1
|
Aburel OM, Brăescu L, Buriman DG, Merce AP, Bînă AM, Borza C, Mornoș C, Sturza A, Muntean DM. Methylene blue reduces monoamine oxidase expression and oxidative stress in human cardiovascular adipose tissue. Mol Cell Biochem 2024:10.1007/s11010-024-05092-z. [PMID: 39167271 DOI: 10.1007/s11010-024-05092-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 08/08/2024] [Indexed: 08/23/2024]
Abstract
Cardiovascular diseases represent the major cause of morbidity mainly due to chronic heart failure. Epicardial (EAT) and perivascular adipose tissues (PVAT) are considered major contributors to the pathogenesis of cardiometabolic pathologies. Monoamine oxidases (MAOs) are mitochondrial enzymes recognized as sources of reactive oxygen species (ROS) in cardiometabolic pathologies. Methylene blue (MB) is one of the oldest protective agents, yet no data are available about its effects on adipose tissue. The present pilot study was aimed at assessing the effects of MB: (i) on MAO expression and (ii) oxidative stress in EAT and PVAT harvested from patients with heart failure subjected to cardiac surgery (n = 25). Adipose tissue samples were incubated with MB (0.1 µM/24 h) and used for the assessment of MAO gene and protein expression (qPCS and immune fluorescence) and ROS production (confocal microscopy and spectrophotometry). The human cardiovascular adipose tissues contain both MAO isoforms, predominantly MAO-A. Incubation with MB reduced MAOs expression and oxidative stress; co-incubation with serotonin, the MAO-A substrate, further augmented ROS generation, an effect partially reversed by MB. In conclusion, MAO-A is the major isoform expressed in EAT and PVAT and contribute to local oxidative stress; both effects can be mitigated by methylene blue.
Collapse
Affiliation(s)
- Oana-Maria Aburel
- Chair of Pathophysiology, Department III, "Victor Babeş" University of Medicine and Pharmacy of Timișoara, E. Murgu Sq. No. 2, 300041, Timişoara, Romania
- Centre for Translational Research and Systems Medicine, "Victor Babeş" University of Medicine and Pharmacy of Timișoara, E. Murgu Sq. No. 2, 300041, Timişoara, Romania
| | - Laurențiu Brăescu
- Centre for Translational Research and Systems Medicine, "Victor Babeş" University of Medicine and Pharmacy of Timișoara, E. Murgu Sq. No. 2, 300041, Timişoara, Romania
- Doctoral School Medicine-Pharmacy, "Victor Babeş" University of Medicine and Pharmacy of Timișoara, E. Murgu Sq. No. 2, 300041, Timişoara, Romania
- Department VI, Clinic of Cardiovascular Surgery, "Victor Babeş" University of Medicine and Pharmacy of Timișoara, E. Murgu Sq. No. 2, 300041, Timişoara, Romania
- Institute for Cardiovascular Diseases, G. Adam Str. No.13A, 300310, Timișoara, Romania
| | - Darius G Buriman
- Chair of Pathophysiology, Department III, "Victor Babeş" University of Medicine and Pharmacy of Timișoara, E. Murgu Sq. No. 2, 300041, Timişoara, Romania
- Centre for Translational Research and Systems Medicine, "Victor Babeş" University of Medicine and Pharmacy of Timișoara, E. Murgu Sq. No. 2, 300041, Timişoara, Romania
- Doctoral School Medicine-Pharmacy, "Victor Babeş" University of Medicine and Pharmacy of Timișoara, E. Murgu Sq. No. 2, 300041, Timişoara, Romania
| | - Adrian P Merce
- Institute for Cardiovascular Diseases, G. Adam Str. No.13A, 300310, Timișoara, Romania
| | - Anca M Bînă
- Centre for Translational Research and Systems Medicine, "Victor Babeş" University of Medicine and Pharmacy of Timișoara, E. Murgu Sq. No. 2, 300041, Timişoara, Romania
| | - Claudia Borza
- Chair of Pathophysiology, Department III, "Victor Babeş" University of Medicine and Pharmacy of Timișoara, E. Murgu Sq. No. 2, 300041, Timişoara, Romania
- Centre for Translational Research and Systems Medicine, "Victor Babeş" University of Medicine and Pharmacy of Timișoara, E. Murgu Sq. No. 2, 300041, Timişoara, Romania
| | - Cristian Mornoș
- Institute for Cardiovascular Diseases, G. Adam Str. No.13A, 300310, Timișoara, Romania
- Department VI, 2nd Clinic of Cardiology, "Victor Babeş" University of Medicine and Pharmacy of Timișoara, E. Murgu Sq. No. 2, 300041, Timişoara, Romania
| | - Adrian Sturza
- Chair of Pathophysiology, Department III, "Victor Babeş" University of Medicine and Pharmacy of Timișoara, E. Murgu Sq. No. 2, 300041, Timişoara, Romania.
- Centre for Translational Research and Systems Medicine, "Victor Babeş" University of Medicine and Pharmacy of Timișoara, E. Murgu Sq. No. 2, 300041, Timişoara, Romania.
- Timișoara County Hospital, 156 L. Rebreanu Str, 300723, Timişoara, Romania.
| | - Danina M Muntean
- Chair of Pathophysiology, Department III, "Victor Babeş" University of Medicine and Pharmacy of Timișoara, E. Murgu Sq. No. 2, 300041, Timişoara, Romania
- Centre for Translational Research and Systems Medicine, "Victor Babeş" University of Medicine and Pharmacy of Timișoara, E. Murgu Sq. No. 2, 300041, Timişoara, Romania
| |
Collapse
|
2
|
Promrungsri P, Rittilert P, Trakulsrichai S, Wananukul W, Abdul Hamid H, Chan X, Loo KV, Sriapha C. Clinical features of seven patients poisoned with a tolfenpyrad-based insecticide in Thailand. Clin Toxicol (Phila) 2024; 62:329-333. [PMID: 38856367 DOI: 10.1080/15563650.2024.2350606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 04/28/2024] [Indexed: 06/11/2024]
Abstract
INTRODUCTION Tolfenpyrad, a novel insecticide originating from Japan and first approved in 2002, has been marketed in numerous countries. Data on tolfenpyrad exposure in humans are limited. This study aimed to characterize the clinical features and outcomes of acute poisoning from tolfenpyrad-based insecticides in Thailand. METHODS This retrospective study analyzed cases of tolfenpyrad exposure reported to the Ramathibodi Poison Center from 2012 to 2022. RESULTS A total of seven patients were identified, with the majority being male (n = 5). Deliberate tolfenpyrad exposure accounted for three cases. The median age was 33 (range 1-46) years. Severe systemic effects were evident at presentation in the four patients ingesting tolfenpyrad. These included altered mental status (n = 4), mydriasis (n = 2), cardiac arrest (n = 1), hypotension (n = 4), bradycardia (n = 2), and high anion gap metabolic acidosis (n = 4). The median time from exposure to hospital presentation was 30 (range 15-60) minutes. All four patients ingesting tolfenpyrad died, whereas the three patients exposed via inhalation and dermally developed only mild clinical effects, and all were discharged following supportive care. DISCUSSION We observed many of the clinical features reported previously, including vomiting, mydriasis, altered mental status, metabolic acidosis, and hypotension. We also noted a combination of bradycardia and hypotension while not observing respiratory depression. CONCLUSIONS Tolfenpyrad insecticide poisoning has been reported infrequently. Rapid systemic toxicity can follow ingestion, resulting in a high mortality. Larger-scale studies are essential to identify predictors of severity and determine the optimal treatment for tolfenpyrad-poisoned patients.
Collapse
Affiliation(s)
- Puangpak Promrungsri
- Ramathibodi Poison Center, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Panee Rittilert
- Ramathibodi Poison Center, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Satariya Trakulsrichai
- Ramathibodi Poison Center, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
- Department of Emergency Medicine, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Winai Wananukul
- Ramathibodi Poison Center, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
- Department of Medicine, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | | | - Xinyi Chan
- Emergency and Trauma Department, Hospital Raja Permaisuri Bainun, Ipoh, Malaysia
| | - Kee Vooi Loo
- Emergency Department, Ng Teng Fong General Hospital, Singapore
| | - Charuwan Sriapha
- Ramathibodi Poison Center, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| |
Collapse
|
3
|
Abdel-Salam OME, Sayed MAEBM, Omara EA, Sleem AA. Cardioprotection by methylene Blue Against Epinephrine-Induced Cardiac Arrhythmias and Myocardial Injury. WSEAS TRANSACTIONS ON BIOLOGY AND BIOMEDICINE 2023; 20:64-72. [DOI: 10.37394/23208.2023.20.7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
Methylene blue is used in the treatment of vasoplegic syndrome after cardiac surgery, anaphylaxis, and septic shock refractory to epinephrine and fluid resuscitation. In this study, we investigated the potential protective effect of methylene blue on the development of cardiac arrhythmias after injection of epinephrine in rats. Methylene blue was given intraperitoneally at doses of 50 or 100 mg/kg. Cardiac arrhythmia was then induced with 10 μg/kg of epinephrine intravenously. In untreated, control rats, epinephrine caused bradycardia (96.48 ± 1.06 vs. 365.03 ± 0.68 beats/min), increased PR interval (0.54 ± 0.04 vs. 0.039 ± 0.004), RR interval (0.64 ± 0.003 vs. 0.16 ± 0.004 sec), shortened QTc interval (0.067 ± 0.05 vs. 0.1 ± 0.004 sec), increased QRS duration (0.048 ± 0.005 vs. 0.028 ± 0.002 sec), decreased R wave amplitude (0.3 ± 0.03 vs. 0.49 ± 0.04 mv), decreased the height of the ST segment (-0.0696 ± 0.004 vs. -0.0054 ± 0.003 mv), and caused ventricular extrasystoles (7.92 ± 0.56 vs. 0.5 ± 0.5). Methylene blue given at 50 or 100 mg/kg increased the heart rate, decreased RR interval, QRS duration and the drop in the ST height, increased duration of QTc interval and R wave amplitude and decreased the number of extrasystoles. The histological study showed that methylene blue protected against myocardial structural disorganization, cellular damage, necrosis, and haemorrhage between muscle fibres induced by epinephrine injection. We conclude that methylene blue dose-dependently prevented epinephrine-induced arrhythmias and cardiac muscle injury.
Collapse
Affiliation(s)
- Omar M. E. Abdel-Salam
- Department of Toxicology and Narcotics, Medical Research and Clinical Studies Institute, National Research Centre, Cairo, EGYPT
| | | | - Enayat A Omara
- Department of Pathology, Medical Research and Clinical Studies Institute, National Research Centre, Cairo, EGYPT
| | - Amany A. Sleem
- Department of Pharmacology, Medical Research and Clinical Studies Institute, National Research Centre, Cairo, EGYPT
| |
Collapse
|
4
|
Conjugates of Methylene Blue with Cycloalkaneindoles as New Multifunctional Agents for Potential Treatment of Neurodegenerative Disease. Int J Mol Sci 2022; 23:ijms232213925. [PMID: 36430413 PMCID: PMC9697446 DOI: 10.3390/ijms232213925] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 11/03/2022] [Accepted: 11/07/2022] [Indexed: 11/16/2022] Open
Abstract
The development of multi-target-directed ligands (MTDLs) would provide effective therapy of neurodegenerative diseases (ND) with complex and nonclear pathogenesis. A promising method to create such potential drugs is combining neuroactive pharmacophoric groups acting on different biotargets involved in the pathogenesis of ND. We developed a synthetic algorithm for the conjugation of indole derivatives and methylene blue (MB), which are pharmacophoric ligands that act on the key stages of pathogenesis. We synthesized hybrid structures and performed a comprehensive screening for a specific set of biotargets participating in the pathogenesis of ND (i.e., cholinesterases, NMDA receptor, mitochondria, and microtubules assembly). The results of the screening study enabled us to find two lead compounds (4h and 4i) which effectively inhibited cholinesterases and bound to the AChE PAS, possessed antioxidant activity, and stimulated the assembly of microtubules. One of them (4i) exhibited activity as a ligand for the ifenprodil-specific site of the NMDA receptor. In addition, this lead compound was able to bypass the inhibition of complex I and prevent calcium-induced mitochondrial depolarization, suggesting a neuroprotective property that was confirmed using a cellular calcium overload model of neurodegeneration. Thus, these new MB-cycloalkaneindole conjugates constitute a promising class of compounds for the development of multitarget neuroprotective drugs which simultaneously act on several targets, thereby providing cognitive stimulating, neuroprotective, and disease-modifying effects.
Collapse
|
5
|
Hepburn J, Williams-Lockhart S, Bensadoun RJ, Hanna R. A Novel Approach of Combining Methylene Blue Photodynamic Inactivation, Photobiomodulation and Oral Ingested Methylene Blue in COVID-19 Management: A Pilot Clinical Study with 12-Month Follow-Up. Antioxidants (Basel) 2022; 11:2211. [PMID: 36358582 PMCID: PMC9686966 DOI: 10.3390/antiox11112211] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 11/02/2022] [Accepted: 11/04/2022] [Indexed: 08/26/2023] Open
Abstract
Coronavirus disease 2019 (COVID-19) caused by SARS-CoV-2 virus was first recognized in late 2019 and remains a significant threat. We therefore assessed the use of local methylene blue photodynamic viral inactivation (MB-PDI) in the oral and nasal cavities, in combination with the systemic anti-viral, anti-inflammatory and antioxidant actions of orally ingested methylene blue (MB) and photobiomodulation (PBM) for COVID-19 disease. The proposed protocol leverages the separate and combined effects of MB and 660nm red light emitted diode (LED) to comprehensively address the pathophysiological sequelae of COVID-19. A total of eight pilot subjects with COVID-19 disease were treated in the Bahamas over the period June 2021-August 2021, using a remote care program that was developed for this purpose. Although not a pre-requisite for inclusion, none of the subjects had received any COVID-19 vaccination prior to commencing the study. Clinical outcome assessment tools included serial cycle threshold measurements as a surrogate estimate of viral load; serial online questionnaires to document symptom response and adverse effects; and a one-year follow-up survey to assess long-term outcomes. All subjects received MB-PDI to target the main sites of viral entry in the nose and mouth. This was the central component of the treatment protocol with the addition of orally ingested MB and/or PBM based on clinical requirements. The mucosal surfaces were irradiated with 660 nm LED in a continuous emission mode at energy density of 49 J/cm2 for PDI and 4.9 J/cm2 for PBM. Although our pilot subjects had significant co-morbidities, extremely high viral loads and moderately severe symptoms during the Delta phase of the pandemic, the response to treatment was highly encouraging. Rapid reductions in viral loads were observed and negative PCR tests were documented within a median of 4 days. These laboratory findings occurred in parallel with significant clinical improvement, mostly within 12-24 h of commencing the treatment protocol. There were no significant adverse effects and none of the subjects who completed the protocol required in-patient hospitalization. The outcomes were similarly encouraging at one-year follow-up with virtual absence of "long COVID" symptoms or of COVID-19 re-infection. Our results indicate that the protocols may be a safe and promising approach to challenging COVID-19 disease. Moreover, due its broad spectrum of activity, this approach has the potential to address the prevailing and future COVID-19 variants and other infections transmitted via the upper respiratory tract. Extensive studies with a large cohort are warranted to validate our results.
Collapse
Affiliation(s)
- Juliette Hepburn
- Luminnova Health, 34 Harbour Bay Plaza, East Bay Street, Nassau P.O. Box N-1081, Bahamas
| | | | - René Jean Bensadoun
- Centre De Haute Energie, Department of Oncology Radiology, 10 Boulevard Pasteur, 06000 Nice, France
| | - Reem Hanna
- Department of Surgical Sciences and Integrated Diagnostics, Laser Therapy Centre, University of Genoa, Vaile Benedetto XV, 6, 16132 Genoa, Italy
- Department of Restorative Dental Sciences, UCL-Eastman Dental Institute, Faculty of Medical Sciences, Rockefeller Building, London WC1E 6DE, UK
- Department of Oral Surgery, King’s College Hospital NHS Foundation Trust, Denmark Hill, London SE5 9RS, UK
| |
Collapse
|
6
|
Kulkarni AS, Aleksic S, Berger DM, Sierra F, Kuchel G, Barzilai N. Geroscience-guided repurposing of FDA-approved drugs to target aging: A proposed process and prioritization. Aging Cell 2022; 21:e13596. [PMID: 35343051 PMCID: PMC9009114 DOI: 10.1111/acel.13596] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 02/11/2022] [Accepted: 03/13/2022] [Indexed: 12/29/2022] Open
Abstract
Common chronic diseases represent the greatest driver of rising healthcare costs, as well as declining function, independence, and quality of life. Geroscience-guided approaches seek to delay the onset and progression of multiple chronic conditions by targeting fundamental biological pathways of aging. This approach is more likely to improve overall health and function in old age than treating individual diseases, by addressing aging the largest and mostly ignored risk factor for the leading causes of morbidity in older adults. Nevertheless, challenges in repurposing existing and moving newly discovered interventions from the bench to clinical care have impeded the progress of this potentially transformational paradigm shift. In this article, we propose the creation of a standardized process for evaluating FDA-approved medications for their geroscience potential. Criteria for systematically evaluating the existing literature that spans from animal models to human studies will permit the prioritization of efforts and financial investments for translating geroscience and allow immediate progress on the design of the next Targeting Aging with MEtformin (TAME)-like study involving such candidate gerotherapeutics.
Collapse
Affiliation(s)
- Ameya S. Kulkarni
- Institute for Aging ResearchAlbert Einstein College of MedicineBronxNew YorkUSA
- Present address:
AbbVie Inc.North ChicagoIL60064USA.
| | - Sandra Aleksic
- Department of Medicine (Endocrinology and Geriatrics)Albert Einstein College of MedicineBronxNew YorkUSA
| | - David M. Berger
- Department of Medicine (Hospital Medicine)Montefiore Medical Center and Albert Einstein College of MedicineBronxNew YorkUSA
| | - Felipe Sierra
- Centre Hospitalier Universitaire de ToulouseToulouseFrance
| | - George A. Kuchel
- UConn Center on AgingUniversity of Connecticut School of MedicineFarmingtonConnecticutUSA
| | - Nir Barzilai
- Institute for Aging ResearchAlbert Einstein College of MedicineBronxNew YorkUSA
| |
Collapse
|
7
|
The effects of real and simulated microgravity on cellular mitochondrial function. NPJ Microgravity 2021; 7:44. [PMID: 34750383 PMCID: PMC8575887 DOI: 10.1038/s41526-021-00171-7] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 10/07/2021] [Indexed: 11/22/2022] Open
Abstract
Astronauts returning from space shuttle missions or the International Space Station have been diagnosed with various health problems such as bone demineralization, muscle atrophy, cardiovascular deconditioning, and vestibular and sensory imbalance including visual acuity, altered metabolic and nutritional status, and immune system dysregulation. These health issues are associated with oxidative stress caused by a microgravity environment. Mitochondria are a source of reactive oxygen species (ROS). However, the molecular mechanisms through which mitochondria produce ROS in a microgravity environment remain unclear. Therefore, this review aimed to explore the mechanism through which microgravity induces oxidative damage in mitochondria by evaluating the expression of genes and proteins, as well as relevant metabolic pathways. In general, microgravity-induced ROS reduce mitochondrial volume by mainly affecting the efficiency of the respiratory chain and metabolic pathways. The impaired respiratory chain is thought to generate ROS through premature electron leakage in the electron transport chain. The imbalance between ROS production and antioxidant defense in mitochondria is the main cause of mitochondrial stress and damage, which leads to mitochondrial dysfunction. Moreover, we discuss the effects of antioxidants against oxidative stress caused by the microgravity environment space microgravity in together with simulated microgravity (i.e., spaceflight or ground-based spaceflight analogs: parabolic flight, centrifugal force, drop towers, etc.). Further studies should be taken to explore the effects of microgravity on mitochondrial stress-related diseases, especially for the development of new therapeutic drugs that can help increase the health of astronauts on long space missions.
Collapse
|
8
|
Methylene blue can act as an antidote to pesticide poisoning of bumble bee mitochondria. Sci Rep 2021; 11:14710. [PMID: 34282204 PMCID: PMC8289979 DOI: 10.1038/s41598-021-94231-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 07/07/2021] [Indexed: 11/09/2022] Open
Abstract
The population of bumble bees and other pollinators has considerably declined worldwide, probably, due to the toxic effect of pesticides used in agriculture. Inexpensive and available antidotes can be one of the solutions for the problem of pesticide toxicity for pollinators. We studied the properties of the thiazine dye Methylene blue (MB) as an antidote against the toxic action of pesticides in the bumble bee mitochondria and found that MB stimulated mitochondrial respiration mediated by Complex I of the electron transport chain (ETC) and increased respiration of the mitochondria treated with mitochondria-targeted (chlorfenapyr, hydramethylnon, pyridaben, tolfenpyrad, and fenazaquin) and non-mitochondrial (deltamethrin, metribuzin, and penconazole) pesticides. MB also restored the mitochondrial membrane potential dissipated by the pesticides affecting the ETC. The mechanism of MB action is most probably related to its ability to shunt electron flow in the mitochondrial ETC.
Collapse
|
9
|
Yang L, Youngblood H, Wu C, Zhang Q. Mitochondria as a target for neuroprotection: role of methylene blue and photobiomodulation. Transl Neurodegener 2020; 9:19. [PMID: 32475349 PMCID: PMC7262767 DOI: 10.1186/s40035-020-00197-z] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 05/06/2020] [Indexed: 12/18/2022] Open
Abstract
Mitochondrial dysfunction plays a central role in the formation of neuroinflammation and oxidative stress, which are important factors contributing to the development of brain disease. Ample evidence suggests mitochondria are a promising target for neuroprotection. Recently, methods targeting mitochondria have been considered as potential approaches for treatment of brain disease through the inhibition of inflammation and oxidative injury. This review will discuss two widely studied approaches for the improvement of brain mitochondrial respiration, methylene blue (MB) and photobiomodulation (PBM). MB is a widely studied drug with potential beneficial effects in animal models of brain disease, as well as limited human studies. Similarly, PBM is a non-invasive treatment that promotes energy production and reduces both oxidative stress and inflammation, and has garnered increasing attention in recent years. MB and PBM have similar beneficial effects on mitochondrial function, oxidative damage, inflammation, and subsequent behavioral symptoms. However, the mechanisms underlying the energy enhancing, antioxidant, and anti-inflammatory effects of MB and PBM differ. This review will focus on mitochondrial dysfunction in several different brain diseases and the pathological improvements following MB and PBM treatment.
Collapse
Affiliation(s)
- Luodan Yang
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, 1120 15th Street, Augusta, GA, 30912, USA
| | - Hannah Youngblood
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, 1120 15th Street, Augusta, GA, 30912, USA
| | - Chongyun Wu
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, 1120 15th Street, Augusta, GA, 30912, USA
| | - Quanguang Zhang
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, 1120 15th Street, Augusta, GA, 30912, USA.
| |
Collapse
|
10
|
Combining lipoic acid to methylene blue reduces the Warburg effect in CHO cells: From TCA cycle activation to enhancing monoclonal antibody production. PLoS One 2020; 15:e0231770. [PMID: 32298377 PMCID: PMC7162497 DOI: 10.1371/journal.pone.0231770] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 03/31/2020] [Indexed: 01/01/2023] Open
Abstract
The Warburg effect, a hallmark of cancer, has recently been identified as a metabolic limitation of Chinese Hamster Ovary (CHO) cells, the primary platform for the production of monoclonal antibodies (mAb). Metabolic engineering approaches, including genetic modifications and feeding strategies, have been attempted to impose the metabolic prevalence of respiration over aerobic glycolysis. Their main objective lies in decreasing lactate production while improving energy efficiency. Although yielding promising increases in productivity, such strategies require long development phases and alter entangled metabolic pathways which singular roles remain unclear. We propose to apply drugs used for the metabolic therapy of cancer to target the Warburg effect at different levels, on CHO cells. The use of α-lipoic acid, a pyruvate dehydrogenase activator, replenished the Krebs cycle through increased anaplerosis but resulted in mitochondrial saturation. The electron shuttle function of a second drug, methylene blue, enhanced the mitochondrial capacity. It pulled on anaplerotic pathways while reducing stress signals and resulted in a 24% increase of the maximum mAb production. Finally, the combination of both drugs proved to be promising for stimulating Krebs cycle activity and mitochondrial respiration. Therefore, drugs used in metabolic therapy are valuable candidates to understand and improve the metabolic limitations of CHO-based bioproduction.
Collapse
|
11
|
Phosphocreatine Improves Cardiac Dysfunction by Normalizing Mitochondrial Respiratory Function through JAK2/STAT3 Signaling Pathway In Vivo and In Vitro. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:6521218. [PMID: 31885809 PMCID: PMC6914882 DOI: 10.1155/2019/6521218] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2019] [Accepted: 08/29/2019] [Indexed: 12/17/2022]
Abstract
Diabetic cardiomyopathy (DCM) is one of the common cardiovascular complications in patients with diabetes. Accumulating evidence has demonstrated that DCM is thoroughly related to mitochondrial energy impairment and increases the generation of reactive oxygen species (ROS). Therefore, an ongoing study is developing strategies to protect cardiac mitochondria from diabetic complications, especially from hyperglycemia. Phosphocreatine (PCr) plays a major metabolic role in cardiac muscular cells including intracellular concentration of ATP which affects the activity of the myocardium. We hypothesized that PCr might improve oxidative phosphorylation and electron transport capacity in mitochondria impaired by hyperglycemia in vivo and in vitro. Also, we aimed to evaluate the protective effect of PCr against DCM through the JAK2/STAT3 signaling pathway. The mitochondrial respiratory capacity from rats and H9C2 cells was measured by high-resolution respirometry (HRR). Expressions of proteins Bax, Bcl-2, caspase 3, caspase 9, cleaved caspase 3, and cleaved caspase 9, as well as JAK2/STAT3 signaling pathways, were determined by western blotting. ROS generation and mitochondrial membrane potential (MMP) were measured with fluorescent probes. Type 1 diabetes mellitus was induced in Wistar male rats by a single intraperitoneal injection of streptozotocin (STZ) (80 mg/kg body weight). Our results revealed that PCr possessed protective effects against DCM injury by improving the mitochondrial bioenergetics and by positively exerting protective effects against DCM in vivo and in vitro, not only improving diabetes symptom, resulting in changes of cardiac tissue using hematoxylin and eosin (H&E) stain, but also ameliorating biochemical changes. Moreover, PCr increased Bcl-2, caspase 3, and caspase 9 protein expressions and decreased Bax, cleaved caspase 3, and cleaved caspase 9 expressions as well as the JAK2/STAT3 signaling pathway. In conclusion, PCr improves mitochondrial functions and exerts an antiapoptotic effect in vivo and in vitro exposed to oxidative stress by hyperglycemia through the JAK2/STAT3 signaling pathway. Our findings suggest that PCr medication is a possible therapeutic strategy for cardioprotection.
Collapse
|
12
|
Phenothiazinium Dyes Are Active against Trypanosoma cruzi In Vitro. BIOMED RESEARCH INTERNATIONAL 2019; 2019:8301569. [PMID: 31355283 PMCID: PMC6637691 DOI: 10.1155/2019/8301569] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 05/10/2019] [Accepted: 06/10/2019] [Indexed: 12/29/2022]
Abstract
Chagas disease is a tropical illness caused by the protozoan Trypanosoma cruzi. The disease affects populations of the Americas and has been spread to other continents due to the migration process. The disease is partially controlled by two drugs, Benznidazole and Nifurtimox. These molecules are active in the acute phase of the infection but are usually ineffective during the symptomatic chronic phase. Several research groups have developed novel candidates to control Chagas disease; however, no novel commercial formulation is available. In this article, we described the anti-T. cruzi effects of phenothiazinium dyes in amastigote and trypomastigote forms of the parasite. Methylene Blue, New Methylene Blue, Toluidine Blue O, and 1,9-Dimethyl Methylene Blue inhibited the parasite proliferation at nanomolar concentrations and also demonstrated low toxicity in host cells. Moreover, combinations of phenothiazinium dyes indicated a synergic pattern against amastigotes compared to the Benznidazole counterparts. Phenothiazinium dyes levels of reactive oxygen species (ROS) and decreased the mitochondrial potential in trypomastigotes, indicating the mechanism of action of the dyes in T. cruzi. Our article offers a basis for future strategies for the control of Chagas disease using low-cost formulations, an important point for endemic underdeveloped regions.
Collapse
|
13
|
Sun L, Chen Y, Luo H, Xu M, Meng G, Zhang W. Ca 2+/calmodulin-dependent protein kinase II regulation by inhibitor 1 of protein phosphatase 1 alleviates necroptosis in high glucose-induced cardiomyocytes injury. Biochem Pharmacol 2019; 163:194-205. [PMID: 30779910 DOI: 10.1016/j.bcp.2019.02.022] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 02/15/2019] [Indexed: 12/20/2022]
Abstract
Ca2+/calmodulin-dependent protein kinase II (CaMKII) plays an important role in the cardiovascular system. However, the potential protective role of inhibitor 1 of protein phosphatase 1 (I1PP1), which is able to regulate CaMKII, in high glucose-induced cardiomyocytes injury remains unknown. In the present study, cardiomyocytes were transfected with I1PP1 adenovirus to inhibit protein phosphatase 1 (PP1) expression. After the cardiomyocytes were subjected to high glucose stimulation for 48 h, quantitative real-time PCR was used to detect CaMKIIδ alternative splicing. Lactate dehydrogenase (LDH) release and adenosine triphosphate (ATP) level were measured to assess cell damage and energy metabolism respectively. CaMKII activity was represented as phospholamban (PLB) phosphorylation, CaMKII phosphorylation (p-CaMKII) and oxidation (ox-CaMKII). Dihydroethidium (DHE), MitoSOX and JC-1 staining were used to assess oxidative stress and mitochondrial membrane potential. Necroptosis was evaluated by receptor interacting protein kinase 3 (RIPK3) expression, TUNEL and cleaved-caspase 3 levels. RIPK3, mixed lineage kinase domain like protein (MLKL) and dynamin-related protein 1 (DRP1) expressions were also detected. We found that high glucose disordered CaMKIIδ alternative splicing. I1PP1 over-expression suppressed PLB phosphorylation, ox-CaMKII, DRP1, RIPK3 and cleaved-caspase 3 proteins expression, decreased LDH release, attenuated necroptosis, increased ATP level, inhibited oxidative stress, and elevated mitochondrial membrane potential in high glucose-stimulated cardiomyocytes. However, there was no effect on phosphorylation of MLKL (p-MLKL), p-CaMKII, and receptor interacting protein kinase 1 (RIPK1) expression. Altogether, I1PP1 over-expression alleviated CaMKIIδ alternative splicing disorder, suppressed CaMKII oxidation, reduced reactive oxygen species (ROS) accumulation and inhibited necroptosis to attenuate high glucose-induced cardiomyocytes injury.
Collapse
Affiliation(s)
- Linlin Sun
- Department of Pharmacology, School of Pharmacy, Key Laboratory of Inflammation and Molecular Drug Target of Jiangsu Province, Nantong University, Nantong 226001, China
| | - Yun Chen
- Department of Pharmacology, School of Pharmacy, Key Laboratory of Inflammation and Molecular Drug Target of Jiangsu Province, Nantong University, Nantong 226001, China; School of Medicine, Nantong University, Nantong 226001, China
| | - Huiqin Luo
- Department of Pharmacology, School of Pharmacy, Key Laboratory of Inflammation and Molecular Drug Target of Jiangsu Province, Nantong University, Nantong 226001, China
| | - Mengting Xu
- Department of Pharmacology, School of Pharmacy, Key Laboratory of Inflammation and Molecular Drug Target of Jiangsu Province, Nantong University, Nantong 226001, China
| | - Guoliang Meng
- Department of Pharmacology, School of Pharmacy, Key Laboratory of Inflammation and Molecular Drug Target of Jiangsu Province, Nantong University, Nantong 226001, China; School of Medicine, Nantong University, Nantong 226001, China.
| | - Wei Zhang
- Department of Pharmacology, School of Pharmacy, Key Laboratory of Inflammation and Molecular Drug Target of Jiangsu Province, Nantong University, Nantong 226001, China.
| |
Collapse
|
14
|
Privistirescu AI, Sima A, Duicu OM, Timar R, Roșca MG, Sturza A, Muntean DM. Methylene blue alleviates endothelial dysfunction and reduces oxidative stress in aortas from diabetic rats. Can J Physiol Pharmacol 2018; 96:1012-1016. [PMID: 29894646 DOI: 10.1139/cjpp-2018-0119] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Endothelial dysfunction and the related increase in reactive oxygen species (ROS) production are important events in the pathophysiology of diabetes mellitus (DM). Methylene blue (MB) has been systematically investigated for its protective effects against refractory hypotension and mitochondrial dysfunction. We have previously demonstrated that MB improved mitochondrial respiration and partially decreased oxidative stress in diabetic rat hearts. The present study was aimed to investigate whether MB modulates vascular function and ROS production in thoracic aortic rings isolated from rats with streptozotocin-induced DM (after 4 weeks of hyperglycemia). The effects of MB (0.1 μM, 30 min ex vivo incubation) on vascular reactivity in organ chamber (phenylephrine-induced contraction, acetylcholine-induced relaxation) and H2O2 production (assessed by ferrous iron xylenol orange oxidation assay) were investigated in vascular preparations with intact endothelium and after denudation. DM elicited a significant alteration of vascular function: increased contractility to phenylephrine, attenuation of acetylcholine-dependent relaxation, and augmented H2O2 generation. Ex vivo incubation with MB partially reversed all these changes (by approximately 70%) in vascular segments with intact endothelial layer (but not in denuded vessels). In conclusion, MB might be useful in alleviating endothelial dysfunction and mitigating endothelial oxidative stress, observations that clearly require further investigation in the setting of cardiometabolic disease.
Collapse
Affiliation(s)
- Andreea I Privistirescu
- a Department of Functional Sciences - Pathophysiology, "Victor Babeș" University of Medicine and Pharmacy, Timișoara, Romania
| | - Alexandra Sima
- b Department of Internal Medicine II - Diabetes, Nutrition and Metabolic Diseases, "Victor Babeș" University of Medicine and Pharmacy, Timișoara, Romania
| | - Oana M Duicu
- a Department of Functional Sciences - Pathophysiology, "Victor Babeș" University of Medicine and Pharmacy, Timișoara, Romania.,c Center for Translational Research and Systems Medicine, "Victor Babeș" University of Medicine and Pharmacy, Timișoara, Romania
| | - Romulus Timar
- b Department of Internal Medicine II - Diabetes, Nutrition and Metabolic Diseases, "Victor Babeș" University of Medicine and Pharmacy, Timișoara, Romania
| | - Mariana G Roșca
- d Department of Foundational Sciences, Central Michigan University College of Medicine, 2630 Denison Drive, Research Building Room 105, Mount Pleasant, MI 48858, USA
| | - Adrian Sturza
- a Department of Functional Sciences - Pathophysiology, "Victor Babeș" University of Medicine and Pharmacy, Timișoara, Romania.,c Center for Translational Research and Systems Medicine, "Victor Babeș" University of Medicine and Pharmacy, Timișoara, Romania
| | - Danina M Muntean
- a Department of Functional Sciences - Pathophysiology, "Victor Babeș" University of Medicine and Pharmacy, Timișoara, Romania.,c Center for Translational Research and Systems Medicine, "Victor Babeș" University of Medicine and Pharmacy, Timișoara, Romania
| |
Collapse
|
15
|
Lin ZH, Wang SY, Chen LL, Zhuang JY, Ke QF, Xiao DR, Lin WP. Methylene Blue Mitigates Acute Neuroinflammation after Spinal Cord Injury through Inhibiting NLRP3 Inflammasome Activation in Microglia. Front Cell Neurosci 2017; 11:391. [PMID: 29311826 PMCID: PMC5732444 DOI: 10.3389/fncel.2017.00391] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2017] [Accepted: 11/27/2017] [Indexed: 01/19/2023] Open
Abstract
The spinal cord injury (SCI) is a detrimental neurological disease involving the primary mechanical injury and secondary inflammatory damage. Curtailing the detrimental neuroinflammation would be beneficial for spinal cord function recovery. Microglia reside in the spinal cord and actively participate in the onset, progression and perhaps resolution of post-SCI neuroinflammation. In the current study, we tested the effects of methylene blue on microglia both in vitro and in a rat SCI model. We found that methylene blue inhibited the protein levels of IL-1β and IL-18 rather than their mRNA levels in activated microglia. Further investigation indicated that methylene blue deceased the activation of NLRP3 inflammasome and NLRC4 inflammasome in microglia in vitro. Moreover, in the rat SCI model, the similar effect of methylene blue on post-SCI microglia was also observed, except that the activation of NLRC4 inflammasome was not seen. The inhibition of microglia NLRP3 inflammasome was associated with down-regulation of intracellular reactive oxygen species (ROS). The administration of methylene blue mitigated the overall post-SCI neuroinflammation, demonstrated by decreased pro-inflammatory cytokine production and leukocyte infiltrates. Consequently, the neuronal apoptosis was partially inhibited and the hind limb locomotor function was ameliorated by methylene blue treatment. Our research highlights the role of methylene blue in inhibiting post-SCI neuroinflammation, and suggests that methylene blue might be used for SCI therapy.
Collapse
Affiliation(s)
- Zhi-Hang Lin
- Department of Pharmacy, Affiliated Quanzhou First Hospital of Fujian Medical University, Quanzhou, China
| | - Si-Yuan Wang
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Fujian Medical University, Quanzhou, China
| | - Li-Li Chen
- Nursing Department, Fujian Medical University Affiliated Provincial Clinical Medical Institute, Fuzhou, China
| | - Jia-Yuan Zhuang
- The School of Nursing, Fujian Medical University, Fuzhou, China
| | - Qing-Feng Ke
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Fujian Medical University, Quanzhou, China
| | - Dan-Rui Xiao
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Fujian Medical University, Quanzhou, China
| | - Wen-Ping Lin
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Fujian Medical University, Quanzhou, China
| |
Collapse
|