1
|
Macrì R, Mollace R, Serra M, Scarano F, Ritorto G, Ussia S, Cardamone A, Coppoletta AR, Carresi C, Gliozzi M, Musolino V, Maiuolo J, Palma E, Volterrani M, Mollace V, Muscoli C. Nutritional and Nutraceutical Support to the Failing Myocardium: A Possible Way of Potentiating the Current Treatment of Heart Failure. Int J Mol Sci 2024; 25:12232. [PMID: 39596298 PMCID: PMC11594499 DOI: 10.3390/ijms252212232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 11/06/2024] [Accepted: 11/12/2024] [Indexed: 11/28/2024] Open
Abstract
Heart failure (HF) is a complex condition that affects 1-2% of the global population. The presence of comorbidities like diabetes, hypertension, hyperlipidemia, or obesity has been shown in various studies to elevate mortality and hospitalization rates in HF patients. Insufficient outcomes persist in HF, necessitating additional research to address unmet needs in disease management. Lifestyle modifications, including smoking cessation, decreased alcohol consumption, regular exercise, cardiac rehabilitation, and a balanced diet, can prevent and treat a wide range of HF cases. In this review, we aimed to examine how lifestyle changes, nutrition, and nutraceutical supplements can play a role in preventing heart failure and supporting its treatment. A detailed and comprehensive analysis of the most recent data present in the literature could help identify potential candidates for future clinical trials in HF management. There is a growing body of evidence supporting the importance of closely monitoring nutritional balance, including micronutrients and nutraceuticals, in HF patients for better symptom management and outcomes. Despite promising results from initial approaches, the lack of conclusive evidence from recent studies and meta-analyses questions the widespread use of nutraceutical supplementation in HF patients. Further studies are necessary to determine the most effective way to use nutraceutical supplementation in the treatment of myocardial dysfunction in HF patients.
Collapse
Affiliation(s)
- Roberta Macrì
- Pharmacology Laboratory, Institute of Research for Food Safety and Health IRC-FSH, Department of Health Sciences, University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy; (M.S.); (F.S.); (G.R.); (S.U.); (A.C.); (A.R.C.); (M.G.); (V.M.); (C.M.)
| | - Rocco Mollace
- Pharmacology Laboratory, Institute of Research for Food Safety and Health IRC-FSH, Department of Health Sciences, University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy; (M.S.); (F.S.); (G.R.); (S.U.); (A.C.); (A.R.C.); (M.G.); (V.M.); (C.M.)
- Department of Systems Medicine, University “Tor Vergata” of Rome, 00133 Rome, Italy
| | - Maria Serra
- Pharmacology Laboratory, Institute of Research for Food Safety and Health IRC-FSH, Department of Health Sciences, University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy; (M.S.); (F.S.); (G.R.); (S.U.); (A.C.); (A.R.C.); (M.G.); (V.M.); (C.M.)
| | - Federica Scarano
- Pharmacology Laboratory, Institute of Research for Food Safety and Health IRC-FSH, Department of Health Sciences, University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy; (M.S.); (F.S.); (G.R.); (S.U.); (A.C.); (A.R.C.); (M.G.); (V.M.); (C.M.)
| | - Giovanna Ritorto
- Pharmacology Laboratory, Institute of Research for Food Safety and Health IRC-FSH, Department of Health Sciences, University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy; (M.S.); (F.S.); (G.R.); (S.U.); (A.C.); (A.R.C.); (M.G.); (V.M.); (C.M.)
| | - Sara Ussia
- Pharmacology Laboratory, Institute of Research for Food Safety and Health IRC-FSH, Department of Health Sciences, University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy; (M.S.); (F.S.); (G.R.); (S.U.); (A.C.); (A.R.C.); (M.G.); (V.M.); (C.M.)
| | - Antonio Cardamone
- Pharmacology Laboratory, Institute of Research for Food Safety and Health IRC-FSH, Department of Health Sciences, University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy; (M.S.); (F.S.); (G.R.); (S.U.); (A.C.); (A.R.C.); (M.G.); (V.M.); (C.M.)
| | - Anna Rita Coppoletta
- Pharmacology Laboratory, Institute of Research for Food Safety and Health IRC-FSH, Department of Health Sciences, University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy; (M.S.); (F.S.); (G.R.); (S.U.); (A.C.); (A.R.C.); (M.G.); (V.M.); (C.M.)
| | - Cristina Carresi
- Veterinary Pharmacology Laboratory, Institute of Research for Food Safety and Health IRC-FSH, Department of Health Sciences, University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy; (C.C.); (E.P.)
| | - Micaela Gliozzi
- Pharmacology Laboratory, Institute of Research for Food Safety and Health IRC-FSH, Department of Health Sciences, University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy; (M.S.); (F.S.); (G.R.); (S.U.); (A.C.); (A.R.C.); (M.G.); (V.M.); (C.M.)
| | - Vincenzo Musolino
- Laboratory of Pharmaceutical Biology, IRC-FSH Department of Health Sciences, University “Magna Græcia” of Catanzaro, Campus Universitario di Germaneto, 88100 Catanzaro, Italy; (V.M.); (J.M.)
| | - Jessica Maiuolo
- Laboratory of Pharmaceutical Biology, IRC-FSH Department of Health Sciences, University “Magna Græcia” of Catanzaro, Campus Universitario di Germaneto, 88100 Catanzaro, Italy; (V.M.); (J.M.)
| | - Ernesto Palma
- Veterinary Pharmacology Laboratory, Institute of Research for Food Safety and Health IRC-FSH, Department of Health Sciences, University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy; (C.C.); (E.P.)
| | | | - Vincenzo Mollace
- Pharmacology Laboratory, Institute of Research for Food Safety and Health IRC-FSH, Department of Health Sciences, University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy; (M.S.); (F.S.); (G.R.); (S.U.); (A.C.); (A.R.C.); (M.G.); (V.M.); (C.M.)
- Renato Dulbecco Institute, Lamezia Terme, 88046 Catanzaro, Italy
| | - Carolina Muscoli
- Pharmacology Laboratory, Institute of Research for Food Safety and Health IRC-FSH, Department of Health Sciences, University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy; (M.S.); (F.S.); (G.R.); (S.U.); (A.C.); (A.R.C.); (M.G.); (V.M.); (C.M.)
| |
Collapse
|
2
|
Zhan R, Zhou F, Liu C, Chen C, Li M, Huang D, Zheng N, Lin T, Zuo Z, He C, Chen X. Resveratrol ameliorates cyprodinil-induced zebrafish cardiac developmental defects as an aryl hydrocarbon receptor antagonist. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:44789-44799. [PMID: 38954331 DOI: 10.1007/s11356-024-34024-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 06/13/2024] [Indexed: 07/04/2024]
Abstract
Cyprodinil, a globally utilized broad-spectrum pyrimidine amine fungicide, has been observed to elicit cardiac abnormality. Resveratrol (RSV), a naturally occurring polyphenolic compound, showcases remarkable defensive properties in nurturing cardiac development. To investigate whether RSV could protect against cyprodinil-induced cardiac defects, we exposed zebrafish embryos to cyprodinil (500 μg/L) in the presence or absence of RSV (1 μM). Our results showed that RSV significantly mitigated the decrease of survival rate and embryo movement and the hatching delay induced by cyprodinil. In addition, RSV also improved cyprodinil-induced zebrafish cardiac developmental toxicity, including pericardial edema and cardiac function impairment. In mechanism, RSV attenuated the cyprodinil-induced changes in mRNA expression involved in cardiac development, such as myh6, myl7, tbx5, and gata4, and calcium ion channels, such as ncx1h, slc8a4a, and atp2a2b. We further showed that RSV might inhibit the activity of aryl hydrocarbon receptor (AhR) signaling pathways induced by cyprodinil. In summary, our findings establish that the protective effects of RSV against the cardiac developmental toxicity are induced by cyprodinil due to its remarkable ability to inhibit AhR activity. Our findings not only shed light on a new avenue for regulating and ensuring the safe utilization of cyprodinil but also presents a novel concept to promote its responsible use.
Collapse
Affiliation(s)
- Ruyu Zhan
- Scientific Research Center, Anxi County Hospital, Quanzhou, People's Republic of China
| | - Fushan Zhou
- Scientific Research Center, Anxi County Hospital, Quanzhou, People's Republic of China
| | - Chaoyang Liu
- Scientific Research Center, Anxi County Hospital, Quanzhou, People's Republic of China
| | - Chuanchang Chen
- Scientific Research Center, Anxi County Hospital, Quanzhou, People's Republic of China
| | - Mingmei Li
- Scientific Research Center, Anxi County Hospital, Quanzhou, People's Republic of China
| | - Dongqin Huang
- Scientific Research Center, Anxi County Hospital, Quanzhou, People's Republic of China
| | - Naying Zheng
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, People's Republic of China
| | - Tingting Lin
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, People's Republic of China
| | - Zhenghong Zuo
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, People's Republic of China
| | - Chengyong He
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, People's Republic of China
| | - Xintan Chen
- Scientific Research Center, Anxi County Hospital, Quanzhou, People's Republic of China.
| |
Collapse
|
3
|
Gál R, Halmosi R, Gallyas F, Tschida M, Mutirangura P, Tóth K, Alexy T, Czopf L. Resveratrol and beyond: The Effect of Natural Polyphenols on the Cardiovascular System: A Narrative Review. Biomedicines 2023; 11:2888. [PMID: 38001889 PMCID: PMC10669290 DOI: 10.3390/biomedicines11112888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 10/11/2023] [Accepted: 10/19/2023] [Indexed: 11/26/2023] Open
Abstract
Cardiovascular diseases (CVDs) are among the leading causes of morbidity and mortality worldwide. Unhealthy dietary habits have clearly been shown to contribute to the development of CVDs. Beyond the primary nutrients, a healthy diet is also rich in plant-derived compounds. Natural polyphenols, found in fruits, vegetables, and red wine, have a clear role in improving cardiovascular health. In this review, we strive to summarize the results of the relevant pre-clinical and clinical trials that focused on some of the most important natural polyphenols, such as resveratrol and relevant flavonoids. In addition, we aim to identify their common sources, biosynthesis, and describe their mechanism of action including their regulatory effect on signal transduction pathways. Finally, we provide scientific evidence regarding the cardiovascular benefits of moderate, long-term red wine consumption.
Collapse
Affiliation(s)
- Roland Gál
- Division of Cardiology, 1st Department of Medicine, Medical School, University of Pecs, 7624 Pecs, Hungary; (R.G.); (R.H.); (K.T.)
- Szentágothai Research Centre, University of Pecs, 7624 Pecs, Hungary
| | - Róbert Halmosi
- Division of Cardiology, 1st Department of Medicine, Medical School, University of Pecs, 7624 Pecs, Hungary; (R.G.); (R.H.); (K.T.)
- Szentágothai Research Centre, University of Pecs, 7624 Pecs, Hungary
| | - Ferenc Gallyas
- Department of Biochemistry and Medical Chemistry, University of Pecs, 7624 Pecs, Hungary;
| | - Michael Tschida
- Medical School, University of Minnesota, Minneapolis, MN 55455, USA;
| | - Pornthira Mutirangura
- Department of Medicine, University of Minnesota Medical School, Minneapolis, MN 55455, USA;
| | - Kálmán Tóth
- Division of Cardiology, 1st Department of Medicine, Medical School, University of Pecs, 7624 Pecs, Hungary; (R.G.); (R.H.); (K.T.)
- Szentágothai Research Centre, University of Pecs, 7624 Pecs, Hungary
| | - Tamás Alexy
- Department of Medicine, Division of Cardiology, University of Minnesota, Minneapolis, MN 55455, USA;
| | - László Czopf
- Division of Cardiology, 1st Department of Medicine, Medical School, University of Pecs, 7624 Pecs, Hungary; (R.G.); (R.H.); (K.T.)
| |
Collapse
|
4
|
Hedayati N, Yaghoobi A, Salami M, Gholinezhad Y, Aghadavood F, Eshraghi R, Aarabi MH, Homayoonfal M, Asemi Z, Mirzaei H, Hajijafari M, Mafi A, Rezaee M. Impact of polyphenols on heart failure and cardiac hypertrophy: clinical effects and molecular mechanisms. Front Cardiovasc Med 2023; 10:1174816. [PMID: 37293283 PMCID: PMC10244790 DOI: 10.3389/fcvm.2023.1174816] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 05/02/2023] [Indexed: 06/10/2023] Open
Abstract
Polyphenols are abundant in regular diets and possess antioxidant, anti-inflammatory, anti-cancer, neuroprotective, and cardioprotective effects. Regarding the inadequacy of the current treatments in preventing cardiac remodeling following cardiovascular diseases, attention has been focused on improving cardiac function with potential alternatives such as polyphenols. The following online databases were searched for relevant orginial published from 2000 to 2023: EMBASE, MEDLINE, and Web of Science databases. The search strategy aimed to assess the effects of polyphenols on heart failure and keywords were "heart failure" and "polyphenols" and "cardiac hypertrophy" and "molecular mechanisms". Our results indicated polyphenols are repeatedly indicated to regulate various heart failure-related vital molecules and signaling pathways, such as inactivating fibrotic and hypertrophic factors, preventing mitochondrial dysfunction and free radical production, the underlying causes of apoptosis, and also improving lipid profile and cellular metabolism. In the current study, we aimed to review the most recent literature and investigations on the underlying mechanism of actions of different polyphenols subclasses in cardiac hypertrophy and heart failure to provide deep insight into novel mechanistic treatments and direct future studies in this context. Moreover, due to polyphenols' low bioavailability from conventional oral and intravenous administration routes, in this study, we have also investigated the currently accessible nano-drug delivery methods to optimize the treatment outcomes by providing sufficient drug delivery, targeted therapy, and less off-target effects, as desired by precision medicine standards.
Collapse
Affiliation(s)
- Neda Hedayati
- School of Medicine, Iran University of Medical Science, Tehran, Iran
| | - Alireza Yaghoobi
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Marziyeh Salami
- Department of Clinical Biochemistry, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Yasaman Gholinezhad
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Farnaz Aghadavood
- Student Research Committee, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Reza Eshraghi
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Mohammad-Hossein Aarabi
- Department of Clinical Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mina Homayoonfal
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Zatollah Asemi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Mohammad Hajijafari
- Department of Anesthesiology, School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Alireza Mafi
- Department of Clinical Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
- Nutrition and Food Security Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Malihe Rezaee
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Tehran Heart Center, Cardiovascular Diseases Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
5
|
Cammisotto V, Baratta F, Simeone PG, Barale C, Lupia E, Galardo G, Santilli F, Russo I, Pignatelli P. Proprotein Convertase Subtilisin Kexin Type 9 (PCSK9) Beyond Lipids: The Role in Oxidative Stress and Thrombosis. Antioxidants (Basel) 2022; 11:antiox11030569. [PMID: 35326219 PMCID: PMC8945358 DOI: 10.3390/antiox11030569] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 03/11/2022] [Accepted: 03/15/2022] [Indexed: 11/16/2022] Open
Abstract
Proprotein convertase subtilisin/kexin type 9 (PCSK9), mainly secreted in the liver, is a key regulator of cholesterol homeostasis inducing LDL receptors’ degradation. Beyond lipid metabolism, PCSK9 is involved in the development of atherosclerosis, promoting plaque formation in mice and human, impairing the integrity of endothelial monolayer and promoting the events that induce atherosclerosis disease progression. In addition, the PCSK9 ancillary role in the atherothrombosis process is widely debated. Indeed, recent evidence showed a regulatory effect of PCSK9 on redox system and platelet activation. In particular, the role of PCSK9 in the activation of nicotinamide adenine dinucleotide phosphate (NADPH) oxidase (Nox2) system, of MAP-kinase cascades and of CD36 and LOX-1 downstream pathways, suggests that PCSK9 may be a significant cofactor in atherothrombosis development. This evidence suggests that the serum levels of PCSK9 could represent a new biomarker for the occurrence of cardiovascular events. Finally, other evidence showed that PCSK9 inhibitors, a novel pharmacological tool introduced in clinical practice in recent years, counteracted these phenomena. In this review, we summarize the evidence concerning the role of PCSK9 in promoting oxidative-stress-related atherothrombotic process.
Collapse
Affiliation(s)
- Vittoria Cammisotto
- Department of Clinical Internal, Anesthesiological and Cardiovascular Sciences, Sapienza University of Rome, 00161 Rome, Italy; (V.C.); (F.B.)
- Department of General Surgery and Surgical Speciality Paride Stefanini, Sapienza University of Rome, 00161 Rome, Italy;
| | - Francesco Baratta
- Department of Clinical Internal, Anesthesiological and Cardiovascular Sciences, Sapienza University of Rome, 00161 Rome, Italy; (V.C.); (F.B.)
| | - Paola G. Simeone
- Department of Medicine and Aging, and Center for Advanced Studies and Technology (CAST), “G. D’Annunzio” University Foundation, 66100 Chieti, Italy; (P.G.S.); (F.S.)
| | - Cristina Barale
- Department of Clinical and Biological Sciences, University of Turin, 10043 Turin, Italy; (C.B.); (I.R.)
| | - Enrico Lupia
- Department of Medical Sciences, University of Turin, 10126 Turin, Italy;
| | - Gioacchino Galardo
- Department of General Surgery and Surgical Speciality Paride Stefanini, Sapienza University of Rome, 00161 Rome, Italy;
| | - Francesca Santilli
- Department of Medicine and Aging, and Center for Advanced Studies and Technology (CAST), “G. D’Annunzio” University Foundation, 66100 Chieti, Italy; (P.G.S.); (F.S.)
| | - Isabella Russo
- Department of Clinical and Biological Sciences, University of Turin, 10043 Turin, Italy; (C.B.); (I.R.)
| | - Pasquale Pignatelli
- Department of Clinical Internal, Anesthesiological and Cardiovascular Sciences, Sapienza University of Rome, 00161 Rome, Italy; (V.C.); (F.B.)
- Mediterranea Cardiocentro, 80133 Napoli, Italy
- Correspondence:
| |
Collapse
|
6
|
Raj P, Thandapilly SJ, Wigle J, Zieroth S, Netticadan T. A Comprehensive Analysis of the Efficacy of Resveratrol in Atherosclerotic Cardiovascular Disease, Myocardial Infarction and Heart Failure. Molecules 2021; 26:6600. [PMID: 34771008 PMCID: PMC8587649 DOI: 10.3390/molecules26216600] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 10/17/2021] [Accepted: 10/19/2021] [Indexed: 01/31/2023] Open
Abstract
Atherosclerosis, myocardial infarction (MI) and heart failure (HF) are the main causes of mortality and morbidity around the globe. New therapies are needed to better manage ischemic heart disease and HF as existing strategies are not curative. Resveratrol is a stilbene polyphenolic compound with favorable biological effects that counter chronic diseases. Current evidence suggests that resveratrol is cardioprotective in animal models of atherosclerosis, ischemic heart disease, and HF. Though clinical studies for resveratrol have been promising, evidence remains inadequate to introduce it to the clinical setting. In this narrative review, we have comprehensively discussed the relevant compelling evidence regarding the efficacy of resveratrol as a new therapeutic agent for the management of atherosclerosis, MI and HF.
Collapse
Affiliation(s)
- Pema Raj
- Canadian Centre for Agri-Food Research in Health and Medicine, Winnipeg, MB R2H 2A6, Canada;
- Agriculture and Agri-Food Canada, Winnipeg, MB R3C 1B2, Canada;
| | | | - Jeffrey Wigle
- Department of Biochemistry and Medical Genetics, University of Manitoba, Winnipeg, MB R3E 0J9, Canada;
- Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre, Winnipeg, MB R2H 2A6, Canada
| | - Shelley Zieroth
- Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, MB R3E 0J9, Canada;
- Section of Cardiology, Department of Medicine, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Thomas Netticadan
- Canadian Centre for Agri-Food Research in Health and Medicine, Winnipeg, MB R2H 2A6, Canada;
- Agriculture and Agri-Food Canada, Winnipeg, MB R3C 1B2, Canada;
- Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, MB R3E 0J9, Canada;
| |
Collapse
|
7
|
The Effect of Resveratrol on the Cardiovascular System from Molecular Mechanisms to Clinical Results. Int J Mol Sci 2021; 22:ijms221810152. [PMID: 34576315 PMCID: PMC8466271 DOI: 10.3390/ijms221810152] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 09/02/2021] [Accepted: 09/16/2021] [Indexed: 12/13/2022] Open
Abstract
Cardiovascular diseases are the leading causes of death worldwide. The cardioprotective effects of natural polyphenols such as resveratrol (3,5,4-trihydroxystilbene) have been extensively investigated throughout recent decades. Many studies of RES have focused on its favorable effects on pathological conditions related to cardiovascular diseases and their risk factors. The aim of this review was to summarize the wide beneficial effects of resveratrol on the cardiovascular system, including signal transduction pathways of cell longevity, energy metabolism of cardiomyocytes or cardiac remodeling, and its anti-inflammatory and antioxidant properties. In addition, this paper discusses the significant preclinical and human clinical trials of recent years with resveratrol on cardiovascular system. Finally, we present a short overview of antiviral and anti-inflammatory properties and possible future perspectives on RES against COVID-19 in cardiovascular diseases.
Collapse
|
8
|
Lazzaris MJ, Martins GM, Xavier FR, Braga AL, Mendes SR. Versatile Electrochemical Oxidative C(sp
2
)−H Bond Selenylation of Resveratrol. European J Org Chem 2021. [DOI: 10.1002/ejoc.202100568] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Maika J. Lazzaris
- SINCA-Departamento de Química Universidade do Estado de Santa Catarina Joinville 89219-719 SC-Brazil
| | - Guilherme M. Martins
- Departamento de Química Universidade Federal de Santa Catarina Florianópolis 88040-900 SC-Brazil
| | - Fernando R. Xavier
- SINCA-Departamento de Química Universidade do Estado de Santa Catarina Joinville 89219-719 SC-Brazil
| | - Antonio L. Braga
- Departamento de Química Universidade Federal de Santa Catarina Florianópolis 88040-900 SC-Brazil
| | - Samuel R. Mendes
- SINCA-Departamento de Química Universidade do Estado de Santa Catarina Joinville 89219-719 SC-Brazil
| |
Collapse
|
9
|
Resveratrol and endothelial function: A literature review. Pharmacol Res 2021; 170:105725. [PMID: 34119624 DOI: 10.1016/j.phrs.2021.105725] [Citation(s) in RCA: 90] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 06/08/2021] [Accepted: 06/08/2021] [Indexed: 12/12/2022]
Abstract
Endothelial dysfunction is a major contributing factor to diseases such as atherosclerosis, diabetes mellitus, obesity, hypertension, acute lung injury, preeclampsia, among others. Resveratrol (RSV) is a naturally occurring bioactive polyphenol found in grapes and red wine. According to experimental studies, RSV modulates several events involved in endothelial dysfunction such as impaired vasorelaxation, eNOS uncoupling, leukocyte adhesion, endothelial senescence, and endothelial mesenchymal transition. The endothelial protective effects of RSV are found to be mediated by numerous molecular targets (e.g. Silent Information Regulator 1 (SIRT1), 5' AMP-activated protein kinase (AMPK), endothelial nitric oxide synthase (eNOS), nuclear factor-erythroid-derived 2-related factor-2 (Nrf2), peroxisome proliferator-activated receptor (PPAR), Krüppel-like factor-2 (KLF2), and nuclear factor kappa-light-chain-enhancer of activated B cells (NF-kB)). Herein, we present an updated review addressing pharmacological effects and molecular targets of RSV in maintaining endothelial function, and the potential of this phytochemical for endothelial dysfunction-associated disorders.
Collapse
|
10
|
Jiang J, Gu X, Wang H, Ding S. Resveratrol improves cardiac function and left ventricular fibrosis after myocardial infarction in rats by inhibiting NLRP3 inflammasome activity and the TGF- β1/SMAD2 signaling pathway. PeerJ 2021; 9:e11501. [PMID: 34123595 PMCID: PMC8166236 DOI: 10.7717/peerj.11501] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 05/02/2021] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Several studies have shown that resveratrol (RES), a naturally occurring polyphenol found in many plants, is beneficial for preventing cardiovascular diseases. However, the mechanism underlying the RES-mediated protection against myocardial infarction has not yet been revealed entirely. In this study, we investigated the protective effects of RES on cardiac function in a rat model of acute myocardial infarction (AMI) and the related underlying mechanisms. METHODS Male Sprague-Dawley rats were randomly divided into four groups: Sham (sham operation), Sham-RES, AMI (AMI induction), and AMI-RES. The rat AMI model was established by the permanent ligation of left anterior descending coronary artery method. The rats in the RES-treated groups were gavaged with RES (50 mg/kg/day) daily for 45 days after the Sham operation or AMI induction; rats in the Sham and AMI groups were gavaged with deionized water. Cardiac function was evaluated by echocardiography. Atrial interstitial fibrosis was assessed by hematoxylin-eosin or Masson's trichrome staining. Real-time PCR and western blotting analyses were performed to examine the levels of signaling pathway components. RESULTS RES supplementation decreased the inflammatory cytokine levels, improved the cardiac function, and ameliorated atrial interstitial fibrosis in the rats with AMI. Furthermore, RES supplementation inhibited NLRP3 inflammasome activity, decreased the TGF-β1 production, and downregulated the p-SMAD2/SMAD2 expression in the heart. CONCLUSION RES shows notable cardioprotective effects in a rat model of AMI; the possible mechanisms underlying these effects may involve the improvement of cardiac function and atrial interstitial fibrosis via the RES-mediated suppression of NLRP3 inflammasome activity and inhibition of the TGF-β1/SMAD2 signaling pathway in the heart.
Collapse
Affiliation(s)
- Jinjin Jiang
- Jiangsu Vocational College of Medicine, Yancheng, Jiangsu, China
| | - Xiuping Gu
- Department of Cardiology, General Hospital of TISCO, Taiyuan, Shanxi, China
| | - Huifeng Wang
- Department of Cardiology, General Hospital of TISCO, Taiyuan, Shanxi, China
| | - Shibin Ding
- Jiangsu Vocational College of Medicine, Yancheng, Jiangsu, China
| |
Collapse
|
11
|
Modulations of Cardiac Functions and Pathogenesis by Reactive Oxygen Species and Natural Antioxidants. Antioxidants (Basel) 2021; 10:antiox10050760. [PMID: 34064823 PMCID: PMC8150787 DOI: 10.3390/antiox10050760] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 05/03/2021] [Accepted: 05/08/2021] [Indexed: 01/11/2023] Open
Abstract
Homeostasis in the level of reactive oxygen species (ROS) in cardiac myocytes plays a critical role in regulating their physiological functions. Disturbance of balance between generation and removal of ROS is a major cause of cardiac myocyte remodeling, dysfunction, and failure. Cardiac myocytes possess several ROS-producing pathways, such as mitochondrial electron transport chain, NADPH oxidases, and nitric oxide synthases, and have endogenous antioxidation mechanisms. Cardiac Ca2+-signaling toolkit proteins, as well as mitochondrial functions, are largely modulated by ROS under physiological and pathological conditions, thereby producing alterations in contraction, membrane conductivity, cell metabolism and cell growth and death. Mechanical stresses under hypertension, post-myocardial infarction, heart failure, and valve diseases are the main causes for stress-induced cardiac remodeling and functional failure, which are associated with ROS-induced pathogenesis. Experimental evidence demonstrates that many cardioprotective natural antioxidants, enriched in foods or herbs, exert beneficial effects on cardiac functions (Ca2+ signal, contractility and rhythm), myocytes remodeling, inflammation and death in pathological hearts. The review may provide knowledge and insight into the modulation of cardiac pathogenesis by ROS and natural antioxidants.
Collapse
|
12
|
He Y, Lu X, Chen T, Yang Y, Zheng J, Chen C, Zhang Y, Lei W. Resveratrol protects against myocardial ischemic injury via the inhibition of NF‑κB‑dependent inflammation and the enhancement of antioxidant defenses. Int J Mol Med 2021; 47:29. [PMID: 33537801 PMCID: PMC7895514 DOI: 10.3892/ijmm.2021.4862] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 12/21/2020] [Indexed: 12/23/2022] Open
Abstract
Resveratrol (RES) is a natural phenol which possesses multiple pharmacological actions. The present study aimed to determine whether RES protects against myocardial ischemic injury in association with the inhibition of NF‑κB‑dependent inflammation and the enhancement of antioxidant defenses in mice following acute myocardial infarction (AMI). Male C57/BL mice were randomly assigned to 3 groups as follows: The sham‑operated (sham) group, AMI + vehicle group and AMI + RES group. Rat H9C2 cells were also used to examine the effects of RES on hypoxia‑induced oxidative injury in vitro. Redox homeostasis in the mouse myocardium and rat H9C2 cells was determined post‑treatment. The mRNA and protein levels of phosphorylated (p‑)IκB kinase (p‑IKK), p‑nuclear factor (NF)‑κB p65, interleukin (IL)‑1β, IL‑6, nerve growth factor (NGF) and insulin‑like growth factor‑1 (IGF‑1) were measured by RT‑qPCR and western blot analysis. It was found that RES slightly protected the myocardium against ischemic injury in mice, while it prevented the hypoxia‑induced apoptosis of H9C2 cells. RES decreased the production of reactive oxygen species (ROS) and enhanced the activities of superoxide dismutase (SOD), glutathione (GSH) and glutathione peroxidase (GPx). RES also downregulated the protein and/or mRNA levels of p‑IKK, p‑NF‑κB p65, IL‑1β, IL‑6, NGF and IGF‑1 at 7 and 28 days after infarction. On the whole, these data indicate that RES protects the myocardium against ischemic injury in association with the inhibition of oxidative stress and inflammatory responses. Thus, RES has the potential to be used as an adjunctive therapeutic drug for heart diseases.
Collapse
Affiliation(s)
- Yuan He
- Laboratory of Cardiovascular Diseases
| | | | | | - Yu Yang
- Gerontology Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, P.R. China
| | - Jing Zheng
- Department of Obstetrics and Gynecology, University of Wisconsin-Madison, Madison, WI 53715, USA
| | | | - Yuanqi Zhang
- Department of Vascular, Thyroid and Breast Surgery, Affiliated Hospital of Guangdong Medical College, Zhanjiang, Guangdong 524001, P.R. China
| | - Wei Lei
- Laboratory of Cardiovascular Diseases
- Cardiovascular Medicine Center
| |
Collapse
|
13
|
Huang Y, Xia Y, Tao Y, Jin H, Ji C, Aniagu S, Chen T, Jiang Y. Protective effects of resveratrol against the cardiac developmental toxicity of trichloroethylene in zebrafish embryos. Toxicology 2021; 452:152697. [PMID: 33524428 DOI: 10.1016/j.tox.2021.152697] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 01/13/2021] [Accepted: 01/26/2021] [Indexed: 01/03/2023]
Abstract
Trichloroethylene (TCE), a prevalent environmental contaminant, has been shown to induce cardiac malformations. Resveratrol (RSV) is a natural polyphenolic compound exhibiting protective effects on heart development. To investigate if RSV could protect against TCE-induced heart defects, we exposed zebrafish embryos to TCE (10 ppb) in the presence or absence of RSV (1 μg/mL). Our results showed that RSV significantly attenuated TCE-induced heart defects in zebrafish embryos. The TCE-induced ROS (reactive oxygen species) generation, 8-OHdG (8-hydroxy-2`-deoxyguanosine) formation and cell proliferation were significantly counteracted by RSV. Moreover, RSV attenuated the TCE-induced changes in mRNA expression or activity of genes involved in AHR and Nrf2 signal pathways. We further showed that RSV might inhibit TCE-enhanced cell proliferation by rescuing the downregulation of the p53/p21 axis. In conclusion, our data demonstrates that RSV protects against the cardiac developmental toxicity of TCE by inhibiting AHR activity, oxidative stress and cell proliferation.
Collapse
Affiliation(s)
- Yujie Huang
- School of Public Health, Medical College of Soochow University, Suzhou, China; Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, Suzhou, China
| | - Ying Xia
- School of Biology and Basic Medical Sciences, Medical College of Soochow University, Suzhou, China
| | - Yizhou Tao
- School of Public Health, Medical College of Soochow University, Suzhou, China; Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, Suzhou, China
| | - Hongmei Jin
- School of Public Health, Medical College of Soochow University, Suzhou, China; Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, Suzhou, China
| | - Cheng Ji
- School of Public Health, Medical College of Soochow University, Suzhou, China
| | - Stanley Aniagu
- Toxicology, Risk Assessment, and Research Division, Texas Commission on Environmental Quality, 12015 Park 35 Cir, Austin, TX, USA
| | - Tao Chen
- School of Public Health, Medical College of Soochow University, Suzhou, China; Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, Suzhou, China.
| | - Yan Jiang
- School of Biology and Basic Medical Sciences, Medical College of Soochow University, Suzhou, China.
| |
Collapse
|
14
|
Carrizzo A, Izzo C, Forte M, Sommella E, Di Pietro P, Venturini E, Ciccarelli M, Galasso G, Rubattu S, Campiglia P, Sciarretta S, Frati G, Vecchione C. A Novel Promising Frontier for Human Health: The Beneficial Effects of Nutraceuticals in Cardiovascular Diseases. Int J Mol Sci 2020; 21:E8706. [PMID: 33218062 PMCID: PMC7698807 DOI: 10.3390/ijms21228706] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 11/03/2020] [Accepted: 11/10/2020] [Indexed: 12/12/2022] Open
Abstract
Cardiovascular diseases (CVDs) such as hypertension, atherosclerosis, myocardial infarction, and diabetes are a significant public health problem worldwide. Although several novel pharmacological treatments to reduce the progression of CVDs have been discovered during the last 20 years, the better way to contain the onset of CVDs remains prevention. In this regard, nutraceuticals seem to own a great potential in maintaining human health, exerting important protective cardiovascular effects. In the last years, there has been increased focus on identifying natural compounds with cardiovascular health-promoting effects and also to characterize the molecular mechanisms involved. Although many review articles have focused on the individual natural compound impact on cardiovascular diseases, the aim of this manuscript was to examine the role of the most studied nutraceuticals, such as resveratrol, cocoa, quercetin, curcumin, brassica, berberine and Spirulina platensis, on different CVDs.
Collapse
Affiliation(s)
- Albino Carrizzo
- Department of Angio-Cardio-Neurology, IRCCS Neuromed, 86077 Pozzilli, Italy; (A.C.); (M.F.); (E.V.); (S.R.); (S.S.); (G.F.)
- Department of Medicine and Surgery, University of Salerno, 84081 Baronissi, Italy; (C.I.); (P.D.P.); (M.C.); (G.G.); (P.C.)
| | - Carmine Izzo
- Department of Medicine and Surgery, University of Salerno, 84081 Baronissi, Italy; (C.I.); (P.D.P.); (M.C.); (G.G.); (P.C.)
| | - Maurizio Forte
- Department of Angio-Cardio-Neurology, IRCCS Neuromed, 86077 Pozzilli, Italy; (A.C.); (M.F.); (E.V.); (S.R.); (S.S.); (G.F.)
| | - Eduardo Sommella
- Department of Pharmacy, University of Salerno, 84084 Fisciano, Italy;
| | - Paola Di Pietro
- Department of Medicine and Surgery, University of Salerno, 84081 Baronissi, Italy; (C.I.); (P.D.P.); (M.C.); (G.G.); (P.C.)
| | - Eleonora Venturini
- Department of Angio-Cardio-Neurology, IRCCS Neuromed, 86077 Pozzilli, Italy; (A.C.); (M.F.); (E.V.); (S.R.); (S.S.); (G.F.)
| | - Michele Ciccarelli
- Department of Medicine and Surgery, University of Salerno, 84081 Baronissi, Italy; (C.I.); (P.D.P.); (M.C.); (G.G.); (P.C.)
| | - Gennaro Galasso
- Department of Medicine and Surgery, University of Salerno, 84081 Baronissi, Italy; (C.I.); (P.D.P.); (M.C.); (G.G.); (P.C.)
| | - Speranza Rubattu
- Department of Angio-Cardio-Neurology, IRCCS Neuromed, 86077 Pozzilli, Italy; (A.C.); (M.F.); (E.V.); (S.R.); (S.S.); (G.F.)
- Department of Clinical and Molecular Medicine, School of Medicine and Psychology, Sapienza University of Rome, Ospedale S.Andrea, Via di Grottarossa 1035, 00189 Rome, Italy
| | - Petro Campiglia
- Department of Medicine and Surgery, University of Salerno, 84081 Baronissi, Italy; (C.I.); (P.D.P.); (M.C.); (G.G.); (P.C.)
| | - Sebastiano Sciarretta
- Department of Angio-Cardio-Neurology, IRCCS Neuromed, 86077 Pozzilli, Italy; (A.C.); (M.F.); (E.V.); (S.R.); (S.S.); (G.F.)
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Corso della Repubblica 74, 04100 Latina, Italy
| | - Giacomo Frati
- Department of Angio-Cardio-Neurology, IRCCS Neuromed, 86077 Pozzilli, Italy; (A.C.); (M.F.); (E.V.); (S.R.); (S.S.); (G.F.)
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Corso della Repubblica 74, 04100 Latina, Italy
| | - Carmine Vecchione
- Department of Angio-Cardio-Neurology, IRCCS Neuromed, 86077 Pozzilli, Italy; (A.C.); (M.F.); (E.V.); (S.R.); (S.S.); (G.F.)
- Department of Medicine and Surgery, University of Salerno, 84081 Baronissi, Italy; (C.I.); (P.D.P.); (M.C.); (G.G.); (P.C.)
| |
Collapse
|
15
|
Ren F, Huang Y, Tao Y, Ji C, Aniagu S, Jiang Y, Chen T. Resveratrol protects against PM2.5-induced heart defects in zebrafish embryos as an antioxidant rather than as an AHR antagonist. Toxicol Appl Pharmacol 2020; 398:115029. [PMID: 32376357 DOI: 10.1016/j.taap.2020.115029] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 04/28/2020] [Accepted: 04/29/2020] [Indexed: 01/11/2023]
Abstract
Resveratrol (RSV), a natural polyphenolic compound commonly found in food, has antioxidant and aryl hydrocarbon receptor (AHR) antagonist effects. We have recently demonstrated that AHR mediated reactive oxygen species (ROS) generation contributes to the cardiac developmental toxicity of ambient fine particle matter (PM2.5). Thus, we hypothesized that RSV protects against the cardiac developmental toxicity of PM2.5 by inhibiting ROS generation and AHR activity. To test this concept, we exposed zebrafish embryos to extractable organic matter (EOM) from PM2.5 in the presence or absence of RSV. We found that RSV significantly counteracted EOM-induced cardiac malformations in zebrafish embryos. The EOM-induced ROS production, DNA damage and apoptosis in the heart of zebrafish embryos were also counteracted by RSV supplementation. Furthermore, RSV attenuated EOM-induced changes in the expression of genes involved in cardiac development (nkx2.5, sox9b, axin2), oxidative stress (nrf2a, nrf2b, gstp1, gstp2, sod1, sod2, cat) and apoptosis (p53, bax). However, RSV did not suppress EOM-induced AHR activity. In conclusion, our data indicates that RSV protects against the PM2.5-induced heart malformations by inhibiting oxidative stress rather than through AHR antagonism.
Collapse
Affiliation(s)
- Fei Ren
- Medical College of Soochow University, Suzhou, China; Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, Suzhou, China
| | - Yujie Huang
- Medical College of Soochow University, Suzhou, China; Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, Suzhou, China
| | - Yizhou Tao
- Medical College of Soochow University, Suzhou, China; Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, Suzhou, China
| | - Cheng Ji
- Medical College of Soochow University, Suzhou, China
| | - Stanley Aniagu
- Toxicology, Risk Assessment and Research Division, Texas Commission on Environmental Quality, 12015 Park 35 Cir, Austin, TX, USA
| | - Yan Jiang
- Medical College of Soochow University, Suzhou, China.
| | - Tao Chen
- Medical College of Soochow University, Suzhou, China; Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, Suzhou, China.
| |
Collapse
|
16
|
Shafabakhsh R, Reiner Ž, Hallajzadeh J, Mirsafaei L, Asemi Z. Are anti-inflammatory agents and nutraceuticals - novel inhibitors of PCSK9? Crit Rev Food Sci Nutr 2020; 61:325-336. [PMID: 32090592 DOI: 10.1080/10408398.2020.1731678] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Proprotein convertase subtilisin/kexin type 9 (PCSK9) is a protease which increases the lysosomal degradation of low density lipoprotein receptor (LDLR) resulting in elevated serum LDL-cholesterol levels. Elevated LDL-cholesterol is the main risk factor for cardiovascular disease (CVD). Antibodies to PCSK9 decrease LDL-cholesterol. Recent studies have suggested a direct relationship between PCSK9 and inflammation and the potential inhibitory effects of anti-inflammatory agents against this enzyme. Nutraceuticals are natural compounds, which have numerous anti-inflammatory and lipid-lowering effects. In this review we focus on anti-inflammatory substances and nutraceuticals, which are beneficial in treatment of dyslipidemia. We also reviewed the recent findings concerning the role of PCSK9 as the main target for molecular mechanisms of these substances.
Collapse
Affiliation(s)
- Rana Shafabakhsh
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Iran
| | - Željko Reiner
- Department of Internal Medicine, University Hospital Centre Zagreb, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Jamal Hallajzadeh
- Department of Biochemistry and Nutrition, Research Center for Evidence-Based Health Management, Maragheh University of Medical Sciences, Maragheh, Iran
| | - Liaosadat Mirsafaei
- Department of Cardiology, Ramsar Campus, Mazandaran University of Medical Sciences, Sari, Iran
| | - Zatollah Asemi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
17
|
Man AWC, Li H, Xia N. Resveratrol and the Interaction between Gut Microbiota and Arterial Remodelling. Nutrients 2020; 12:nu12010119. [PMID: 31906281 PMCID: PMC7019510 DOI: 10.3390/nu12010119] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 12/23/2019] [Accepted: 12/25/2019] [Indexed: 12/15/2022] Open
Abstract
Arterial remodelling refers to the alteration in the structure of blood vessel that contributes to the progression of hypertension and other cardiovascular complications. Arterial remodelling is orchestrated by the crosstalk between the endothelium and vascular smooth muscle cells (VSMC). Vascular inflammation participates in arterial remodelling. Resveratrol is a natural polyphenol that possesses anti-oxidant and anti-inflammatory properties and has beneficial effects in both the endothelium and VSMC. Resveratrol has been studied for the protective effects in arterial remodelling and gut microbiota, respectively. Gut microbiota plays a critical role in the immune system and inflammatory processes. Gut microbiota may also regulate vascular remodelling in cardiovascular complications via affecting endothelium function and VSMC proliferation. Currently, there is new evidence showing that gut microbiota regulate the proliferation of VSMC and the formation of neointimal hyperplasia in response to injury. The change in population of the gut microbiota, as well as their metabolites (e.g., short-chain fatty acids) could critically contribute to VSMC proliferation, cell cycle progression, and migration. Recent studies have provided strong evidence that correlate the effects of resveratrol in arterial remodelling and gut microbiota. This review aims to summarize recent findings on the resveratrol effects on cardiovascular complications focusing on arterial remodelling and discuss the possible interactions of resveratrol and the gut microbiota that modulate arterial remodelling.
Collapse
Affiliation(s)
- Andy W C Man
- Department of Pharmacology, Johannes Gutenberg University Medical Center, 55131 Mainz, Germany
| | - Huige Li
- Department of Pharmacology, Johannes Gutenberg University Medical Center, 55131 Mainz, Germany
| | - Ning Xia
- Department of Pharmacology, Johannes Gutenberg University Medical Center, 55131 Mainz, Germany
| |
Collapse
|
18
|
Zou L, Chen C, Yan X, Lin Q, Fang J, Li P, Han X, Wang Q, Guo S, Li H, Zhang Y. Resveratrol Attenuates Pressure Overload‐Induced Cardiac Fibrosis and Diastolic Dysfunction via PTEN/AKT/Smad2/3 and NF‐κB Signaling Pathways. Mol Nutr Food Res 2019; 63:e1900418. [PMID: 31655498 DOI: 10.1002/mnfr.201900418] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 09/28/2019] [Indexed: 12/29/2022]
Affiliation(s)
- Lei‐Xin Zou
- Department of CardiologyInstitute of Cardiovascular DiseasesFirst Affiliated Hospital of Dalian Medical University Dalian 116011 China
| | - Chen Chen
- Department of CardiologyInstitute of Cardiovascular DiseasesFirst Affiliated Hospital of Dalian Medical University Dalian 116011 China
| | - Xiao Yan
- Department of CardiologyInstitute of Cardiovascular DiseasesFirst Affiliated Hospital of Dalian Medical University Dalian 116011 China
| | - Qiu‐Yue Lin
- Department of CardiologyInstitute of Cardiovascular DiseasesFirst Affiliated Hospital of Dalian Medical University Dalian 116011 China
| | - Jiao Fang
- Department of CardiologyInstitute of Cardiovascular DiseasesFirst Affiliated Hospital of Dalian Medical University Dalian 116011 China
| | - Pang‐Bo Li
- Department of Emergency MedicineBeijing Key Laboratory of Cardiopulmonary Cerebral Resuscitation, Beijing Chaoyang HospitalCapital Medical University Beijing 100020 China
| | - Xiao Han
- Department of CardiologyInstitute of Cardiovascular DiseasesFirst Affiliated Hospital of Dalian Medical University Dalian 116011 China
| | - Qing‐Shan Wang
- School of Public HealthDalian Medical University Dalian 116044 China
| | - Shu‐Bin Guo
- Department of Emergency MedicineBeijing Key Laboratory of Cardiopulmonary Cerebral Resuscitation, Beijing Chaoyang HospitalCapital Medical University Beijing 100020 China
| | - Hui‐Hua Li
- Department of CardiologyInstitute of Cardiovascular DiseasesFirst Affiliated Hospital of Dalian Medical University Dalian 116011 China
| | - Yun‐Long Zhang
- Department of Emergency MedicineBeijing Key Laboratory of Cardiopulmonary Cerebral Resuscitation, Beijing Chaoyang HospitalCapital Medical University Beijing 100020 China
| |
Collapse
|
19
|
Jing Y, Hu T, Lin C, Xiong Q, Liu F, Yuan J, Zhao X, Wang R. Resveratrol downregulates PCSK9 expression and attenuates steatosis through estrogen receptor α-mediated pathway in L02 cells. Eur J Pharmacol 2019; 855:216-226. [PMID: 31085239 DOI: 10.1016/j.ejphar.2019.05.019] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 05/03/2019] [Accepted: 05/10/2019] [Indexed: 12/21/2022]
Abstract
Proprotein convertase subtilisin kexin type 9 (PCSK9) is a promising target for treating dyslipidemia and atherosclerosis. Circulating PCSK9 levels are closely related to hepatic steatosis severity and endogenous estrogen levels. Resveratrol (RSV) is a phytoestrogens that protects against atherosclerosis and hepatic steatosis. Thus, we sought to determine whether RSV had the activities to inhibit PCSK9 expression and to attenuate lipid accumulation in free fatty acid (FFA)-induced L02 cells via ERα pathway. In this study, RSV (10, 20 μM) were cultured with L02 cells in the presence of FFA (oleate:palmitate = 2:1). RSV significantly reduced the number of lipid droplets and intracellular TG in steatotic L02 cells, and Oil red O staining and Nile red staining had the same results. Western blot analysis showed that RSV significantly reduced apoB secretion and intracellular microsomal triglyceride transporter (MTP) expression under lipid-rich conditions. Treatment with RSV reduced expression of PCSK9 while maintaining LDL receptor (LDLR) expression and LDL uptake. RSV decreased SREBP-1c expression at both mRNA and protein levels. In addition, RSV significantly reduced the expression of liver X receptor α (LXRα) mRNA in L02 cells, but did not affect the expression of liver X receptor β (LXRβ) mRNA. The luciferase reporter assays suggested that RSV inhibited SREBP-mediated transcription of PCSK9. Finally, these results could be partly reversed by Estrogen receptor α (ERα) gene silencing. These results suggest that RSV attenuates steatosis and PCSK9 expression through down-regulation of SREBP-1c expression, at least in part through ERα-mediated pathway.
Collapse
Affiliation(s)
- Yi Jing
- Jiangsu Key Laboratory of Regional Resource Exploitation and Medicinal Research, Huaiyin Institute of Technology, Huai'an, 223003, China; National & Local Joint Engineering Research Center for Mineral Salt Deep Utilization, Huaiyin Institute of Technology, Huaian, 223003, China.
| | - Tianhui Hu
- Department of Gynaecology and Health, Huai'an Maternal and Child Health-Care Center, Huai'an, 2230003, China
| | - Chao Lin
- School of Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Qingping Xiong
- Jiangsu Key Laboratory of Regional Resource Exploitation and Medicinal Research, Huaiyin Institute of Technology, Huai'an, 223003, China
| | - Fei Liu
- Jiangsu Key Laboratory of Regional Resource Exploitation and Medicinal Research, Huaiyin Institute of Technology, Huai'an, 223003, China
| | - Jun Yuan
- Jiangsu Key Laboratory of Regional Resource Exploitation and Medicinal Research, Huaiyin Institute of Technology, Huai'an, 223003, China
| | - Xiaojuan Zhao
- Jiangsu Key Laboratory of Regional Resource Exploitation and Medicinal Research, Huaiyin Institute of Technology, Huai'an, 223003, China
| | - Rong Wang
- Jiangsu Key Laboratory of Regional Resource Exploitation and Medicinal Research, Huaiyin Institute of Technology, Huai'an, 223003, China
| |
Collapse
|
20
|
Esfandiarei M, Hoxha B, Talley NA, Anderson MR, Alkhouli MF, Squire MA, Eckman DM, Babu JR, Lopaschuk GD, Broderick TL. Beneficial effects of resveratrol and exercise training on cardiac and aortic function and structure in the 3xTg mouse model of Alzheimer's disease. DRUG DESIGN DEVELOPMENT AND THERAPY 2019; 13:1197-1211. [PMID: 31114160 PMCID: PMC6489623 DOI: 10.2147/dddt.s196119] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 03/04/2019] [Indexed: 12/24/2022]
Abstract
Background: Studies have indicated an association between Alzheimer’s disease (AD) and increased risk of developing cardiovascular complications. Lifestyle modifiable factors, such as exercise and diet, are known to prevent cardio-cerebral disease. Recent studies demonstrate that hearts from early onset triple-transgenic AD mice exhibit pathologies, but it is not clear whether cardiovascular function is altered in this model. Methods: In this study, we measured in vivo cardiovascular function in 7-month-old male 3xTg mice and age-matched wild-type (WT) mice using high-frequency high-resolution ultrasound imaging. Results: Our findings indicated that aortic root measurements and interventricular septal dimensions were similar in 3xTg and wild-type mice. Systolic function, expressed as ejection fraction and fractional shortening, were decreased in 3xTg mice. Late (A) ventricular filling velocities, the early/atrial (E/A) ratio, and mitral valve deceleration time, all indices of diastolic function, were increased in 3xTg mice compared to WT mice. Treadmill exercise training and resveratrol supplementation in the diet for 5 months improved ejection fraction, fractional shortening, and restored diastolic deceleration times. Pulse wave velocity was ~33% higher in 3xTg, and accompanied by a significant increase in elastin fiber fragmentation within the aortic wall, which was associated with decrease in elastin content and fiber length. Aortic wall and adventitia thickness were increased in 3xTg mice compared to the WT group. Exercise training and resveratrol supplementation, or both, improved overall aortic morphology with no change in pulse wave velocity. Conclusion: Taken together, the results indicate that the aberrations in cardiac function and aortic elastin morphology observed in the 3xTg mouse model of AD can be prevented with exercise training and treatment with resveratrol. The benefits of regular exercise training and resveratrol supplementation of heart and aortic structure in the 3xTg mouse support the value of healthy lifestyle factors on cardiovascular health.
Collapse
Affiliation(s)
- Mitra Esfandiarei
- Department of Biomedical Sciences, College of Graduate Studies, Midwestern University, Glendale, AZ, USA
| | - Brikena Hoxha
- Department of Biomedical Sciences, College of Graduate Studies, Midwestern University, Glendale, AZ, USA
| | - Nicholas A Talley
- Department of Biomedical Sciences, College of Graduate Studies, Midwestern University, Glendale, AZ, USA
| | - Miranda R Anderson
- Department of Physiology, Laboratory of Diabetes and Exercise Metabolism, College of Graduate Studies, Midwestern University, Glendale, AZ, USA
| | - Mustafa F Alkhouli
- Department of Physiology, Laboratory of Diabetes and Exercise Metabolism, College of Graduate Studies, Midwestern University, Glendale, AZ, USA
| | - Michaela A Squire
- Department of Physiology, Laboratory of Diabetes and Exercise Metabolism, College of Graduate Studies, Midwestern University, Glendale, AZ, USA
| | - Delrae M Eckman
- Department of Biomedical Sciences, College of Graduate Studies, Midwestern University, Glendale, AZ, USA
| | - Jeganathan Ramesh Babu
- Department of Nutrition, Dietetics, and Hospitality Management, Auburn University, Auburn, AL, USA
| | - Gary D Lopaschuk
- Cardiovascular Research Centre, Mazankowski Alberta Heart Institute University of Alberta, Edmonton, AB, Canada
| | - Tom L Broderick
- Department of Physiology, Laboratory of Diabetes and Exercise Metabolism, College of Graduate Studies, Midwestern University, Glendale, AZ, USA
| |
Collapse
|
21
|
Dyck GJB, Raj P, Zieroth S, Dyck JRB, Ezekowitz JA. The Effects of Resveratrol in Patients with Cardiovascular Disease and Heart Failure: A Narrative Review. Int J Mol Sci 2019; 20:ijms20040904. [PMID: 30791450 PMCID: PMC6413130 DOI: 10.3390/ijms20040904] [Citation(s) in RCA: 115] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2019] [Revised: 02/03/2019] [Accepted: 02/06/2019] [Indexed: 12/17/2022] Open
Abstract
Cardiovascular disease (CVD) is the main cause of death globally and responsible for the second highest number of deaths in Canada. Medical advancements in the treatment of CVD have led to patients living longer with CVD but often progressing to another condition called heart failure (HF). As a result, HF has emerged in the last decade as a major medical concern. Fortunately, various “traditional” pharmacotherapies for HF exist and have shown success in reducing HF-associated mortality. However, to augment the treatment of patients with CVD and/or HF, alternative pharmacotherapies using nutraceuticals have also shown promise in the prevention and treatment of these two conditions. One of these natural compounds considered to potentially help treat HF and CVD and prevent their development is resveratrol. Herein, we review the clinical findings of resveratrol’s ability to be used as an effective treatment to potentially help treat HF and CVD. This will allow us to gain a more fulsome appreciation for the effects of resveratrol in the health outcomes of specific patient populations who have various disorders that constitute CVD.
Collapse
Affiliation(s)
- Garrison J B Dyck
- Canadian VIGOUR Centre, Mazankowski Alberta Heart Institute, Department of Medicine, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2E1, Canada.
| | - Pema Raj
- St Boniface Hospital, Department of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R2H 2A6, Canada.
| | - Shelley Zieroth
- St Boniface Hospital, Department of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R2H 2A6, Canada.
| | - Jason R B Dyck
- Cardiovascular Research Centre, Department of Pediatrics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2S2, Canada.
| | - Justin A Ezekowitz
- Canadian VIGOUR Centre, Mazankowski Alberta Heart Institute, Department of Medicine, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2E1, Canada.
| |
Collapse
|
22
|
Chen C, Zou LX, Lin QY, Yan X, Bi HL, Xie X, Wang S, Wang QS, Zhang YL, Li HH. Resveratrol as a new inhibitor of immunoproteasome prevents PTEN degradation and attenuates cardiac hypertrophy after pressure overload. Redox Biol 2018; 20:390-401. [PMID: 30412827 PMCID: PMC6226597 DOI: 10.1016/j.redox.2018.10.021] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Accepted: 10/28/2018] [Indexed: 01/01/2023] Open
Abstract
Sustained cardiac hypertrophy is a major cause of heart failure (HF) and death. Recent studies have demonstrated that resveratrol (RES) exerts a protective role in hypertrophic diseases. However, the molecular mechanisms involved are not fully elucidated. In this study, cardiac hypertrophic remodeling in mice were established by pressure overload induced by transverse aortic constriction (TAC). Cardiac function was evaluated by echocardiography and invasive pressure-volume analysis. Cardiomyocyte size was detected by wheat germ agglutinin staining. The protein and gene expressions of signaling mediators and hypertrophic markers were examined. Our results showed that administration of RES significantly suppressed pressure overload-induced cardiac hypertrophy, fibrosis and apoptosis and improved in vivo heart function in mice. RES also reversed pre-established hypertrophy and restoring contractile dysfunction induced by chronic pressure overload. Moreover, RES treatment blocked TAC-induced increase of immunoproteasome activity and catalytic subunit expression (β1i, β2i and β5i), which inhibited PTEN degradation thereby leading to inactivation of AKT/mTOR and activation of AMPK signals. Further, blocking PTEN by the specific inhibitor VO-Ohpic significantly attenuated RES inhibitory effect on cardiomyocyte hypertrophy in vivo and in vitro. Taken together, our data suggest that RES is a novel inhibitor of immunoproteasome activity, and may represent a promising therapeutic agent for the treatment of hypertrophic diseases. Resveratrol (RES) protects from pressure overload-induced cardiac hypertrophic remodeling. RES can inhibit immunosubunit expression and activity in cardiomyocytes. RES increases PTEN stability leading to inhibition of AKT/mTOR and activation of AMPK. Blocking PTEN significantly attenuates RES-mediated beneficial effect on cardiomyocyte hypertrophy.
Collapse
Affiliation(s)
- Chen Chen
- Department of Nutrition and Food Hygiene, School of Public Health, Dalian Medical University, Dalian 116044, China
| | - Lei-Xin Zou
- Department of Nutrition and Food Hygiene, School of Public Health, Dalian Medical University, Dalian 116044, China
| | - Qiu-Yue Lin
- Department of Cardiology, Institute of Cardiovascular Diseases, First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| | - Xiao Yan
- Department of Nutrition and Food Hygiene, School of Public Health, Dalian Medical University, Dalian 116044, China
| | - Hai-Lian Bi
- Department of Cardiology, Institute of Cardiovascular Diseases, First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| | - Xin Xie
- Department of Cardiology, Institute of Cardiovascular Diseases, First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| | - Shuai Wang
- Department of Ophthalmology, Second Affiliated Hospital of Dalian Medical University, Dalian 116023, China
| | - Qing-Shan Wang
- Department of Nutrition and Food Hygiene, School of Public Health, Dalian Medical University, Dalian 116044, China
| | - Yun-Long Zhang
- Department of Nutrition and Food Hygiene, School of Public Health, Dalian Medical University, Dalian 116044, China; Department of Cardiology, Institute of Cardiovascular Diseases, First Affiliated Hospital of Dalian Medical University, Dalian 116011, China.
| | - Hui-Hua Li
- Department of Nutrition and Food Hygiene, School of Public Health, Dalian Medical University, Dalian 116044, China; Department of Cardiology, Institute of Cardiovascular Diseases, First Affiliated Hospital of Dalian Medical University, Dalian 116011, China.
| |
Collapse
|
23
|
Cytoprotective Effects of Natural Compounds against Oxidative Stress. Antioxidants (Basel) 2018; 7:antiox7100147. [PMID: 30347819 PMCID: PMC6210295 DOI: 10.3390/antiox7100147] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 10/16/2018] [Accepted: 10/16/2018] [Indexed: 12/12/2022] Open
Abstract
Oxidative stress, an imbalance between reactive oxygen species and antioxidants, has been witnessed in pathophysiological states of many disorders. Compounds identified from natural sources have long been recognized to ameliorate oxidative stress due to their inherent antioxidant activities. Here, we summarize the cytoprotective effects and mechanisms of natural or naturally derived synthetic compounds against oxidative stress. These compounds include: caffeic acid phenethyl ester (CAPE) found in honey bee propolis, curcumin from turmeric roots, resveratrol abundant in grape, and 1-[2-cyano-3,12-dioxooleana-1,9(11)-dien-28-oyl] imidazole (CDDO-Im), a synthetic triterpenoid based on naturally occurring oleanolic acid. Cytoprotective effects of these compounds in diseases conditions like cardiovascular diseases and obesity to decrease oxidative stress are discussed.
Collapse
|
24
|
Evaluation of Oxidative Stress in Cardiomyocytes during the Aging Process in Rats Treated with Resveratrol. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:1390483. [PMID: 29854072 PMCID: PMC5954862 DOI: 10.1155/2018/1390483] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Revised: 03/15/2018] [Accepted: 04/02/2018] [Indexed: 12/22/2022]
Abstract
The substantial increase in the number of elderly people in our societies represents a challenge for biology and medicine. The societies of the industrialized countries are subject to a progressive aging process that translates into an increase in the cardiovascular risk of the population. In the present work, the activity of catalase and superoxide dismutase was evaluated, as well as markers of oxidative stress (concentration of nitric oxide and total lipoperoxidation in its main components: malondialdehyde and 4-hydroxyalkene) in cardiomyocytes during the aging process in rats treated with resveratrol. Rats were divided into 4 groups according to the following categories: control (without treatment), negative control group (administered with physiological solution with 10% ethanol), positive control group (administered with vitamin E, 2 mg/kg/day), and group administered with resveratrol (10 mg/kg/day); these groups in turn were divided into 2, 4, 6, and 8 months of treatment. The analysis of nitric oxide showed a decreased level in the cardiac tissue in the groups treated with resveratrol; the same occurs when total lipoperoxidation is analyzed. The enzymatic activity studied (catalase and superoxide dismutase) did not present significant changes with respect to the controls. It is concluded that the cardioprotective effect of resveratrol is due to the antioxidant effect and other antiaging effects and not to the activation of the enzymes catalase and superoxide dismutase.
Collapse
|
25
|
Significance of Resveratrol in Clinical Management of Chronic Diseases. Molecules 2017; 22:molecules22081329. [PMID: 28820474 PMCID: PMC6152193 DOI: 10.3390/molecules22081329] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Revised: 08/04/2017] [Accepted: 08/09/2017] [Indexed: 12/23/2022] Open
Abstract
Resveratrol could be beneficial to health and provides protection against a wide array of pathologies and age-associated problems, as evident from preclinical studies. However, a comparison of animal and human studies reveals that this dietary polyphenol cannot protect against metabolic diseases and their associated complications. The clinical outcomes are affected by many factors such as sample size. This article not only presents a comprehensive review of the current advances concerning the dose, the extent of absorption, interaction and toxicity of resveratrol in human studies, but also describes its therapeutic effects against several chronic diseases such as diabetes mellitus, obesity, cardiovascular diseases, cancer and aging and the related diseases.
Collapse
|
26
|
Lee AMC, Shandala T, Soo PP, Su YW, King TJ, Chen KM, Howe PR, Xian CJ. Effects of Resveratrol Supplementation on Methotrexate Chemotherapy-Induced Bone Loss. Nutrients 2017; 9:nu9030255. [PMID: 28282956 PMCID: PMC5372918 DOI: 10.3390/nu9030255] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Accepted: 03/08/2017] [Indexed: 12/27/2022] Open
Abstract
Intensive cancer chemotherapy is known to cause bone defects, which currently lack treatments. This study investigated the effects of polyphenol resveratrol (RES) in preventing bone defects in rats caused by methotrexate (MTX), a commonly used antimetabolite in childhood oncology. Young rats received five daily MTX injections at 0.75 mg/kg/day. RES was orally gavaged daily for seven days prior to, and during, five-day MTX administration. MTX reduced growth plate thickness, primary spongiosa height, trabecular bone volume, increased marrow adipocyte density, and increased mRNA expression of the osteogenic, adipogenic, and osteoclastogenic factors in the tibial bone. RES at 10 mg/kg was found not to affect bone health in normal rats, but to aggravate the bone damage in MTX-treated rats. However, RES supplementation at 1 mg/kg preserved the growth plate, primary spongiosa, bone volume, and lowered the adipocyte density. It maintained expression of genes involved in osteogenesis and decreased expression of adipogenic and osteoclastogenic factors. RES suppressed osteoclast formation ex vivo of bone marrow cells from the treated rats. These data suggest that MTX can enhance osteoclast and adipocyte formation and cause bone loss, and that RES supplementation at 1 mg/kg may potentially prevent these bone defects.
Collapse
Affiliation(s)
- Alice M C Lee
- Sansom Institute for Health Research, School of Pharmacy and Medical Sciences, University of South Australia, Adelaide SA 5001, Australia.
| | - Tetyana Shandala
- Sansom Institute for Health Research, School of Pharmacy and Medical Sciences, University of South Australia, Adelaide SA 5001, Australia.
| | - Pei Pei Soo
- Sansom Institute for Health Research, School of Pharmacy and Medical Sciences, University of South Australia, Adelaide SA 5001, Australia.
| | - Yu-Wen Su
- Sansom Institute for Health Research, School of Pharmacy and Medical Sciences, University of South Australia, Adelaide SA 5001, Australia.
| | - Tristan J King
- Sansom Institute for Health Research, School of Pharmacy and Medical Sciences, University of South Australia, Adelaide SA 5001, Australia.
| | - Ke-Ming Chen
- Institute of Orthopaedics, Lanzhou General Hospital, Lanzhou Command of People's Liberation Army, Lanzhou 730050, China.
| | - Peter R Howe
- Clinical Nutrition Research Centre, University of Newcastle, Callaghan NSW 2308, Australia.
| | - Cory J Xian
- Sansom Institute for Health Research, School of Pharmacy and Medical Sciences, University of South Australia, Adelaide SA 5001, Australia.
| |
Collapse
|