, ; Chunjie Wu, ; Wei Peng,
| | - Chunjie Wu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- *Correspondence: Xiaohui Guo, ; Chunjie Wu, ; Wei Peng,
| | - Wei Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- *Correspondence: Xiaohui Guo, ; Chunjie Wu, ; Wei Peng,
| |
Collapse
|
9
|
Xu X, Guo Y, Chen S, Ma W, Xu X, Hu S, Jin L, Sun J, Mao J, Shen C. The Positive Influence of Polyphenols Extracted From Pueraria lobata Root on the Gut Microbiota and Its Antioxidant Capability. Front Nutr 2022; 9:868188. [PMID: 35425798 PMCID: PMC9001911 DOI: 10.3389/fnut.2022.868188] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 02/28/2022] [Indexed: 12/11/2022] Open
Abstract
Pueraria lobata, an edible food and medicinal plant, is a rich source of bioactive components. In this study, a polyphenol-rich extract was isolated from P. lobata. Puerarin was identified, and the high antioxidant bioactivity of the P. lobata extract was evaluated using the methods of 2,2-diphenyl-1-picrylhydrazyl (DPPH), 2,2′-azinobis-(3-ethylbenzthiazoline-6-sulphonate) (ABTS), and hydroxyl free radical scavenging ratio. Additionally, the IC50 values of DPPH, ABTS, and hydroxyl radical scavenging activities were 50.8, 13.9, and 100.4 μg/ml, respectively. Then, the P. lobata extract was administered to C57Bl/6J mice and confirmed to have a superior effect on enhancing the antioxidant status including improving superoxide dismutase activity, glutathione peroxidase peroxide activity, total antioxidant capacity activity, and malondialdehyde contents in vivo. Furthermore, the P. lobata extract had beneficial and prebiotic effects on the composition and structure of gut microbiota. Results showed that the P. lobata extract significantly increased the abundance of beneficial bacteria, involving Lactobacillaceae and Bacteroidetes, and decreased the abundance of Ruminococcaceae, Prevotellaceae, and Burkholderiaceae. Overall, our results provided a basis for using the P. lobata extract as a promising and potential functional ingredient for the food industry.
Collapse
Affiliation(s)
- Xiao Xu
- School of Life Sciences, Shaoxing University, Shaoxing, China
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi, China
| | - Ying Guo
- School of Life Sciences, Shaoxing University, Shaoxing, China
| | - Shaoqin Chen
- School of Life Sciences, Shaoxing University, Shaoxing, China
| | - Wenliang Ma
- School of Life Sciences, Shaoxing University, Shaoxing, China
| | - Xinlei Xu
- School of Life Sciences, Shaoxing University, Shaoxing, China
| | - Shuning Hu
- School of Life Sciences, Shaoxing University, Shaoxing, China
| | - Lifang Jin
- School of Life Sciences, Shaoxing University, Shaoxing, China
| | - Jianqiu Sun
- School of Life Sciences, Shaoxing University, Shaoxing, China
| | - Jian Mao
- School of Life Sciences, Shaoxing University, Shaoxing, China
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi, China
- *Correspondence: Jian Mao,
| | - Chi Shen
- School of Life Sciences, Shaoxing University, Shaoxing, China
- Chi Shen,
| |
Collapse
|
10
|
Niu P, Sun Y, Wang S, Li G, Tang X, Sun J, Pan C, Sun J. Puerarin alleviates the ototoxicity of gentamicin by inhibiting the mitochondria‑dependent apoptosis pathway. Mol Med Rep 2021; 24:851. [PMID: 34651662 PMCID: PMC8532108 DOI: 10.3892/mmr.2021.12491] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 09/22/2021] [Indexed: 11/24/2022] Open
Abstract
Gentamicin (GM) is a commonly used antibiotic, and ototoxicity is one of its side effects. Puerarin (PU) is an isoflavone in kudzu roots that exerts a number of pharmacological effects, including antioxidative and free radical scavenging effects. The present study investigated whether PU could protect against GM-induced ototoxicity in C57BL/6J mice and House Ear Institute-Organ of Corti 1 (HEI-OC1) cells. C57BL/6J mice and HEI-OC1 cells were used to establish models of GM-induced ototoxicity in this study. Auditory brainstem responses were measured to assess hearing thresholds, and microscopy was used to observe the morphology of cochlear hair cells after fluorescent staining. Cell viability was examined with Cell Counting Kit-8 assays. To evaluate cell apoptosis and reactive oxygen species (ROS) production, TUNEL assays, reverse transcription-quantitative PCR, DCFH-DA staining, JC-1 staining and western blotting were performed. PU protected against GM-induced hearing damage in C57BL/6J mice. PU ameliorated the morphological changes of mouse cochlear hair cells and reduced the apoptosis rate of HEI-OC1 cells after GM-mediated damage. GM-induced ototoxicity may be closely related to the upregulation of p53 expression and the activation of endogenous mitochondrial apoptosis pathways, and PU could protect cochlear hair cells from GM-mediated damage by reducing the production of ROS and inhibiting the mitochondria-dependent apoptosis pathway.
Collapse
Affiliation(s)
- Ping Niu
- Department of Otolaryngology‑Head and Neck Surgery, Anhui Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Yuxuan Sun
- Department of Otolaryngology‑Head and Neck Surgery, Anhui Provincial Hospital, Hefei, Anhui 230001, P.R. China
| | - Shiyi Wang
- Department of Otolaryngology‑Head and Neck Surgery, Affiliated Hospital of Yangzhou University, Yangzhou, Jiangsu 225001, P.R. China
| | - Guang Li
- Department of Otolaryngology‑Head and Neck Surgery, Affiliated Hospital of Yangzhou University, Yangzhou, Jiangsu 225001, P.R. China
| | - Xiaomin Tang
- Department of Otolaryngology‑Head and Neck Surgery, Anhui Provincial Hospital, Hefei, Anhui 230001, P.R. China
| | - Jiaqiang Sun
- Department of Otolaryngology‑Head and Neck Surgery, Anhui Provincial Hospital, Hefei, Anhui 230001, P.R. China
| | - Chunchen Pan
- Department of Otolaryngology‑Head and Neck Surgery, Anhui Provincial Hospital, Hefei, Anhui 230001, P.R. China
| | - Jingwu Sun
- Department of Otolaryngology‑Head and Neck Surgery, Anhui Provincial Hospital, Hefei, Anhui 230001, P.R. China
| |
Collapse
|
11
|
Yang X, Chu SF, Wang ZZ, Li FF, Yuan YH, Chen NH. Ginsenoside Rg1 exerts neuroprotective effects in 3-nitropronpionic acid-induced mouse model of Huntington's disease via suppressing MAPKs and NF-κB pathways in the striatum. Acta Pharmacol Sin 2021; 42:1409-1421. [PMID: 33214696 PMCID: PMC8379213 DOI: 10.1038/s41401-020-00558-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 10/18/2020] [Indexed: 12/16/2022] Open
Abstract
Huntington's disease (HD) is one of main neurodegenerative diseases, characterized by striatal atrophy, involuntary movements, and motor incoordination. Ginsenoside Rg1 (Rg1), an active ingredient in ginseng, possesses a variety of neuroprotective effects with low toxicity and side effects. In this study, we investigated the potential therapeutic effects of Rg1 in a mouse model of HD and explored the underlying mechanisms. HD was induced in mice by injection of 3-nitropropionic acid (3-NP, i.p.) for 4 days. From the first day of 3-NP injection, the mice were administered Rg1 (10, 20, 40 mg·kg-1, p.o.) for 5 days. We showed that oral pretreatment with Rg1 alleviated 3-NP-induced body weight loss and behavioral defects. Furthermore, pretreatment with Rg1 ameliorated 3-NP-induced neuronal loss and ultrastructural morphological damage in the striatum. Moreover, pretreatment with Rg1 reduced 3-NP-induced apoptosis and inhibited the activation of microglia, inflammatory mediators in the striatum. We revealed that Rg1 exerted neuroprotective effects by suppressing 3-NP-induced activation of the MAPKs and NF-κΒ signaling pathways in the striatum. Thus, our results suggest that Rg1 exerts therapeutic effects on 3-NP-induced HD mouse model via suppressing MAPKs and NF-κΒ signaling pathways. Rg1 may be served as a novel therapeutic option for HD.
Collapse
|
12
|
Fu XX, Cai HY, Jiang H, Han S. Combined treatment with C16 peptide and angiopoietin-1 confers neuroprotection and reduces inflammation in 3-nitropropionic acid-induced dystonia mice. Aging (Albany NY) 2021; 13:19048-19063. [PMID: 34326273 PMCID: PMC8351673 DOI: 10.18632/aging.203354] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 07/15/2021] [Indexed: 11/25/2022]
Abstract
Dystonia is a disorder associated with abnormalities in many brain regions including the basal ganglia and cerebellum. The toxin 3-Nitropropionic acid (3-NP) can induce neuropathologies in the mice striatum and nigra substance, including excitotoxicity, neuroinflammation, and extensive neuronal atrophy, characterized by progressive motor dysfunction, dystonia, and memory loss, mimicking those observed in humans. We established a mouse model of dystonia by administering 3-NP. Given the reported neuroprotective effects of the endothelial growth factor angiopoietin-1 (Ang-1) and the anti-inflammatory integrin αvβ3 binding peptide C16, we performed this study to evaluate their combined effects on 3-NP striatal toxicity and their therapeutic potential with multiple methods using an in vivo mouse model. Sixty mice were equally and randomly divided into three groups: control, 3-NP treatment, and 3-NP+C16+Ang-1 treatment. Behavioral and electrophysiological tests were conducted and the effect of the combined C16+Ang-1 treatment on neural function recovery was determined. We found that C16+Ang-1 treatment alleviated 3-NP-induced behavioral, biochemical, and cellular alterations in the central nervous system and promoted function recovery by restoring vascular permeability and reducing inflammation in the micro-environment. In conclusion, our results confirmed the neuroprotective effect of combined C16+Ang-1 treatment and suggest their potential as a complementary therapeutic against 3-NP-induced dystonia.
Collapse
Affiliation(s)
- Xiao-Xiao Fu
- Institute of Anatomy and Cell Biology and Sir Run Run Shaw Hospital, Medical College, Zhejiang University, Hangzhou, China
| | - Hua-Ying Cai
- Department of Neurology, Sir Run Run Shaw Hospital, Medical College, Zhejiang University, Hangzhou, China
| | - Hong Jiang
- Department of Electrophysiology, Sir Run Run Shaw Hospital, Medical College, Zhejiang University, Hangzhou, China
| | - Shu Han
- Institute of Anatomy and Cell Biology and Sir Run Run Shaw Hospital, Medical College, Zhejiang University, Hangzhou, China
| |
Collapse
|
13
|
STIM1, STIM2, and PDI Participate in Cellular Fate Decisions in Low Energy Availability Induced by 3-NP in Male Rats. Neurotox Res 2021; 39:1459-1469. [PMID: 34173958 DOI: 10.1007/s12640-021-00388-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 06/10/2021] [Accepted: 06/11/2021] [Indexed: 10/21/2022]
Abstract
Impairment in the energetic function of mitochondria is seen in many neurologic disorders like neurodegeneration. It disrupts ATP production, gives rise to oxidative stress, and ultimately challenges the viability of neurons. In this situation, neural cells use complex crosstalk between various subcellular elements to make live-or-die decisions about their fate. This study aimed to describe a part of the molecular changes and the outcome of the cellular decision during an energy crisis in neural cells in a time-dependent manner in the striatum. Adult male rats were treated with single or multiple 3-nitropropionic acid (3-NP) doses, a mitochondrial toxin, for 1 to 5 days. We found that protein disulfide isomerase (PDI) activity was decreased on the third day and remained lower than the control group up to the fifth day. However, on the day 1 and day 2 of 3-NP treatment, the stromal interaction molecule (STIM) 1 and STIM2 significantly decreased. On the third day, STIM1 and STIM2 were increased and reached the level of controls and remained the same up to the fifth day. In this condition, cell death was significantly higher than the controls from the third day up to the fifth day. We also showed that even a single dose of 3-NP reduced the brain volume. These data suggest that the STIM1, STIM2, and PDI activity changes may be involved in the outcome of cellular fate decisions. It also suggests that cells may reduce STIM1 and STIM2 as a defense mechanism against low energy availability.
Collapse
|
14
|
Lum PT, Sekar M, Gan SH, Bonam SR, Shaikh MF. Protective Effect of Natural Products against Huntington's Disease: An Overview of Scientific Evidence and Understanding Their Mechanism of Action. ACS Chem Neurosci 2021; 12:391-418. [PMID: 33475334 DOI: 10.1021/acschemneuro.0c00824] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Huntington's disease (HD), a neurodegenerative disease, normally starts in the prime of adult life, followed by a gradual occurrence of characteristic psychiatric disturbances and cognitive and motor dysfunction. To the best of our knowledge, there is no treatment available to completely mitigate the progression of HD. Among various therapeutic approaches, exhaustive literature reports have confirmed the medicinal benefits of natural products in HD experimental models. Building on this information, this review presents a brief overview of the neuroprotective mechanism(s) of natural products against in vitro/in vivo models of HD. Relevant studies were identified from several scientific databases, including PubMed, ScienceDirect, Scopus, and Google Scholar. After screening through literature from 2005 to the present, a total of 14 medicinal plant species and 30 naturally isolated compounds investigated against HD based on either in vitro or in vivo models were included in the present review. Behavioral outcomes in the HD in vivo model showed that natural compounds significantly attenuated 3-nitropropionic acid (3-NP) induced memory loss and motor incoordination. The biochemical alteration has been markedly alleviated with reduced lipid peroxidation, increased endogenous enzymatic antioxidants, reduced acetylcholinesterase activity, and increased mitochondrial energy production. Interestingly, following treatment with certain natural products, 3-NP-induced damage in the striatum was ameliorated, as seen histologically. Overall, natural products afforded varying degrees of neuroprotection in preclinical studies of HD via antioxidant and anti-inflammatory properties, preservation of mitochondrial function, inhibition of apoptosis, and induction of autophagy.
Collapse
Affiliation(s)
- Pei Teng Lum
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Health Sciences, Universiti Kuala Lumpur Royal College of Medicine Perak, Ipoh, 30450 Perak, Malaysia
| | - Mahendran Sekar
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Health Sciences, Universiti Kuala Lumpur Royal College of Medicine Perak, Ipoh, 30450 Perak, Malaysia
| | - Siew Hua Gan
- School of Pharmacy, Monash University Malaysia, Bandar Sunway, 47500 Selangor Darul Ehsan, Malaysia
| | - Srinivasa Reddy Bonam
- Institut National de la Santé et de la Recherche Médicale, Centre de Recherche des Cordeliers, Equipe-Immunopathologie et Immunointervention Thérapeutique, Sorbonne Université, Université de Paris, Paris 75006, France
| | - Mohd. Farooq Shaikh
- Neuropharmacology Research Strength, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, 47500 Selangor, Malaysia
| |
Collapse
|
15
|
Ye Q, Li J, Li T, Ruan J, Wang H, Wang F, Zhang X. Development and evaluation of puerarin-loaded controlled release nanostructured lipid carries by central composite design. Drug Dev Ind Pharm 2021; 47:113-125. [PMID: 33289579 DOI: 10.1080/03639045.2020.1862170] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The present work was aimed at developing optimized puerarin-loaded nanostructured lipid carrier (PA-NLC) on base of phospholipid complex. The puerarin phospholipid complex (PA-PC) was prepared by a solvent evaporation method and the formulation was confirmed according to the encapsulation efficiency (EE%). The hepatoprotective effect of PA-NLC on BRL 3A cell stimulated by ethanol was carried out using MTT assay, and cell imaging was done using an inverted phase contrast tissue culture microscope. The NLCs were produced by nanoemulsion method using glyceryl monostearate (GMS), olive oil, and Poloxamer 188 as the solid, liquid lipids, and surfactant. A single factor analysis determined the optimal ratio of solid lipid to liquid lipid. A three-factor, five-level central composite design (CCD) was used to predict response variables and construct 3D-response contour plots. The independent variables, which were the concentrations of PA-PC, total lipid, and surfactant affected particle size, surface charge of the nanoparticles, and the EE. An optimized NLC composition consisted of 31.25% PA-PC, 46.87% GMS, 9.38% olive oil, and 18.75% Poloxamer 188. The NLC had an average particle size of 159 ± 1.1 nm, zeta potential of -28.3 mV, EE% of 92.16%, and drug loading (DL%) of 5.75%. Differential scanning calorimetry (DSC), X-ray diffraction (XRD), and Fourier transform infrared spectroscopy (FTIR) studies showed that the formation of NLC was accompanied by changes in crystallinity and intermolecular interaction. The PA-NLC system showed an enhanced therapeutic effect on alcohol-induced cell injury of BRL-3A.
Collapse
Affiliation(s)
- Qingzhuo Ye
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, China
| | - Jinghong Li
- School of Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, China
| | - Ting Li
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, China
| | - Jingxin Ruan
- School of Functional Food and Wine, Shenyang Pharmaceutical University, Shenyang, China
| | - Hongyue Wang
- School of Functional Food and Wine, Shenyang Pharmaceutical University, Shenyang, China
| | - Fang Wang
- School of Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, China
| | - Xiangrong Zhang
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, China.,School of Functional Food and Wine, Shenyang Pharmaceutical University, Shenyang, China
| |
Collapse
|
16
|
Zhou Y, Xue R, Wang J, Ren H. Puerarin inhibits hepatocellular carcinoma invasion and metastasis through miR-21-mediated PTEN/AKT signaling to suppress the epithelial-mesenchymal transition. ACTA ACUST UNITED AC 2020; 53:e8882. [PMID: 32294699 PMCID: PMC7162583 DOI: 10.1590/1414-431x20198882] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 10/10/2019] [Indexed: 02/07/2023]
Abstract
Hepatocellular carcinoma (HCC) is one of the most common primary malignant tumors of the liver worldwide. Liver resection and transplantation are currently the only effective treatments; however, recurrence and metastasis rates are still high. Previous studies have shown that the epithelial-mesenchymal transition (EMT) is a key step in HCC invasion and metastasis. Inhibition of EMT has become a new therapeutic strategy for tumors. Recently, puerarin, a well-characterized component of traditional Chinese medicine, has been isolated from Pueraria radix and exerts positive effects on many diseases, particularly cancers. In this study, CCK-8, EdU immunofluorescence, colony formation, wound healing, and migration assays were used to detect the effects of puerarin on HCC cells. We further analyzed the relationship between puerarin and miR-21/PTEN/EMT markers in HCC cell lines. Our results showed that HCC cell proliferation, migration, invasion, tumor formation, and metastasis were reduced by puerarin in vitro and in vivo. Additionally, puerarin inhibited the EMT process of HCC by affecting the expression of Slug and Snail. Moreover, oncogenic miR-21 was inhibited by puerarin, coupled with an increase in the tumor suppressor gene PTEN. Increasing miR-21 expression or decreasing PTEN expression reversed the inhibition effects of puerarin in HCC. These data confirmed that puerarin affects HCC through the miR-21/PTEN/EMT regulatory axis. Overall, puerarin may represent a chemopreventive and/or chemotherapeutic agent for HCC treatment.
Collapse
Affiliation(s)
- Yuan Zhou
- Department of Hepatobiliary Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, Jiangsu Province, China
| | - Ruifeng Xue
- Department of Hepatobiliary Surgery, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Jinglin Wang
- Department of Hepatobiliary Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, Jiangsu Province, China
| | - Haozhen Ren
- Department of Hepatobiliary Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, Jiangsu Province, China
| |
Collapse
|
17
|
Salman M, Tabassum H, Parvez S. Piperine mitigates behavioral impairments and provides neuroprotection against 3-nitropropinoic acid-induced Huntington disease-like symptoms. Nutr Neurosci 2020; 25:100-109. [DOI: 10.1080/1028415x.2020.1721645] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Mohd Salman
- Department of Medical Elementology and Toxicology, Jamia Hamdard, New Delhi, India
| | - Heena Tabassum
- Department of Medical Elementology and Toxicology, Jamia Hamdard, New Delhi, India
| | - Suhel Parvez
- Department of Medical Elementology and Toxicology, Jamia Hamdard, New Delhi, India
| |
Collapse
|
18
|
Calabrese EJ, Bhatia TN, Calabrese V, Dhawan G, Giordano J, Hanekamp YN, Kapoor R, Kozumbo WJ, Leak RK. Cytotoxicity models of Huntington’s disease and relevance of hormetic mechanisms: A critical assessment of experimental approaches and strategies. Pharmacol Res 2019; 150:104371. [DOI: 10.1016/j.phrs.2019.104371] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 07/22/2019] [Accepted: 07/23/2019] [Indexed: 12/17/2022]
|
19
|
Rutin and Selenium Co-administration Reverse 3-Nitropropionic Acid-Induced Neurochemical and Molecular Impairments in a Mouse Model of Huntington’s Disease. Neurotox Res 2019; 37:77-92. [DOI: 10.1007/s12640-019-00086-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 06/29/2019] [Accepted: 07/02/2019] [Indexed: 12/14/2022]
|
20
|
Andrade S, Ramalho MJ, Loureiro JA, Pereira MDC. Natural Compounds for Alzheimer's Disease Therapy: A Systematic Review of Preclinical and Clinical Studies. Int J Mol Sci 2019; 20:E2313. [PMID: 31083327 PMCID: PMC6539304 DOI: 10.3390/ijms20092313] [Citation(s) in RCA: 127] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 05/04/2019] [Accepted: 05/07/2019] [Indexed: 12/31/2022] Open
Abstract
Alzheimer's Disease (AD) is a neurodegenerative disorder related with the increase of age and it is the main cause of dementia in the world. AD affects cognitive functions, such as memory, with an intensity that leads to several functional losses. The continuous increase of AD incidence demands for an urgent development of effective therapeutic strategies. Despite the extensive research on this disease, only a few drugs able to delay the progression of the disease are currently available. In the last years, several compounds with pharmacological activities isolated from plants, animals and microorganisms, revealed to have beneficial effects for the treatment of AD, targeting different pathological mechanisms. Thus, a wide range of natural compounds may play a relevant role in the prevention of AD and have proven to be efficient in different preclinical and clinical studies. This work aims to review the natural compounds that until this date were described as having significant benefits for this neurological disease, focusing on studies that present clinical trials.
Collapse
Affiliation(s)
- Stephanie Andrade
- LEPABE, Department of Chemical Engineering, Faculty of Engineering of the University of Porto, 4200-465 Porto, Portugal.
| | - Maria João Ramalho
- LEPABE, Department of Chemical Engineering, Faculty of Engineering of the University of Porto, 4200-465 Porto, Portugal.
| | - Joana Angélica Loureiro
- LEPABE, Department of Chemical Engineering, Faculty of Engineering of the University of Porto, 4200-465 Porto, Portugal.
| | - Maria do Carmo Pereira
- LEPABE, Department of Chemical Engineering, Faculty of Engineering of the University of Porto, 4200-465 Porto, Portugal.
| |
Collapse
|
21
|
Zhong Y, Huang YL, Hu YM, Zhu LR, Zhao YS. Puerarin alleviate radicular pain from lumbar disc herniation by inhibiting ERK-dependent spinal microglia activation. Neuropeptides 2018; 72:30-37. [PMID: 30466510 DOI: 10.1016/j.npep.2018.10.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Revised: 09/14/2018] [Accepted: 10/09/2018] [Indexed: 12/16/2022]
Abstract
Lumbar disc herniation is a common cause of radicular pain, but the mechanism remains ambiguous and the treatment stays unsatisfied. Many studies revealed a traditional Chinese medicine puerarin may moderate chronic pain from diabetes and nerve injury. Thus far, the role and mechanism of puerarin in radicular pain is still unknown. In this study, by using a rat model of lumbar disc herniation, which was induced by autologous nucleus pulposus (NP) implantation, the analgesic effect of puerarin on radicular pain was tested. Puerarin was delivered intraperitoneally form 1 h before surgery, and once daily for 7 days. The results demonstrated that NP implantation induced long-lasting pain, characterized by decrease of paw withdrawal threshold (PWT) and paw withdrawal latency (PWL) in ipsilateral hindpaws, as long as day 20 after surgery. Spinal phosphorylated extracellular signal-regulated kinase (p-ERK) was up-regulated from day 5 to day 20 after surgery in ipsilateral but not contralateral side, and p-ERK was mainly co-localized with microglia. Puerarin decreased p-ERK expression from day 7 to day 20 after surgery. Puerarin or ERK inhibitor PD98059 alleviated pain behaviors, decreased expression of microglia marker ionized calcium-binding adaptor molecule 1 (Iba-1) in rats with NP implantation. The results suggested puerarin may alleviate radicular pain by inhibiting ERK-dependent or accompanied spinal microglia activation.
Collapse
Affiliation(s)
- Yi Zhong
- Key Laboratory of Neuroscience, School of Basic Medical Science, Guangzhou Medical University, Guangzhou 511436, China; Institute of Neuroscience and Department of Neurology of the Second Affiliated Hospital of Guangzhou Medical University, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou 510260, China.
| | - Yang-Liang Huang
- Department of Spine Surgery, First Affiliated Hospital of Sun Yet-Sen University, Guangzhou 510080, China
| | - Yu-Ming Hu
- Key Laboratory of Neuroscience, School of Basic Medical Science, Guangzhou Medical University, Guangzhou 511436, China; Institute of Neuroscience and Department of Neurology of the Second Affiliated Hospital of Guangzhou Medical University, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou 510260, China
| | - Li-Rong Zhu
- Key Laboratory of Neuroscience, School of Basic Medical Science, Guangzhou Medical University, Guangzhou 511436, China; Institute of Neuroscience and Department of Neurology of the Second Affiliated Hospital of Guangzhou Medical University, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou 510260, China
| | - Yuan-Shu Zhao
- Key Laboratory of Neuroscience, School of Basic Medical Science, Guangzhou Medical University, Guangzhou 511436, China; Institute of Neuroscience and Department of Neurology of the Second Affiliated Hospital of Guangzhou Medical University, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou 510260, China
| |
Collapse
|
22
|
Zhou BG, Zhao HM, Lu XY, Zhou W, Liu FC, Liu XK, Liu DY. Effect of Puerarin Regulated mTOR Signaling Pathway in Experimental Liver Injury. Front Pharmacol 2018; 9:1165. [PMID: 30405406 PMCID: PMC6206176 DOI: 10.3389/fphar.2018.01165] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 09/25/2018] [Indexed: 12/29/2022] Open
Abstract
It is known that excessive hepatocellular apoptosis is a typical characteristic of hepatic disease, and is regulated by the mammalian target of rapamycin (mTOR) signaling pathway. As the main active component of Kudzu (Pueraria lobata) roots, which is frequently used to treat hepatic diseases, Puerarin (Pue) has been reported to alleviate and protect against hepatic injury. However, it is unclear whether Pue can inhibit mTOR signaling to prevent excessive apoptosis in the treatment of hepatic diseases. In the present study, Pue effectively ameliorated pathological injury of the liver, decreased serum enzyme (ALT, AST, γ-GT, AKP, DBIL, and TBIL) levels, regulated the balance between pro-inflammatory (TNF-α, IL-1β, IL-4, IL-6, and TGF-β1) and anti-inflammatory cytokines (IL-10), restored the cell cycle and inhibited hepatocellular apoptosis and caspase-3 expression in rats with liver injury induced by 2-AAF/PH. Pue inhibited p-mTOR, p-AKT and Raptor activity, and increased Rictor expression in the liver tissues of rats with experimental liver injury. These results indicated that Pue effectively regulated the activation of mTOR signaling pathway in the therapeutic and prophylactic process of Pue on experimental liver injury.
Collapse
Affiliation(s)
- Bu-Gao Zhou
- Science and Technology College, Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Hai-Mei Zhao
- School of Basic Medical Sciences, Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Xiu-Yun Lu
- Science and Technology College, Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Wen Zhou
- Science and Technology College, Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Fu-Chun Liu
- Department of Postgraduate, Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Xue-Ke Liu
- Department of Postgraduate, Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Duan-Yong Liu
- Science and Technology College, Jiangxi University of Traditional Chinese Medicine, Nanchang, China.,Key Laboratory of Pharmacology of Traditional Chinese Medicine in Jiangxi, Nanchang, China
| |
Collapse
|
23
|
Sun Y, Zhang H, Cheng M, Cao S, Qiao M, Zhang B, Ding L, Qiu F. New hepatoprotective isoflavone glucosides from Pueraria lobata (Willd.) Ohwi. Nat Prod Res 2018; 33:3485-3492. [PMID: 29968479 DOI: 10.1080/14786419.2018.1484461] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Two new isoflavone glucosides, 3'-methoxyneopuerarin A (1) and 3'-methoxyneopuerarin B (2), together with nine known isoflavones including puerarin (3), neopuerarin A (4), neopuerarin B (5), daidzin (6), daidzein (7), 3'-methoxypuerarin (PG-3) (8), puerarin xyloside (9), mirificin (10), 3'-hydroxypuerarin (11) were isolated from the water extraction of the dried roots of Pueraria lobata (Willd.) Ohwi. Their structures were elucidated by the means of spectroscopic and chromatographic analysis methods. All compounds were evaluated for their hepatoprotective activity on HepG2 cells. All of them showed statistically significant hepatoprotective effect.
Collapse
Affiliation(s)
- Yingjie Sun
- Tianjin State Key Laboratory of Modern Chinese Medicine, Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine , Tianjin , P.R. China.,School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine , Tianjin , P.R. China
| | - Hongmin Zhang
- Tianjin State Key Laboratory of Modern Chinese Medicine, Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine , Tianjin , P.R. China.,School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine , Tianjin , P.R. China
| | - Ming Cheng
- Tianjin State Key Laboratory of Modern Chinese Medicine, Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine , Tianjin , P.R. China.,School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine , Tianjin , P.R. China
| | - Shijie Cao
- Tianjin State Key Laboratory of Modern Chinese Medicine, Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine , Tianjin , P.R. China
| | - Miao Qiao
- Tianjin State Key Laboratory of Modern Chinese Medicine, Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine , Tianjin , P.R. China.,School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine , Tianjin , P.R. China
| | - Boli Zhang
- Tianjin State Key Laboratory of Modern Chinese Medicine, Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine , Tianjin , P.R. China
| | - Liqin Ding
- Tianjin State Key Laboratory of Modern Chinese Medicine, Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine , Tianjin , P.R. China
| | - Feng Qiu
- Tianjin State Key Laboratory of Modern Chinese Medicine, Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine , Tianjin , P.R. China.,School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine , Tianjin , P.R. China
| |
Collapse
|
24
|
Tong J, Hu XJ, Cai WQ, Dai X, Wang L. Puerarin alleviates delayed-type hypersensitivity via cytokine inhibition by modulating Th1/Th2 balance. Exp Ther Med 2018; 15:4441-4447. [PMID: 29731828 PMCID: PMC5920569 DOI: 10.3892/etm.2018.5990] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2017] [Accepted: 03/08/2018] [Indexed: 01/08/2023] Open
Abstract
Puerarin has long been used as a traditional Chinese medicine, which possesses various physiological properties, including anti-inflammation, anti-oxidative, anti-diabetic and anti-cancer activities. The aim of the current study was to investigate the effect of puerarin on delayed-type hypersensitivity (DTH) induced by ovalbumin (OVA) in mice and explore its underlying mechanisms. The results showed that puerarin significantly attenuated DTH, resulting from a decrement in footpad swelling, reduction in inflammatory cell as well as a decline in anti-OVA IgG in serum. In the homogenized supernatant of footpad tissues, the classic Th1-cytokines, including interferon (IFN)-γ was suppressed following puerarin treatment. Furthermore, a high dose of puerarin inhibited interleukin (IL)-4 production, the classic Th2-cytokine. The concanavalin A stimulation and MTT assays indicated a suppressive effect of puerarin on Th1 response via decreasing IFN-γ production in OVA-primed lymphocytes. Detailed studies revealed that puerarin modulated the Th1/Th2 balance in DTH responses, attributing to lower T-bet/GATA binding protein-3 mRNA and protein level ratios, which led to the shift change of IFN-γ/IL-4 with puerarin treatment. These findings demonstrate that puerarin alleviated inflammation in DTH triggered by OVA application via curbing inflammatory cytokines by modulating the Th1/Th2 balance. These results suggest that puerarin may be an alternative therapeutic option for the treatment of DTH.
Collapse
Affiliation(s)
- Jing Tong
- Aristogenesis Genetic Laboratory, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430015, P.R. China
| | - Xi-Jiang Hu
- Aristogenesis Genetic Laboratory, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430015, P.R. China
| | - Wen-Qian Cai
- Aristogenesis Genetic Laboratory, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430015, P.R. China
| | - Xiang Dai
- Aristogenesis Genetic Laboratory, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430015, P.R. China
| | - Lei Wang
- School of Laboratory Medicine, Hubei University of Chinese Medicine, Wuhan, Hubei 430065, P.R. China
| |
Collapse
|
25
|
Wu JY, Li YJ, Han M, Hu XB, Yang L, Wang JM, Xiang DX. A microemulsion of puerarin–phospholipid complex for improving bioavailability: preparation, in vitro and in vivo evaluations. Drug Dev Ind Pharm 2018. [PMID: 29513046 DOI: 10.1080/03639045.2018.1449856] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Jun-Yong Wu
- Department of Pharmacy, the Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Key Laboratory of Traditional Chinese Medicine Preparations of Hunan Province, the Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Provincial Engineering Research Center of Translational Medicine and Innovative Drug, Changsha, Hunan, China
| | - Yong-Jiang Li
- Department of Pharmacy, the Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Key Laboratory of Traditional Chinese Medicine Preparations of Hunan Province, the Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Provincial Engineering Research Center of Translational Medicine and Innovative Drug, Changsha, Hunan, China
| | - Meng Han
- Department of Pharmacy, the Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Key Laboratory of Traditional Chinese Medicine Preparations of Hunan Province, the Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Provincial Engineering Research Center of Translational Medicine and Innovative Drug, Changsha, Hunan, China
| | - Xiong-Bin Hu
- Department of Pharmacy, the Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Key Laboratory of Traditional Chinese Medicine Preparations of Hunan Province, the Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Provincial Engineering Research Center of Translational Medicine and Innovative Drug, Changsha, Hunan, China
| | - Le Yang
- Department of Pharmacy, the Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Key Laboratory of Traditional Chinese Medicine Preparations of Hunan Province, the Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Provincial Engineering Research Center of Translational Medicine and Innovative Drug, Changsha, Hunan, China
| | - Jie-Min Wang
- Department of Pharmacy, the Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Key Laboratory of Traditional Chinese Medicine Preparations of Hunan Province, the Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Provincial Engineering Research Center of Translational Medicine and Innovative Drug, Changsha, Hunan, China
| | - Da-Xiong Xiang
- Department of Pharmacy, the Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Key Laboratory of Traditional Chinese Medicine Preparations of Hunan Province, the Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Provincial Engineering Research Center of Translational Medicine and Innovative Drug, Changsha, Hunan, China
- Institute of Clinical Pharmacy, the Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
26
|
Liu X, Li S, Li Y, Cheng B, Tan B, Wang G. Puerarin Inhibits Proliferation and Induces Apoptosis by Upregulation of miR-16 in Bladder Cancer Cell Line T24. Oncol Res 2018; 26:1227-1234. [PMID: 29422113 PMCID: PMC7844627 DOI: 10.3727/096504018x15178736525106] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Bladder cancer (BC) is a common disease of the urinary system. Puerarin is a flavonoid extracted from Pueraria lobata. However, the role of puerarin in BC remains unclear. Hence, this study aimed to investigate the effect of puerarin on BC cells. Cell viability, proliferation, and apoptosis were measured by CCK-8, BrdU assay, and flow cytometry analysis, respectively. The expressions of miR-16, apoptosis-related factors, and the main factors of the NF-κB pathway were analyzed by qRT-PCR and Western blot. In this study, we found that cell viability and proliferation were significantly reduced, cell apoptosis was enhanced, and the mRNA level of miR-16 was upregulated in puerarin-treated T24 cells. Further, silencing of miR-16 inhibited the decrease in cell viability and the increase in apoptosis. The expression of main factors involved in the NF-κB signaling pathway was downregulated in the puerarin group, while miR-16 silencing alleviated these downregulations. More importantly, puerarin deactivated the NF-κB signaling pathway via upregulation of miR-16. Also, miR-16 downregulated COX-2 expression via deactivation of the NF-κB signaling pathway. This study demonstrated that puerarin could inhibit cell proliferation, promote cell apoptosis, and deactivate NF-κB signaling pathway via upregulation of miR-16 in T24 cells.
Collapse
Affiliation(s)
- Xiaoyun Liu
- Department of Urology, Shengli Oilfield Central Hospital, Dongying, Shandong, P.R. China
| | - Shuguang Li
- Department of Urology, Shengli Oilfield Central Hospital, Dongying, Shandong, P.R. China
| | - Yanyan Li
- Department of Urology, Shengli Oilfield Central Hospital, Dongying, Shandong, P.R. China
| | - Bo Cheng
- Department of Urology, Shengli Oilfield Central Hospital, Dongying, Shandong, P.R. China
| | - Bo Tan
- Department of Urology, Shengli Oilfield Central Hospital, Dongying, Shandong, P.R. China
| | - Gang Wang
- Department of Urology, Shengli Oilfield Central Hospital, Dongying, Shandong, P.R. China
| |
Collapse
|
27
|
Wu H, Zhao G, Jiang K, Chen X, Zhu Z, Qiu C, Deng G. Puerarin Exerts an Antiinflammatory Effect by Inhibiting NF-kB and MAPK Activation in Staphylococcus aureus-Induced Mastitis. Phytother Res 2016; 30:1658-1664. [PMID: 27335240 DOI: 10.1002/ptr.5666] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Revised: 03/18/2016] [Accepted: 05/20/2016] [Indexed: 11/07/2022]
Abstract
Mastitis is defined as the inflammation of the mammary gland. There is generally no effective treatment for mastitis in animals. Puerarin, extracted from Radix puerariae, has been proven to possess many biological activities. The present study aims to reveal the potential mechanism that is responsible for the antiinflammatory action of puerarin in Staphylococcus aureus (S. aureus)-induced mastitis in mice. Histopathological changes showed that puerarin ameliorated the inflammatory injury induced by S. aureus. Quantitative real-time polymerase chain reaction and ELISA analysis indicated that puerarin not only suppressed the production of pro-inflammatory cytokines such as TNF-α, IL-1β, and IL-6 but also promoted the secretion of IL-10. Toll-like receptor 2 (TLR2) is important in the immune defense against S. aureus infection. Research in molecular biology has shown that the expression of TLR2 was inhibited with administration of puerarin. Further studies were performed on NF-kB and mitogen-activated protein kinase signaling pathways using western blot. The results demonstrated that puerarin suppressed phosphorylated IkBα, p65, p38, extracellular signal-regulated kinase 1and 2 (ERK), and c-Jun N-terminal kinase (JNK) in a dose-dependent manner. All of the results suggested that puerarin may be a potential therapy for treating mastitis. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Haichong Wu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Gan Zhao
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Kangfeng Jiang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Xiuying Chen
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Zhe Zhu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Changwei Qiu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Ganzhen Deng
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China.
| |
Collapse
|
28
|
Solanki I, Parihar P, Parihar MS. Neurodegenerative diseases: From available treatments to prospective herbal therapy. Neurochem Int 2016; 95:100-8. [PMID: 26550708 DOI: 10.1016/j.neuint.2015.11.001] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Revised: 10/23/2015] [Accepted: 11/03/2015] [Indexed: 11/23/2022]
Abstract
Neurodegenerative diseases such as Alzheimer's disease, Parkinson's disease and many others represent a relevant health problem with age worldwide. Efforts have been made in recent years to discover the mechanism of neurodegenerative diseases and prospective therapy that can help to slow down the effects of the aging and prevent these diseases. Since pathogenesis of these diseases involves multiple factors therefore the important task for neuroscientists is to identify such multiple factors and prevent age-associated neurodegenerative diseases. For these neurodegenerative diseases yet we have only palliative therapies and none of them significantly capable to slow down or halt the underlying pathology. Polyphenolic compounds such as flavonoids present in vegetables and fruits are believed to have anti-aging properties and reduce the risk of neurodegenerative diseases. Despite their abundance, investigations into the benefits of these polyphenolic compounds in human health have only recently begun. Preclinical and clinical studies have demonstrated the potential beneficial effects of flavonoids in neurons. Although clinical trials on the effectiveness of dietary flavonoids to treat human diseases are limited but various animal models and cell culture studies have shown a great promise in developing these compounds as suitable therapeutic targets. In this review, we elaborate the neuroprotective properties of flavonoids especially their applications in prevention and intervention of different neurodegenerative diseases. Their multi-target properties may allow them to be potential dietary supplement in prevention and treatment of the age-associated neurodegenerative diseases.
Collapse
Affiliation(s)
- Isha Solanki
- School of Studies in Zoology & Biotechnology, Vikram University, Ujjain, MP, India
| | - Priyanka Parihar
- School of Studies in Zoology & Biotechnology, Vikram University, Ujjain, MP, India
| | | |
Collapse
|
29
|
|
30
|
Liu X, Mo Y, Gong J, Li Z, Peng H, Chen J, Wang Q, Ke Z, Xie J. Puerarin ameliorates cognitive deficits in streptozotocin-induced diabetic rats. Metab Brain Dis 2016; 31:417-23. [PMID: 26686502 DOI: 10.1007/s11011-015-9779-5] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Accepted: 12/11/2015] [Indexed: 01/21/2023]
Abstract
Previous research has indicated that Diabetes is a high risk of learning and memory deficits. Puerarin, an isoflavonoid extracted from Kudzu roots, has been reported to possess antioxidant, anti-inflammatory, anti-apoptotic and anti-diabetic properties which are useful in the treatment of various diseases. Recently, Puerarin was found to have the effects on learning and memory performances in humans and animal models. However, up to now, there is no detailed evidence on the effect of Puerarin on diabetes-associated cognitive decline (DACD). In this study, we designed to assess the effects of Puerarin on diabetes-associated cognitive decline (DACD) using a streptozotocin (STZ)-injected rat model and exploring its potential mechanism. Diabetic rats were treated with Puerarin (100 mg/kg per d) for 7 days. The learning and memory function was evaluated by morris water maze test. The acetylcholinesterase (AChE), choline acetylase (ChAT), oxidative indicators [malondialdehyde (MDA) and superoxide dismutase (SOD)] and inflammatory cytokine (TNF-a, IL-1β and IL-6) were measured in hippocampus by using corresponding commercial kits. mRNA and Protein levels of Bcl-2 were analyzed by RT-PCR and Westernblot. The results showed that supplementation of Puerarin improved the learning and memory performances compared with the STZ group by the morris water maze test. In addition, Puerarin supplement significantly prevented AChE and MDA activities, increased ChAT and SOD activities, and alleviated the protein level of TNF-α, IL-1β and IL-6 in the hippocampus compared with the STZ group. Moreover, the pretreatment with Puerarin also significantly increased the Bcl-2 expression. It is concluded that Puerarin possesses neuroprotection to ameliorate cognitive deficits in streptozotocin-induced diabetic rats by anti-inflammatory, antioxidant and antiapototic effects.
Collapse
Affiliation(s)
- Xianchu Liu
- Department of Applied Psychology, Hunan University of Chinese Medicine, Hunan, People's Republic of China
| | - Yanzhi Mo
- Department of Applied Psychology, Hunan University of Chinese Medicine, Hunan, People's Republic of China
| | - Jingbo Gong
- Department of Applied Psychology, Hunan University of Chinese Medicine, Hunan, People's Republic of China
| | - Zhuang Li
- Department of Applied Psychology, Hunan University of Chinese Medicine, Hunan, People's Republic of China
| | - Huan Peng
- Department of Applied Psychology, Hunan University of Chinese Medicine, Hunan, People's Republic of China
| | - Jiaxue Chen
- Department of Applied Psychology, Hunan University of Chinese Medicine, Hunan, People's Republic of China
| | - Qichao Wang
- Department of Applied Psychology, Hunan University of Chinese Medicine, Hunan, People's Republic of China
| | - Zhaowen Ke
- Department of Applied Psychology, Hunan University of Chinese Medicine, Hunan, People's Republic of China
| | - Jingtao Xie
- Department of Applied Psychology, Hunan University of Chinese Medicine, Hunan, People's Republic of China.
| |
Collapse
|
31
|
Zhao J, Luo D, Liang Z, Lao L, Rong J. Plant Natural Product Puerarin Ameliorates Depressive Behaviors and Chronic Pain in Mice with Spared Nerve Injury (SNI). Mol Neurobiol 2016; 54:2801-2812. [PMID: 27013468 DOI: 10.1007/s12035-016-9870-x] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2015] [Accepted: 03/17/2016] [Indexed: 12/16/2022]
Abstract
Simultaneous relief of the pain from body and brain remains an ongoing challenge. The aim of the present study was to clarify whether plant-derived isoflavone puerarin could ameliorate comorbid depression and pain. We investigated the effects of puerarin on depressive-like behaviors and neuropathic pain in C57BL/6 N mice with spared nerve injury (SNI). After SNI surgery, mice were allowed to recover spontaneously for 7 days and subsequently treated with puerarin, anti-depressant citalopram, and analgesic ibuprofen, alone or in combination, for 8 or 14 days. Forced swim test and tail suspension test were used to assess depressive-like behaviors, whereas von Frey filament test was used to estimate the sensitivity to the mechanical stimulation. Our results suggested that puerarin effectively ameliorated depression and pain in SNI mice although citalopram exhibited anti-depressant activity. In contrast, ibuprofen showed lesser activities against SNI-induced depression and pain. Further mechanistic studies revealed the uniqueness of puerarin as follows: (1) puerarin did not recover SNI-induced depletion of reduced glutathione and loss of superoxide dismutase (SOD), whereas citalopram and ibuprofen showed somewhat antioxidant activities; (2) puerarin markedly promoted the activation of CREB pathway although puerarin and citalopram activated ERK pathway to the same extent; (3) puerarin rapidly and persistently induced brain-derived neurotrophic factor (BDNF) expression whereas citalopram only induced BDNF expression after a prolonged stimulation. Collectively, these results suggest that puerarin may ameliorate the SNI-induced depression and pain via activating ERK, CREB, and BDNF pathways. Puerarin may serve as new lead compound for the development of novel therapeutics for depression and pain comorbidity.
Collapse
Affiliation(s)
- Jia Zhao
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, University of Hong Kong, 10 Sassoon Road, Pokfulam, Hong Kong
| | - Dan Luo
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, University of Hong Kong, 10 Sassoon Road, Pokfulam, Hong Kong
| | - Zhaohui Liang
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, University of Hong Kong, 10 Sassoon Road, Pokfulam, Hong Kong
| | - Lixing Lao
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, University of Hong Kong, 10 Sassoon Road, Pokfulam, Hong Kong
| | - Jianhui Rong
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, University of Hong Kong, 10 Sassoon Road, Pokfulam, Hong Kong.
| |
Collapse
|
32
|
Xue Q, Liu Y, He R, Yang S, Tong J, Li X, Chen Y, Xu X. Lyophilized Powder of Catalpol and Puerarin Protects Neurovascular Unit from Stroke. Int J Biol Sci 2016; 12:367-80. [PMID: 27019622 PMCID: PMC4807157 DOI: 10.7150/ijbs.14059] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Accepted: 12/08/2015] [Indexed: 01/06/2023] Open
Abstract
Hunting for an effective medicine for brain stroke has been a medical task in neuroscience for decades. The present research showed that the lyophilized Powder of Catalpol and Puerarin (C-P) in all the tested doses (65.4 mg/kg, 32.7 mg/kg, 16.4 mg/kg) significantly reduced the neurological deficiency, infarct volume and apoptotic cells in ischemic/reperfusion (I/R) rats. It also promoted astrocyte processes and prolonged neuron axons in infarct area. Further, it decreased MDA, NO, NF-κB/p65, TNF-α, IL-1β and IL-6 and enhanced the EPOR and GAF-43. 65.4 mg/kg and 32.7 mg/kg C-P could up-regulated EPO and VEGF significantly. In vitro, 49 μg/mL and 24.5 μg/mL C-P decreased the leakage of sodium fluorescein and increased the activity of γ-GTP. Additionally, it increased SOD and decreased MDA, NO, and LDH and decreased NF-κB/p65, TNF-α, IL-1β and IL-6 and unregulated EPO, EPOR, VEGF, and GAP-43. Only the dose of 49 μg/mL increased TEER and Claudin-5 and turned the typically damaged morphologies of neurons, astrocytes and endothelium into a favorable trend. These data imply that C-P improved the recovery of neurological deficiency in motor, sense, balance and reflex, and protected the whole NVU by anti-oxidative stress, anti-inflammation and up-regulating some protective factors. This research provides a candidate medicine for brain stroke and, at the same time, a pattern for drug study targeting NVU in vitro.
Collapse
Affiliation(s)
- Qiang Xue
- 1. College of Pharmaceutical Sciences & College of Chinese Medicine, Southwest University, Chongqing 400715, China
| | - Yang Liu
- 1. College of Pharmaceutical Sciences & College of Chinese Medicine, Southwest University, Chongqing 400715, China
| | - Ran He
- 1. College of Pharmaceutical Sciences & College of Chinese Medicine, Southwest University, Chongqing 400715, China
| | - Sheng Yang
- 1. College of Pharmaceutical Sciences & College of Chinese Medicine, Southwest University, Chongqing 400715, China
| | - Jie Tong
- 1. College of Pharmaceutical Sciences & College of Chinese Medicine, Southwest University, Chongqing 400715, China
| | - Xu Li
- 1. College of Pharmaceutical Sciences & College of Chinese Medicine, Southwest University, Chongqing 400715, China
| | - Yi Chen
- 1. College of Pharmaceutical Sciences & College of Chinese Medicine, Southwest University, Chongqing 400715, China
| | - Xiaoyu Xu
- 1. College of Pharmaceutical Sciences & College of Chinese Medicine, Southwest University, Chongqing 400715, China;; 2. Chongqing Engineering Research Center for Pharmacological Evaluation, Chongqing 400715, China;; 3. Institute of Chinese Medicine, Southwest University, Chongqing 400715, China
| |
Collapse
|
33
|
Yang X, Zhang H, Wang J, Zhang Z, Li C. Puerarin decreases bone loss and collagen destruction in rats with ligature-induced periodontitis. J Periodontal Res 2015; 50:748-57. [PMID: 25645818 DOI: 10.1111/jre.12261] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/15/2014] [Indexed: 01/18/2023]
Affiliation(s)
- X. Yang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine, Ministry of Education; School and Hospital of Stomatology; Wuhan University; Wuhan Hubei China
| | - H. Zhang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine, Ministry of Education; School and Hospital of Stomatology; Wuhan University; Wuhan Hubei China
- Department of Periodontology; School and Hospital of Stomatology; Wuhan University; Wuhan Hubei China
| | - J. Wang
- Department of Periodontics and Oral Medicine; College of Stomatology; Guangxi Medical University; Nanning Guangxi China
| | - Z. Zhang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine, Ministry of Education; School and Hospital of Stomatology; Wuhan University; Wuhan Hubei China
| | - C. Li
- Department of Periodontology; School and Hospital of Stomatology; Wuhan University; Wuhan Hubei China
| |
Collapse
|
34
|
Maji AK, Pandit S, Banerji P, Banerjee D. Pueraria tuberosa: a review on its phytochemical and therapeutic potential. Nat Prod Res 2014; 28:2111-27. [PMID: 24980468 DOI: 10.1080/14786419.2014.928291] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Amal K. Maji
- Department of Botany and Forestry, Vidyasagar University, Midnapore 721102, India
| | - Subrata Pandit
- Ulysses Research Foundation, 125, Rash Behari Avenue, Kolkata 700029, India
| | - Pratim Banerji
- Ulysses Research Foundation, 125, Rash Behari Avenue, Kolkata 700029, India
| | - Debdulal Banerjee
- Department of Botany and Forestry, Vidyasagar University, Midnapore 721102, India
| |
Collapse
|