1
|
Freitas SM, Franco B, Saragiotto G, Morais MA, Simabuco FM, Cunha DT, Esteves AM, Antunes AEC. Effect of a probiotic fermented milk supplementation on behavior and sleep. Nutr Neurosci 2024; 27:607-619. [PMID: 37496309 DOI: 10.1080/1028415x.2023.2240990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/28/2023]
Abstract
This study attempted to analyze the effect of supplementing Wistar-Kyoto rats with fermented milk containing the probiotic Bifidobacterium animalis BB-12 and pomegranate juice on the microbiota-gut-brain axis of rats, with special focus on their behavior, sleep patterns, and response to stress. This study was divided into two experiments: (1) For the behavioral analysis the animals were divided into two groups: Fermented probiotic milk (BB + 1) and control (BB-). (2) For the sleep analysis the animals were divided into two groups: Fermented probiotic milk (BB + 2) and control (H2O). For the behavioral analysis, the open field method was used, which evaluates the behavior after ten, twenty, and thirty days of supplementation. For sleep analysis, the animals were submitted to implantation of electrodes and 24 h polysomnography, followed by 48 h sleep deprivation (REM) and 48 h polysomnography, then euthanized 100 days after the beginning of the experiment. In addition, animal feces were collected before and after sleep deprivation to assess its effects on the microbiota. A decrease in anxiety-related behaviors was observed in the supplemented animals and an increase in sleep efficiency and a reduction in the number of awakenings of the animals before deprivation. It has also been observed that sleep deprivation decreased the amount of total bacterial DNA. The number of copies of genomes of the genus Bifidobacterium did not differ in both groups.
Collapse
Affiliation(s)
- Samara M Freitas
- School of Applied Sciences, University of Campinas, Limeira, Brazil
| | - Beatriz Franco
- School of Physical Education, University of Campinas, Campinas, Brazil
| | | | - Milca A Morais
- School of Applied Sciences, University of Campinas, Limeira, Brazil
| | | | - Diogo T Cunha
- School of Applied Sciences, University of Campinas, Limeira, Brazil
| | - Andrea M Esteves
- School of Applied Sciences, University of Campinas, Limeira, Brazil
- School of Physical Education, University of Campinas, Campinas, Brazil
| | | |
Collapse
|
2
|
Kardaş S, Çınaroğlu OS, Bora ES, Erbaş O. Gallic Acid Protects from Sepsis-Induced Acute Lung Injury. Curr Issues Mol Biol 2023; 46:1-10. [PMID: 38275661 PMCID: PMC10814423 DOI: 10.3390/cimb46010001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 12/15/2023] [Accepted: 12/18/2023] [Indexed: 01/27/2024] Open
Abstract
Sepsis, a leading global cause of morbidity and mortality, involves multiple organ dysfunction syndromes driven by free radical-mediated processes. Uncontrolled inflammation in early sepsis stages can lead to acute lung injury (ALI). Activated leukocytes generate reactive oxygen species, contributing to sepsis development. Gallic acid, a phenolic compound, is known for its antimicrobial properties. This study aims to observe gallic acid's protective and restorative effect on the lungs in an experimental sepsis model. Male Wistar albino rats were subjected to a feces intraperitoneal injection procedure (FIP) to induce sepsis. Four groups were formed: normal control, FIP alone, FIP with saline, and FIP with gallic acid. Gallic acid was administered intraperitoneally at 20 mg/kg/day. Blood samples were collected for biochemical analysis, and computed tomography assessed lung tissue histopathologically and radiologically. Gallic acid significantly decreased malondialdehyde, IL-6, IL-1β, TNF-α, CRP levels, oxidative stress, and inflammation indicators. Lactic acid levels decreased, suggesting improved tissue oxygenation. Histopathological examinations revealed reduced lung damage in the gallic-acid-treated group. Computed tomography confirmed lower lung density, indicating less severe inflammation. Arterial blood gas analysis demonstrated improved oxygenation in gallic-acid-treated rats. Gallic acid exhibited anti-inflammatory and antioxidant effects, reducing markers of systemic inflammation and oxidative stress. The findings support its potential to protect against ALI during sepsis. Comparable studies underline gallic acid's anti-inflammatory properties in different tissues. Early administration of gallic acid in sepsis models demonstrated protective effects against ALI, emphasizing its potential as an adjunct therapy to mitigate adverse outcomes. The study proposes gallic acid to reduce mortality rates and decrease the need for mechanical ventilation during sepsis-induced ALI.
Collapse
Affiliation(s)
- Süleyman Kardaş
- Department of Emergency Medicine, Kızıltepe State Hospital, Mardin 47400, Türkiye
| | - Osman Sezer Çınaroğlu
- Department of Emergency Medicine, Faculty of Medicine, Izmir Katip Çelebi University, Izmir 35270, Türkiye; (O.S.Ç.); (E.S.B.)
| | - Ejder Saylav Bora
- Department of Emergency Medicine, Faculty of Medicine, Izmir Katip Çelebi University, Izmir 35270, Türkiye; (O.S.Ç.); (E.S.B.)
| | - Oytun Erbaş
- Department of Physiology, Faculty of Medicine Demiroğlu Science University, Istanbul 34000, Türkiye;
| |
Collapse
|
3
|
Carecho R, Carregosa D, Ratilal BO, Figueira I, Ávila-Gálvez MA, Dos Santos CN, Loncarevic-Vasiljkovic N. Dietary (Poly)phenols in Traumatic Brain Injury. Int J Mol Sci 2023; 24:ijms24108908. [PMID: 37240254 DOI: 10.3390/ijms24108908] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 05/10/2023] [Accepted: 05/12/2023] [Indexed: 05/28/2023] Open
Abstract
Traumatic brain injury (TBI) remains one of the leading causes of death and disability in young adults worldwide. Despite growing evidence and advances in our knowledge regarding the multifaceted pathophysiology of TBI, the underlying mechanisms, though, are still to be fully elucidated. Whereas initial brain insult involves acute and irreversible primary damage to the brain, the processes of subsequent secondary brain injury progress gradually over months to years, providing a window of opportunity for therapeutic interventions. To date, extensive research has been focused on the identification of druggable targets involved in these processes. Despite several decades of successful pre-clinical studies and very promising results, when transferred to clinics, these drugs showed, at best, modest beneficial effects, but more often, an absence of effects or even very harsh side effects in TBI patients. This reality has highlighted the need for novel approaches that will be able to respond to the complexity of the TBI and tackle TBI pathological processes on multiple levels. Recent evidence strongly indicates that nutritional interventions may provide a unique opportunity to enhance the repair processes after TBI. Dietary (poly)phenols, a big class of compounds abundantly found in fruits and vegetables, have emerged in the past few years as promising agents to be used in TBI settings due to their proven pleiotropic effects. Here, we give an overview of the pathophysiology of TBI and the underlying molecular mechanisms, followed by a state-of-the-art summary of the studies that have evaluated the efficacy of (poly)phenols administration to decrease TBI-associated damage in various animal TBI models and in a limited number of clinical trials. The current limitations on our knowledge concerning (poly)phenol effects in TBI in the pre-clinical studies are also discussed.
Collapse
Affiliation(s)
- Rafael Carecho
- iNOVA4Health, NOVA Medical School, Faculdade de Ciências Médicas, NMS, FCM, Universidade Nova de Lisboa, 1169-056 Lisboa, Portugal
- ITQB, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, 2780-157 Oeiras, Portugal
| | - Diogo Carregosa
- iNOVA4Health, NOVA Medical School, Faculdade de Ciências Médicas, NMS, FCM, Universidade Nova de Lisboa, 1169-056 Lisboa, Portugal
| | - Bernardo Oliveira Ratilal
- Hospital CUF Descobertas, CUF Academic Center, 1998-018 Lisboa, Portugal
- Clínica Universitária de Neurocirurgia, Faculdade de Medicina da Universidade de Lisboa, 1649-028 Lisboa, Portugal
| | - Inês Figueira
- iNOVA4Health, NOVA Medical School, Faculdade de Ciências Médicas, NMS, FCM, Universidade Nova de Lisboa, 1169-056 Lisboa, Portugal
| | - Maria Angeles Ávila-Gálvez
- iNOVA4Health, NOVA Medical School, Faculdade de Ciências Médicas, NMS, FCM, Universidade Nova de Lisboa, 1169-056 Lisboa, Portugal
- iBET, Instituto de Biologia Experimental e Tecnológica, 2781-901 Oeiras, Portugal
- Laboratory of Food & Health, Group of Quality, Safety, and Bioactivity of Plant Foods, CEBAS-CSIC, 30100 Murcia, Spain
| | - Cláudia Nunes Dos Santos
- iNOVA4Health, NOVA Medical School, Faculdade de Ciências Médicas, NMS, FCM, Universidade Nova de Lisboa, 1169-056 Lisboa, Portugal
- ITQB, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, 2780-157 Oeiras, Portugal
- iBET, Instituto de Biologia Experimental e Tecnológica, 2781-901 Oeiras, Portugal
| | - Natasa Loncarevic-Vasiljkovic
- iNOVA4Health, NOVA Medical School, Faculdade de Ciências Médicas, NMS, FCM, Universidade Nova de Lisboa, 1169-056 Lisboa, Portugal
| |
Collapse
|
4
|
Bhuia MS, Rahaman MM, Islam T, Bappi MH, Sikder MI, Hossain KN, Akter F, Al Shamsh Prottay A, Rokonuzzman M, Gürer ES, Calina D, Islam MT, Sharifi-Rad J. Neurobiological effects of gallic acid: current perspectives. Chin Med 2023; 18:27. [PMID: 36918923 PMCID: PMC10015939 DOI: 10.1186/s13020-023-00735-7] [Citation(s) in RCA: 30] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 03/07/2023] [Indexed: 03/16/2023] Open
Abstract
Gallic acid (GA) is a phenolic molecule found naturally in a wide range of fruits as well as in medicinal plants. It has many health benefits due to its antioxidant properties. This study focused on finding out the neurobiological effects and mechanisms of GA using published data from reputed databases. For this, data were collected from various sources, such as PubMed/Medline, Science Direct, Scopus, Google Scholar, SpringerLink, and Web of Science. The findings suggest that GA can be used to manage several neurological diseases and disorders, such as Alzheimer's disease, Parkinson's disease, strokes, sedation, depression, psychosis, neuropathic pain, anxiety, and memory loss, as well as neuroinflammation. According to database reports and this current literature-based study, GA may be considered one of the potential lead compounds to treat neurological diseases and disorders. More preclinical and clinical studies are required to establish GA as a neuroprotective drug.
Collapse
Affiliation(s)
- Md. Shimul Bhuia
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, 8100 Bangladesh
| | - Md. Mizanur Rahaman
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, 8100 Bangladesh
| | - Tawhida Islam
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, 8100 Bangladesh
| | - Mehedi Hasan Bappi
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, 8100 Bangladesh
| | - Md. Iqbal Sikder
- Department of Pharmacy, Southern University Bangladesh, Chattogram, 4210 Bangladesh
| | - Kazi Nadim Hossain
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, 8100 Bangladesh
| | - Fatama Akter
- Department of Pharmacy, Southern University Bangladesh, Chattogram, 4210 Bangladesh
| | - Abdullah Al Shamsh Prottay
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, 8100 Bangladesh
| | - Md. Rokonuzzman
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, 8100 Bangladesh
| | - Eda Sönmez Gürer
- Faculty of Pharmacy, Department of Pharmacognosy, Sivas Cumhuriyet University, Sivas, Turkey
| | - Daniela Calina
- Department of Clinical Pharmacy, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - Muhammad Torequl Islam
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, 8100 Bangladesh
| | | |
Collapse
|
5
|
Gallic acid abates cadmium chloride toxicity via alteration of neurotransmitters and modulation of inflammatory markers in Wistar rats. Sci Rep 2023; 13:1577. [PMID: 36709339 PMCID: PMC9884205 DOI: 10.1038/s41598-023-28893-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 01/27/2023] [Indexed: 01/29/2023] Open
Abstract
Cadmium is a highly neurotoxic heavy metal that disrupts membranes and causes oxidative stress in the brain. The study aimed to investigate the neuroprotective effect of gallic acid on oxidative damage in the brains of Wistar rats exposed to cadmium chloride (CdCl2). Male Wistar rats were divided into four groups of five rats each. Group 1 was administered distilled water only throughout the study. Throughout the study, Group 2 received CdCl2 alone (5 mg/kg b.w./day), Group 3 received gallic acid (20 mg/kg b.w./day), and Group 4 received CdCl2 + gallic acid (20 mg/kg). Treatments were oral with distilled water as a vehicle. The study lasted 21 days. In the brain, the activities of cholinesterase and antioxidant enzymes were evaluated, as well as the levels of reduced glutathione, malondialdehyde, neurotransmitters, Na+/K+ ATPase, myeloperoxidase activity, nitric oxide, and interleukin-6. CdCl2-induced brain impairments in experimental animals and gallic acid prevents the following CdCl2-induced activities: inhibition of acetylcholinesterase (AChE) and butyrylcholinesterase (BChE), elevated neurotransmitters (serotonin and dopamine), decreased antioxidant enzymes (superoxide dismutase, catalase), decreased glutathione, Na+/K+ ATPases, and increased MDA and neuroinflammatory markers (myeloperoxidase (MPO), nitric oxide, and interleukin-6 in the brain of experimental rats exposed to CdCl2 (p < 0.05). Taken together, the neuroprotective effects of gallic acid on CdCl2-induced toxicity in the brains of rats suggest its potent antioxidant and neurotherapeutic properties.
Collapse
|
6
|
Arora K, Vats V, Kaushik N, Sindhawani D, Saini V, Arora DM, Kumar Y, Vashisht E, Singh G, Verma PK. A Systematic Review on Traumatic Brain Injury Pathophysiology and Role of Herbal Medicines in its Management. Curr Neuropharmacol 2023; 21:2487-2504. [PMID: 36703580 PMCID: PMC10616914 DOI: 10.2174/1570159x21666230126151208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 12/08/2022] [Accepted: 12/08/2022] [Indexed: 01/28/2023] Open
Abstract
BACKGROUND Traumatic brain injury (TBI) is a worldwide problem. Almost about sixtynine million people sustain TBI each year all over the world. Repetitive TBI linked with increased risk of neurodegenerative disorder such as Parkinson, Alzheimer, traumatic encephalopathy. TBI is characterized by primary and secondary injury and exerts a severe impact on cognitive, behavioral, psychological and other health problem. There were various proposed mechanism to understand complex pathophysiology of TBI but still there is a need to explore more about TBI pathophysiology. There are drugs present for the treatment of TBI in the market but there is still need of more drugs to develop for better and effective treatment of TBI, because no single drug is available which reduces the further progression of this injury. OBJECTIVE The main aim and objective of structuring this manuscript is to design, develop and gather detailed data regarding about the pathophysiology of TBI and role of medicinal plants in its treatment. METHOD This study is a systematic review conducted between January 1995 to June 2021 in which a consultation of scientific articles from indexed periodicals was carried out in Science Direct, United States National Library of Medicine (Pubmed), Google Scholar, Elsvier, Springer and Bentham. RESULTS A total of 54 studies were analyzed, on the basis of literature survey in the research area of TBI. CONCLUSION Recent studies have shown the potential of medicinal plants and their chemical constituents against TBI therefore, this review targets the detailed information about the pathophysiology of TBI and role of medicinal plants in its treatment.
Collapse
Affiliation(s)
- Kaushal Arora
- Department of Pharmaceutical Sciences Maharshi Dayanand University, Rohtak, Haryana, 124001, India
| | - Vishal Vats
- Department of Pharmaceutical Sciences Maharshi Dayanand University, Rohtak, Haryana, 124001, India
| | - Nalin Kaushik
- Department of Pharmaceutical Sciences, Chaudhary Bansi Lal University, Bhiwani, Haryana, 127031, India
| | - Deepanshu Sindhawani
- Department of Pharmaceutical Sciences Maharshi Dayanand University, Rohtak, Haryana, 124001, India
| | - Vaishali Saini
- Department of Pharmaceutical Sciences Maharshi Dayanand University, Rohtak, Haryana, 124001, India
| | - Divy Mohan Arora
- Department of Pharmaceutical Sciences Guru Jambheshwar University of Science & Technology, Hisar, Haryana, 125001, India
| | - Yogesh Kumar
- Sat Priya College of Pharmacy, Rohtak, Haryana, 124001, India
| | - Etash Vashisht
- Department of Pharmaceutical Sciences Maharshi Dayanand University, Rohtak, Haryana, 124001, India
| | - Govind Singh
- Department of Pharmaceutical Sciences Maharshi Dayanand University, Rohtak, Haryana, 124001, India
| | - Prabhakar Kumar Verma
- Department of Pharmaceutical Sciences Maharshi Dayanand University, Rohtak, Haryana, 124001, India
| |
Collapse
|
7
|
Liangxue Tongyu Prescription Alleviates Brain Damage in Acute Intracerebral Hemorrhage Rats by Regulating Intestinal Mucosal Barrier Function. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:2197763. [PMID: 36573082 PMCID: PMC9789913 DOI: 10.1155/2022/2197763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 11/27/2022] [Accepted: 12/10/2022] [Indexed: 12/23/2022]
Abstract
Background Liangxue Tongyu prescription (LTP) is a commonly used formula for acute intracerebral hemorrhage (AICH) in clinical practice that has significant ameliorative effects on neurological deficits and gastrointestinal dysfunction, yet the mechanism remains elusive. The aim of this study was to investigate the pathway by which LTP alleviates brain damage in AICH rats. Methods The AICH rat models were established by autologous caudal arterial blood injection. The neurological function scores were evaluated before and after treatment. The water content and the volume of Evans blue staining in the brain were measured to reflect the degree of brain damage. RT-PCR was used to detect the inflammatory factors of the brain. Western blotting was used to detect the expression of the tight junction proteins zonula occludens 1 (ZO-1), occludin (OCLN), and claudin (CLDN) in the brain and colon, followed by mucin 2 (MUC2), secretory immunoglobulin A (SIgA), and G protein-coupled receptor 43 (GPR43) in the colon. Flow cytometry was used to detect the ratios of helper T cells 17 (Th17) and regulatory T cells (Treg) in peripheral blood, and the vagus nerve (VN) discharge signals were collected. Results LTP reduced the brain damage of the AICH rats. Compared with the model group, LTP significantly improved the permeability of the colonic mucosa, promoted the secretion of MUC2, SigA, and GPR43 in the colon, and regulated the immune balance of peripheral T cells. The AICH rats had significantly faster VN discharge rates and lower amplitudes than normal rats, and these abnormalities were corrected in the LTP and probiotics groups. Conclusion LTP can effectively reduce the degree of brain damage in AICH rats, and the mechanism may be that it can play a neuroprotective role by regulating the function of the intestinal mucosal barrier.
Collapse
|
8
|
Pham TN, Nguyen XT, Phan TD, Le TD, Nguyen TBT, Hoang TPL, Bach LG. Anti-arthritic activity and phytochemical composition of "Cao Khai" (Aqueous extracts of Coptosapelta flavescens Korth.). Heliyon 2022; 8:e08933. [PMID: 35243058 PMCID: PMC8866061 DOI: 10.1016/j.heliyon.2022.e08933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 01/23/2022] [Accepted: 02/08/2022] [Indexed: 11/02/2022] Open
Abstract
For a long time, ethnic minorities in Ninh Thuan province have combined "Day Khai" (Coptosapelta flavescens Korth) with many other medicinal herbs, creating an esoteric remedy called "Cao Khai"-an aqueous extract from Day Khai. This study tested an aqueous extract from "Day Khai" for total phenolics, total flavonoids, antioxidant, and anti-inflammatory activity in an in vivo mice model. The aqueous extracts of raw materials C. flavescens collected in different regions were found to have phenolics, flavonoids, and antioxidant capacity in vitro according to DPPH, ABTS, RP, TAC, and FRAP methods. This study evaluated the effect of C. flavescens on arthritis of Complete Freund's adjuvant (CFA) induced-mice by observing changes in the degree of edema in the leg joints blood index and histology. The findings indicated that the "Cao Khai" had anti-inflammatory benefits and lowered the inflammatory symptoms in mice equivalent to Mobic medications (p < 0.05) while also limiting cartilage tissue damage after 14 days of usage. As a result, it is clear that "Cao Khai" can be considered a medicinal herb with tremendous potential for usage as an addition to illness therapy that should be protected and cultivated.
Collapse
Affiliation(s)
- Tri Nhut Pham
- Institute of Applied Technology and Sustainable Development, Nguyen Tat Thanh University, Ho Chi Minh City, Viet Nam.,Faculty of Food and Environmental Engineering, Nguyen Tat Thanh University, Ho Chi Minh City, Viet Nam
| | - Xuan Tuyen Nguyen
- Ninh Thuan Provincial Oriental Medicine Association, Ninh Thuan Province, Viet Nam
| | - Trong Doan Phan
- Department of Traditional Medicine and Rehabilitation, Ninh Thuan Provincial Hospital, Viet Nam
| | - Tien Dung Le
- Institute of Applied Materials Science, Vietnam Academy of Science and Technology, Viet Nam
| | | | | | - Long Giang Bach
- Institute of Applied Technology and Sustainable Development, Nguyen Tat Thanh University, Ho Chi Minh City, Viet Nam.,Faculty of Food and Environmental Engineering, Nguyen Tat Thanh University, Ho Chi Minh City, Viet Nam
| |
Collapse
|
9
|
Shawky EM, Elgindi MR, Ibrahim HA, Baky MH. The potential and outgoing trends in traditional, phytochemical, economical, and ethnopharmacological importance of family Onagraceae: A comprehensive review. JOURNAL OF ETHNOPHARMACOLOGY 2021; 281:114450. [PMID: 34314807 DOI: 10.1016/j.jep.2021.114450] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 07/04/2021] [Accepted: 07/23/2021] [Indexed: 06/13/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The Onagraceae is a widely distributed family of flowering plants comprises about 17 genera and more than 650 species of herbs, shrubs, and trees. Onagraceae also common as willowherb family or evening primrose family is divided into two subfamilies; Ludwigioideae (mainly genus; Ludwigia) and Onagroideae. Family Onagraceae is characterized by its numerous traditional uses as treatment of hormonal imbalances, urinary system ailments, prostate health maintenance, and antimicrobial effects. AIM OF THE STUDY This review aims to introduce a holistic overview on the phytochemical composition, economical importance and ethnopharmacological value of different species of family Onagraceae. MATERIALS AND METHODS Literature review was performed using different data bases such as PubMed, Web of Science, Google Scholar and Reaxys searching for articles focused on phytochemical composition, bioactivity and ethnopharmacological history of Onagraceae species. RESULTS Different species of Onagraceae were reported to have a great variety of phytochemicals including flavonoids, tannins, phenolic acids, triterpenoids, saponins, and volatile/fixed oils. Onagraceae exhibited several health benefits and pharmacological activities including anti-inflammatory, antiarthritic and analgesic, antioxidant, cytotoxic, antidiabetic, and antimicrobial. CONCLUSIONS Family Onagraceae is an extremely important family with diverse phytochemical composition which enriches their pharmacological importance and hence it's commercial and economical value.
Collapse
Affiliation(s)
- Enas M Shawky
- Department of Pharmacognosy, Faculty of Pharmacy, Egyptian Russian University. Badr City, 11829, Cairo, Egypt
| | - Mohamed R Elgindi
- Department of Pharmacognosy, Faculty of Pharmacy, Helwan University, Cairo, Egypt
| | - Haitham A Ibrahim
- Department of Pharmacognosy, Faculty of Pharmacy, Helwan University, Cairo, Egypt
| | - Mostafa H Baky
- Department of Pharmacognosy, Faculty of Pharmacy, Egyptian Russian University. Badr City, 11829, Cairo, Egypt.
| |
Collapse
|
10
|
Faillot M, Chaillet A, Palfi S, Senova S. Rodent models used in preclinical studies of deep brain stimulation to rescue memory deficits. Neurosci Biobehav Rev 2021; 130:410-432. [PMID: 34437937 DOI: 10.1016/j.neubiorev.2021.08.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 08/10/2021] [Accepted: 08/13/2021] [Indexed: 11/28/2022]
Abstract
Deep brain stimulation paradigms might be used to treat memory disorders in patients with stroke or traumatic brain injury. However, proof of concept studies in animal models are needed before clinical translation. We propose here a comprehensive review of rodent models for Traumatic Brain Injury and Stroke. We systematically review the histological, behavioral and electrophysiological features of each model and identify those that are the most relevant for translational research.
Collapse
Affiliation(s)
- Matthieu Faillot
- Neurosurgery department, Henri Mondor University Hospital, APHP, DMU CARE, Université Paris Est Créteil, Mondor Institute for Biomedical Research, INSERM U955, Team 15, Translational Neuropsychiatry, France
| | - Antoine Chaillet
- Laboratoire des Signaux et Systèmes (L2S-UMR8506) - CentraleSupélec, Université Paris Saclay, Institut Universitaire de France, France
| | - Stéphane Palfi
- Neurosurgery department, Henri Mondor University Hospital, APHP, DMU CARE, Université Paris Est Créteil, Mondor Institute for Biomedical Research, INSERM U955, Team 15, Translational Neuropsychiatry, France
| | - Suhan Senova
- Neurosurgery department, Henri Mondor University Hospital, APHP, DMU CARE, Université Paris Est Créteil, Mondor Institute for Biomedical Research, INSERM U955, Team 15, Translational Neuropsychiatry, France.
| |
Collapse
|
11
|
Elham A, Arken M, Kalimanjan G, Arkin A, Iminjan M. A review of the phytochemical, pharmacological, pharmacokinetic, and toxicological evaluation of Quercus Infectoria galls. JOURNAL OF ETHNOPHARMACOLOGY 2021; 273:113592. [PMID: 33217520 DOI: 10.1016/j.jep.2020.113592] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 11/11/2020] [Accepted: 11/12/2020] [Indexed: 06/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Quercus Infectoria galls (QIG) have a long history of use in traditional Chinese medicine and traditional Uyghur medicine for the treatment of diarrhea, hemorrhage, skin disease, and many other human ailments. Medicinal applications of QIG have become increasingly popular in Greece, Asia Minor, Syria, and Iran. AIM OF THE REVIEW The present paper reviewed the ethnopharmacology, phytochemistry, analytical methods, biological activities, metabolism, pharmacokinetics, toxicology, and drug interactions of QIG to assess the ethnopharmacological uses, explore its therapeutic potential, and identify future opportunities for research. MATERIALS AND METHODS Information on QIG was gathered via the Internet (using Google Scholar, Baidu Scholar, Elsevier, ACS, Pubmed, Web of Science, CNKI, and EMBASE) and libraries. Additionally, information was also obtained from local books and PhD and MS dissertations. RESULTS QIG has played an important role in traditional Chinese medicine. The main bioactive metabolites of QIG include tannins, phenolic acids, flavonoids, triterpenoids, and steroids. Scientific studies on the QIG extract and its components have shown its wide range of pharmacological activities, such as cholinesterase- and monoamine oxidase-inhibitory, antitumor, anti-hypertension, antidiabetic, antimicrobial, insecticidal, antiparasitic, antioxidant, and anti-inflammatory. CONCLUSIONS The ethnopharmacological, phytochemical, pharmacological, and analytical methods of QIG were highlighted in this review, which provides information for future studies and commercial exploration. QIG has a huge potential for pharmaceutical and nutraceutical applications. Moreover, comprehensive toxicity studies of this plant must be conducted to ensure its safety. Additional investigations are recommended to transmute the ethnopharmacological claims of this plant in folklore medicines into scientific rationale-based information. Research on pharmacokinetics studies and potential drug interactions with standard-of-care medications is still limited, which calls for additional studies particularly on humans. Further assessments and clinical trials should be performed before it can be integrated into medicinal practices.
Collapse
Affiliation(s)
- Aliya Elham
- Dept. of Pharmaceutics and Physical Chemistry, College of Pharmacy, Xinjiang Medical University, Urumqi, 830011, China
| | - Miradel Arken
- Emergency Trauma Center, The First Affiliated Hospital of Xinjiang Medical University, Xinjiang Medical University, Urumqi, China
| | - Gulina Kalimanjan
- Dept. of Pharmaceutics and Physical Chemistry, College of Pharmacy, Xinjiang Medical University, Urumqi, 830011, China
| | - Abdulaziz Arkin
- Dept. of Pharmaceutics and Physical Chemistry, College of Pharmacy, Xinjiang Medical University, Urumqi, 830011, China
| | - Mubarak Iminjan
- Dept. of Pharmaceutics and Physical Chemistry, College of Pharmacy, Xinjiang Medical University, Urumqi, 830011, China.
| |
Collapse
|
12
|
Fabrication of Gallic Acid Loaded SeNPs and their Neuroprotection Effect for Treatment of Ischemic Stroke. J CLUST SCI 2021. [DOI: 10.1007/s10876-021-02070-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
13
|
Sandhir R, Khurana M, Singhal NK. Potential benefits of phytochemicals from Azadirachta indica against neurological disorders. Neurochem Int 2021; 146:105023. [PMID: 33753160 DOI: 10.1016/j.neuint.2021.105023] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 03/12/2021] [Accepted: 03/14/2021] [Indexed: 12/16/2022]
Abstract
Azadirachta indica or Neem has been extensively used in the Indian traditional medical system because of its broad range of medicinal properties. Neem contains many chemically diverse and structurally complex phytochemicals such as limonoids, flavonoids, phenols, catechins, gallic acid, polyphenols, nimbins. These phytochemicals possess vast array of therapeutic activities that include anti-feedant, anti-viral, anti-malarial, anti-bacterial, anti-cancer properties. In recent years, many phytochemicals from Neem have been shown to be beneficial against various neurological disorders like Alzheimer's and Parkinson's disease, mood disorders, ischemic-reperfusion injury. The neuroprotective effects of the phytochemicals from Neem are primarily mediated by their anti-oxidant, anti-inflammatory and anti-apoptotic activities along with their ability to modulate signaling pathways. However, extensive studies are still required to fully understand the molecular mechanisms involved in neuropotective effects of phytochemicals from Neem. This review is an attempt to cover the neuroprotective properties of various phytochemicals from Neem along with their mechanism of action so that the potential of the compounds could be realized to reduce the burden of neurodegenerative diseases.
Collapse
Affiliation(s)
- Rajat Sandhir
- Department of Biochemistry, Basic Medical Science Block-II, Panjab University, Chandigarh, 160014, India.
| | - Mehak Khurana
- Department of Biochemistry, Basic Medical Science Block-II, Panjab University, Chandigarh, 160014, India
| | - Nitin Kumar Singhal
- National Agri-Food Biotechnology Institute (NABI) Sector-81 (Knowledge City), PO Manauli, S.A.S. Nagar, Mohali, 140306, Punjab, India
| |
Collapse
|
14
|
Khombi Shooshtari M, Farbood Y, Mansouri SMT, Badavi M, Khorsandi LS, Ghasemi Dehcheshmeh M, Sarkaki AR. Neuroprotective Effects of Chrysin Mediated by Estrogenic Receptors Following Cerebral Ischemia and Reperfusion in Male Rats. Basic Clin Neurosci 2021; 12:149-162. [PMID: 33995936 PMCID: PMC8114856 DOI: 10.32598/bcn.12.1.2354.1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 02/10/2020] [Accepted: 04/19/2020] [Indexed: 12/27/2022] Open
Abstract
Introduction Ischemic stroke is one of the leading causes of morbidity and mortality worldwide. Neuroprotective strategies were reported to attenuate cognitive deficits after ischemic incidents. Here we studied the neuroprotective potential of chrysin in a rat model of cerebral Ischemia/Reperfusion (I/R) in the presence or absence of Estrogen Receptors (ERs). Methods Adult male Wistar rats were pretreated with chrysin (CH) (CH; 30 mg/kg; gavage; for 21 consecutive days) alone or with selective ERs antagonists (ERα antagonist MPP; ERβ antagonist PHTPP; IP) or nonselective ERs antagonist (ICI182780; IP). Then, the bilateral common carotid arteries were occluded for 20 min, which was followed by 72 h reperfusion. Subsequently, cognitive performance was evaluated by Morris Water Maze (MWM) and shuttle box tasks, and afterward, their hippocampi were removed for ELISA assays and H&E staining. Oxidative indicators Malondialdehyde (MDA) and Glutathione Peroxidase (GPx), as well as inflammation mediators interleukin (IL)-1β and tumor necrosis factor-alpha (TNFα), were measured using commercial kits. Results Results of the current study showed that the anti-oxidative and anti-inflammatory properties of CH are possible mechanisms that could improve cognitive deficits and prevent neuronal cell death following I/R (P<0.001). These effects were reversed by ICI182780 (P>0.05). Furthermore, when chrysin was co-treated with ERβ antagonist, PHTPP showed a weak neuroprotective effect in I/R rats. However, these parameters were not significantly different when chrysin was combined with ERα antagonist MPP. Conclusion Our data confirm that chrysin could potentially serve as a neuroprotective agent against devastating effects of cerebral I/R injury, which may be mediated via its interaction with ERs, especially ERβ.
Collapse
Affiliation(s)
- Maryam Khombi Shooshtari
- Persian Gulf Physiology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Yaghoob Farbood
- Persian Gulf Physiology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.,Department of Physiology, Faculty of Medicine, Physiology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Seyed Mohammad Taghi Mansouri
- Persian Gulf Physiology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.,Department of Pharmacology, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.,Department of Anesthesiology, Columbia University Irving Medical Center, New York, United States of America
| | - Mohammad Badavi
- Persian Gulf Physiology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.,Department of Physiology, Faculty of Medicine, Physiology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Laya Sadat Khorsandi
- Department of Anatomical Sciences, Faculty of Medicine, Cell & Molecular Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.,Cell & Molecular Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | | | - Ali Reza Sarkaki
- Persian Gulf Physiology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.,Department of Physiology, Faculty of Medicine, Physiology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.,Medicinal Plant Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
15
|
Park CS, Lee JY, Choi HY, Lee K, Heo Y, Ju BG, Choo HYP, Yune TY. Gallic acid attenuates blood-spinal cord barrier disruption by inhibiting Jmjd3 expression and activation after spinal cord injury. Neurobiol Dis 2020; 145:105077. [PMID: 32898645 DOI: 10.1016/j.nbd.2020.105077] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 08/28/2020] [Accepted: 09/02/2020] [Indexed: 01/28/2023] Open
Abstract
After spinal cord injury (SCI), blood-spinal cord barrier (BSCB) disruption results in secondary injury including apoptotic cell death of neurons and oligodendrocytes, thereby leads to permanent neurological deficits. Recently, we reported that the histone H3K27me3 demethylase Jmjd3 plays a role in regulating BSCB integrity after SCI. Here, we investigated whether gallic acid (GA), a natural phenolic compound that is known to be anti-inflammatory, regulates Jmjd3 expression and activation, thereby attenuates BSCB disruption following the inflammatory response and improves functional recovery after SCI. Rats were contused at T9 and treated with GA (50 mg/kg) via intraperitoneal injection immediately, 6 h and 12 h after SCI, and further treated for 7 d with the same dose once a day. To elucidate the underlying mechanism, we evaluated Jmjd3 activity and expression, and assessed BSCB permeability by Evans blue assay after SCI. GA significantly inhibited Jmjd3 expression and activation after injury both in vitro and in vivo. GA also attenuated the expression and activation of matrix metalloprotease-9, which is well known to disrupt the BSCB after SCI. Consistent with these findings, GA attenuated BSCB disruption and reduced the infiltration of neutrophils and macrophages compared with the vehicle control. Finally, GA significantly alleviated apoptotic cell death of neurons and oligodendrocytes and improved behavior functions. Based on these data, we propose that GA can exert a neuroprotective effect by inhibiting Jmjd3 activity and expression followed the downregulation of matrix metalloprotease-9, eventually attenuating BSCB disruption after SCI.
Collapse
Affiliation(s)
- Chan Sol Park
- Age-Related and Brain Diseases Research Center, Kyung Hee University, Seoul 02447, Republic of Korea; Department of Biomedical Science, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Jee Youn Lee
- Age-Related and Brain Diseases Research Center, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Hae Young Choi
- Age-Related and Brain Diseases Research Center, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Kwanghyun Lee
- Department of Life Science, Sogang University, Seoul 04107, Republic of Korea
| | - Yeonju Heo
- School of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 120-750, Republic of Korea
| | - Bong Gun Ju
- Department of Life Science, Sogang University, Seoul 04107, Republic of Korea
| | - Hae-Young Park Choo
- School of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 120-750, Republic of Korea
| | - Tae Young Yune
- Age-Related and Brain Diseases Research Center, Kyung Hee University, Seoul 02447, Republic of Korea; Department of Biomedical Science, Kyung Hee University, Seoul 02447, Republic of Korea; Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea; KHU-KIST Department of Converging Science and Technology, Kyung Hee University, Seoul 02447, Republic of Korea.
| |
Collapse
|
16
|
Zhao Y, Li D, Zhu Z, Sun Y. Improved Neuroprotective Effects of Gallic Acid-Loaded Chitosan Nanoparticles Against Ischemic Stroke. Rejuvenation Res 2020; 23:284-292. [PMID: 31680647 DOI: 10.1089/rej.2019.2230] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Affiliation(s)
- Yongmei Zhao
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Duolu Li
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhenfeng Zhu
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Ya Sun
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
17
|
Binge and Subchronic Exposure to Ketamine Promote Memory Impairments and Damages in the Hippocampus and Peripheral Tissues in Rats: Gallic Acid Protective Effects. Neurotox Res 2020; 38:274-286. [DOI: 10.1007/s12640-020-00215-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 04/14/2020] [Accepted: 04/22/2020] [Indexed: 12/11/2022]
|
18
|
Shabani S, Rabiei Z, Amini-Khoei H. Exploring the multifaceted neuroprotective actions of gallic acid: a review. INTERNATIONAL JOURNAL OF FOOD PROPERTIES 2020. [DOI: 10.1080/10942912.2020.1753769] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Sahreh Shabani
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Zahra Rabiei
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Hossein Amini-Khoei
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| |
Collapse
|
19
|
Luo YM, Ren XQ, Yang XQ, Song HR, Li R, Gao MH, Li YR, Zhou RR, Ma L, Zhang SJ, Dong RJ, Ge DY, Wang CG, Ren QJ, Tao XH. Tibetan medicine Ru-yi-Zhen-bao Pills exhibits anti-migraine effect through mediating PAG anti-nociceptive channel. JOURNAL OF ETHNOPHARMACOLOGY 2020; 249:112437. [PMID: 31794788 DOI: 10.1016/j.jep.2019.112437] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 11/25/2019] [Accepted: 11/26/2019] [Indexed: 06/10/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Migraine is a disabling neurovascular disorder, which increases risk of cardiovascular events and is a social burden worldwide. The present first-line anti-migraine medications can cause overwhelming side-effects, of which one includes the onset of cardiovascular disease. As one of the marketed Tibetan drugs, Ru-yi-Zhen-bao Pills (RYZBP) have been clinically used to treat cardiovascular disorders and as anti-migraine medication. However, there is currently no research exploring the anti-migraine actions of RYZBP. AIM OF THE STUDY The current research was designed to assess the anti-migraine roles of RYZBP and explore the underlying mechanisms in a nitroglycerin (NTG)-induced migraine rat model trial. MATERIALS AND METHODS 120 rats were randomly divided into the following six groups of 20 rats each: normal control group, model control group, positive control group, and RYZBP high/medium/low-dose groups (Ru-yi-Zhen-bao Pills; TH 1.00 g/kg, TM 0.50 g/kg and TL 0.25 g/kg). All rats were administered intragastrically for 7 consecutive days, which were subcutaneously injected with the NTG (10 mg/kg) after the last gavage (except in the normal control group). 3min after NTG treatment, 30 rats (5 rats from each group) were anesthetized and devoted to electroencephalogram(EEG) testing, which was used to evaluate the analgesic effect of RYZBP. One hour after NTG treatment, the rest of the 90 rats (15 rats from each group) were anesthetized and midbrain tissue sample was dissected. The dissection was then washed with physiological saline and collected. The histopathological changes in the periaqueductal gray(PAG) of 5 tissue samples were determined by aematoxylin-eosin (H&E) staining, as well as an estimation of substance P (SP) and neurokinin 1 receptor (NK1R) expression through immunohistochemically staining(IHC). Another 5 midbrain preparations were carried out to evaluate calcitonin gene-related peptide (CGRP), proenkephalin (PENK), SP, and cholecystokinin (CCK) expressions by real-time quantitative polymerase chain reaction (RT-qPCR). The rest of the 5 brainstem tissues were then used to measure CCK, CGRP, and opioid peptide receptor (DORR) levels by western blotting(WB). RESULTS In the EEG test, RYZBP (TM 0.50 g / kg) treatment transformed the EEG pain-wave of the NTG-induced migraine model rats in different time period. In the mechanism assay, compared with the model control group, RYZBP pretreatment reduced inflammatory cell infiltration, fibrosis and vacuolation of neuronal cells of PAG tissue seen by HE staining. IHC experiments further showed that RYZBPTM up-regulated SP expression levels and enhanced NK1R levels in the NTG-induced migraine rats (P < 0.05). Therapeutic administration of RYZBP also increased PENK mRNA expression and DORR protein level. Both RT-qPCR and western blotting trials indicated that RYZBP treatment significantly decreased CCK and CGRP expression levels (P < 0.01 or P < 0.05) in the NTG-induced migraine rats. CONCLUSIONS RYZBP has the potential to be an effective anti-migraine treatment through suppressing the EEG pain-wave, increasing the levels of SP, PENK, DORR and reducing expression of CCK and CGRP. Mediating the PAG anti-nociceptive channel and inhibiting central sensitization were the two potential mechanisms, which offers further evidence for clinical therapy.
Collapse
Affiliation(s)
- Ya Min Luo
- College of Traditional Chinese Medicine, Beijing University of Traditional Chinese Medicine, Beijing, 100029, China.
| | - Xiao Qiao Ren
- College of Traditional Chinese Medicine, Beijing University of Traditional Chinese Medicine, Beijing, 100029, China.
| | - Xue Qin Yang
- College of Traditional Chinese Medicine, Beijing University of Traditional Chinese Medicine, Beijing, 100029, China.
| | - Hui Rong Song
- College of Traditional Chinese Medicine, Beijing University of Traditional Chinese Medicine, Beijing, 100029, China.
| | - Ran Li
- College of Traditional Chinese Medicine, Beijing University of Traditional Chinese Medicine, Beijing, 100029, China.
| | - Ming Hui Gao
- College of Traditional Chinese Medicine, Beijing University of Traditional Chinese Medicine, Beijing, 100029, China.
| | - Yi Ran Li
- College of Traditional Chinese Medicine, Beijing University of Traditional Chinese Medicine, Beijing, 100029, China.
| | - Ran Ran Zhou
- College of Traditional Chinese Medicine, Beijing University of Traditional Chinese Medicine, Beijing, 100029, China.
| | - Lei Ma
- Department of Education, Beijing University of Traditional Chinese Medicine Third Affiliated Hospital, Beijing, 100029, China.
| | - Shu Jing Zhang
- College of Traditional Chinese Medicine, Beijing University of Traditional Chinese Medicine, Beijing, 100029, China.
| | - Ruan Juan Dong
- College of Traditional Chinese Medicine, Beijing University of Traditional Chinese Medicine, Beijing, 100029, China.
| | - Dong Yu Ge
- College of Traditional Chinese Medicine, Beijing University of Traditional Chinese Medicine, Beijing, 100029, China.
| | - Chun Guo Wang
- Institute of Traditional Chinese Medicine Research, Beijing University of Traditional Chinese Medicine, Beijing, 100029, China.
| | - Qing Jia Ren
- College of Tibetan Medicine, Tibet University of Tibetan Medicine, Lhasa, 850000, China.
| | - Xiao Hua Tao
- College of Traditional Chinese Medicine, Beijing University of Traditional Chinese Medicine, Beijing, 100029, China; College of Tibetan Medicine, Tibet University of Tibetan Medicine, Lhasa, 850000, China.
| |
Collapse
|
20
|
Shooshtari MK, Sarkaki A, Mansouri SMT, Badavi M, Khorsandi L, Ghasemi Dehcheshmeh M, Farbood Y. Protective effects of Chrysin against memory impairment, cerebral hyperemia and oxidative stress after cerebral hypoperfusion and reperfusion in rats. Metab Brain Dis 2020; 35:401-412. [PMID: 31853830 DOI: 10.1007/s11011-019-00527-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 12/01/2019] [Indexed: 11/26/2022]
Abstract
Stroke is devastating and a leading cause of morbidity and mortality worldwide. Cerebral ischemia-reperfusion and its subsequent reactive hyperemia lead to neuronal damage in the hippocampus and cognitive decline. Chrysin (5, 7-dihydroxyflavone) is a well-known member of the flavonoid family with antioxidant and neuroprotective effects. Therefore, in the present study, the aim was to investigate whether chrysin will be able to recover the brain function caused by ischemia-reperfusion (I/R) in rats. Adult male Wistar rats (250-300 g) were randomly divided into five groups: and submitted to cerebral I/R or a sham surgery after three-weeks of pretreatment with chrysin (CH; 10, 30 and 100 mg/kg; P.O.) and/or normal saline containing %5 DMSO. Subsequently, sensorimotor scores, cognition, local cerebral blood flow, extracellular single unit, and histological parameters were evaluated following I/R. Hippocampus was used to evaluate biomarkers including: oxidative stress parameters and prostaglandin E2 (PGE2) using ELISA kits. Data showed that pretreatment with chrysin significantly improved sensorimotor signs, passive avoidance memory, and attenuated reactive hyperemia, and increased the average number of spikes/bin (p < 0.001). Furthermore, chrysin pre-treatment significantly decreased the levels of MDA, NO, and PGE2 (p < 0. 001), while increased the levels of GPX and the number of surviving cells in the hippocampal CA1 region (p < 0.01, p < 0.001; respectively). This study demonstrates that chrysin may have beneficial effects in the treatment of cognitive impairment and help recover the brain dysfunction induced by I/R.
Collapse
Affiliation(s)
| | - Alireza Sarkaki
- Department of Physiology, Faculty of Medicine, Physiology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Seyed Mohammad Taghi Mansouri
- Department of Pharmacology, Faculty of Medicine, Physiology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Department of Anesthesiology, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Mohammad Badavi
- Department of Physiology, Faculty of Medicine, Physiology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Layasadat Khorsandi
- Department of Anatomical Science, Cell & Molecular Research Center, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | | | - Yaghoob Farbood
- Department of Physiology, Faculty of Medicine, Physiology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| |
Collapse
|
21
|
Gallic Acid Attenuated LPS-Induced Neuroinflammation: Protein Aggregation and Necroptosis. Mol Neurobiol 2019; 57:96-104. [DOI: 10.1007/s12035-019-01759-7] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 08/29/2019] [Indexed: 01/08/2023]
|
22
|
Alagan A, Jantan I, Kumolosasi E, Azmi N. Phyllanthus amarus protects against spatial memory impairment induced by lipopolysaccharide in mice. Bioinformation 2019; 15:535-541. [PMID: 31719762 PMCID: PMC6822522 DOI: 10.6026/97320630015535] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Accepted: 08/14/2019] [Indexed: 12/14/2022] Open
Abstract
Phyllanthus amarus Schumach. and Thonn. is a wide spread medicinal herb with various traditional uses. It is well documented for its antioxidant,
anti-inflammatory, and hepatoprotective activities. Therefore, it is of interest to evaluate the 80% ethanol extract of Phyllanthus
amarus (PA) on spatial memory using the 8-radial arm maze (8-RAM) in mice after induction of neuro inflammation by lipopolysaccharide
(LPS) in a 14- and 28-days treatment study. LC-MS/MS was performed to profile the chemical composition in PA extract. Mice were
treated orally with 5% v/v tween 20, PA extract (100, 200 and 400 mg/kg), or ibuprofen (IBF 40 mg/kg) for 14 and 28 days. All groups
were challenged with LPS (1 mg/kg) via intraperitoneal (i.p.) injection a day prior to the 8-RAM task except for the negative control group
which received an i.p. injection of saline. Data obtained were analyzed with one-way ANOVA followed by post hoc Dunnett's test
(comparison of all groups against vehicle control). Analysis of LC-MS/MS data revealed the presence of 16 compounds in the PA extract.
Administration of PA extract at 200 and 400 mg/kg for 14 and 28 days significantly (*P<0.05) decreased the working and reference memory
errors against LPS-induced spatial memory impairment. The observed protective action is possibly due to the putative antineuroinflammatory
effects of PA. In conclusion, PA extract possess neuroprotective effects against spatial memory impairment mediated by LPS.
Collapse
Affiliation(s)
- Akilandeshwari Alagan
- Drug and Herbal Research Centre,Faculty of Pharmacy,Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz,50300 Kuala Lumpur,Malaysia
| | - Ibrahim Jantan
- School of Pharmacy-SRI,Faculty of Health and Medical Sciences,Taylor's University,Lakeside Campus,Jalan Taylor's,47500 Subang Jaya, Selangor, Malaysia
| | - Endang Kumolosasi
- Drug and Herbal Research Centre,Faculty of Pharmacy,Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz,50300 Kuala Lumpur,Malaysia
| | - Norazrina Azmi
- Drug and Herbal Research Centre,Faculty of Pharmacy,Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz,50300 Kuala Lumpur,Malaysia
| |
Collapse
|
23
|
The ameliorative effects of myricetin on neurobehavioral activity, electrophysiology, and biochemical changes in an animal model of traumatic brain injury. LEARNING AND MOTIVATION 2019. [DOI: 10.1016/j.lmot.2019.101597] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
24
|
The profiling and identification of the absorbed constituents and metabolites of Naoshuantong capsule in mice biofluids and brain by ultra- fast liquid chromatography coupled with quadrupole-time-of-flight tandem mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci 2019; 1129:121791. [DOI: 10.1016/j.jchromb.2019.121791] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 08/05/2019] [Accepted: 09/06/2019] [Indexed: 02/08/2023]
|
25
|
Rashno M, Sarkaki A, Farbood Y, Rashno M, Khorsandi L, Naseri MKG, Dianat M. Therapeutic effects of chrysin in a rat model of traumatic brain injury: A behavioral, biochemical, and histological study. Life Sci 2019; 228:285-294. [PMID: 31063733 DOI: 10.1016/j.lfs.2019.05.007] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 04/28/2019] [Accepted: 05/03/2019] [Indexed: 12/20/2022]
Abstract
AIMS Oxidative stress and apoptosis have major roles in the progression of traumatic brain injury (TBI)-associated motor and cognitive deficits. The present study was aimed to elucidate the putative effects of chrysin, a natural flavonoid compound, against TBI-induced motor and cognitive dysfunctions and possible involved mechanisms. MAIN METHODS Chrysin (25, 50 or 100 mg/kg) was orally administered to rats starting immediately following TBI induction by Marmarou's weight-drop technique and continuously for 3 or 14 days. Neurological functions, motor coordination, learning and memory performances, histological changes, cell apoptosis, expression of pro- and anti-apoptotic proteins, and oxidative status were assayed at scheduled time points after experimental TBI. KEY FINDINGS The results indicated that treatment with chrysin improved learning and memory disabilities in passive avoidance task, and ameliorated motor coordination impairment in rotarod test after TBI. These beneficial effects were accompanied by increased the concentrations of superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), glutathione (GSH), decreased malondialdehyde (MDA) content, prevented neuronal loss, diminished apoptotic index, elevated the expression of anti-apoptotic Bcl-2 protein, and reduced the expression of pro-apoptotic Bax protein in the cerebral cortex and hippocampus tissues. SIGNIFICANCE Our findings suggest that both anti-oxidative and anti-apoptotic properties of chrysin (especially in the dose of 100 mg/kg) are possible mechanisms that improve cognitive/motor deficits and prevent neuronal cell death after TBI.
Collapse
Affiliation(s)
- Masome Rashno
- Department of Physiology, Faculty of Medicine, Physiology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Alireza Sarkaki
- Department of Physiology, Faculty of Medicine, Physiology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| | - Yaghoob Farbood
- Department of Physiology, Faculty of Medicine, Physiology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mohammad Rashno
- Department of Immunology, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran; Cellular and Molecular Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Layasadat Khorsandi
- Cellular and Molecular Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mohammad Kazem Gharib Naseri
- Department of Physiology, Faculty of Medicine, Physiology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mahin Dianat
- Department of Physiology, Faculty of Medicine, Physiology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
26
|
Chrysin prevents cognitive and hippocampal long-term potentiation deficits and inflammation in rat with cerebral hypoperfusion and reperfusion injury. Life Sci 2019; 226:202-209. [DOI: 10.1016/j.lfs.2019.04.027] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 04/05/2019] [Accepted: 04/12/2019] [Indexed: 01/05/2023]
|
27
|
Gholamine B, Houshmand G, Hosseinzadeh A, Kalantar M, Mehrzadi S, Goudarzi M. Gallic acid ameliorates sodium arsenite-induced renal and hepatic toxicity in rats. Drug Chem Toxicol 2019; 44:341-352. [PMID: 30907158 DOI: 10.1080/01480545.2019.1591434] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Chronic exposure to toxic inorganic arsenic results in the adverse health effects including skin lesions, cardiovascular diseases, diabetes, neurological disorders, and liver and kidney diseases. Gallic acid (GA) is an important phenolic compound, which could protect different tissues from oxidative stress induced damage. The present study investigated effects of GA against sodium arsenite (SA)-induced renal and hepatic toxicity. Thirty-five rats were randomly divided in to five groups; group 1 was treated with normal saline (2 ml/kg/day, p.o.; for 21 days); group 2 was exposed to SA (10 mg/kg/day, p.o.; for 14 days); groups 3 and 4 were treated with GA (10 and 30 mg/kg/day, respectively; for 7 days) prior to exposure to SA, and treatment was continued up to 21 days in parallel with SA administration; group 5 was treated with GA (30 mg/kg/day, p.o.; for 21 days). The level of MDA, IL-1β, NO and glutathione (GSH) and the activity of glutathione peroxidase (GPx), superoxide dismutase (SOD) and catalase (CAT) were evaluated in kidney and liver tissues. Histopathological parameters and serum levels of ALT, AST, ALP, Cr and BUN were also assessed. Treatment with GA remarkably improved SA-induced alteration of hematological and histopathological parameters; these protective effects were associated with the reduction of SA-induced elevation of MDA, IL-1β and NO levels as well as reduction of GSH level and GPx, SOD and CAT activity. Our results suggest that GA may inhibit SA-induced kidney and liver toxicity through scavenging reactive free radicals and increasing intracellular antioxidant capacity.
Collapse
Affiliation(s)
- Babak Gholamine
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Gholamreza Houshmand
- Department of Pharmacology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Azam Hosseinzadeh
- Razi Drug Research Center, Iran University of Medical Sciences, Tehran, Iran
| | | | - Saeed Mehrzadi
- Razi Drug Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Mehdi Goudarzi
- Medicinal Plant Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
28
|
Mirshekar MA, Sarkaki A, Farbood Y, Gharib Naseri MK, Badavi M, Mansouri MT, Haghparast A. Neuroprotective effects of gallic acid in a rat model of traumatic brain injury: behavioral, electrophysiological, and molecular studies. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2018; 21:1056-1063. [PMID: 30524680 PMCID: PMC6281072 DOI: 10.22038/ijbms.2018.29639.7165] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Objective(s): Traumatic brain injury (TBI) is one of the main causes of intellectual and cognitive disabilities. Clinically, it is essential to limit the development of cognitive impairment after TBI. In the present study, the neuroprotective effects of gallic acid (GA) on neurological score, memory, long-term potentiation (LTP) from hippocampal dentate gyrus (hDG), brain lipid peroxidation and cytokines after TBI were evaluated. Materials and Methods: Seventy-two adult male Wistar rats divided randomly into three groups with 24 in each: Veh + Sham, Veh + TBI and GA + TBI (GA; 100 mg/kg, PO for 7 days before TBI induction). Brain injury was made by Marmarou’s method. Briefly, a 200 g weight was fallen down from a 2 m height through a free-falling tube onto the head of anesthetized animal. Results: Veterinary coma scores (VCS), memory and recorded hDG -LTP significantly reduced in Veh + TBI group at 1 and 24 hr after TBI when compared to Veh + Sham (P<0.001), respectively, while brain tissue content of interleukin-1β (IL-1β), IL-6, tumor necrosis factor-α (TNF-α) and malondialdehyde (MDA) were increased significantly (P<0.001). Pretreatment of TBI rats with GA improved clinical signs, memory and hDG-LTP significantly (P<0.001) compared to Veh + TBI group, while brain tissue content of IL-1β, IL-6, TNF-α and MDA were decreased significantly (P<0.001). Conclusion: Our results propose that GA has neuroprotective effect on memory and LTP impairment due to TBI through decrement of brain lipid peroxidation and cerebral pro-inflammatory cytokines.
Collapse
Affiliation(s)
- Mohammad Ali Mirshekar
- Department of Physiology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.,Department of Physiology, School of Medicine and Clinical Immunology Research Center, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Alireza Sarkaki
- Department of Physiology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.,Ahvaz Physiology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Yaghoub Farbood
- Department of Physiology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.,Ahvaz Physiology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | | | - Mohammad Badavi
- Department of Physiology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.,Ahvaz Physiology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mohammad Taghi Mansouri
- Ahvaz Physiology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.,Department of Pharmacology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Abbas Haghparast
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
29
|
Diosmin is neuroprotective in a rat model of scopolamine-induced cognitive impairment. Biomed Pharmacother 2018; 108:1376-1383. [DOI: 10.1016/j.biopha.2018.09.127] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 09/21/2018] [Accepted: 09/24/2018] [Indexed: 01/02/2023] Open
|
30
|
Assessment of neuroprotective effects of Gallic acid against glutamate-induced neurotoxicity in primary rat cortex neuronal culture. Neurochem Int 2018; 121:50-58. [DOI: 10.1016/j.neuint.2018.10.011] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2018] [Revised: 10/12/2018] [Accepted: 10/16/2018] [Indexed: 12/13/2022]
|
31
|
Zhang Q, Yu Y, Li J, Guan Y, Huang J, Wang Z, Zhang Z, Zhang W, Guo J, Li J, Chen J, Zhou Q. Anti-arthritic activities of ethanol extracts of Circaea mollis Sieb. & Zucc. (whole plant) in rodents. JOURNAL OF ETHNOPHARMACOLOGY 2018; 225:359-366. [PMID: 29753098 DOI: 10.1016/j.jep.2018.04.051] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Revised: 04/26/2018] [Accepted: 04/28/2018] [Indexed: 05/10/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Circaea mollis Sieb. & Zucc., a genus of Circaea that follows Onagraceae, has been used for centuries as a folk herb in traditional Chinese medicine (TCM) and Hani Ethnopharmacy for the treatment of joint swelling and pain in rheumatoid arthritis. AIM OF THE STUDY This study was designed to confirm anti-arthritic effects and its underlying mechanism of ethanol extracts of Circaea mollis Sieb. & Zucc. (EEC), which may contribute to provide the pharmacological basis in the treatment of rheumatoid disease. MATERIALS AND METHODS Dimethylbenzene (DMB)-induced inflammatory swelling model, hot-plate pain model in mice and Freund's complete adjuvant (FCA)-induced arthritis model in rats were used to evaluate the anti-arthritis effect of EEC. Arthritis severity was done by measuring inflammatory swelling, pain threshol, paw swelling, arthritis index, body weight, spleen index and thymus index. The levels of TNF-α, IL-1β and IL-10 in sera were measured using ELISA. The pathological change of the ankle joint was also done. Phenolic composition of EEC was analyzed. RESULTS EEC inhibited inflammatory swelling and increased heat-induced pain threshold in mice. Furthermore, EEC significantly alleviated paw swelling and arthritis index, decreasing the spleen index and thymus index. Besides, EEC down-regulated the serum TNF-α and IL-1β, and increased the production of serum IL-10 in FCA-induced rats. Histopathological examination demonstrated that EEC can effectively relieve synovial hyperplasia, control the infiltration of the inflammatory and protect cartilage from destruction. CONCLUSION Our work demonstrated that EEC possessed the potential therapeutic effect against arthritis in rodents which was attributed to modulating proinflammatory cytokines TNF-α, IL-1β and anti-inflammatory factors IL-10. Flavonoids and polyphenols may contribute to the therapeutic effect of EEC on arthritis.
Collapse
Affiliation(s)
- Qing Zhang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan 430030, China
| | - Yanhong Yu
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan 430030, China; Fifth Hospital in Wuhan, Wuhan 430050, China
| | - Jiajia Li
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan 430030, China
| | - Yeli Guan
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan 430030, China
| | - Jiangeng Huang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan 430030, China
| | - Zhiping Wang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Zhen Zhang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Wenrui Zhang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan 430030, China
| | - Jing Guo
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan 430030, China
| | - Jinghua Li
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan 430030, China
| | - Jiachun Chen
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan 430030, China
| | - Qun Zhou
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan 430030, China.
| |
Collapse
|
32
|
Memory deficits and hippocampal inflammation in cerebral hypoperfusion and reperfusion in male rats: Neuroprotective role of vanillic acid. Life Sci 2018; 211:126-132. [PMID: 30195619 DOI: 10.1016/j.lfs.2018.08.065] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2018] [Revised: 08/20/2018] [Accepted: 08/27/2018] [Indexed: 11/20/2022]
Abstract
Ischemic stroke is one of the leading causes of neurological deterioration and mortality worldwide. Neuroprotective strategies are being investigated to minimize cognitive deficits after ischemic events. Here we investigated the neuroprotective potential of vanillic acid (VA) in an animal model of transient bilateral common carotid artery occlusion and reperfusion (BCCAO/R). Adult male Wistar rats (250-300 g) were randomly divided in 4 groups and submitted to either cerebral hypoperfusion-reperfusion or a sham surgery after two-weeks of pretreatment with VA and/or normal saline. To induce the animal model of hypoperfusion, bilateral common carotid arteries were occluded (2VO model) for 30 min, followed by 72 h of reperfusion. Subsequently, their cognitive performance was evaluated in a Morris water maze (MWM) test, and also hippocampi were removed for ELISA assays and TUNEL staining test. The results showed that 2VO significantly reduced the spatial memory performance in MWM. As well as, BCCAO/R increased the level of IL-6, TNF-α and TUNEL positive cells, and also decreased the contents of IL-10 in the hippocampus of vehicle- pretreated groups as compared to the sham-operated groups. Furthermore, 14 consecutive days pretreatment with VA significantly restored the spatial memory, decreased the levels of IL-6, TNF-α and TUNEL positive cells and also increased the IL-10 levels in the hippocampi of the BCCAO/R rats. VA alone did not show any change neither in the status of various cytokines nor behavioral and TUNEL staining tests over sham values. Our data confirm that VA could potentially serve as a novel, promising, and accessible neuroprotective agent against cerebrovascular insufficiency states and vascular dementia.
Collapse
|
33
|
Li Z, Zeng G, Zheng X, Wang W, Ling Y, Tang H, Zhang J. Neuroprotective effect of formononetin against TBI in rats via suppressing inflammatory reaction in cortical neurons. Biomed Pharmacother 2018; 106:349-354. [DOI: 10.1016/j.biopha.2018.06.041] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2018] [Revised: 06/06/2018] [Accepted: 06/12/2018] [Indexed: 12/11/2022] Open
|
34
|
Shabani S, Farbood Y, Mard SA, Sarkaki A, Ahangarpour A, Khorsandi L. The regulation of pituitary-thyroid abnormalities by peripheral administration of levothyroxine increased brain-derived neurotrophic factor and reelin protein expression in an animal model of Alzheimer’s disease. Can J Physiol Pharmacol 2018; 96:275-280. [DOI: 10.1139/cjpp-2016-0434] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Alzheimer’s disease (AD) is associated with decreased serum levels of thyroid hormones (THs), increased levels of thyroid-stimulating hormone (TSH), and decreased protein expression of brain-derived neurotrophic factor (BDNF) and reelin in the hippocampus. In this study, we have evaluated the effect of subcutaneous administration of levothyroxine (L-T4) on levels of THs and TSH as well as protein expression of BDNF and reelin in AD rats. To make an animal model of AD, amyloid-beta peptide (Aβ) plus ibotenic acid were infused intrahippocampally, and rats were treated with L-T4 and (or) saline for 10 days. The levels of THs and TSH were measured by ELISA kits. Protein synthesis was detected by Western blotting method. Results have been shown that serum level of THs, BDNF, and reelin protein expression in the hippocampus were significantly decreased (P < 0.001) in AD animals and elevated significantly in AD rats treated with L-T4 (P < 0.01). Data showed that TSH level significantly decreased in AD rats treated with L-T4 (P < 0.05). These findings indicated that L-T4 increased BDNF and reelin protein expression by regulation of serum THs and TSH level in Aβ-induced AD rats.
Collapse
Affiliation(s)
- Sahreh Shabani
- Physiology Research Center (PRC), Department of Physiology, School of Medicine, Ahvaz Jundishapur University of Medical Science, Ahvaz, Iran
| | - Yaghoob Farbood
- Physiology Research Center (PRC), Department of Physiology, School of Medicine, Ahvaz Jundishapur University of Medical Science, Ahvaz, Iran
| | - Seyyed Ali Mard
- Physiology Research Center (PRC), Department of Physiology, School of Medicine, Ahvaz Jundishapur University of Medical Science, Ahvaz, Iran
| | - Alireza Sarkaki
- Physiology Research Center (PRC), Department of Physiology, School of Medicine, Ahvaz Jundishapur University of Medical Science, Ahvaz, Iran
| | - Akram Ahangarpour
- Physiology Research Center (PRC), Department of Physiology, School of Medicine, Ahvaz Jundishapur University of Medical Science, Ahvaz, Iran
| | - Layasadat Khorsandi
- Cellular & Molecular Research Center, Department of Anatomical Sciences, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
35
|
Asci H, Ozmen O, Ellidag HY, Aydin B, Bas E, Yilmaz N. The impact of gallic acid on the methotrexate-induced kidney damage in rats. J Food Drug Anal 2017; 25:890-897. [PMID: 28987366 PMCID: PMC9328864 DOI: 10.1016/j.jfda.2017.05.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Revised: 04/22/2017] [Accepted: 05/06/2017] [Indexed: 01/07/2023] Open
Abstract
Prolonged use of an antineoplastic agent methotrexate (MTX), can cause numerous side effects such as nephrotoxicity. The aim of this study was to examine the effects of MTX on kidneys and demonstrate the protective effects of gallic acid (GA). Twenty-four, male, rats distributed into three groups. Each groups consisted eight rats and only saline was administered to the control group. The MTX group received a single dose (20 mg/kg) MTX intraperitoneally. The MTX + GA group received same dose MTX and 100 mg/kg GA orally during the 7 days. Renal functions, oxidative stress markers, histopathological and immunohistochemical changes were evaluated at the end of the experiment. Blood urea nitrogen, creatinine, uric acid levels and tissue oxidative stress markers, total oxidant status and oxidative stress index levels significantly increased and total antioxidant status levels significantly decreased in MTX group compared with the control group. At the histopathological examination hemorrhages, tubular cell necrosis, glomerulosclerosis, inflammatory cell infiltrations and proteinous materials in tubules were noticed in MTX group. Immunohistochemical examination revealed that increased expressions of serum amyloid A (SAA), tumor necrosis factor alpha (TNF-α), prostaglandin E2 (PGE-2) and C-reactive protein (CRP) in tubular epithelial cells of kidneys in this group. There were no immunoreaction with SAA and CRP, only small number of PGE-2 and TNF-α positive tubular epithelial cells were observed in MTX + GA group. In conclusion, all evidence suggested that oxidative stress caused MTX-induced nephrotoxicity and GA prevent the kidney from the nephrotoxicity due to its antioxidant and anti-inflammatory activities.
Collapse
|
36
|
Zhou J, Liu T, Cui H, Fan R, Zhang C, Peng W, Yang A, Zhu L, Wang Y, Tang T. Xuefu zhuyu decoction improves cognitive impairment in experimental traumatic brain injury via synaptic regulation. Oncotarget 2017; 8:72069-72081. [PMID: 29069769 PMCID: PMC5641112 DOI: 10.18632/oncotarget.18895] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Accepted: 06/12/2017] [Indexed: 11/25/2022] Open
Abstract
An overarching consequence of traumatic brain injury (TBI) is the cognitive impairment. It may hinder individual performance of daily tasks and determine people's subjective well-being. The damage to synaptic plasticity, one of the key mechanisms of cognitive dysfunction, becomes the potential therapeutic strategy of TBI. In this study, we aimed to investigate whether Xuefu Zhuyu Decoction (XFZYD), a traditional Chinese medicine, provided a synaptic regulation to improve cognitive disorder following TBI. Morris water maze and modified neurological severity scores were performed to assess the neurological and cognitive abilities. The PubChem Compound IDs of the major compounds of XFZYD were submitted into BATMAN-TCM, an online bioinformatics analysis tool, to predict the druggable targets related to synaptic function. Furthermore, we validated the prediction through immunohistochemical, RT-PCR and western blot analyses. We found that XFZYD enhanced neuroprotection, simultaneously improved learning and memory performances in controlled cortical impact rats. Bioinformatics analysis revealed that the improvements of XFZYD implied the Long-term potentiation relative proteins including NMDAR1, CaMKII and GAP-43. The further confirmation of molecular biological studies confirmed that XFZYD upregulated the mRNA and protein levels of NMDAR1, CaMKII and GAP-43. Pharmacological synaptic regulation of XFZYD could provide a novel therapeutic strategy for cognitive impairment following TBI.
Collapse
Affiliation(s)
- Jing Zhou
- Laboratory of Ethnopharmacology, Institute of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, 410008 Changsha, China
| | - Tao Liu
- Laboratory of Ethnopharmacology, Institute of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, 410008 Changsha, China
- Department of Gerontology, Traditional Chinese Medicine Hospital Affiliate to Xinjiang Medical University, 830000 Urumqi, China
| | - Hanjin Cui
- Laboratory of Ethnopharmacology, Institute of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, 410008 Changsha, China
| | - Rong Fan
- Laboratory of Ethnopharmacology, Institute of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, 410008 Changsha, China
| | - Chunhu Zhang
- Laboratory of Ethnopharmacology, Institute of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, 410008 Changsha, China
| | - Weijun Peng
- Department of Traditional Chinese Medicine, 2nd Xiangya Hospital, Central South University, 410011 Changsha, China
| | - Ali Yang
- Department of Neurology, Henan Province People’ Hospital, 450003 Zhengzhou, China
| | - Lin Zhu
- Laboratory of Ethnopharmacology, Institute of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, 410008 Changsha, China
| | - Yang Wang
- Laboratory of Ethnopharmacology, Institute of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, 410008 Changsha, China
| | - Tao Tang
- Laboratory of Ethnopharmacology, Institute of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, 410008 Changsha, China
| |
Collapse
|
37
|
Can ÖD, Turan N, Demir Özkay Ü, Öztürk Y. Antidepressant-like effect of gallic acid in mice: Dual involvement of serotonergic and catecholaminergic systems. Life Sci 2017; 190:110-117. [PMID: 28942286 DOI: 10.1016/j.lfs.2017.09.023] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 09/12/2017] [Accepted: 09/19/2017] [Indexed: 02/06/2023]
Abstract
AIMS This study was planned to examine the antidepressant potency of gallic acid (30 and 60mg/kg), a phenolic acid widely distributed in nature, together with its possible underlying monoaminergic mechanisms. MAIN METHODS Antidepressant-like activity was assessed using the tail suspension (TST) and the modified forced swimming tests (MFST). Locomotor activity was evaluated in an activity cage. KEY FINDINGS Administration of gallic acid at 60mg/kg reduced the immobility duration of mice in both the TST and MFST without any changes in the locomotor activity. The anti-immobility effect observed in the TST was abolished with pre-treatment of p-chlorophenylalanine methyl ester (an inhibitor of serotonin synthesis; 100mg/kg i.p. administered for 4-consecutive days), ketanserin (a 5-HT2A/2C antagonist; 1mg/kg i.p.), ondansetron (a 5-HT3 antagonist; 0.3mg/kg i.p.), α-methyl-para-tyrosine methyl ester (an inhibitor of catecholamine synthesis; 100mg/kg i.p.), phentolamine (non-selective alpha-adrenoceptor antagonist; 5mg/kg i.p.), SCH 23390 (a dopamine D1 antagonist; 0.05mg/kg s.c.), and sulpiride (a dopamine D2/D3 antagonist; 50mg/kg i.p.). However, NAN 190 (a 5-HT1A antagonist; 0.5mg/kg i.p.) and propranolol (a non-selective β-adrenoceptor antagonist; 5mg/kg i.p.) pre-treatments were ineffective at reversing the antidepressant-like effects of gallic acid. SIGNIFICANCE The results of the present study indicate that gallic acid seems to have a dual mechanism of action by increasing not only serotonin but also catecholamine levels in synaptic clefts of the central nervous system. Further alpha adrenergic, 5-HT2A/2C and 5-HT3 serotonergic, and D1, D2, and D3 dopaminergic receptors also seem to be involved in this antidepressant-like activity.
Collapse
Affiliation(s)
- Özgür Devrim Can
- Anadolu University, Faculty of Pharmacy, Department of Pharmacology, 26470 Eskişehir, Turkey.
| | - Nazlı Turan
- Anadolu University, Faculty of Pharmacy, Department of Pharmacology, 26470 Eskişehir, Turkey
| | - Ümide Demir Özkay
- Anadolu University, Faculty of Pharmacy, Department of Pharmacology, 26470 Eskişehir, Turkey
| | - Yusuf Öztürk
- Anadolu University, Faculty of Pharmacy, Department of Pharmacology, 26470 Eskişehir, Turkey
| |
Collapse
|
38
|
Mirshekar MA, Fanaei H, Keikhaei F, Javan FS. Diosmin improved cognitive deficit and amplified brain electrical activity in the rat model of traumatic brain injury. Biomed Pharmacother 2017; 93:1220-1229. [PMID: 28738538 DOI: 10.1016/j.biopha.2017.07.014] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Revised: 07/05/2017] [Accepted: 07/05/2017] [Indexed: 11/30/2022] Open
Abstract
OBJECTIVE Traumatic brain injury (TBI) is one of the main causes of intellectual and cognitive disabilities in humans. Clinically, it is essential to limit the progress of cognitive impairment after TBI. It is reported that diosmin has a neuroprotective effect that can limit the progress of the impairment. The aim of this study was to evaluate the effects of diosmin on neurological score, memory, tumor necrosis factor-α (TNF-α) level and long-term potentiation in hippocampal dentate gyrus after the injury. METHODS A total of ninety six adult male Wistar rats were used as test subjects in this study. The animals were randomly assigned into one of the following three groups (n=32/group): Sham, TBI and diosmin (100mg/kg, p.o for seven consecutive days before TBI induction). TBI was induced into the animals by Marmarou's method. Briefly, a 200g weight was dropped from a 1m height through a free-falling tube onto the head of the anesthetized rats. RESULTS The veterinary coma scale scores, memory and long-term potentiation in TBI group showed significant decrease at different times after the onset of TBI when compared with Sham (p<0.001). The TNF-α level in the hippocampus of the TBI group of animals was significantly higher than that found in the test subjects from the Sham group (p<0.001). The pre-treatment of the TBI group with diosmin significantly improved their neurological scores, memory and long-term potentiation (p<0.001) when compared with the TBI group. The TNF-α level in hippocampus of the diosmin group was significantly lower than the TBI group (p<0.001). CONCLUSION Based on the results of the present study, pre-treatment with diosmin has protective effects against TBI-induced memory and long-term potentiation impairment. The effects of diosmin may be mediated through a decrement in the TNF-α concentration of hippocampus as a pro-inflammatory cytokine.
Collapse
Affiliation(s)
- Mohammad Ali Mirshekar
- Department of Physiology, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Hamed Fanaei
- Department of Physiology, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran; Pregnancy Health Research Center, Zahedan University of Medical Sciences, Zahedan, Iran.
| | - Fereshteh Keikhaei
- Department of Physiology, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Fatemeh Sargolzaee Javan
- Department of Physiology, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran
| |
Collapse
|
39
|
Omobowale TO, Oyagbemi AA, Ajufo UE, Adejumobi OA, Ola-Davies OE, Adedapo AA, Yakubu MA. Ameliorative Effect of Gallic Acid in Doxorubicin-Induced Hepatotoxicity in Wistar Rats Through Antioxidant Defense System. J Diet Suppl 2017; 15:183-196. [DOI: 10.1080/19390211.2017.1335822] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Temidayo Olutayo Omobowale
- Department of Veterinary Medicine, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria
| | - Ademola Adetokunbo Oyagbemi
- Department of Veterinary Physiology and Biochemistry, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria
| | - Uchechukwu Enwiwe Ajufo
- Department of Veterinary Medicine, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria
| | - Olumuyima Abiola Adejumobi
- Department of Veterinary Medicine, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria
| | - Olufunke Eunice Ola-Davies
- Department of Veterinary Physiology and Biochemistry, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria
| | - Adeolu Alex Adedapo
- Department of Veterinary Pharmacology and Toxicology, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria
| | - Momoh Audu Yakubu
- Department of Environmental & Interdisciplinary Sciences, College of Science, Engineering & Technology, NSB303, Vascular Biology Unit, Center for Cardiovascular Diseases, COPHS, Texas Southern University, Houston, TX, USA
| |
Collapse
|
40
|
Scheff SW, Ansari MA. Natural Compounds as a Therapeutic Intervention following Traumatic Brain Injury: The Role of Phytochemicals. J Neurotrauma 2016; 34:1491-1510. [PMID: 27846772 DOI: 10.1089/neu.2016.4718] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
There has been a tremendous focus on the discovery and development of neuroprotective agents that might have clinical relevance following traumatic brain injury (TBI). This type of brain injury is very complex and is divided into two major components. The first component, a primary injury, occurs at the time of impact and is the result of the mechanical insult itself. This primary injury is thought to be irreversible and resistant to most treatments. A second component or secondary brain injury, is defined as cellular damage that is not immediately obvious after trauma, but that develops after a delay of minutes, hours, or even days. This injury appears to be amenable to treatment. Because of the complexity of the secondary injury, any type of therapeutic intervention needs to be multi-faceted and have the ability to simultaneously modulate different cellular changes. Because of diverse pharmaceutical interactions, combinations of different drugs do not work well in concert and result in adverse physiological conditions. Research has begun to investigate the possibility of using natural compounds as a therapeutic intervention following TBI. These compounds normally have very low toxicity and have reduced interactions with other pharmaceuticals. In addition, many natural compounds have the potential to target numerous different components of the secondary injury. Here, we review 33 different plant-derived natural compounds, phytochemicals, which have been investigated in experimental animal models of TBI. Some of these phytochemicals appear to have potential as possible therapeutic interventions to offset key components of the secondary injury cascade. However, not all studies have used the same scientific rigor, and one should be cautious in the interpretation of studies using naturally occurring phytochemical in TBI research.
Collapse
Affiliation(s)
- Stephen W Scheff
- Sanders-Brown Center on Aging, University of Kentucky , Lexington, Kentucky
| | - Mubeen A Ansari
- Sanders-Brown Center on Aging, University of Kentucky , Lexington, Kentucky
| |
Collapse
|
41
|
Saygin M, Ozturk O, Ozmen O, Ilhan I, Gonca T, Gumral N, Orhan H, Aslankoc R. The impact of methotrexate on lung inflammatory and apoptotic pathway biomarkers-The role of gallic acid. Biomed Pharmacother 2016; 84:1689-1696. [PMID: 27876213 DOI: 10.1016/j.biopha.2016.10.077] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Revised: 10/19/2016] [Accepted: 10/26/2016] [Indexed: 11/30/2022] Open
Abstract
BACKGROUNDS The aim of this study was to investigate the effects of methotrexate (MTX) on the lung via inflammatory and apoptotic pathway biomarkers and the role of gallic acid (GA). METHODS In this study, twenty four male Wistar-Albino rats weighing 300-350g were divided into 3 groups as follows; Control group (0.1ml/oral saline, for 7 days+2nd day i.p.). MTX group (20mg/kg, single dose, on 2nd day). MTX+GA group (15mg/kg, orally, for 7 days). Comet analysis, oxidant-antioxidant status, IMA were conducted. Histopathological analyses were evaluated. RESULTS Comet assay on the blood, TOS and OSI values in the lung were increased in the group II compared with the control group (p<0.05). GA significantly reduced the comet score and IMA levels in the blood, TOS and OSI values in the lung tissue in group III compared with group II (p<0.05). Immunohistochemically PGE2, TNF-α, CRP, serum SAA, Caspase 3 and Caspase 9 expressions significantly increased in group II compared with the control group (p<0.001) and GA treatment ameliorated these parameters significantly in group III compared with group II (p<0.001). CONCLUSIONS MTX caused oxidative stress and DNA damage in the blood tissue and caused oxidative damage, inflammation and apoptosis in the lung tissue.
Collapse
Affiliation(s)
- Mustafa Saygin
- Department of Physiology, Suleyman Demirel University, Faculty of Medicine, Isparta, Turkey.
| | - Onder Ozturk
- Department of Chest Diseases, Suleyman Demirel University, Faculty of Medicine, Isparta, Turkey
| | - Ozlem Ozmen
- Department of Pathology Mehmet Akif Ersoy University, Faculty of Veterinary Medicine, Burdur, Turkey
| | - Ilter Ilhan
- Department of Medical Biochemistry, Suleyman Demirel University, Faculty of Medicine, Isparta, Turkey
| | - Taner Gonca
- Clinic of Chest Diseases, Isparta State Hospital, Isparta, Turkey
| | - Nurhan Gumral
- Department of Physiology, Suleyman Demirel University, Faculty of Medicine, Isparta, Turkey
| | - Hikmet Orhan
- Department of Biostatistics and Medical Informatics, Suleyman Demirel University, Faculty of Medicine, Isparta, Turkey
| | - Rahime Aslankoc
- Department of Physiology, Suleyman Demirel University, Faculty of Medicine, Isparta, Turkey
| |
Collapse
|