1
|
Cui F, Mi H, Wang R, Du Y, Li F, Chang S, Su Y, Liu A, Shi M. The effect of chronic intermittent hypobaric hypoxia improving liver damage in metabolic syndrome rats through ferritinophagy. Pflugers Arch 2023; 475:1251-1263. [PMID: 37747537 DOI: 10.1007/s00424-023-02860-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 08/31/2023] [Accepted: 09/12/2023] [Indexed: 09/26/2023]
Abstract
Studies have confirmed that hepatic iron overload is one of the important factors causing liver damage in the metabolic syndrome (MS). As a special form of autophagy, ferritinophagy is involved in the regulation of iron metabolism. Our previous studies have shown that chronic intermittent hypobaric hypoxia (CIHH) can improve the iron metabolism disorder. The aim of this study was to investigate how CIHH improves liver damage through ferritinophagy in MS rats. Male Sprague-Dawley rats aged 8-10 weeks were randomly divided into four groups: control (CON), CIHH (exposed to hypoxia at a simulated altitude of 5000 m for 28 days, 6 h daily), MS model (induced by a 16-week high-fat diet and 10% fructose water feeding), and MS + CIHH (exposed to CIHH after a 16-week MS inducement) groups. Liver index, liver function, iron content, tissue morphology, oxidative stress, ferritinophagy, ferroptosis, and iron metabolism-related protein expression were measured, and the ferritinophagy flux in the liver was further analyzed. Compared with CON rats, MS rats had an increased liver index, damaged liver tissue and function, increased iron content and iron deposition, disrupted iron metabolism, significantly increased oxidative stress indicators in the liver, significantly upregulated expression of ferroptosis-related proteins, and downregulated expression of nuclear receptor coactivator 4 (NCOA4) and ferritinophagy flux. After CIHH treatment, the degree of liver damage and various abnormal indicators in MS rats were significantly improved. CIHH may improve liver damage by promoting NCOA4-mediated ferritinophagy, reducing iron overload and oxidative stress, and thereby alleviating ferroptosis in MS rats.
Collapse
Affiliation(s)
- Fang Cui
- Department of Clinical Laboratory, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei Province, 050000, People's Republic of China
- Department of Electron Microscope Laboratory, Hebei Medical University, Shijiazhuang, 050017, People's Republic of China
| | - Haichao Mi
- Department of Clinical Laboratory, Linyi People's Hospital, Linyi, 276003, People's Republic of China
| | - Ruotong Wang
- Department of Clinical Laboratory, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei Province, 050000, People's Republic of China
| | - Yutao Du
- Department of Clinical Laboratory, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei Province, 050000, People's Republic of China
| | - Fan Li
- Department of Pathology, Hebei Medical University, Shijiazhuang, 050017, People's Republic of China
| | - Shiyang Chang
- Department of Histology and Embryology, Hebei Medical University, Shijiazhuang, 050017, People's Republic of China
| | - Yangchen Su
- College of Basic Medicine, Hebei Medical University, Shijiazhuang, 050017, People's Republic of China
| | - Aijing Liu
- Department of Rheumatology and Immunology, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, People's Republic of China
| | - Min Shi
- Department of Clinical Laboratory, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei Province, 050000, People's Republic of China.
- Hebei Key Laboratory of Laboratory Medicine, Shijiazhuang, 050017, People's Republic of China.
| |
Collapse
|
2
|
Zhang L, Yin Y, Guo J, Jin L, Hou Z. Chronic intermittent hypobaric hypoxia ameliorates osteoporosis after spinal cord injury through balancing osteoblast and osteoclast activities in rats. Front Endocrinol (Lausanne) 2023; 14:1035186. [PMID: 37229453 PMCID: PMC10203702 DOI: 10.3389/fendo.2023.1035186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 03/27/2023] [Indexed: 05/27/2023] Open
Abstract
Introduction As a common complication of spinal cord injury (SCI), most SCI patients suffer from osteoporosis. In our previous study, chronic intermittent hypobaric hypoxia (CIHH) could promote bone fracture healing. We speculated that it may act a role in the progression of osteoporosis. The current study purposed to explore the role of CIHH in the osteoporosis triggered by SCI in rats. Methods A SCI-induced SCI model was established by completed transection at T9-T10 spinal cord of Wistar rats. One week after SCI, the rats were conducted to CIHH treatment (PB = 404 mmHg, Po2 = 84 mmHg) 6 hours a day for continuously 7 weeks. Results The results of X-radiography and Micro-CT assessment demonstrated that compared with sham rats, the areal bone mineral density (BMD), bone volume to tissue volume, volumetric BMD, trabecular thickness, trabecular number, and trabecular connectivity were decreased. Trabecular bone pattern factor, trabecular separation, as well as structure model index were increased at the distal femur and proximal tibia of SCI rats, which were effectively reversed by CIHH treatment. Histomorphometry showed that CIHH treatment increased bone formation of SCI rats, as evidenced by the increased osteoid formation, the decreased number and surface of TRAP-positive osteoclasts. Furthermore, ELISA and real time PCR results showed that the osteoblastogenesis-related biomarkers, such as procollagen type 1 N-terminal propeptide, osteocalcin in serum, as well as ALP and OPG mRNAs in bone tissue were decreased, while the osteoclastogenesis-related biomarkers, including scleorostin in serum and RANKL and TRAP mRNAs in bone tissue were increased in SCI rats. Importantly, the deviations of aforementioned biomarkers were improved by CIHH treatment. Mechanically, the protective effects of CIHH might be at least partly mediated by hypoxia-inducible factor-1 alpha (HIF-1α) signaling pathway. Conclusion The present study testified that CIHH treatment ameliorates osteoporosis after SCI by balancing osteoblast and osteoclast activities in rats.
Collapse
|
3
|
Liu SR, Ren D, Wu HT, Yao SQ, Song ZH, Geng LD, Wang PC. Reparative effects of chronic intermittent hypobaric hypoxia pre‑treatment on intervertebral disc degeneration in rats. Mol Med Rep 2022; 25:173. [PMID: 35315494 PMCID: PMC8971903 DOI: 10.3892/mmr.2022.12689] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 02/25/2022] [Indexed: 11/24/2022] Open
Abstract
Previous studies have indicated that chronic intermittent hypobaric hypoxia (CIHH) preconditioning can inhibit TNF-α and other related inflammatory cytokines and exerts protective effect on intervertebral disc degeneration disease (IDD) in rats; however, the mechanism is still unclear. The present study aimed to explore the repair mechanisms of CIHH on IDD in rats. In the experiment, 48 adult Sprague-Dawley rats were selected and randomly divided into an experimental group (CIHH-IDD), a degenerative group (IDD) and a control group (CON). The CIHH-IDD group of rats (n=16) were treated with CIHH (simulated 3000 m altitude, 5 h per day, 28 days; PO2=108.8 mmHg) before disc degeneration surgery. The IDD group of rats (n=16) underwent tail-vertebral intervertebral disc surgery to establish a model of intervertebral disc degeneration. The CON group of rats (n=16) did not receive any treatments. After surgery, the disc height index was calculated using X-ray analysis of rat tail vertebrae, the degeneration process was observed and repair was evaluated by chemically staining degenerative intervertebral disc tissue slices. The expression levels of basic fibroblast growth factor (bFGF), TGFβ1, Collagen I and Collagen II were measured in the intervertebral disc tissue using western blotting; while the expression levels of bFGF, TGFβ1 and hypoxia-inducible factor 1-α (HIF-1α) were measured in rat serum using ELISA. The results demonstrated that: i) The degree of intervertebral disc height degeneration in CIHH-IDD rats was significantly lower compared with that in IDD rats (P<0.05); ii) the expression levels of bFGF, TGFβ1 and HIF-1α were higher in CIHH-IDD rat serum compared with those in IDD rat serum (P<0.05); iii) optical microscopy revealed that the degree of disc degeneration was relatively mild in CIHH-IDD rats; and iv) the protein expression levels of bFGF, TGFβ1 and collagen II were increased in CIHH-IDD rat intervertebral disc tissues compared with those of IDD rats, while the overexpression of collagen I protein was inhibited. Overall, after CIHH pre-treatment, the expression levels of bFGF and TGFβ1 were up-regulated, which play notable roles in repairing degenerative intervertebral discs in rats.
Collapse
Affiliation(s)
- Shu-Ren Liu
- Major Laboratory of Orthopaedic Biomechanics in Hebei Province, Department of Orthopaedic Trauma Service Centre, The Third Hospital of Hebei Medical University, Hebei, Shijiazhuang 050051, P.R. China
| | - Dong Ren
- Major Laboratory of Orthopaedic Biomechanics in Hebei Province, Department of Orthopaedic Trauma Service Centre, The Third Hospital of Hebei Medical University, Hebei, Shijiazhuang 050051, P.R. China
| | - Hao-Tan Wu
- Major Laboratory of Orthopaedic Biomechanics in Hebei Province, Department of Orthopaedic Trauma Service Centre, The Third Hospital of Hebei Medical University, Hebei, Shijiazhuang 050051, P.R. China
| | - Shuang-Quan Yao
- Major Laboratory of Orthopaedic Biomechanics in Hebei Province, Department of Orthopaedic Trauma Service Centre, The Third Hospital of Hebei Medical University, Hebei, Shijiazhuang 050051, P.R. China
| | - Zhao-Hui Song
- Major Laboratory of Orthopaedic Biomechanics in Hebei Province, Department of Orthopaedic Trauma Service Centre, The Third Hospital of Hebei Medical University, Hebei, Shijiazhuang 050051, P.R. China
| | - Lin-Dan Geng
- Major Laboratory of Orthopaedic Biomechanics in Hebei Province, Department of Orthopaedic Trauma Service Centre, The Third Hospital of Hebei Medical University, Hebei, Shijiazhuang 050051, P.R. China
| | - Peng-Cheng Wang
- Major Laboratory of Orthopaedic Biomechanics in Hebei Province, Department of Orthopaedic Trauma Service Centre, The Third Hospital of Hebei Medical University, Hebei, Shijiazhuang 050051, P.R. China
| |
Collapse
|
4
|
Naryzhnaya NV, Maslov LN, Derkachev IA, Ma H, Zhang Y, Prasad NR, Singh N, Fu F, Pei JM, Sarybaev A, Sydykov A. The effect of adaptation to hypoxia on cardiac tolerance to ischemia/reperfusion. J Biomed Res 2022:1-25. [PMID: 37183617 PMCID: PMC10387748 DOI: 10.7555/jbr.36.20220125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
The acute myocardial infarction (AMI) and sudden cardiac death (SCD), both associated with acute cardiac ischemia, are one of the leading causes of adult death in economically developed countries. The development of new approaches for the treatment and prevention of AMI and SCD remains the highest priority for medicine. A study on the cardiovascular effects of chronic hypoxia (CH) may contribute to the development of these methods. Chronic hypoxia exerts both positive and adverse effects. The positive effects are the infarct-reducing, vasoprotective, and antiarrhythmic effects, which can lead to the improvement of cardiac contractility in reperfusion. The adverse effects are pulmonary hypertension and right ventricular hypertrophy. This review presents a comprehensive overview of how CH enhances cardiac tolerance to ischemia/reperfusion. It is an in-depth analysis of the published data on the underlying mechanisms, which can lead to future development of the cardioprotective effect of CH. A better understanding of the CH-activated protective signaling pathways may contribute to new therapeutic approaches in an increase of cardiac tolerance to ischemia/reperfusion.
Collapse
|
5
|
Shi ZJ, Cheng M, Liu YC, Fan XR, Zhang Y, Wei Y. Effect of chronic intermittent hypobaric hypoxia on heart rate variability in conscious rats. Clin Exp Pharmacol Physiol 2019; 47:60-66. [PMID: 31454428 DOI: 10.1111/1440-1681.13170] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 08/22/2019] [Indexed: 01/09/2023]
Abstract
To examine the effect of chronic intermittent hypobaric hypoxia (CIHH) on heart rate variability (HRV), male adult Sprague Dawley rats were exposed to hypoxia (oxygen 11.1%) in a hypobaric chamber for 42 days, 6 hours each day, simulating an altitude of 5000 m. The body weight and blood pressure of rats were recorded once a week, electrocardiograms were analyzed continuously using biotelemetry, before, during and after CIHH treatment each day, and HRV was evaluated using spectrum analysis. No significant difference of body weight and blood pressure was found between CIHH and control rats. After 4 weeks of CIHH treatment, total power (TP) and very low-frequency component (VLF) were lower in CIHH rats than in control rats under hypobaric hypoxia condition. During CIHH treatment, low frequency (LF) was higher in 1 week and lower in 5-6 weeks in CIHH rats than control rats under hypobaric hypoxia, but not normoxic conditions. The high-frequency component (HF) was not changed during CIHH treatment, so LF/HF increased initially, and then recovered under the hypobaric hypoxia condition following 3 weeks of CIHH treatment. In addition, the HR was increased in CIHH rats after 4 weeks of CIHH treatment compared with control rats. Furthermore, HRV was altered significantly in control rats, but not in CIHH rats exposed to acute normobaric hypoxia. These data suggest that CIHH treatment modulates cardiac autonomic activity adaptively and inhibits the acute normobaric hypoxia-induced changes in HRV.
Collapse
Affiliation(s)
- Zhang-Jing Shi
- Department of Cardiology, The First Affiliated Hospital of Southwest Medical University, Luzhou, China.,Key Laboratory of Medical Electrophysiology of Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China
| | - Ming Cheng
- Aerospace Center Hospital, Beijing, China
| | - Ying-Cai Liu
- Department of Cardiology, The First Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Xin-Rong Fan
- Department of Cardiology, The First Affiliated Hospital of Southwest Medical University, Luzhou, China.,Key Laboratory of Medical Electrophysiology of Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China
| | - Yi Zhang
- Department of Physiology, Hebei Medical University, Shijiazhuang, China
| | - Yan Wei
- Key Laboratory of Medical Electrophysiology of Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China.,Department of Physiology, Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
6
|
George SA, Hoeker G, Calhoun PJ, Entz M, Raisch TB, King DR, Khan M, Baker C, Gourdie RG, Smyth JW, Nielsen MS, Poelzing S. Modulating cardiac conduction during metabolic ischemia with perfusate sodium and calcium in guinea pig hearts. Am J Physiol Heart Circ Physiol 2019; 316:H849-H861. [PMID: 30707595 DOI: 10.1152/ajpheart.00083.2018] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We previously demonstrated that altering extracellular sodium (Nao) and calcium (Cao) can modulate a form of electrical communication between cardiomyocytes termed "ephaptic coupling" (EpC), especially during loss of gap junction coupling. We hypothesized that altering Nao and Cao modulates conduction velocity (CV) and arrhythmic burden during ischemia. Electrophysiology was quantified by optically mapping Langendorff-perfused guinea pig ventricles with modified Nao (147 or 155 mM) and Cao (1.25 or 2.0 mM) during 30 min of simulated metabolic ischemia (pH 6.5, anoxia, aglycemia). Gap junction-adjacent perinexal width ( WP), a candidate cardiac ephapse, and connexin (Cx)43 protein expression and Cx43 phosphorylation at S368 were quantified by transmission electron microscopy and Western immunoblot analysis, respectively. Metabolic ischemia slowed CV in hearts perfused with 147 mM Nao and 2.0 mM Cao; however, theoretically increasing EpC with 155 mM Nao was arrhythmogenic, and CV could not be measured. Reducing Cao to 1.25 mM expanded WP, as expected during ischemia, consistent with reduced EpC, but attenuated CV slowing while delaying arrhythmia onset. These results were further supported by osmotically reducing WP with albumin, which exacerbated CV slowing and increased early arrhythmias during ischemia, whereas mannitol expanded WP, permitted conduction, and delayed the onset of arrhythmias. Cx43 expression patterns during the various interventions insufficiently correlated with observed CV changes and arrhythmic burden. In conclusion, decreasing perfusate calcium during metabolic ischemia enhances perinexal expansion, attenuates conduction slowing, and delays arrhythmias. Thus, perinexal expansion may be cardioprotective during metabolic ischemia. NEW & NOTEWORTHY This study demonstrates, for the first time, that modulating perfusate ion composition can alter cardiac electrophysiology during simulated metabolic ischemia.
Collapse
Affiliation(s)
- Sharon A George
- Department of Biomedical Engineering and Mechanics, Virginia Polytechnic Institute and State University , Blacksburg, Virginia.,Center for Heart and Reparative Medicine Research, Virginia Tech Carilion Research Institute , Roanoke, Virginia
| | - Gregory Hoeker
- Center for Heart and Reparative Medicine Research, Virginia Tech Carilion Research Institute , Roanoke, Virginia
| | - Patrick J Calhoun
- Center for Heart and Reparative Medicine Research, Virginia Tech Carilion Research Institute , Roanoke, Virginia.,Department of Biological Sciences, Virginia Polytechnic Institute and State University , Blacksburg, Virginia
| | - Michael Entz
- Department of Biomedical Engineering and Mechanics, Virginia Polytechnic Institute and State University , Blacksburg, Virginia.,Center for Heart and Reparative Medicine Research, Virginia Tech Carilion Research Institute , Roanoke, Virginia
| | - Tristan B Raisch
- Center for Heart and Reparative Medicine Research, Virginia Tech Carilion Research Institute , Roanoke, Virginia.,Translational Biology, Medicine, and Health Graduate Program, Virginia Polytechnic Institute and State University , Blacksburg, Virginia
| | - D Ryan King
- Center for Heart and Reparative Medicine Research, Virginia Tech Carilion Research Institute , Roanoke, Virginia.,Translational Biology, Medicine, and Health Graduate Program, Virginia Polytechnic Institute and State University , Blacksburg, Virginia
| | - Momina Khan
- Department of Human Food Nutrition and Exercise, Virginia Polytechnic Institute and State University , Blacksburg, Virginia
| | - Chandra Baker
- Center for Heart and Reparative Medicine Research, Virginia Tech Carilion Research Institute , Roanoke, Virginia
| | - Robert G Gourdie
- Department of Biomedical Engineering and Mechanics, Virginia Polytechnic Institute and State University , Blacksburg, Virginia.,Center for Heart and Reparative Medicine Research, Virginia Tech Carilion Research Institute , Roanoke, Virginia
| | - James W Smyth
- Center for Heart and Reparative Medicine Research, Virginia Tech Carilion Research Institute , Roanoke, Virginia.,Department of Biological Sciences, Virginia Polytechnic Institute and State University , Blacksburg, Virginia
| | - Morten S Nielsen
- Department of Biomedical Sciences, University of Copenhagen , Copenhagen , Denmark
| | - Steven Poelzing
- Department of Biomedical Engineering and Mechanics, Virginia Polytechnic Institute and State University , Blacksburg, Virginia.,Center for Heart and Reparative Medicine Research, Virginia Tech Carilion Research Institute , Roanoke, Virginia.,Translational Biology, Medicine, and Health Graduate Program, Virginia Polytechnic Institute and State University , Blacksburg, Virginia
| |
Collapse
|
7
|
Aguilar M, González-Candia A, Rodríguez J, Carrasco-Pozo C, Cañas D, García-Herrera C, Herrera EA, Castillo RL. Mechanisms of Cardiovascular Protection Associated with Intermittent Hypobaric Hypoxia Exposure in a Rat Model: Role of Oxidative Stress. Int J Mol Sci 2018; 19:ijms19020366. [PMID: 29373484 PMCID: PMC5855588 DOI: 10.3390/ijms19020366] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 01/08/2018] [Accepted: 01/09/2018] [Indexed: 12/25/2022] Open
Abstract
More than 140 million people live and works (in a chronic or intermittent form) above 2500 m worldwide and 35 million live in the Andean Mountains. Furthermore, in Chile, it is estimated that 55,000 persons work in high altitude shifts, where stays at lowlands and interspersed with working stays at highlands. Acute exposure to high altitude has been shown to induce oxidative stress in healthy human lowlanders, due to an increase in free radical formation and a decrease in antioxidant capacity. However, in animal models, intermittent hypoxia (IH) induce preconditioning, like responses and cardioprotection. Here, we aimed to describe in a rat model the responses on cardiac and vascular function to 4 cycles of intermittent hypobaric hypoxia (IHH). Twelve adult Wistar rats were randomly divided into two equal groups, a four-cycle of IHH, and a normobaric hypoxic control. Intermittent hypoxia was induced in a hypobaric chamber in four continuous cycles (1 cycle = 4 days hypoxia + 4 days normoxia), reaching a barometric pressure equivalent to 4600 m of altitude (428 Torr). At the end of the first and fourth cycle, cardiac structural, and functional variables were determined by echocardiography. Thereafter, ex vivo vascular function and biomechanical properties were determined in femoral arteries by wire myography. We further measured cardiac oxidative stress biomarkers (4-Hydroxy-nonenal, HNE; nytrotirosine, NT), reactive oxygen species (ROS) sources (NADPH and mitochondrial), and antioxidant enzymes activity (catalase, CAT; glutathione peroxidase, GPx, and superoxide dismutase, SOD). Our results show a higher ejection and shortening fraction of the left ventricle function by the end of the 4th cycle. Further, femoral vessels showed an improvement of vasodilator capacity and diminished stiffening. Cardiac tissue presented a higher expression of antioxidant enzymes and mitochondrial ROS formation in IHH, as compared with normobaric hypoxic controls. IHH exposure determines a preconditioning effect on the heart and femoral artery, both at structural and functional levels, associated with the induction of antioxidant defence mechanisms. However, mitochondrial ROS generation was increased in cardiac tissue. These findings suggest that initial states of IHH are beneficial for cardiovascular function and protection.
Collapse
Affiliation(s)
- Miguel Aguilar
- Programa de Fisiopatología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago 7500922, Chile.
| | - Alejandro González-Candia
- Programa de Fisiopatología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago 7500922, Chile.
| | - Jorge Rodríguez
- Programa de Fisiopatología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago 7500922, Chile.
- Departamento de Kinesiología, Facultad de Medicina, Universidad de Chile, Santiago 8380453, Chile.
| | - Catalina Carrasco-Pozo
- Discovery Biology, Griffith Institute for Drug Discovery, Griffith University, Brisbane, QLD 4222, Australia.
- Departamento de Nutrición, Facultad de Medicina, Universidad de Chile, Santiago 8380453, Chile.
| | - Daniel Cañas
- Departamento de Ingeniería Mecánica, Facultad de Ingeniería, Universidad de Santiago de Chile, Santiago 9170125, Chile.
| | - Claudio García-Herrera
- Departamento de Ingeniería Mecánica, Facultad de Ingeniería, Universidad de Santiago de Chile, Santiago 9170125, Chile.
| | - Emilio A Herrera
- Programa de Fisiopatología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago 7500922, Chile.
- International Center for Andean Studies, Universidad de Chile, Putre, Chile.
| | - Rodrigo L Castillo
- Programa de Fisiopatología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago 7500922, Chile.
| |
Collapse
|
8
|
Zhang L, Guo H, Yuan F, Hong ZC, Tian YM, Zhang XJ, Zhang Y. Limb remote ischemia per-conditioning protects the heart against ischemia–reperfusion injury through the opioid system in rats. Can J Physiol Pharmacol 2018; 96:68-75. [PMID: 28763627 DOI: 10.1139/cjpp-2016-0585] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Remote ischemia per-conditioning (RPerC) has been demonstrated to have cardiac protection, but the underlying mechanism remains unclear. This study aimed to investigate the mechanism underlying cardiac protection of RPerC. Adult male Sprague–Dawley rats were used in this study. Cardiac ischemia/reperfusion (I/R) was induced by 30 min of occlusion and 3 h of reperfusion of the left anterior descending coronary artery. RPerC were performed by 5 min of occlusion of the right femoral artery followed by 5 min of reperfusion for three times during cardiac ischemia. The hemodynamics, left ventricular function, arrhythmia, and infarct area were measured. Protein expression levels of endothelial nitric oxide synthase (eNOS), inducible NOS (iNOS), protein kinase C-ε (PKCε), and PKCδ in the myocardium were assayed. During I/R, systolic artery pressure and left ventricular function were decreased, infarct area was increased, and arrhythmia score was increased (P < 0.05). However, changes of the above parameters were significantly attenuated in RPerC-treated rats compared with control rats (P < 0.05). The cardiac protective effects of RPerC were prevented by naloxone or glibenclamide. Also, RPerC increased the protein expression levels of eNOS, iNOS, PKCε, and PKCδ in the myocardium compared with control rats. These effects were blocked by naloxone, an opioid receptor antagonist, and glibenclamide, an ATP-sensitive K+ channel blocker (KATP). In summary, this study suggests that RPerC protects the heart against I/R injury through activation of opioid receptors and the NO–PKC–KATP channel signaling pathways.
Collapse
Affiliation(s)
- Li Zhang
- Department of Physiology, Hebei Medical University, Shijiazhuang, 050017, P.R. China
- Orthopedic Department of Third Hospital, Hebei Medical University, Shijiazhuang, 050000, P.R. China
| | - Hui Guo
- Department of Gynaecology and Obstetrics, Fourth Hospital, Hebei Medical University, Shijiazhuang 050000, P.R. China
| | - Fang Yuan
- Department of Physiology, Hebei Medical University, Shijiazhuang, 050017, P.R. China
- Hebei Collaborative Innovation Center for Cardio-cerebrovascular Disease, Shijiazhuang 050000, P.R. China
| | - Zeng-chao Hong
- Operation room of Third Hospital, Hebei Medical University, Shijiazhuang, 050000, P.R. China
| | - Yan-ming Tian
- Department of Physiology, Hebei Medical University, Shijiazhuang, 050017, P.R. China
| | - Xiang-jian Zhang
- Hebei Collaborative Innovation Center for Cardio-cerebrovascular Disease, Shijiazhuang 050000, P.R. China
| | - Yi Zhang
- Department of Physiology, Hebei Medical University, Shijiazhuang, 050017, P.R. China
- Hebei Collaborative Innovation Center for Cardio-cerebrovascular Disease, Shijiazhuang 050000, P.R. China
| |
Collapse
|
9
|
Tian YM, Guan Y, Li N, Ma HJ, Zhang L, Wang S, Zhang Y. Chronic intermittent hypobaric hypoxia ameliorates diabetic nephropathy through enhancing HIF1 signaling in rats. Diabetes Res Clin Pract 2016; 118:90-7. [PMID: 27351799 DOI: 10.1016/j.diabres.2016.06.021] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Revised: 04/13/2016] [Accepted: 06/05/2016] [Indexed: 12/23/2022]
Abstract
AIM Our previous study demonstrated that chronic intermittent hypobaric hypoxia (CIHH) had anti-diabetes effect. The present study was to explore the renal protective effect of CIHH in diabetic rats. METHODS Sprague-Dawley rats were randomly divided into three groups: diabetes mellitus group (DM, induced by high-fat diet combined with low-dose streptozotocin), diabetes plus CIHH treatment group (DM+CIHH, simulated 5000-m altitude, 6h per day for 28days, after diabetes model confirmed) and control group (CON). Systolic arterial blood pressure (SAP), blood biochemicals, urinary albumin, and histopathology of kidney were determined. The superoxide dismutase (SOD) activity, malondialdehyde (MDA) level, protein levels of hypoxia induced factors (HIFs) and transforming growth factor β1 (TGF-β1) in kidney were assayed. RESULTS The increased SAP, urinary albumin, hyperplasia of glomerular, fibrosis in mesangial and glomerular, and abnormal lipid metabolism in diabetic rats were ameliorated by CIHH treatment. And decreased superoxide dismutase (SOD) activity and increased malondialdehyde (MDA) level in diabetic kidney were reversed in CIHH-treated DM rats. In addition up-regulated TGF-β1 and down-regulated HIF1α in diabetic kidney returned back to normal level in CIHH-treated DM rats. CONCLUSIONS These data demonstrated for the first time that CIHH had protective effects against the early stage damage of diabetic nephropathy through activating HIF1 signaling, improving anti-oxidation and inhibiting TGF-β1 signaling in diabetic rats.
Collapse
Affiliation(s)
- Yan-Ming Tian
- Department of Physiology, Hebei Medical University, Shijiazhuang 050017, PR China; Hebei Collaborative Innovation Center for Cardio-cerebrovascular Disease, Shijiazhuang 050000, PR China
| | - Yue Guan
- Department of Physiology, Hebei Medical University, Shijiazhuang 050017, PR China; Hebei Collaborative Innovation Center for Cardio-cerebrovascular Disease, Shijiazhuang 050000, PR China
| | - Na Li
- Department of Physiology, Medical College, Hebei University, Baoding 071000, PR China
| | - Hui-Jie Ma
- Department of Physiology, Hebei Medical University, Shijiazhuang 050017, PR China; Hebei Collaborative Innovation Center for Cardio-cerebrovascular Disease, Shijiazhuang 050000, PR China
| | - Li Zhang
- Department of Cardiology, Bethune International Peace Hospital, Shijiazhuang 050082, PR China
| | - Sheng Wang
- Department of Physiology, Hebei Medical University, Shijiazhuang 050017, PR China; Hebei Collaborative Innovation Center for Cardio-cerebrovascular Disease, Shijiazhuang 050000, PR China
| | - Yi Zhang
- Department of Physiology, Hebei Medical University, Shijiazhuang 050017, PR China; Hebei Collaborative Innovation Center for Cardio-cerebrovascular Disease, Shijiazhuang 050000, PR China.
| |
Collapse
|
10
|
Zhang N, He L, Wang J, Guo Y, Liu Y, Kong Y, Li Y. WITHDRAWN: Chronic intermittent hypobaric hypoxia attenuates radiation-induced heart damage in rats. Biochem Biophys Res Commun 2016:S0006-291X(16)31072-5. [PMID: 27372426 DOI: 10.1016/j.bbrc.2016.06.145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Accepted: 06/28/2016] [Indexed: 06/06/2023]
Affiliation(s)
- Ning Zhang
- Department of Cardiology, The Fourth Hospital of Hebei Medical University, 12 Health Road, Shijiazhuang, Hebei 050011, China
| | - Ling He
- Department of Emergency, The University of Hong Kong-Shenzhen Hospital, Haiyuan 1st Road, Futian District, Shenzhen, Guangdong 518000, China
| | - Jin Wang
- Department of Orthopedics, The Fourth Hospital of Hebei Medical University, 12 Health Road, Shijiazhuang, Hebei 050011, China
| | - Yin Guo
- Department of Radiation Oncology, The Fourth Hospital of Hebei Medical University, 12 Health Road, Shijiazhuang, Hebei 050011, China
| | - Yu Liu
- Department of Cardiology, The Fourth Hospital of Hebei Medical University, 12 Health Road, Shijiazhuang, Hebei 050011, China
| | - Yan Kong
- Department of Medicine Oncology, The Fourth Hospital of Hebei Medical University, 12 Health Road, Shijiazhuang, Hebei 050011, China
| | - Yongjun Li
- Department of Cardiology, The Second Hospital of Hebei Medical University, 215 Hepingxi Road, Shijiazhuang, Hebei 050000, China.
| |
Collapse
|
11
|
Li X, Liu Y, Ma H, Guan Y, Cao Y, Tian Y, Zhang Y. Enhancement of Glucose Metabolism via PGC-1α Participates in the Cardioprotection of Chronic Intermittent Hypobaric Hypoxia. Front Physiol 2016; 7:219. [PMID: 27375497 PMCID: PMC4896962 DOI: 10.3389/fphys.2016.00219] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2016] [Accepted: 05/26/2016] [Indexed: 11/21/2022] Open
Abstract
Background and Aims: Previous studies demonstrated that energy metabolism disturbance impairs cardiac function and chronic intermittent hypobaric hypoxia (CIHH) protects heart against ischemia/reperfusion injury. The present study aimed to test the hypothesis that CIHH protects the heart against ischemia/reperfusion (I/R) injury via improvement of cardiac glucose metabolism. Methods: Male Sprague-Dawley rats received CIHH treatment simulating 5000-m altitude for 28 days, 6 h per day in a hypobaric chamber or no treatment (control). Body weight, fasting blood glucose, blood lipid and glucose tolerance were measured. The left ventricular function of isolated hearts was evaluated during 30 min of ischemia and 60 min of reperfusion using Langendorff method. The mRNA and protein expression involved in cardiac energy metabolism was determined using quantitative PCR and Western blot techniques. Results: 1. There was no difference of body weight, fast blood glucose, blood lipid and glucose tolerance between control and CIHH rats under baseline condition (p > 0.05). 2. The recovery of left ventricular function after I/R was improved significantly in CIHH rats compared to control rats (p < 0.05). 3. The expression of cardiac GLUT4 and PGC-1α was increased but PDK4 gene expression was decreased by CIHH treatment at both mRNA and protein level. Also p-AMPK/AMPK ratio was increased in CIHH rats (p < 0.05). Conclusion: CIHH ameliorates I/R injury through improving cardiac glucose metabolism via upregulation of GLUT4, p-AMPK, and PGC-1α expressions, but downregulation of cardiacPDK4 expression.
Collapse
Affiliation(s)
- Xuyi Li
- Department of Physiology, Hebei Medical UniversityShijiazhuang, China; Hebei Collaborative Innovation Center for Cardio-Cerebrovascular DiseaseShijiazhuang, China
| | - Yan Liu
- Department of Endocrinology, The Third Hospital of Hebei Medical University Shijiazhuang, China
| | - Huijie Ma
- Department of Physiology, Hebei Medical UniversityShijiazhuang, China; Hebei Collaborative Innovation Center for Cardio-Cerebrovascular DiseaseShijiazhuang, China
| | - Yue Guan
- Department of Physiology, Hebei Medical UniversityShijiazhuang, China; Hebei Collaborative Innovation Center for Cardio-Cerebrovascular DiseaseShijiazhuang, China
| | - Yue Cao
- Department of Endocrinology, The Third Hospital of Hebei Medical University Shijiazhuang, China
| | - Yanming Tian
- Department of Physiology, Hebei Medical UniversityShijiazhuang, China; Hebei Collaborative Innovation Center for Cardio-Cerebrovascular DiseaseShijiazhuang, China
| | - Yi Zhang
- Department of Physiology, Hebei Medical UniversityShijiazhuang, China; Hebei Collaborative Innovation Center for Cardio-Cerebrovascular DiseaseShijiazhuang, China
| |
Collapse
|
12
|
Manukhina EB, Downey HF, Shi X, Mallet RT. Intermittent hypoxia training protects cerebrovascular function in Alzheimer's disease. Exp Biol Med (Maywood) 2016; 241:1351-63. [PMID: 27190276 DOI: 10.1177/1535370216649060] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Alzheimer's disease (AD) is a leading cause of death and disability among older adults. Modifiable vascular risk factors for AD (VRF) include obesity, hypertension, type 2 diabetes mellitus, sleep apnea, and metabolic syndrome. Here, interactions between cerebrovascular function and development of AD are reviewed, as are interventions to improve cerebral blood flow and reduce VRF. Atherosclerosis and small vessel cerebral disease impair metabolic regulation of cerebral blood flow and, along with microvascular rarefaction and altered trans-capillary exchange, create conditions favoring AD development. Although currently there are no definitive therapies for treatment or prevention of AD, reduction of VRFs lowers the risk for cognitive decline. There is increasing evidence that brief repeated exposures to moderate hypoxia, i.e. intermittent hypoxic training (IHT), improve cerebral vascular function and reduce VRFs including systemic hypertension, cardiac arrhythmias, and mental stress. In experimental AD, IHT nearly prevented endothelial dysfunction of both cerebral and extra-cerebral blood vessels, rarefaction of the brain vascular network, and the loss of neurons in the brain cortex. Associated with these vasoprotective effects, IHT improved memory and lessened AD pathology. IHT increases endothelial production of nitric oxide (NO), thereby increasing regional cerebral blood flow and augmenting the vaso- and neuroprotective effects of endothelial NO. On the other hand, in AD excessive production of NO in microglia, astrocytes, and cortical neurons generates neurotoxic peroxynitrite. IHT enhances storage of excessive NO in the form of S-nitrosothiols and dinitrosyl iron complexes. Oxidative stress plays a pivotal role in the pathogenesis of AD, and IHT reduces oxidative stress in a number of experimental pathologies. Beneficial effects of IHT in experimental neuropathologies other than AD, including dyscirculatory encephalopathy, ischemic stroke injury, audiogenic epilepsy, spinal cord injury, and alcohol withdrawal stress have also been reported. Further research on the potential benefits of IHT in AD and other brain pathologies is warranted.
Collapse
Affiliation(s)
- Eugenia B Manukhina
- University of North Texas Health Science Center, Fort Worth, TX 76107-2699, USA Institute of General Pathology and Pathophysiology, Moscow 125315, Russian Federation
| | - H Fred Downey
- University of North Texas Health Science Center, Fort Worth, TX 76107-2699, USA
| | - Xiangrong Shi
- University of North Texas Health Science Center, Fort Worth, TX 76107-2699, USA
| | - Robert T Mallet
- University of North Texas Health Science Center, Fort Worth, TX 76107-2699, USA
| |
Collapse
|
13
|
Anti-diabetes effect of chronic intermittent hypobaric hypoxia through improving liver insulin resistance in diabetic rats. Life Sci 2016; 150:1-7. [PMID: 26883978 DOI: 10.1016/j.lfs.2016.02.053] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2015] [Revised: 01/06/2016] [Accepted: 02/12/2016] [Indexed: 12/16/2022]
Abstract
AIM Cumulating evidence demonstrated that chronic intermittent hypobaric hypoxia (CIHH) had beneficial effects on the body. The present study was to investigate the anti-diabetes effect of CIHH in type-2 diabetic rats for the first time. MAIN METHODS Sprague-Dawley rats were randomly divided into 4 groups: control group (CON), diabetes mellitus group (DM, induced by high-fat diet combined with low-dose streptozotocin), CIHH treatment group (CIHH, simulated 5000-m altitude, 6h per day for 28 days), and diabetes mellitus plus CIHH treatment group (DM+CIHH). Histopathology of liver, systolic arterial blood pressure (SAP), blood biochemicals, glucose and insulin tolerance were determined. The expression of proteins associated with insulin signaling pathway as well as hypoxia induced factors were assayed. KEY FINDINGS Diabetic rats showed impaired glucose tolerance, dyslipidemia, hepatic steatosis and hepatic insulin resistance in addition to increased SAP. However, SAP, serum triglyceride and cholesterol were decreased, and hepatic steatosis and insulin resistance were improved in DM+CIHH rats. Furthermore, the protein expression of glucokinase (GCK), insulin receptor substrates (IRS-1 and IRS-2), and HIF1α were increased, while the expression of phosphoenolpyruvate carboxykinase (PEPCK), was markedly reduced in DM+CIHH rats. SIGNIFICANCE We conclude that CIHH treatment has anti-diabetes effects through ameliorating insulin resistance via hepatic HIF-insulin signaling pathway in type-2 diabetic rats.
Collapse
|