1
|
Akhgarjand C, Moludi J, Ebrahimi-Mousavi S, Bagheri A, Bavani NG, Beigmohammadi MT, Malekahmadi M. The effect of chamomile consumption on glycemic markers in humans and animals: a systematic review and meta-analysis. J Diabetes Metab Disord 2024; 23:189-198. [PMID: 38932814 PMCID: PMC11196442 DOI: 10.1007/s40200-023-01345-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 11/04/2023] [Indexed: 06/28/2024]
Abstract
Purpose The use of natural and herbal products as alternative therapies, in conjunction with blood glucose-lowering medications, is on the rise for patients with diabetes. Our objective was to conduct a systematic review and comprehensive meta-analysis of both human and animal models to investigate the impact of chamomile consumption on glycemic control. Methods A systematic search was conducted on all published papers from January 1990 up to January 2022 via Scopus, PubMed/Medline, Google Scholar, and ISI Web of Science. Human and animal articles evaluating the effect of chamomile on serum glycemic markers were included. We used the random-effects model to establish the pooled effect size. The dose-dependent effect was also assessed. Results Overall, 4 clinical trials on human and 8 studies on animals met the inclusion criteria. With regard to RCTs, a favorable effect of chamomile consumption on serum fasting blood glucose (Standardized Mean Differences (SMD): -0.65, 95% CI: -1.00, -0.29, P < 0.001; I2 = 0%) and hemoglobin A1C (HbA1C) levels (SMD: -0.90, 95% CI: -1.39, -0.40, P < 0.001; I2 = 45.4%) was observed. Considering animal studies, consumption of chamomile extracts significantly reduced serum blood glucose (SMD: -4.37, 95% CI: -5.76, -2.98, P < 0.001; I2 = 61.2%). Moreover, each 100 mg/d increase in chamomile extract intervention resulted in a significantly declined blood glucose concentrations (MD: -54.35; 95% CI: -79.77, -28.93, P < 0.001; I2 = 94.8). Conclusion The current meta-analysis revealed that chamomile consumption could exert favorable effects on serum blood glucose and HbA1C. However, additional randomized controlled trials are needed to further confirm these findings. Supplementary Information The online version contains supplementary material available at 10.1007/s40200-023-01345-8.
Collapse
Affiliation(s)
- Camellia Akhgarjand
- Department of Clinical Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| | - Jalal Moludi
- School of Nutrition Sciences and Food Technology, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Sara Ebrahimi-Mousavi
- Department of Clinical Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| | - Amir Bagheri
- School of Nutrition Sciences and Food Technology, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Narges Ghorbani Bavani
- Department of Community Nutrition, School of Nutrition and Food Science, Food Security Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mohammad Taghi Beigmohammadi
- Department of Anesthesiology and Intensive Care, Imam Khomeini Hospital Complex, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahsa Malekahmadi
- Department of Clinical Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
- Imam Khomeini Hospital Complex, Tehran University of Medical Sciences, Tehran, P.O. Box 14155-6117, Iran
| |
Collapse
|
2
|
Lahlou RA, Carvalho F, Pereira MJ, Lopes J, Silva LR. Overview of Ethnobotanical-Pharmacological Studies Carried Out on Medicinal Plants from the Serra da Estrela Natural Park: Focus on Their Antidiabetic Potential. Pharmaceutics 2024; 16:454. [PMID: 38675115 PMCID: PMC11054966 DOI: 10.3390/pharmaceutics16040454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 03/19/2024] [Accepted: 03/21/2024] [Indexed: 04/28/2024] Open
Abstract
The Serra da Estrela Natural Park (NPSE) in Portugal stands out as a well-preserved region abundant in medicinal plants, particularly known for their pharmaceutical applications in diabetes prevention and treatment. This comprehensive review explores these plants' botanical diversity, traditional uses, pharmacological applications, and chemical composition. The NPSE boast a rich diversity with 138 medicinal plants across 55 families identified as traditionally and pharmacologically used against diabetes globally. Notably, the Asteraceae and Lamiaceae families are prevalent in antidiabetic applications. In vitro studies have revealed their significant inhibition of carbohydrate-metabolizing enzymes, and certain plant co-products regulate genes involved in carbohydrate metabolism and insulin secretion. In vivo trials have demonstrated antidiabetic effects, including glycaemia regulation, insulin secretion, antioxidant activity, and lipid profile modulation. Medicinal plants in NPSE exhibit various activities beyond antidiabetic, such as antioxidant, anti-inflammatory, antibacterial, anti-cancer, and more. Chemical analyses have identified over fifty compounds like phenolic acids, flavonoids, terpenoids, and polysaccharides responsible for their efficacy against diabetes. These findings underscore the potential of NPSE medicinal plants as antidiabetic candidates, urging further research to develop effective plant-based antidiabetic drugs, beverages, and supplements.
Collapse
Affiliation(s)
- Radhia Aitfella Lahlou
- SPRINT Sport Physical Activity and Health Research & Innovation Center, Instituto Politécnico da Guarda, 6300-559 Guarda, Portugal; (R.A.L.); (F.C.)
| | - Filomena Carvalho
- SPRINT Sport Physical Activity and Health Research & Innovation Center, Instituto Politécnico da Guarda, 6300-559 Guarda, Portugal; (R.A.L.); (F.C.)
| | - Maria João Pereira
- CERENA/DER, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal;
| | - João Lopes
- iMed.ULisboa, Research Institute for Medicines, Faculdade de Farmácia, University of Lisboa, 1649-003 Lisboa, Portugal;
| | - Luís R. Silva
- SPRINT Sport Physical Activity and Health Research & Innovation Center, Instituto Politécnico da Guarda, 6300-559 Guarda, Portugal; (R.A.L.); (F.C.)
- CICS-UBI—Health Sciences Research Center, University of Beira Interior, 6201-506 Covilhã, Portugal
- CERES, Department of Chemical Engineering, University of Coimbra, 3030-790 Coimbra, Portugal
| |
Collapse
|
3
|
Pérez Gutiérrez RM, Martínez Jerónimo FF, Contreras Soto JG, Muñiz Ramírez A, Estrella Mendoza MF. Optimization of ultrasonic-assisted extraction of polyphenols from the polyherbal formulation of Cinnamomum verum, Origanum majorana, and Origanum vulgare and their anti-diabetic capacity in zebrafish ( Danio rerio). Heliyon 2022; 8:e08682. [PMID: 35036595 PMCID: PMC8749454 DOI: 10.1016/j.heliyon.2021.e08682] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 11/12/2021] [Accepted: 12/23/2021] [Indexed: 11/21/2022] Open
Abstract
The Cinnamomum verum (CV), Origanum majorana (CM), and Origanum vulgare (OV) have been used in traditional medicine in several regions of México for their anti-diabetic properties. In this study investigated the variables of ultrasound-assisted extraction for the polyphenolic compounds from the combination of these plants and explore their potential antidiabetic activities on glucose-induced-diabetic zebrafish. Determined the optimum conditions for ultrasonic-assisted extraction (UAE) to maximum recovery amounts of phenolic compounds from the extract of these plants. Polyphenols were detected in the extracts using HPLC-DAD-analysis. Extracts were evaluated on zebrafish exposed to high glucose concentration (110 mM) for two weeks. Results showed second-order polynomial mathematical models with a high coefficient of determination (R2 > 0.9564). Optimized extraction conditions for UAE from the combination of the 3 plants (COV) were as follows: 66.03%, ethanol, 28.87 min, and 21.51 mL/g for maximal flavonoids extraction. Used the same optimal extraction conditions for CV, CM, and OV. Results from LC-MS/MS indicated 9 polyphenolic compounds in CV, 12 in CM, and 6 in OV, the content of total polyphenols was 310.28, 90.42, and 126.74 mg GAE 100 g-1 dry weight, respectively. However, hyperglycemic fish showed an increase in cholesterol and triglyceride levels whereas extracts completely prevented these metabolic alterations. COV showed higher anti-diabetic ability than CV, CM, and OV, suggesting a synergistic effect between them. Our investigation developed a new herbal formulation of Cinnamomum verum; Origanum majorana; Origanum vulgare that has proven effective in animals with type 2 diabetes will form a new class of supplements to treat diabetic complications.
Collapse
Affiliation(s)
- Rosa Martha Pérez Gutiérrez
- Laboratorio de Investigación de Productos Naturales, Escuela Superior de Ingeniería Química e Industrias Extractivas, Instituto Politécnico Nacional (IPN), Unidad Profesional Adolfo López Mateos S/N Av, Instituto Politécnico, Nacional Ciudad de Mexico, cp 07708, Mexico
- Insituto Politécnico Nacional, Escuela Nacional de Ciencias Biológicas, Laboratorio de Hidrobiología Experimental, Carpio y Plan de Ayala S/N, Col. Santo Tomás, CDMX 11340, Mexico
| | - Felipe Fernando Martínez Jerónimo
- Laboratorio de Investigación de Productos Naturales, Escuela Superior de Ingeniería Química e Industrias Extractivas, Instituto Politécnico Nacional (IPN), Unidad Profesional Adolfo López Mateos S/N Av, Instituto Politécnico, Nacional Ciudad de Mexico, cp 07708, Mexico
- Insituto Politécnico Nacional, Escuela Nacional de Ciencias Biológicas, Laboratorio de Hidrobiología Experimental, Carpio y Plan de Ayala S/N, Col. Santo Tomás, CDMX 11340, Mexico
| | - José Guadalupe Contreras Soto
- Laboratorio de Investigación de Productos Naturales, Escuela Superior de Ingeniería Química e Industrias Extractivas, Instituto Politécnico Nacional (IPN), Unidad Profesional Adolfo López Mateos S/N Av, Instituto Politécnico, Nacional Ciudad de Mexico, cp 07708, Mexico
- Insituto Politécnico Nacional, Escuela Nacional de Ciencias Biológicas, Laboratorio de Hidrobiología Experimental, Carpio y Plan de Ayala S/N, Col. Santo Tomás, CDMX 11340, Mexico
| | - Alethia Muñiz Ramírez
- CONACYT-División de Materiales Avanzados, Instituto Potosino de Investigación Científica y Tecnológica A. C. San Luis Potosí, Mexico
| | | |
Collapse
|
4
|
ÖZDEMİR M, SÜZGEÇ SELÇUK S, MATARACI KARA E, ÖZBEK ÇELİK B. Pharmacopoeia Researches and Antimicrobial Activity Studies on Matricaria chamomilla L. CLINICAL AND EXPERIMENTAL HEALTH SCIENCES 2021. [DOI: 10.33808/clinexphealthsci.940847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
5
|
Schreck K, Melzig MF. Traditionally Used Plants in the Treatment of Diabetes Mellitus: Screening for Uptake Inhibition of Glucose and Fructose in the Caco2-Cell Model. Front Pharmacol 2021; 12:692566. [PMID: 34489694 PMCID: PMC8417609 DOI: 10.3389/fphar.2021.692566] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 07/15/2021] [Indexed: 01/11/2023] Open
Abstract
The traditional use of plants and their preparations in the treatment of diseases as a first medication in the past centuries indicates the presence of active components for specific targets in the natural material. Many of the tested plants in this study have been traditionally used in the treatment of Diabetes mellitus type 2 and associated symptoms in different cultural areas. Additionally, hypoglycemic effects, such as a decrease in blood glucose concentration, have been demonstrated in vivo for these plants. In order to determine the mode of action, the plants were prepared as methanolic and aqueous extracts and tested for their effects on intestinal glucose and fructose absorption in Caco2 cells. The results of this screening showed significant and reproducible inhibition of glucose uptake between 40 and 80% by methanolic extracts made from the fruits of Aronia melanocarpa, Cornus officinalis, Crataegus pinnatifida, Lycium chinense, and Vaccinium myrtillus; the leaves of Brassica oleracea, Juglans regia, and Peumus boldus; and the roots of Adenophora triphylla. Furthermore, glucose uptake was inhibited between 50 and 70% by aqueous extracts made from the bark of Eucommia ulmoides and the fruit skin of Malus domestica. The methanolic extracts of Juglans regia and Peumus boldus inhibited the fructose transport between 30 and 40% in Caco2 cells as well. These findings can be considered as fundamental work for further research regarding the treatment of obesity-correlated diseases, such as Diabetes mellitus type 2.
Collapse
Affiliation(s)
| | - Matthias F. Melzig
- Pharmaceutical Biology, Institute of Pharmacy, Freie Universitaet Berlin, Berlin, Germany
| |
Collapse
|
6
|
Hashem MA, Mahmoud EA, Abd-Allah NA. Hypolipidemic activity of an ethanolic extract of quinoa seeds in Triton X-100-induced hyperlipidemic rats. COMPARATIVE CLINICAL PATHOLOGY 2021; 30:473-482. [DOI: 10.1007/s00580-021-03241-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 04/14/2021] [Indexed: 09/02/2023]
|
7
|
Yu H, Zhang P, Liu H, Sun X, Liang J, Sun L, Chen Y. Hypoglycemic activity of Origanum vulgare L. and its main chemical constituents identified with HPLC-ESI-QTOF-MS. Food Funct 2021; 12:2580-2590. [PMID: 33629672 DOI: 10.1039/d0fo03166f] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Origanum vulgare L. (O. vulgare) is an important medicine food homology in diabetes. The present study aimed to assess the hypoglycemic effect of the leaf extract of O. vulgare in HepG2 and HepG2-GFP-CYP2E1 (E47) cells, and disclose its potential active components by the HPLC-ESI-QTOF-MS method. Firstly, we evaluated the anti-diabetic capacity of the leaf extract of O. vulgare through inhibition of α-glucosidase activity, promotion of glucose uptake, inhibition of glycosylation and relieving of oxidative stress. Secondly, the promoter activity, the mRNA and protein expression of PEPCK and SREBP-1c, and the expression of CPY2E1 and GLUT2 in the O. vulgare mediated anti-diabetic capacity were analyzed in HepG2 and E47 cells. Finally, HPLC-ESI-QTOF-MS analysis was performed to identify the herb's main components under 280 nm irradiation. In vitro assays demonstrated that the extract inhibited α-glucosidase activity, promoted glucose uptake, inhibited glycosylation and relieved oxidative stress, which suggested that O. vulgare leaf extract has a strong hypoglycemic capacity. Moreover, mechanistic analysis also showed that the extract decreased the promoter activity and the mRNA and protein expression of PEPCK and SREBP-1c. In addition, the extract inhibited the expression of CPY2E1 and enhanced the expression of GLUT2. Moreover, the UV chromatogram at 280 nm showed six main peaks, identified as amburoside A (or 4-(3',4'-dihydroxybenzoyloxymethyl) phenyl O-β-d-glucopyranoside), luteolin 7-O-glucuronide, apigenin 7-O-glucuronide, rosmarinic acid, lithospermic acid and a novel compound, demethylbenzolignanoid, based on accurate MS data. This work supported the ethnopharmacological usage of O. vulgare as an antidiabetic herbal medicine or dietary supplement and identified its main phenolic compounds.
Collapse
Affiliation(s)
- Huawei Yu
- National & Local Joint Engineering Research Center of High-throughput Drug Screening Technology, Hubei Province Key Laboratory of Biotechnology of Chinese Traditional Medicine, Hubei University, Wuhan 430062, P.R. China.
| | | | | | | | | | | | | |
Collapse
|
8
|
El Joumaa MM, Taleb RI, Rizk S, Borjac JM. Protective effect of Matricaria chamomilla extract against 1,2-dimethylhydrazine-induced colorectal cancer in mice. JOURNAL OF COMPLEMENTARY & INTEGRATIVE MEDICINE 2020; 17:jcim-2019-0143. [PMID: 32229665 DOI: 10.1515/jcim-2019-0143] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 09/29/2019] [Indexed: 12/19/2022]
Abstract
Background Colorectal cancer (CRC) is a major public health problem, with almost 1.8 million newly diagnosed cases and about 881,000 deaths annually. Chamomile (Matricaria chamomilla) is a well-documented medicinal herb that possesses anti-inflammatory and anti-carcinogenic properties. This study aimed to unravel the effect of aqueous chamomile extract against 1,2-dimethylhydrazine(DMH)-induced CRC in mice. Methods Male Balb/c mice received a weekly intraperitoneal injection of DMH (20 mg/kg body weight) for 12 weeks. Chamomile extract (150 mg/kg body weight/5 days/week p.o.) was administered at the initiation and post-initiation stages of carcinogenesis. Polyps count, histopathological analysis, real-time polymerase chain reaction (RT-PCR) analysis of Wnt signaling genes, ELISA of cyclooxygenase-2 (COX-2), and enzyme assay for inducible nitric oxide synthase (iNOS) were performed. Results Chamomile extract modulated the Wnt pathway in colonic tissues, where it significantly downregulated Wnt5a, β-catenin, T cell factor (Tcf4), lymphoid enhancer factor 1 (Lef1), c-Myc and Cyclin D1 expression levels, while it upregulated adenomatous polyposis coli (APC) and glycogen synthase kinase (GSK3β) expression levels. This extract significantly reduced COX-2 levels and iNOS activities. Polyps count and histopathological analysis provided supportive evidence for the biochemical and molecular analyses. Conclusions Chamomile can act as a potent dietary chemopreventive agent against DMH-induced CRC.
Collapse
Affiliation(s)
- Manal M El Joumaa
- Department of Biological Sciences, Beirut Arab University, Debbieh, Lebanon
| | - Robin I Taleb
- Department of Natural Sciences, Lebanese American University, Beirut, Lebanon
| | - Sandra Rizk
- Department of Natural Sciences, Lebanese American University, Beirut, Lebanon
| | - Jamilah M Borjac
- Department of Biological Sciences, Beirut Arab University, Debbieh, Lebanon
| |
Collapse
|
9
|
Sharifi-Rad M, Berkay Yılmaz Y, Antika G, Salehi B, Tumer TB, Kulandaisamy Venil C, Das G, Patra JK, Karazhan N, Akram M, Iqbal M, Imran M, Sen S, Acharya K, Dey A, Sharifi-Rad J. Phytochemical constituents, biological activities, and health-promoting effects of the genus Origanum. Phytother Res 2020; 35:95-121. [PMID: 32789910 DOI: 10.1002/ptr.6785] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 05/15/2020] [Accepted: 06/06/2020] [Indexed: 12/14/2022]
Abstract
Origanum species are mostly distributed around the Mediterranean, Euro-Siberian, and Iran-Siberian regions. Since time immemorial, the genus has popularly been used in Southern Europe, as well as on the American continent as a spice now known all over the world under the name "oregano" or "pizza-spice." Origanum plants are also employed to prepare bitter tinctures, wines, vermouths, beer, and kvass. The major components of Origanum essential oil are various terpenes, phenols, phenolic acids, and flavonoids with predominant occurrence of carvacrol and thymol (with reasonable amounts of p-cymen and -terpinene) or of terpinene-4-ol, linalool, and sabinene hydrate. Many species of Origanum genus are used to treat kidney, digestive, nervous, and respiratory disorders, spasms, sore throat, diabetes, lean menstruation, hypertension, cold, insomnia, toothache, headache, epilepsy, urinary tract infections, etc. Origanum essential oil showed potent bioactivities owing to its major constituents' carvacrol, thymol, and monoterpenes. Several preclinical studies evidenced its pharmacological potential as antiproliferative or anticancer, antidiabetic, antihyperlipidemic, anti-obesity, renoprotective, antiinflammatory, vasoprotective, cardioprotective, antinociceptive, insecticidal, and hepatoprotective properties. Its nanotechnological applications as a promising pharmaceutical in order to enhance the solubility, physicochemical stability, and the accumulation rate of its essential oils have been investigated. However, Origanum has been reported causing angioedema, perioral dermatitis, allergic reaction, inhibition of platelet aggregation, hypoglycemia, and abortion. Conclusive evidences are still required for its clinical applications against human medical conditions. Toxicity analyses and risk assessment will aid to its safe and efficacious application. In addition, elaborate structure-activity studies are needed to explore the potential use of Origanum-derived phytochemicals as promising drug candidates.
Collapse
Affiliation(s)
- Mehdi Sharifi-Rad
- Department of Medical Parasitology, Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Yakup Berkay Yılmaz
- Graduate Program of Biomolecular Sciences, Institute of Natural and Applied Sciences, Canakkale Onsekiz Mart University, Canakkale, Turkey
| | - Gizem Antika
- Graduate Program of Molecular Biology and Genetics, Institute of Natural and Applied Sciences, Canakkale Onsekiz Mart University, Canakkale, Turkey
| | - Bahare Salehi
- Noncommunicable Diseases Research Center, Bam University of Medical Sciences, Bam, Iran.,Student Research Committee, School of Medicine, Bam University of Medical Sciences, Bam, Iran
| | - Tugba Boyunegmez Tumer
- Department of Molecular Biology and Genetics, Faculty of Arts and Science, Canakkale Onsekiz Mart University, Canakkale, Turkey
| | | | - Gitishree Das
- Research Institute of Biotechnology & medical Converged Science, Dongguk University, Goyang-si, Republic of Korea
| | - Jayanta Kumar Patra
- Research Institute of Biotechnology & medical Converged Science, Dongguk University, Goyang-si, Republic of Korea
| | - Natallia Karazhan
- Department of Pharmacognosy, Pharmaceutical Faculty of the EE VSMU, Vitebsk, Belarus
| | - Muhammad Akram
- Department of Eastern Medicine and Surgery, Directorate of Medical Sciences, GC University Faisalabad, Faisalabad, Pakistan
| | - Mehwish Iqbal
- Institute of Health Management, Dow University of Health Sciences, Karachi, Pakistan
| | - Muhammad Imran
- University Institute of Diet and Nutritional Sciences, Faculty of Allied Health Sciences, The University of Lahore, Lahore, Pakistan
| | - Surjit Sen
- Molecular and Applied Mycology and Plant Pathology Laboratory, Department of Botany, University of Calcutta, Kolkata, India.,Department of Botany, Fakir Chand College, Diamond Harbour, India
| | - Krishnendu Acharya
- Molecular and Applied Mycology and Plant Pathology Laboratory, Department of Botany, University of Calcutta, Kolkata, India
| | - Abhijit Dey
- Department of Life Sciences, Presidency University, Kolkata, India
| | - Javad Sharifi-Rad
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Facultad de Medicina, Universidad del Azuay, Cuenca, Ecuador
| |
Collapse
|
10
|
Indirubin-3-monoxime and thymoquinone exhibit synergistic efficacy as therapeutic combination in in-vitro and in-vivo models of Lung cancer. Arch Pharm Res 2020; 43:655-665. [PMID: 32588331 DOI: 10.1007/s12272-020-01241-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 06/21/2020] [Indexed: 12/25/2022]
Abstract
In this study, we report the combination of indirubin-3-monoxime (I3M) and thymoquinone (Tq) to have excellent therapeutic efficacy in models of Lung cancer (LC). Preliminary screening was done with A549 cells. Cell cycle, apoptosis and NFκB phosphorylation were determined by flow cytometry, while apoptotic proteins, Akt and mTOR were assessed by western blotting. Mouse xenograft model was used to assess the therapeutic efficacy in-vivo. Synergistic reduction in cell viability was observed with I3M + Tq combinations, which were non-toxic to normal HFL-1 cells. Cell cycle analysis indicated G1 phase reduction with subsequent accumulation of sub G0 contents. Annexin V assay revealed higher apoptotic cells with combinations compared to individual treatments with a decrease in Bcl-2/Bax ratio. The combinations exhibited anti-metastasis activity in cell migration in the scratch, scatter and tumour cell migration assays and effectively reduced the tumour growth in mouse xenograft model. Expression levels of p-AKT, p-mTOR, Caspase-3, p-53 and NFκB were significantly reduced in the combination treated mice compared to individual treatments. Results of current study demonstrate clear efficacy of I3M + Tq combinations in LC models mediated by suppressing Akt/mTOR/NFκB signalling. Further research is recommended to transform these findings into novel therapeutic combinations against LC.
Collapse
|
11
|
Shebbo S, El Joumaa M, Kawach R, Borjac J. Hepatoprotective effect of Matricaria chamomilla aqueous extract against 1,2-Dimethylhydrazine-induced carcinogenic hepatic damage in mice. Heliyon 2020; 6:e04082. [PMID: 32509999 PMCID: PMC7265058 DOI: 10.1016/j.heliyon.2020.e04082] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 04/16/2020] [Accepted: 05/22/2020] [Indexed: 02/06/2023] Open
Abstract
Dimethylhydrazine (DMH) is a potent colonic and hepatic carcinogen that is metabolized into oxyradicals causing liver injury and DNA mutations. Matricaria chamomilla is a well-documented medicinal herb that possesses anti-inflammatory, antioxidant and antitumor activities and is commonly used to treat diverse ailments. The present study aimed to reveal the hepatoprotective effects of Matricaria chamomilla aqueous extract during an intermediate stage of colorectal cancer (CRC) in mice. Male Balb/c mice were divided into six groups: group A served as control, group B received chamomile extract (150 mg/Kg b.w.) orally for 12 weeks, and groups C-F received weekly intraperitoneal injections of DMH (20 mg/Kg b.w.) once a week for 12 weeks. In addition to DMH, groups D and F received chamomile during the initiation and post-initiation stages, respectively. Blood and liver samples were collected for biochemical and molecular analyses. The results showed that DMH induced hepatic injury in mice as shown by significant increase in serum aspartate aminotransferase and alanine aminotransferase. The changes in biochemical parameters were accompanied by activation of the Wnt signaling pathway leading to increased hepatocytes proliferation as well as inflammation evidenced by high levels of pro-inflammatory enzymes cyclooxygenase 2 (COX-2) and inducible nitric oxide synthase (iNOS). The results also showed potential hepatoprotective effects of chamomile extract against DMH-induced liver injury, proliferation and inflammation. Chamomile restored the biochemical and molecular parameters and this improvement was more pronounced in mice pretreated with the extract. In conclusion, chamomile extract may exert its hepatoprotective activities against DMH probably due to the antioxidant, antiproliferative and anti-inflammatory properties of its flavonoids.
Collapse
Affiliation(s)
- Salima Shebbo
- Department of Biological Sciences, Beirut Arab University, Debbieh, Lebanon
| | - Manal El Joumaa
- Department of Biological Sciences, Beirut Arab University, Debbieh, Lebanon
| | - Rawan Kawach
- Department of Biological Sciences, Beirut Arab University, Debbieh, Lebanon
| | - Jamilah Borjac
- Department of Biological Sciences, Beirut Arab University, Debbieh, Lebanon
| |
Collapse
|
12
|
Neamat‐Allah ANF, Abd El Hakim Y, Mahmoud EA. Alleviating effects of β‐glucan in Oreochromis niloticuson growth performance, immune reactions, antioxidant, transcriptomics disorders and resistance to Aeromonas sobriacaused by atrazine. AQUACULTURE RESEARCH 2020; 51:1801-1812. [DOI: 10.1111/are.14529] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 01/10/2020] [Indexed: 09/02/2023]
Affiliation(s)
- Ahmed N. F. Neamat‐Allah
- Department of Clinical Pathology Faculty of Veterinary Medicine Zagazig University Zagazig City Sharkia Province Egypt
| | - Yasser Abd El Hakim
- Department of Fish Diseases and Management Faculty of Veterinary Medicine Zagazig University Zagazig City Sharkia Province Egypt
| | - Essam A. Mahmoud
- Department of Clinical Pathology Faculty of Veterinary Medicine Zagazig University Zagazig City Sharkia Province Egypt
| |
Collapse
|
13
|
Fokina A, Denysiuk K, Satarova T. Origanum vulgare L. Cuttings Rhizogenesis in Microclonal Reproduction in Vitro. INNOVATIVE BIOSYSTEMS AND BIOENGINEERING 2020. [DOI: 10.20535/ibb.2020.4.1.192191] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
|
14
|
Uuh Narvaez JJ, Segura Campos MR. Foods from Mayan Communities of Yucatán as Nutritional Alternative for Diabetes Prevention. J Med Food 2020; 23:349-357. [DOI: 10.1089/jmf.2019.0125] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
|
15
|
Balasubramaniam M, Lakkaniga NR, Dera AA, Fayi MA, Abohashrh M, Ahmad I, Chandramoorthy HC, Nalini G, Rajagopalan P. FCX-146, a potent allosteric inhibitor of Akt kinase in cancer cells: Lead optimization of the second-generation arylidene indanone scaffold. Biotechnol Appl Biochem 2020; 68:82-91. [PMID: 32067263 DOI: 10.1002/bab.1896] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 02/04/2020] [Indexed: 12/16/2022]
Abstract
Akt, a serine-threonine protein kinase, is regulated by class-I PI3K signaling. Akt regulates a wide variety of cell processes including cell proliferation, survival, and angiogenesis through serine/threonine phosphorylation of downstream targets including mTOR and glycogen-synthase-kinase-3-beta (GSK3β). Targeting cancer-specific overexpression of Akt protein could be an efficient way to control cancer-cell proliferation. However, the ATP-competitive inhibitors are challenged by the highly conserved ATP binding site, and by competition with high cellular concentrations of ATP. We previously developed an allosteric inhibitor, 2-arylidene-4, 7-dimethyl indan-1-one (FXY-1) that showed promising activity against several lung cancer models. In this work, we designed a congeneric series of molecules based on FXY-1 and optimized lead based on computational, in vitro assays. Computational screening followed by enzyme-inhibition and cell-proliferation assays identified a derivative (FCX-146) as a new lead molecule with threefold greater potency than the parent compound. FCX-146 increased apoptosis in HL-60 cells, mediated in part through decreased expression of antiapoptotic Bcl-2 protein and increased levels of Bax-2 and Caspase-3. Molecular-dynamic simulations showed stable binding of FCX-146 to an allosteric (i.e., noncatalytic) pocket in Akt. Together, we propose FCX-146 as a potent second-generation arylidene indanone compound that binds to the allosteric pocket of Akt and potently inhibits its activation.
Collapse
Affiliation(s)
| | - Naga Rajiv Lakkaniga
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Ayed A Dera
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
- Central Research Laboratory, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | - Majed Al Fayi
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
- Central Research Laboratory, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | - Mohammed Abohashrh
- Department of Basic Medical Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | - Irfan Ahmad
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
- Central Research Laboratory, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | - Harish C Chandramoorthy
- Center for Stem Cell Research and Department of Microbiology & Clinical Parasitology College of Medicine, King Khalid University, Abha, Saudi Arabia
| | - Ganesan Nalini
- Department of Chemistry, Pachaiyappas College, Chennai, Tamil Nadu, India
| | - Prasanna Rajagopalan
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
- Central Research Laboratory, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| |
Collapse
|
16
|
Al Fayi M, Otifi H, Alshyarba M, Dera AA, Rajagopalan P. Thymoquinone and curcumin combination protects cisplatin-induced kidney injury, nephrotoxicity by attenuating NFκB, KIM-1 and ameliorating Nrf2/HO-1 signalling. J Drug Target 2020; 28:913-922. [PMID: 31983246 DOI: 10.1080/1061186x.2020.1722136] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
This study evaluates the protective effects of Thymoquinone (Tq) and Curcumin (Cur) in models of cisplatin-induced renal toxicity. Proliferation studies were carried out in HEK-293 cells. Cisplatin(ip) 5 mg/kg BW was used to induce renal injury in Sprague-Dawley rats. 50 mg/kg BW Tq + 100 mg/kg BW Cur, with or without cisplatin-treatment were administered for 5 days. Tq + Cur combination synergistically reduced the proliferation inhibition of HEK-293 cells resulted from cisplatin treatment and brought down cisplatin-induced apoptosis in these cells. In vitro studies revealed serum levels of BUN, creatinine, CK and pro-inflammatory cytokines like TNF-α, IL-6 and MRP-1 to be elevated in the cisplatin-treated group while reducing glomerular filtration rate. Tq + Cur treatment significantly improved these conditions. The antioxidant enzyme levels and mitochondrial ATPases were restored upon treatment, which were lessened in the cisplatin-treated group. Cisplatin induced the expression of KIM-1, which was brought down by the combination treatment. Tq + Cur treatment increased the expressions of phosphorylated Akt, Nrf2 and HO-1 proteins while decreasing the levels of cleaved caspase 3 and NFκB in kidney homogenates. In summary, Tq + Cur had protective effects on cisplatin-induced nephrotoxicity and renal injury, which could be mediated by up-regulation of survival signals like Akt, Nrf2/HO-1 and attenuation of KIM-1, NFκB.
Collapse
Affiliation(s)
- Majed Al Fayi
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia.,Central Research Laboratory, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | - Hassan Otifi
- Department of Pathology, College of Medicine, King Khalid University, Abha, Saudi Arabia
| | - Mishari Alshyarba
- Department of Surgery, College of Medicine, King Khalid University, Abha, Saudi Arabia
| | - Ayed A Dera
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia.,Central Research Laboratory, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | - Prasanna Rajagopalan
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia.,Central Research Laboratory, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| |
Collapse
|
17
|
Chamomile (Matricaria recutita L.) and diabetes mellitus, current knowledge and the way forward: A systematic review. Complement Ther Med 2020; 48:102284. [PMID: 31987240 DOI: 10.1016/j.ctim.2019.102284] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 12/05/2019] [Accepted: 12/16/2019] [Indexed: 11/22/2022] Open
Abstract
Chamomile, as a rich source of phenolic compounds and terpenoids, seems to be an effective approach in the management of chronic conditions such as diabetes mellitus. The aim of this systematic review was to evaluate evidence from animal and human studies of the effects of chamomile on metabolic risk markers and complications of diabetes mellitus. The literature search was conducted in PubMed, SCOPUS, Embase, ProQuest and Google Scholar electronic and were considered the articles published on April 2019. Original studies that investigated the effect of chamomile in diabetes mellitus which met the inclusion criteria were eligible. After screening 208 citations, 15 studies were included. The results of these studies demonstrated a significant effect of chamomile administration on metabolic profiles. All 12 studies that examined the impact of chamomile supplementation on glycemic control indicated this feature. Four of the five studies appraising the impact of chamomile on lipid profiles showed that it improved dyslipidemia. Six studies showed that chamomile markedly decreased oxidative stress particularly malondialdehyde. Altogether, four chamomile studies evaluating diabetes complications, including renal and hepatic profiles, found significant decreases compared to controls. These findings extend the novel functions of chamomile in the improvement of glycemic and lipid profiles and oxidative stress indicators in diabetes mellitus and related complications. In-depth studies focusing on underlying mechanisms are warranted to make useful conclusions.
Collapse
|
18
|
Hashem MA, Mahmoud EA, Abd-Allah NA. Alterations in hematological and biochemical parameters and DNA status in mice bearing Ehrlich ascites carcinoma cells and treated with cisplatin and cyclophosphamide. ACTA ACUST UNITED AC 2020. [DOI: 10.1007/s00580-019-03089-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
19
|
Evaluation of the hematoprotective and hepato-renal protective effects of Thymus vulgaris aqueous extract on thermally oxidized oil-induced hematotoxicity and hepato-renal toxicity. ACTA ACUST UNITED AC 2019. [DOI: 10.1007/s00580-019-03078-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
20
|
Rajagopalan P, Dera A, Abdalsamad MR, C Chandramoorthy H. Rational combinations of indirubin and arylidene derivatives exhibit synergism in human non-small cell lung carcinoma cells. J Food Biochem 2019; 43:e12861. [PMID: 31353710 DOI: 10.1111/jfbc.12861] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 03/31/2019] [Accepted: 04/01/2019] [Indexed: 12/24/2022]
Abstract
Rational combination of natural and synthetic derivatives to treat lung cancer has advantages of both efficacy and safety. Herein, the combination of indirubin-3-monoxime (I3M), a chemical derived from Chinese herbal medicine and FXY-1, a synthetic arylidene derivative, was tested for combined activity in lung cancer cells. A dose-dependent synergistic reduction in cell viability was recorded with the combinations in A549 and NCI-H460 cells. Combination treatments of I3M and FXY-1 showed antimetastatic effects in both cells. Cell cycle analysis revealed G1 growth phase reduction with subsequent accumulation of sub G0 contents. Annexin V assay revealed higher apoptotic cells with combinations compared to individual treatments. I3M + FXY-1 combination significantly decreased the antiapoptotic Bcl-2 protein and increased pro-apoptotic Bax protein levels. These results demonstrate efficacy of I3M + FXY-1 in lung cancer cells and suggest further preclinical research in animal models to develop it into a new form combination chemotherapeutic against lung cancer. PRACTICAL APPLICATIONS: Current investigation will open new options in rational combinations of natural and synthetic compounds to treat cancer. The observed efficacy and safety of the combinations will add to the advantage of higher therapeutic window in formulating treatment regimens. The antimetastatic effects by the combinations provides promising efficacy in controlling the lung cancer progression. A detailed in vivo investigation is recommended to transform the combinations to novel chemotherapeutic options against lung cancer.
Collapse
Affiliation(s)
- Prasanna Rajagopalan
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia.,Central Research Laboratory, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | - Ayed Dera
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia.,Central Research Laboratory, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia.,Research Center of Advanced Materials, King Khalid University, Abha, Saudi Arabia
| | - Mohamad Ragab Abdalsamad
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | - Harish C Chandramoorthy
- Department of Microbiology & Clinical Parasitology and Center for Stem Cell Research, College of Medicine, King Khalid University, Abha, Saudi Arabia
| |
Collapse
|
21
|
Malongane F, McGaw LJ, Mudau FN. The synergistic potential of various teas, herbs and therapeutic drugs in health improvement: a review. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2017; 97:4679-4689. [PMID: 28585285 DOI: 10.1002/jsfa.8472] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Revised: 05/29/2017] [Accepted: 05/31/2017] [Indexed: 06/07/2023]
Abstract
Tea is one of the most widely consumed non-alcoholic beverages in the world next to water. It is classified as Camellia sinensis and non-Camellia sinensis (herbal teas). The common bioactive compounds found mainly in green teas are flavan-3-ols (catechins) (also called flavanols), proanthocyanidins (tannins) and flavonols. Black tea contains theaflavins and thearubigins and white tea contains l-theanine and gamma-aminobutyric acid (GABA), while herbal teas contain diverse polyphenols. Phytochemicals in tea exhibit antimicrobial, anti-diabetic and anti-cancer activities that are perceived to be helpful in managing chronic diseases linked to lifestyle. Many of these phytochemicals are reported to be biologically active when combined. Knowledge of the synergistic interactions of tea with other teas or herbs in terms of biological activities will be of benefit for therapeutic enhancement. There is evidence that various types of teas act synergistically in exhibiting health benefits to humans, improving consumer acceptance and economic value. Similar observations have been made when teas and herbs or medicinal drugs were combined. The aim of this review is to highlight potential beneficial synergies between combinations of different types of teas, tea and herbs, and tea and medicinal drugs. © 2017 Society of Chemical Industry.
Collapse
Affiliation(s)
- Florence Malongane
- Department Life and Consumer Sciences, College of Agriculture and Environmental Sciences, University of South Africa, Florida, South Africa
| | - Lyndy J McGaw
- Phytomedicine Programme, Department of Paraclinical Sciences, University of Pretoria, Pretoria, South Africa
| | - Fhatuwani N Mudau
- Department of Agriculture and Animal Health, College of Agriculture and Environmental Sciences, University of South Africa, Florida, South Africa
| |
Collapse
|