1
|
Korf EA, Novozhilov AV, Mindukshev IV, Glotov AS, Kudryavtsev IV, Baidyuk EV, Dobrylko IA, Voitenko NG, Voronina PA, Habeeb S, Ghanem A, Osinovskaya NS, Serebryakova MK, Krivorotov DV, Jenkins RO, Goncharov NV. Testing Green Tea Extract and Ammonium Salts as Stimulants of Physical Performance in a Forced Swimming Rat Experimental Model. Int J Mol Sci 2024; 25:10438. [PMID: 39408765 PMCID: PMC11477139 DOI: 10.3390/ijms251910438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 09/23/2024] [Accepted: 09/24/2024] [Indexed: 10/20/2024] Open
Abstract
The study of drugs of natural origin that increase endurance and/or accelerate recovery is an integral part of sports medicine and physiology. In this paper, decaffeinated green tea extract (GTE) and two ammonium salts-chloride (ACL) and carbonate (ACR)-were tested individually and in combination with GTE as stimulants of physical performance in a forced swimming rat experimental model. The determined parameters can be divided into seven blocks: functional (swimming duration); biochemistry of blood plasma; biochemistry of erythrocytes; hematology; immunology; gene expression of slow- and fast-twitch muscles (m. soleus, SOL, and m. extensor digitorum longus, EDL, respectively); and morphometric indicators of slow- and fast-twitch muscles. Regarding the negative control (intact animals), the maximum number of changes in all blocks of indicators was recorded in the GTE + ACR group, whose animals showed the maximum functional result and minimum lactate values on the last day of the experiment. Next, in terms of the number of changes, were the groups ACR, ACL, GTE + ACL, GTE and NaCl (positive control). In general, the number of identified adaptive changes was proportional to the functional state of the animals of the corresponding groups, in terms of the duration of the swimming load in the last four days of the experiment. However, not only the total number but also the qualitative composition of the identified changes is of interest. The results of a comparative analysis suggest that, in the model of forced swimming we developed, GTE promotes restoration of the body and moderate mobilization of the immune system, while small doses of ammonium salts, especially ammonium carbonate, contribute to an increase in physical performance, which is associated with satisfactory restoration of skeletal muscles and the entire body. The combined use of GTE with ammonium salts does not give a clearly positive effect.
Collapse
Affiliation(s)
- Ekaterina A. Korf
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, pr. Torez 44, St. Petersburg 194223, Russia
| | - Artem V. Novozhilov
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, pr. Torez 44, St. Petersburg 194223, Russia
| | - Igor V. Mindukshev
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, pr. Torez 44, St. Petersburg 194223, Russia
| | - Andrey S. Glotov
- D.O. Ott Research Institute of Obstetrics, Gynecology and Reproductology, St. Petersburg 199034, Russia
| | | | - Ekaterina V. Baidyuk
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, pr. Torez 44, St. Petersburg 194223, Russia
| | - Irina A. Dobrylko
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, pr. Torez 44, St. Petersburg 194223, Russia
| | - Natalia G. Voitenko
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, pr. Torez 44, St. Petersburg 194223, Russia
| | - Polina A. Voronina
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, pr. Torez 44, St. Petersburg 194223, Russia
| | - Samarmar Habeeb
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, pr. Torez 44, St. Petersburg 194223, Russia
| | - Afrah Ghanem
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, pr. Torez 44, St. Petersburg 194223, Russia
| | - Natalia S. Osinovskaya
- D.O. Ott Research Institute of Obstetrics, Gynecology and Reproductology, St. Petersburg 199034, Russia
| | | | - Denis V. Krivorotov
- Research Institute of Hygiene, Occupational Pathology and Human Ecology of the Federal Medical Biological Agency, p.o. Kuz’molovsky bld.93, St. Petersburg 188663, Russia
| | - Richard O. Jenkins
- Leicester School of Allied Health Sciences, De Montfort University, The Gateway, Leicester LE1 9BH, UK
| | - Nikolay V. Goncharov
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, pr. Torez 44, St. Petersburg 194223, Russia
| |
Collapse
|
2
|
Gasser B, Dössegger A, Giraud MN, Flück M. T-Allele Carriers of Mono Carboxylate Transporter One Gene Polymorphism rs1049434 Demonstrate Altered Substrate Metabolization during Exhaustive Exercise. Genes (Basel) 2024; 15:918. [PMID: 39062697 PMCID: PMC11275951 DOI: 10.3390/genes15070918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 07/04/2024] [Accepted: 07/10/2024] [Indexed: 07/28/2024] Open
Abstract
BACKGROUND Polymorphism rs1049434 characterizes the nonsynonymous exchange of adenosine (A) by thymidine (T) in the gene for monocarboxylate transporter 1 (MCT1). We tested whether T-allele carriers of rs1049434 demonstrate increased accumulation of markers of metabolic strain. METHODS Physically active, healthy, young male subjects (n = 22) conducted a power-matched one-legged cycling exercise to exhaustion. Metabolic substrates in capillary blood, selected metabolic compounds, and indices for the slow oxidative phenotype of vastus lateralis muscle were quantified in samples collected before and after exercise. The genotypes of the rs1049434 polymorphism were determined with polymerase chain reactions. RESULTS One-legged exercise affected the concentration of muscle metabolites entering the tricarboxylic acid cycle, such as acetyl-co-enzyme A (+448%) and acetyl-L-carnitine (+548%), muscle glycogen (-59%), and adenosine monophosphate (-39%), 30 min post-exercise. Exercise-related variability in the muscular concentration of glycogen, long-chain acyl co-enzyme As and a triglyceride, nicotinamide adenine dinucleotide (NADH), and adenosine monophosphate (AMP) interacted with rs1049434. T-allele carriers demonstrated a 39% lesser reduction in glycogen after exercise than non-carriers when NADH increased only in the non-carriers. Muscle lactate concentration was 150% higher, blood triacyl-glyceride concentration was 53% lower, and slow fiber percentage was 20% lower in T-allele carriers. DISCUSSION The observations suggest a higher anaerobic glycolytic strain during exhaustive exercise and a lowered lipid handling in T-allele non-carriers.
Collapse
Affiliation(s)
- Benedikt Gasser
- Department of Sport, Physical Activity and Health, University of Basel, 4001 Basel, Switzerland; (B.G.); (A.D.)
| | - Alain Dössegger
- Department of Sport, Physical Activity and Health, University of Basel, 4001 Basel, Switzerland; (B.G.); (A.D.)
- Swiss Federal Institute of Sport Magglingen SFISM, 2532 Magglingen, Switzerland
| | - Marie-Noëlle Giraud
- Cardiology, Department of Medicine, University of Fribourg, 1700 Fribourg, Switzerland;
| | - Martin Flück
- Swiss Federal Institute of Sport Magglingen SFISM, 2532 Magglingen, Switzerland
- Institute for Biomedical Research into Human Movement and Health, Manchester Metropolitan University, Manchester, UK
| |
Collapse
|
3
|
Zhao T, Le S, Freitag N, Schumann M, Wang X, Cheng S. Effect of Chronic Exercise Training on Blood Lactate Metabolism Among Patients With Type 2 Diabetes Mellitus: A Systematic Review and Meta-Analysis. Front Physiol 2021; 12:652023. [PMID: 33776804 PMCID: PMC7992008 DOI: 10.3389/fphys.2021.652023] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 02/17/2021] [Indexed: 12/29/2022] Open
Abstract
Purpose: To assess the effect of chronic exercise training on blood lactate metabolism at rest (i.e., basal lactate concentrations) and during exercise (i.e., blood lactate concentration at a fixed load, load at a fixed blood lactate concentration, and load at the individual blood lactate threshold) among patients with type 2 diabetes mellitus (T2DM). Methods: PubMed (MedLine), Embase, Web of Science, and Scopus were searched. Randomized controlled trials, non-randomized controlled trials, and case-control studies using chronic exercise training (i.e., 4 weeks) and that assessed blood lactate concentrations at rest and during exercise in T2DM patients were included. Results: Thirteen studies were eligible for the systematic review, while 12 studies with 312 participants were included into the meta-analysis. In the pre-to-post intervention meta-analysis, chronic exercise training had no significant effect on changes in basal blood lactate concentrations (standardized mean difference (SMD) = -0.20; 95% CI, -0.55 to 0.16; p = 0.28), and the results were similar when comparing the effect of intervention and control groups. Furthermore, blood lactate concentration at a fixed load significantly decreased (SMD = -0.73; 95% CI, -1.17 to -0.29; p = 0.001), while load at a fixed blood lactate concentration increased (SMD = 0.40; 95% CI, 0.07 to 0.72; p = 0.02) after chronic exercise training. No change was observed in load at the individual blood lactate threshold (SMD = 0.28; 95% CI, -0.14 to 0.71; p = 0.20). Conclusion: Chronic exercise training does not statistically affect basal blood lactate concentrations; however, it may decrease the blood lactate concentrations during exercise, indicating improvements of physical performance capacity which is beneficial for T2DM patients' health in general. Why chronic exercise training did not affect basal blood lactate concentrations needs further investigation.
Collapse
Affiliation(s)
- Tong Zhao
- Exercise, Health and Technology Centre, Department of Physical Education, Shanghai Jiao Tong University, Shanghai, China
| | - Shenglong Le
- Exercise, Health and Technology Centre, Department of Physical Education, Shanghai Jiao Tong University, Shanghai, China.,Faculty of Sport and Health Science, University of Jyväskylä, Jyväskylä, Finland.,Exercise Translational Medicine Centre, Shanghai Centre for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, China.,School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Nils Freitag
- Department of Molecular and Cellular Sport Medicine, Institute of Cardiovascular Research and Sport Medicine, German Sport University, Cologne, Germany.,Olympic Training Center Berlin, Berlin, Germany
| | - Moritz Schumann
- Exercise Translational Medicine Centre, Shanghai Centre for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, China.,Department of Molecular and Cellular Sport Medicine, Institute of Cardiovascular Research and Sport Medicine, German Sport University, Cologne, Germany
| | - Xiuqiang Wang
- Exercise, Health and Technology Centre, Department of Physical Education, Shanghai Jiao Tong University, Shanghai, China.,Exercise Translational Medicine Centre, Shanghai Centre for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, China
| | - Sulin Cheng
- Exercise, Health and Technology Centre, Department of Physical Education, Shanghai Jiao Tong University, Shanghai, China.,Faculty of Sport and Health Science, University of Jyväskylä, Jyväskylä, Finland.,Exercise Translational Medicine Centre, Shanghai Centre for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, China.,School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China.,Department of Molecular and Cellular Sport Medicine, Institute of Cardiovascular Research and Sport Medicine, German Sport University, Cologne, Germany
| |
Collapse
|
4
|
Gomes JH, Mendes RR, Franca CS, Da Silva-Grigoletto ME, Pereira da Silva DR, Antoniolli AR, de Oliveira e Silva AM, Quintans-Júnior LJ. Acute leucocyte, muscle damage, and stress marker responses to high-intensity functional training. PLoS One 2020; 15:e0243276. [PMID: 33270727 PMCID: PMC7714345 DOI: 10.1371/journal.pone.0243276] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 11/19/2020] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND High-intensity functional training (HIFT) has become more popular, and the number of practitioners has increased; however, it remains unclear whether perturbations in the immune parameters occur, even after one single bout. Our aim was to examine acute leucocyte, muscle damage, and stress marker responses following a single 'Cindy' workout session, and compare the results between novice and experienced participants. MATERIAL AND METHODS Twenty-three HIFT practitioners (age 31.0 ± 1.0 years) completed the 'Cindy' workout. They were categorized as novice (3-8 months of experience; n = 10) and experienced (≥18 months; n = 13). White blood cell (WBC) count, plasma creatine kinase (CK) activity, blood cortisol level, and lactate concentration were measured. Blood analysis was performed before (pre-ex), immediately after (post-ex), 30 min after (post-30 min), and 24 h after (post-24 h) a single 'Cindy' workout session. RESULTS WBC count was higher post-ex (6.8 to 11.8x103/μL) and returned to baseline values within post-30 min (p<0.01). Neutrophil (3.3 to 4.5x103/μL) and lymphocyte levels (2.8 to 5.9x103/μL) were higher post-ex and returned to baseline values after post-24 h, yet lymphocytopoenia (2.2x103/μL) was observed at post-30 min (p<0.01). CK increased post-ex (174.9 to 226.7 U.L-1) and remained elevated post-24 h. Cortisol (14.7 to 17.0 μg/dL) and lactate (1.9 to 13.5 mmol.l-1) responses increased post-ex, but only the lactate level was reduced at post-30 min (p<0.01). The experienced participants had higher WBC, lymphocyte, and cortisol concentrations post-ex than the novice ones (p<0.01). CONCLUSIONS A single HIFT session elicited significant acute perturbations in WBC count, stress markers, and muscle tissue, which is like other similar regimens. Importantly, the experienced participants showed greater lymphocyte and cortisol responses than the novice ones.
Collapse
Affiliation(s)
- João Henrique Gomes
- Health Sciences Graduate Program, Federal University of Sergipe, Aracaju, Sergipe, Brazil
| | | | | | | | | | - Angelo Roberto Antoniolli
- Health Sciences Graduate Program, Federal University of Sergipe, Aracaju, Sergipe, Brazil
- Laboratory of Neuroscience and Pharmacological Assays, Federal University of Sergipe, São Cristóvão, Sergipe, Brazil
| | - Ana Mara de Oliveira e Silva
- Health Sciences Graduate Program, Federal University of Sergipe, Aracaju, Sergipe, Brazil
- Nutrition Department, Federal University of Sergipe, São Cristóvão, Sergipe, Brazil
| | - Lucindo José Quintans-Júnior
- Health Sciences Graduate Program, Federal University of Sergipe, Aracaju, Sergipe, Brazil
- Laboratory of Neuroscience and Pharmacological Assays, Federal University of Sergipe, São Cristóvão, Sergipe, Brazil
| |
Collapse
|
5
|
Antonova EP, Ilyukha VA, Kizhina AG, Uzenbaeva LB, Khizhkin EA, Kalinina SN, Baishnikova IV, Pechorina EF. Age-Related and Seasonal Changes in Muscle Antioxidant Defense and Erythrocyte Morphometric Parameters of a Muskrat Ondatra zibethicus. J EVOL BIOCHEM PHYS+ 2020. [DOI: 10.1134/s002209302005004x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
6
|
Decreased Blood Glucose and Lactate: Is a Useful Indicator of Recovery Ability in Athletes? INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17155470. [PMID: 32751226 PMCID: PMC7432299 DOI: 10.3390/ijerph17155470] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 07/23/2020] [Accepted: 07/28/2020] [Indexed: 12/22/2022]
Abstract
During low-intensity exercise stages of the lactate threshold test, blood lactate concentrations gradually diminish due to the predominant utilization of total fat oxidation. However, it is unclear why blood glucose is also reduced in well-trained athletes who also exhibit decreased lactate concentrations. This review focuses on decreased glucose and lactate concentrations at low-exercise intensity performed in well-trained athletes. During low-intensity exercise, the accrued resting lactate may predominantly be transported via blood from the muscle cell to the liver/kidney. Accordingly, there is increased hepatic blood flow with relatively more hepatic glucose output than skeletal muscle glucose output. Hepatic lactate uptake and lactate output of skeletal muscle during recovery time remained similar which may support a predominant Cori cycle (re-synthesis). However, this pathway may be insufficient to produce the necessary glucose level because of the low concentration of lactate and the large energy source from fat. Furthermore, fatty acid oxidation activates key enzymes and hormonal responses of gluconeogenesis while glycolysis-related enzymes such as pyruvate dehydrogenase are allosterically inhibited. Decreased blood lactate and glucose in low-intensity exercise stages may be an indicator of recovery ability in well-trained athletes. Athletes of intermittent sports may need this recovery ability to successfully perform during competition.
Collapse
|
7
|
Ammonium Salts Increase Physical Performance and Reduce Blood Lactate Level in Rats in a Model of Forced Swimming. Bull Exp Biol Med 2020; 168:610-613. [PMID: 32249402 DOI: 10.1007/s10517-020-04762-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Indexed: 02/06/2023]
Abstract
We compared the effects of two doses of ammonium chloride and ammonium carbonate (10 and 20 mg/kg) on the duration of swimming and blood lactate level. Ammonium chloride in a dose of 20 mg/kg was more efficient than in a dose of 10 mg/kg. The efficiency of ammonium carbonate in a dose of 10 mg/kg was similar to that of ammonium chloride in a dose of 20 mg/kg. Increasing the dose of ammonium carbonate to 20 mg/kg led to a decrease in the duration of swimming. On the last day of the experiment, lactate level in 5 min after exhausting load was maximum in control rats, while in rats treated with 10 mg/kg ammonium carbonate and 20 mg/kg ammonium chloride it was lower by 27 and 33%, respectively. In the control group, the amplitude of the decrease in lactate concentration in 1 h after load was 2-fold greater than in the group receiving ammonium chloride in a dose of 20 mg/kg and 1.6-fold greater that in groups treated with ammonium carbonate in a dose of 10 mg/kg and ammonium chloride in a dose of 20 mg/kg.
Collapse
|
8
|
Zhang T, Qi Z, Wang H, Ding S. Adeno-Associated Virus-Mediated Knockdown of SLC16A11 Improves Glucose Tolerance and Hepatic Insulin Signaling in High Fat Diet-Fed Mice. Exp Clin Endocrinol Diabetes 2019; 129:104-111. [PMID: 31185508 DOI: 10.1055/a-0840-3330] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND SLC16A11, a member of the SLC16 family, is associated with lipid metabolism, causing increased intracellular triacylglycerol (TAG) levels. In the current study, our primary goal was to determine if an SLC16A11 knockdown would improve glucose tolerance and hepatic insulin signaling in high fat diet (HFD)-fed mice. Additionally, the mechanism for exercise-improved insulin sensitivity remains unclear, and there is no mechanistic insight into SLC16A11's role in insulin sensitivity under exercise stress. Therefore, we also examined the impact of endurance exercise on the abundance of SLC16A11. METHODS C57BL/6 J male mice were fed either regular chow (Control) or HFD for 8 weeks and then injected with adeno-associated virus (AAV). Plasma parameters, tissue lipid contents, glucose tolerance, and expression profiles of hepatic insulin signaling were detected. Also, other mice were divided randomly into sedentary and exercise groups. We assessed hepatic expression of SLC16A11 after 8 weeks of endurance exercise. RESULTS 1) Hepatic SLC16A11 expression was greater in HFD-fed mice compared to Control mice. 2) AAV-mediated knockdown of SLC16A11 improved glucose tolerance, prevented TAG accumulation in serum and liver, and increased phosphorylation of protein kinase B (Akt) and glycogen synthesis kinase-3β (GSK3β) in HFD-fed mice. 3) Endurance exercise decreased hepatic SLC16A11 expression. CONCLUSIONS Inactivation of SLC16A11, which is robustly induced by HFD, improved glucose tolerance and hepatic insulin signaling, independent of body weight, but related to TAG. Additionally, SLC16A11 might mediate the health benefits of endurance exercise.
Collapse
Affiliation(s)
- Tan Zhang
- Key Laboratory of Adolescent Health Assessment and Exercise Intervention, Ministry of Education, East China Normal University, Shanghai, China.,College of Physical Education and Health, East China Normal University, Shanghai, China
| | - Zhengtang Qi
- Key Laboratory of Adolescent Health Assessment and Exercise Intervention, Ministry of Education, East China Normal University, Shanghai, China.,College of Physical Education and Health, East China Normal University, Shanghai, China
| | - Haiyan Wang
- Key Laboratory of Adolescent Health Assessment and Exercise Intervention, Ministry of Education, East China Normal University, Shanghai, China.,College of Physical Education and Health, East China Normal University, Shanghai, China
| | - Shuzhe Ding
- Key Laboratory of Adolescent Health Assessment and Exercise Intervention, Ministry of Education, East China Normal University, Shanghai, China.,College of Physical Education and Health, East China Normal University, Shanghai, China
| |
Collapse
|
9
|
Tougaard RS, Szocska Hansen ES, Laustsen C, Nørlinger TS, Mikkelsen E, Lindhardt J, Nielsen PM, Bertelsen LB, Schroeder M, Bøtker HE, Kim WY, Wiggers H, Stødkilde-Jørgensen H. Hyperpolarized [1- 13 C]pyruvate MRI can image the metabolic shift in cardiac metabolism between the fasted and fed state in a porcine model. Magn Reson Med 2018; 81:2655-2665. [PMID: 30387898 DOI: 10.1002/mrm.27560] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Revised: 08/20/2018] [Accepted: 09/14/2018] [Indexed: 12/28/2022]
Abstract
PURPOSE Owing to its noninvasive nature, hyperpolarized MRI may improve delineation of myocardial metabolic derangement in heart disease. However, consistency may depend on the changeable nature of cardiac metabolism in relation to whole-body metabolic state. This study investigates the impact of feeding status on cardiac hyperpolarized MRI in a large animal model resembling human physiology. METHODS Thirteen 30-kg pigs were subjected to an overnight fast, and 5 pigs were fed a carbohydrate-rich meal on the morning of the experiments. Vital parameters and blood samples were registered. All pigs were then scanned by hyperpolarized [1-13 C]pyruvate cardiac MRI, and results were compared between the 2 groups and correlated with circulating substrates and hormones. RESULTS The fed group had higher blood glucose concentration and mean arterial pressure than the fasted group. Plasma concentrations of free fatty acids (FFAs) were decreased in the fed group, whereas plasma insulin concentrations were similar between groups. Hyperpolarized MRI showed that fed animals had increased lactate/pyruvate, alanine/pyruvate, and bicarbonate/pyruvate ratios. Metabolic ratios correlated negatively with FFA levels. CONCLUSION Hyperpolarized MR can identify the effects of different metabolic states on cardiac metabolism in a large animal model. Unlike previous rodent studies, all metabolic derivatives of pyruvate increased in the myocardium of fed pigs. Carbohydrate-rich feeding seems to be a feasible model for standardized, large animal hyperpolarized MRI studies of myocardial carbohydrate metabolism.
Collapse
Affiliation(s)
- Rasmus Stilling Tougaard
- MR Research Centre, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark.,Department of Cardiology, Aarhus University Hospital, Aarhus, Denmark
| | - Esben Søvsø Szocska Hansen
- MR Research Centre, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark.,Danish Diabetes Academy, Odense, Denmark
| | - Christoffer Laustsen
- MR Research Centre, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | | | - Emmeli Mikkelsen
- MR Research Centre, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Jakob Lindhardt
- MR Research Centre, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Per Mose Nielsen
- MR Research Centre, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Lotte Bonde Bertelsen
- MR Research Centre, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Marie Schroeder
- MR Research Centre, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Hans Erik Bøtker
- Department of Cardiology, Aarhus University Hospital, Aarhus, Denmark
| | - Won Yong Kim
- MR Research Centre, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark.,Department of Cardiology, Aarhus University Hospital, Aarhus, Denmark
| | - Henrik Wiggers
- Department of Cardiology, Aarhus University Hospital, Aarhus, Denmark
| | | |
Collapse
|
10
|
Mach N, Fuster-Botella D. Endurance exercise and gut microbiota: A review. JOURNAL OF SPORT AND HEALTH SCIENCE 2017; 6:179-197. [PMID: 30356594 PMCID: PMC6188999 DOI: 10.1016/j.jshs.2016.05.001] [Citation(s) in RCA: 205] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Revised: 01/25/2016] [Accepted: 03/14/2016] [Indexed: 05/17/2023]
Abstract
BACKGROUND The physiological and biochemical demands of intense exercise elicit both muscle-based and systemic responses. The main adaptations to endurance exercise include the correction of electrolyte imbalance, a decrease in glycogen storage and the increase of oxidative stress, intestinal permeability, muscle damage, and systemic inflammatory response. Adaptations to exercise might be influenced by the gut microbiota, which plays an important role in the production, storage, and expenditure of energy obtained from the diet as well as in inflammation, redox reactions, and hydration status. METHODS A systematic and comprehensive search of electronic databases, including MEDLINE, Scopus, ClinicalTrials.gov, ScienceDirect, Springer Link, and EMBASE was done. The search process was completed using the keywords: "endurance", "exercise", "immune response", "microbiota", "nutrition", and "probiotics". RESULTS Reviewed literature supports the hypothesis that intestinal microbiota might be able to provide a measureable, effective marker of an athlete's immune function and that microbial composition analysis might also be sensitive enough to detect exercise-induced stress and metabolic disorders. The review also supports the hypothesis that modifying the microbiota through the use of probiotics could be an important therapeutic tool to improve athletes' overall general health, performance, and energy availability while controlling inflammation and redox levels. CONCLUSION The present review provides a comprehensive overview of how gut microbiota may have a key role in controlling the oxidative stress and inflammatory responses as well as improving metabolism and energy expenditure during intense exercise.
Collapse
Affiliation(s)
- Núria Mach
- Health Science Department, International Graduate Institute of the Open University of Catalonia (UOC), Barcelona 08035, Spain
- Animal Genetics and Integrative Biology unit (GABI), INRA, AgroParis Tech, University of Paris-Saclay, Jouy-en-Josas 78350, France
- Corresponding author.
| | - Dolors Fuster-Botella
- Health Science Department, International Graduate Institute of the Open University of Catalonia (UOC), Barcelona 08035, Spain
| |
Collapse
|
11
|
Brinkmann C, Brixius K. Hyperlactatemia in type 2 diabetes: Can physical training help? J Diabetes Complications 2015; 29:965-9. [PMID: 26122286 DOI: 10.1016/j.jdiacomp.2015.05.018] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2015] [Revised: 05/15/2015] [Accepted: 05/16/2015] [Indexed: 01/11/2023]
Abstract
Type 2 diabetic patients often exhibit hyperlactatemia in association with a reduced aerobic-oxidative capacity and a restricted lactate transport. Studies suggest a link between increased lactate levels and the manifestation and progression of insulin resistance. However, the specificities of molecular mechanisms remain unclear, and it is not entirely clear whether elevated lactate levels are a cause or consequence of type 2 diabetes. This review focuses on lactate as a key molecule in diabetes and provides an overview of how regular physical activity can be helpful in normalizing elevated lactate levels in type 2 diabetic patients. Physical training may reduce lactate production and reinforce lactate transport and clearance among this particular patient group. We emphasize the crucial role physical training plays in the therapy of type 2 diabetes due to evidence that pharmacological treatment with metformin, which is commonly used in the first-line therapy of type 2 diabetes, does not help reducing lactate levels.
Collapse
Affiliation(s)
- Christian Brinkmann
- Institute of Cardiovascular Research and Sport Medicine, Department of Molecular and Cellular Sport Medicine, German Sport University Cologne, Cologne, Germany.
| | - Klara Brixius
- Institute of Cardiovascular Research and Sport Medicine, Department of Molecular and Cellular Sport Medicine, German Sport University Cologne, Cologne, Germany
| |
Collapse
|