1
|
Song G, Zhang Y, Jiang Y, Zhang H, Gu W, Xu X, Yao J, Chen Z. Circular RNA PIP5K1A Promotes Glucose and Lipid Metabolism Disorders and Inflammation in Type 2 Diabetes Mellitus. Mol Biotechnol 2024; 66:3549-3558. [PMID: 37966664 DOI: 10.1007/s12033-023-00954-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 10/16/2023] [Indexed: 11/16/2023]
Abstract
Disorders of glucose and lipid metabolism are an important cause of type 2 diabetes mellitus (T2DM). Identifying the molecular mechanism of metabolic disorders is key to the treatment of T2DM. The study was to investigate the effect of circRNA PIP5K1A (circPIP5K1A) on glucose and lipid metabolism and inflammation in T2DM rats. A T2DM rat model was established, and then the T2DM rats were injected with lentiviral vectors that interfere with circPIP5K1A, miR-552-3p, or ENO1 expression. Fasting blood glucose (FBG) and fasting insulin (FINS) levels of rats were detected by an automatic analyzer and insulin detection kit, and HOMA-IR was calculated. Lipid metabolism was assessed by measuring serum levels of TG, TC, LDL-C, leptin, and resistin. Serum levels of inflammatory factors (TNF-α and IL-6) were detected by ELISA. The pathological conditions of pancreatic tissue were observed by HE staining. circPIP5K1A, miR-552-3p and ENO1 levels were recorded. The experimental results showed that circPIP5K1A and ENO1 were up-regulated, and miR-552-3p was down-regulated in T2DM rats. Down-regulating circPIP5K1A or up-regulating miR-552-3p reduced blood glucose and lipid levels, inhibited inflammation, and improved pancreatic histopathological changes in T2DM rats. In addition, up-regulating ENO1 rescued the ameliorating effects of down-regulated circPIP5K1A on T2DM rats. In general, downregulating circPIP5K1A improves insulin resistance and lipid metabolism disorders and inhibits inflammation by targeting miR-552-3p to mediate ENO1 expression.
Collapse
Affiliation(s)
- Ge Song
- Department of Endocrinology, Changshu Hospital Affiliated to Soochow University, Changshu No.1 People's Hospital, No. 1 College Street, Suzhou City, Jiangsu Province, 215500, China
| | - YiQian Zhang
- Department of Endocrinology, Changshu Hospital Affiliated to Soochow University, Changshu No.1 People's Hospital, No. 1 College Street, Suzhou City, Jiangsu Province, 215500, China
| | - YiHua Jiang
- Department of Endocrinology, Changshu Hospital Affiliated to Soochow University, Changshu No.1 People's Hospital, No. 1 College Street, Suzhou City, Jiangsu Province, 215500, China
| | - Huan Zhang
- Department of Endocrinology, Changshu Hospital Affiliated to Soochow University, Changshu No.1 People's Hospital, No. 1 College Street, Suzhou City, Jiangsu Province, 215500, China
| | - Wen Gu
- Department of Endocrinology, Changshu Hospital Affiliated to Soochow University, Changshu No.1 People's Hospital, No. 1 College Street, Suzhou City, Jiangsu Province, 215500, China
| | - Xiu Xu
- Department of Endocrinology, Changshu Hospital Affiliated to Soochow University, Changshu No.1 People's Hospital, No. 1 College Street, Suzhou City, Jiangsu Province, 215500, China
| | - Jing Yao
- Department of Endocrinology, Changshu Hospital Affiliated to Soochow University, Changshu No.1 People's Hospital, No. 1 College Street, Suzhou City, Jiangsu Province, 215500, China
| | - ZhengFang Chen
- Department of Endocrinology, Changshu Hospital Affiliated to Soochow University, Changshu No.1 People's Hospital, No. 1 College Street, Suzhou City, Jiangsu Province, 215500, China.
| |
Collapse
|
2
|
Park A, Nam S. miRDM-rfGA: Genetic algorithm-based identification of a miRNA set for detecting type 2 diabetes. BMC Med Genomics 2023; 16:195. [PMID: 37608331 PMCID: PMC10463588 DOI: 10.1186/s12920-023-01636-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 08/17/2023] [Indexed: 08/24/2023] Open
Abstract
BACKGROUND Type 2 diabetes mellitus (T2DM) affects approximately 451 million adults globally. In this study, we identified the optimal combination of marker candidates for detecting T2DM using miRNA-Seq data from 95 samples including T2DM and healthy individuals. METHODS We utilized the genetic algorithm (GA) in the discovery of an optimal miRNA biomarker set. We discovered miRNA subsets consisting of three miRNAs for detecting T2DM by random forest-based GA (miRDM-rfGA) as a feature selection algorithm and created six GA parameter settings and three settings using traditional feature selection methods (F-test and Lasso). We then evaluated the prediction performance to detect T2DM in the miRNA subsets derived from each setting. RESULTS The miRNA subset in setting 5 using miRDM-rfGA performed the best in detecting T2DM (mean AUROC = 0.92). Target mRNA identification and functional enrichment analysis of the best miRNA subset (hsa-miR-125b-5p, hsa-miR-7-5p, and hsa-let-7b-5p) validated that this combination was involved in T2DM. We also confirmed that the targeted genes were negatively correlated with the clinical variables related to T2DM in the BxD mouse genetic reference population database. CONCLUSIONS Using GA in miRNA-Seq data, we identified the optimal miRNA biomarker set for T2DM detection. GA can be a useful tool for biomarker discovery and drug-target identification.
Collapse
Affiliation(s)
- Aron Park
- Department of Health Sciences and Technology, Gachon Advanced Institute for Health Sciences and Technology (GAIHST), Gachon University, Incheon, 21999, Korea
| | - Seungyoon Nam
- Department of Health Sciences and Technology, Gachon Advanced Institute for Health Sciences and Technology (GAIHST), Gachon University, Incheon, 21999, Korea.
- Department of Genome Medicine and Science, AI Convergence Center for Medical Science, Gachon University Gil Medical Center, Gachon University College of Medicine, Incheon, 21565, Korea.
| |
Collapse
|
3
|
Ghaneh T, Zeinali F, Babini H, Astaraki S, Hassan-Zadeh V. An increase in the expression of circulating miR30d-5p and miR126-3p is associated with intermediate hyperglycaemia in Iranian population. Arch Physiol Biochem 2023; 129:489-496. [PMID: 33113334 DOI: 10.1080/13813455.2020.1839105] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Type 2 diabetes is the most prevalent metabolic disease worldwide. The disease is characterised by high blood glucose levels and recently it has been shown that changes in the plasma levels of several miRNAs (miRNA) are associated with the disease. Interestingly, alterations in circulating miRNAs occur years before the onset of the disease and demonstrate predictive power. In this study, we carried out RT-qPCR to examine the plasma levels of two type 2 diabetes specific miRNAs, miR-30d-5p and miR-126-3p in an Iranian population of non-diabetic control individuals, subjects with intermediate hyperglycaemia and type 2 diabetic individuals with hyperglycaemia. We found that the plasma levels of miR-30d and miR-126 increase by 3.1 and 11.16 times, respectively, in individuals with intermediate hyperglycaemia compared to non-diabetic controls. However, no significant changes in the expression of these two miRNAs have been observed between type 2 diabetic individuals and non-diabetic subjects. Our results confirm that alterations in the plasma levels of miR-30d-5p and miR-126-3p could be used as diagnostic markers of type 2 diabetes in the Iranian population as well.
Collapse
Affiliation(s)
- Taravat Ghaneh
- Department of Cell and Molecular Biology, Faculty of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Fatemeh Zeinali
- Department of Cell and Molecular Biology, Faculty of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Hosna Babini
- Department of Cell and Molecular Biology, Faculty of Biology, College of Science, University of Tehran, Tehran, Iran
| | | | - Vahideh Hassan-Zadeh
- Department of Cell and Molecular Biology, Faculty of Biology, College of Science, University of Tehran, Tehran, Iran
| |
Collapse
|
4
|
Alam S, Sarker MMR, Sultana TN, Chowdhury MNR, Rashid MA, Chaity NI, Zhao C, Xiao J, Hafez EE, Khan SA, Mohamed IN. Antidiabetic Phytochemicals From Medicinal Plants: Prospective Candidates for New Drug Discovery and Development. Front Endocrinol (Lausanne) 2022; 13:800714. [PMID: 35282429 PMCID: PMC8907382 DOI: 10.3389/fendo.2022.800714] [Citation(s) in RCA: 87] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Accepted: 01/04/2022] [Indexed: 02/05/2023] Open
Abstract
Diabetes, a chronic physiological dysfunction affecting people of different age groups and severely impairs the harmony of peoples' normal life worldwide. Despite the availability of insulin preparations and several synthetic oral antidiabetic drugs, there is a crucial need for the discovery and development of novel antidiabetic drugs because of the development of resistance and side effects of those drugs in long-term use. On the contrary, plants or herbal sources are getting popular day by day to the scientists, researchers, and pharmaceutical companies all over the world to search for potential bioactive compound(s) for the discovery and development of targeted novel antidiabetic drugs that may control diabetes with the least unwanted effects of conventional antidiabetic drugs. In this review, we have presented the prospective candidates comprised of either isolated phytochemical(s) and/or extract(s) containing bioactive phytoconstituents which have been reported in several in vitro, in vivo, and clinical studies possessing noteworthy antidiabetic potential. The mode of actions, attributed to antidiabetic activities of the reported phytochemicals and/or plant extracts have also been described to focus on the prospective phytochemicals and phytosources for further studies in the discovery and development of novel antidiabetic therapeutics.
Collapse
Affiliation(s)
- Safaet Alam
- Department of Pharmacy, State University of Bangladesh, Dhaka, Bangladesh
| | - Md. Moklesur Rahman Sarker
- Department of Pharmacy, State University of Bangladesh, Dhaka, Bangladesh
- Pharmacology and Toxicology Research Division, Health Med Science Research Limited, Dhaka, Bangladesh
- *Correspondence: Md. Moklesur Rahman Sarker, ; ; orcid.org/0000-0001-9795-0608; Isa Naina Mohamed, ; orcid.org/0000-0001-8891-2423
| | | | | | - Mohammad A. Rashid
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Dhaka, Dhaka, Bangladesh
| | | | - Chao Zhao
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Jianbo Xiao
- Department of Analytical Chemistry and Food Science, Faculty of Food Science and Technology, University of Vigo, Vigo, Spain
| | - Elsayed E. Hafez
- Plant Protection and Biomolecular Diagnosis Department, ALCRI (Arid Lands Cultivation Research Institute), City of Scientific Research and Technological Applications, Alexandria, Egypt
| | - Shah Alam Khan
- College of Pharmacy, National University of Science & Technology, Muscat, Oman
| | - Isa Naina Mohamed
- Pharmacology Department, Medicine Faculty, Universiti Kebangsaan Malaysia (The National University of Malaysia), Kuala Lumpur, Malaysia
- *Correspondence: Md. Moklesur Rahman Sarker, ; ; orcid.org/0000-0001-9795-0608; Isa Naina Mohamed, ; orcid.org/0000-0001-8891-2423
| |
Collapse
|
5
|
Zhu MZ, Huang J, Li M, Zhoua WJ, Yao ZM, Ji G, Zhang L. Integrated miRNA and mRNA analysis identified potential mechanisms and targets of qianggan extracts in preventing nonalcoholic steatohepatitis. WORLD JOURNAL OF TRADITIONAL CHINESE MEDICINE 2022. [DOI: 10.4103/wjtcm.wjtcm_48_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
6
|
Zhu MZ, Huanga J, Lia M, Zhou WJ, Yao ZM, Ji G, Zhang L. Integrated miRNA and mRNA analysis identified potential mechanisms and targets of qianggan extracts in preventing nonalcoholic steatohepatitis. WORLD JOURNAL OF TRADITIONAL CHINESE MEDICINE 2022. [DOI: 10.4103/2311-8571.335135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
7
|
miR-720 Regulates Insulin Secretion by Targeting Rab35. BIOMED RESEARCH INTERNATIONAL 2021; 2021:6662612. [PMID: 33880375 PMCID: PMC8046542 DOI: 10.1155/2021/6662612] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 03/22/2021] [Accepted: 03/25/2021] [Indexed: 12/12/2022]
Abstract
miRNAs pose a good prospect in the diagnosis and treatment of type 2 diabetes (T2D). This study is aimed at investigating whether miR-720 targets Rab35 to regulate insulin secretion in MIN6 cells and its molecular mechanism and the clinical value of miR-720 as a specific biomarker of T2D. Fifty-five samples of new diagnosis T2D patients and normal control were collected. Levels of miR-720, fasting blood glucose, insulin, and other indicators of glucose and lipid metabolism were determined. We increased and decreased the miR-720 expression using miR-720 mimic and inhibitor to identify the effect of miR-720 on insulin secretion in MIN6 cells, respectively. Then, we used miR-720 mimic, miR-720 inhibitor, and dual luciferase reporter gene assays to prove miR-720 which regulates insulin secretion by targeting Rab35 in MIN6 cells. In addition, we overexpressed and silenced the Rab35 gene to detect the expression of PI3K, Akt, and mTOR in MIN6 cells by RT-PCR and western blot. In this study, circulating miR-720 was significantly higher in the T2D group than the control group, and miR-270 was positive correlated with FBG, while negatively correlated with FINS. The overexpression of miR-720 inhibited insulin secretion, and miR-720 downregulation promoted insulin secretion. miR-720 regulated insulin secretion by targeting Rab35 in MIN6 cells. Compared with the control group, the expression of PI3K, Akt, and mTOR was significantly decreased by the overexpression of the Rab35 gene, while the silencing Rab35 gene could induce the expression of PI3K, Akt, and mTOR. Furthermore, miR-720 mimic could activate the PI3K pathway. We conclude that miR-720 may be a potential biomarker for the diagnosis of T2D. Increase of miR-720 reduced the Rab35 expression then activate the PI3K/Akt/mTOR signal pathway, thus inhibiting insulin secretion.
Collapse
|
8
|
Othman MS, Hafez MM, Abdel Moneim AE. The Potential Role of Zinc Oxide Nanoparticles in MicroRNAs Dysregulation in STZ-Induced Type 2 Diabetes in Rats. Biol Trace Elem Res 2020; 197:606-618. [PMID: 31845207 DOI: 10.1007/s12011-019-02012-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 12/09/2019] [Indexed: 12/15/2022]
Abstract
Diabetes mellitus (DM) is a group of metabolic disorders that are characterized by a loss of glucose homeostasis and insufficiency in production or action of insulin. Development of newly antidiabetic molecules using a variety of organic compounds and biomolecules has been in practice for a long time. Recently, nanomaterials are also being used in antidiabetic studies for their unique properties. In this context, zinc nanoparticles have drawn attention due to the relationship between diabetes and imbalance of zinc homeostasis. Few studies have attempted to investigate the effect of zinc oxide nanoparticles (ZON) in microRNA dysregulations in diabetes. To evaluate the therapeutic effect of ZON on streptozotocin (STZ)-induced diabetic rats as well as its role in microRNA dysregulations. Diabetes was induced in rats by 60 mg/kg body weight (bwt) of STZ and then treated with ZON (5 mg/kg bwt) for 15 consecutive days. The levels of glucose, insulin, oxidative stress markers, and microRNAs expression were measured in liver and pancreas tissues. Intraperitoneal injection of 60 mg/kg bwt of STZ to Wistar rats caused significant decreases in the body weight and Zn contents of pancreas, liver, and kidney. Also, STZ injection increased the blood glucose level and oxidative stress (lipid peroxidation (LPO) and nitric oxide (NO). Meanwhile, STZ decreased blood insulin and pancreatic anti-oxidants. STZ also resulted in β cell dysfunction and destruction and altered the expression of certain pancreatic and liver microRNAs. ZON treatment for 15 days, at a dose of 5 mg/kg bwt resulted in marked improvements in the blood insulin, glucose tolerance, and structure and function of the pancreatic β cells. Furthermore, ZON administration reduced LPO and NO, and increased the levels of enzymatic and non-enzymatic anti-oxidants in STZ-induced diabetic rats. It was found also that ZON specifically regulated the expression of pancreatic and liver microRNAs that involved in diabetes development. The obtained results revealed that ZON is a promising antidiabetic agent. The antidiabetic effect of ZON was partially mediated by restoring the oxidants/antioxidants balance and by modulating the alerted microRNAs.
Collapse
Affiliation(s)
- Mohamed S Othman
- B.Sc. Department, Preparatory Year College, University of Ha'il, Hail, Saudi Arabia
- Faculty of Biotechnology, MSA University, Giza, Egypt
| | - Mohamed M Hafez
- Biochemistry Department, Faculty of Pharmacy, Ahram Canadian University (ACU), Giza, Egypt
| | - Ahmed E Abdel Moneim
- Zoology and Entomology Department, Faculty of Science, Helwan University, Cairo, Egypt.
| |
Collapse
|
9
|
Inhibition of miR-17~92 Cluster Ameliorates High Glucose-Induced Podocyte Damage. Mediators Inflamm 2020; 2020:6126490. [PMID: 32774146 PMCID: PMC7391105 DOI: 10.1155/2020/6126490] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 05/13/2020] [Accepted: 06/13/2020] [Indexed: 12/13/2022] Open
Abstract
The loss and damage of podocytes is an early feature of diabetic nephropathy (DN). The miR-17∼92 cluster was dysregulated in diabetic and polycystic kidney disease patients, but its role in DN is unclear. Hence, an in vitro study on the high glucose- (HG-) treated mouse podocytes (MPC5) was designed to elucidate the effect of miR-17∼92 cluster downregulation on cell viability, apoptosis, inflammation, fibrosis, and podocyte function. The results suggested that the miR-17∼92 cluster members miR-17-5p, miR-18a, miR-19a, miR-19b, miR-20a, and miR-92a were upregulated in the renal biopsy tissue of DN patients and HG-treated MPC5. The downregulation of the miR-17∼92 cluster effectively suppressed the cell apoptosis, inflammation, fibrosis, and podocyte dysfunction in HG-stimulated MPC5 cells. The bioinformatics analysis and rescue experiments showed that ABCA1 (ATP-binding cassette transporter A1) is an effector of the miR-17~92 cluster. Silence of ABCA1 inhibited the protective effect of the miR-17∼92 cluster downregulation on podocyte damage. In summary, this research indicated that the downregulation of the miR-17∼92 cluster ameliorates HG-induced podocyte damage via targeting ABCA1.
Collapse
|
10
|
Cammarata G, Duro G, Chiara TD, Curto AL, Taverna S, Candore G. Circulating miRNAs in Successful and Unsuccessful Aging. A Mini-review. Curr Pharm Des 2020; 25:4150-4153. [PMID: 31742494 DOI: 10.2174/1381612825666191119091644] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 11/04/2019] [Indexed: 12/13/2022]
Abstract
Aging is a multifactorial process that affects the organisms at genetic, molecular and cellular levels. This process modifies several tissues with a negative impact on cells physiology, tissues and organs functionality, altering their regeneration capacity. The chronic low-grade inflammation typical of aging, defined as inflammaging, is a common biological factor responsible for the decline and beginning of the disease in age. A murine parabiosis model that combines the vascular system of old and young animals, suggests that soluble factors released by young individuals may improve the regenerative potential of old tissue. Therefore, circulating factors have a key role in the induction of aging phenotype. Moreover, lifestyle can influence the physiological status of multiple organs, via epigenetic mechanisms. Recently, microRNAs are considered potential sensors of aging.
Collapse
Affiliation(s)
- Giuseppe Cammarata
- Institute for Biomedical Research and Innovation, National Research Council of Italy, Palermo, Italy
| | - Giovanni Duro
- Institute for Biomedical Research and Innovation, National Research Council of Italy, Palermo, Italy
| | - Tiziana Di Chiara
- U.O.C di Medicina Interna con Stroke Care, Dipartimento Biomedico di Medicina Interna e Specialistica (Di.Bi.M.I.S), University of Palermo, Palermo, Italy
| | - Alessia Lo Curto
- Institute for Biomedical Research and Innovation, National Research Council of Italy, Palermo, Italy
| | - Simona Taverna
- Institute for Biomedical Research and Innovation, National Research Council of Italy, Palermo, Italy
| | - Giuseppina Candore
- Laboratory of Immunopathology and Immunosenescence, Department of Biomedicine, Neuroscience and Advanced Diagnostics, University of Palermo, Palermo, Italy
| |
Collapse
|
11
|
Zhang P, Song X, Dong Q, Zhou L, Wang L. miR-27-3p inhibition restore fibroblasts viability in diabetic wound by targeting NOVA1. Aging (Albany NY) 2020; 12:12841-12849. [PMID: 32589614 PMCID: PMC7377889 DOI: 10.18632/aging.103266] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 04/20/2020] [Indexed: 12/15/2022]
Abstract
Diabetic wounds increase morbidity and decrease quality of life in patients with type 2 diabetes. Serum miR-27-3p levels are reportedly elevated in type 2 diabetic patients. In the present study, we explored the role of miR-27-3p during wound healing. We found that miR-27-3p is overexpressed in cutaneous fibroblasts of diabetic patients and mice. miR-27-3p knockdown enhanced the proliferation and migration of fibroblasts, while suppressing the incidence of fibroblast apoptosis. Overexpressing miR-27-3p in fibroblasts had the opposite effects. We also identified neuro-oncological ventral antigen 1 (NOVA1) as a target of miR-27-3p in fibroblasts. Knocking down NOVA1 using targeted siRNA mimicked the effects of miR-27-3p overexpression in fibroblasts. Administration of miR-27-3p to the area around wounds inflicted in mice delayed healing of those wounds. This suggests that miR-27-3p suppresses fibroblast function by targeting NOVA1, which results in the slowing of wound healing. These findings may offer a new approach to the treatment of diabetic wound healing.
Collapse
Affiliation(s)
- Peng Zhang
- Department of Orthopedics, Suzhou Science and Technology Town Hospital, The Affiliated Suzhou Science and Technology Town Hospital of Nanjing Medical University, Suzhou 215000, China
- Department of Orthopedics, Second Affiliated Hospital of Soochow University, Suzhou 215000, China
| | - Xiaomei Song
- Department of Orthopedics, Second Affiliated Hospital of Soochow University, Suzhou 215000, China
| | - Qirong Dong
- Department of Orthopedics, Second Affiliated Hospital of Soochow University, Suzhou 215000, China
| | - Long Zhou
- Department of Orthopedics, Suzhou Science and Technology Town Hospital, The Affiliated Suzhou Science and Technology Town Hospital of Nanjing Medical University, Suzhou 215000, China
| | - Lei Wang
- Department of Orthopedics, Suzhou Science and Technology Town Hospital, The Affiliated Suzhou Science and Technology Town Hospital of Nanjing Medical University, Suzhou 215000, China
| |
Collapse
|
12
|
Jiménez A, Organista-Juárez D, Torres-Castro A, Guzmán-Ruíz MA, Estudillo E, Guevara-Guzmán R. Olfactory Dysfunction in Diabetic Rats is Associated with miR-146a Overexpression and Inflammation. Neurochem Res 2020; 45:1781-1790. [PMID: 32405762 DOI: 10.1007/s11064-020-03041-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 04/18/2020] [Accepted: 04/25/2020] [Indexed: 12/16/2022]
Abstract
Type 2 diabetes (T2D) is associated with cognitive decline and dementia. Both neurodegenerative conditions are characterized by olfactory dysfunction (OD) which is also observed in diabetic patients. Diabetes and neurodegeneration display altered miRNAs expression; therefore, the study of miRNAs in the diabetic olfactory system is important in order to know the mechanisms involved in neurodegeneration induced by T2D. In this work we evaluated the expression of miRs206, 451, 146a and 34a in the olfactory bulb (OB) of T2D rats and its association with OD. T2D induction was performed by administering streptozotocin to neonatal rats. The olfactory function was evaluated after reaching the adulthood by employing the buried pellet and social recognition tests. After 18 weeks, animals were sacrificed to determinate miRNAs and protein expression in the OB. T2D animals showed a significant increase in the latency to find the odor stimulus in the buried pellet test and a significant reduction in the interest to investigate the novel juvenile subjects in the social recognition test, indicating OD. In miRNAs analysis we observed a significant increase of miR-146a expression in the OB of T2D rats when compared to controls. This increase in miR-146a correlated with the overexpression of IL-1β in the OB of T2D rats. The present results showed that OD in T2D rats is associated with IL-1β mediated-inflammation and miR-146a overexpression, suggesting that high levels of IL-1β could trigger miR-146a upregulation as a negative feedback of the inflammatory response in the OB of T2D rats.
Collapse
Affiliation(s)
- Adriana Jiménez
- Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Diana Organista-Juárez
- Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Areli Torres-Castro
- Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, México.,, IMSS Hospital General Regional 1 Dr. Carlos Mac Gregor Sánchez Navarro, Ciudad de México, México
| | - Mara A Guzmán-Ruíz
- Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Enrique Estudillo
- Laboratorio de Reprogramación Celular IFC/UNAM, Instituto Nacional de Neurología y Neurocirugía "Manuel Velasco Suárez,", Ciudad de México, México
| | - Rosalinda Guevara-Guzmán
- Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, México.
| |
Collapse
|
13
|
Huo W, Li H, Zhang Y, Li H. Epigenetic silencing of microRNA-874-3p implicates in erectile dysfunction in diabetic rats by activating the Nupr1/Chop-mediated pathway. FASEB J 2019; 34:1695-1709. [PMID: 31914690 DOI: 10.1096/fj.201902086r] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 11/20/2019] [Accepted: 11/21/2019] [Indexed: 12/11/2022]
Abstract
Diabetes is a global medical problem that causes many deaths every year. Complications caused by diabetes are serious and affect patients' quality of life. Diabetes mellitus erectile dysfunction (DMED) affects more than half of male diabetes patients. In this study, we determined the role of microRNA-874-3p (miR-874-3p) and nuclear protein-1 (Nupr1) in streptozocin-induced DMED rats. Control rats received equal amount of vehicle. These rats were also injected with lentiviral vector or agomir to silence or overexpress miR-874-3p or Nupr1. Apomorphine (100 μg/kg, s.c.) was used to induce erection and time of erection was recorded. Intracavernosal and mean arterial pressure ratio (ICP/MAP) were also recorded. O2- level and concentration of thiobarbituric acid reactive substances (TBARs) were detected using lucigenin-derived chemiluminescence method and Colorimetry. Rat cavernosum tissues were collected for subsequent experiments. Cavernosum smooth muscle cells (CSMCs) were also used for in vitro experiments. Nupr1 was found highly expressed (by RT-qPCR and Western blot analysis) in cavernosum tissues from DMED rats. Nupr1 silencing improved the ICP/MAP ratio and erection time. Nupr1 silencing also reduced CSMC apoptosis (by TUNEL assay) as well as decreased O2- level and TBAR concentration. Nupr1 was targeted and inhibited by miR-874-3p (by luciferase activity and RNA immunoprecipitation assays), which was downregulated in DMED. miR-874-3p downregulation was due to increased methylation at the promoter region (methylation-specific PCR). miR-874-3p overexpression improved erection time and reduced apoptosis. In summary, miR-874-3p was downregulated which led to increased apoptosis and erectile dysfunction in DMED rats, through inhibition of Nupr1-mediated pathway. This study may also provide a new therapeutic direction for the treatment of DMED.
Collapse
Affiliation(s)
- Wei Huo
- Department of Urology, China-Japan Union Hospital of Jilin University, Changchun, P.R. China
| | - Hongyan Li
- Department of Urology, China-Japan Union Hospital of Jilin University, Changchun, P.R. China
| | - Yun Zhang
- Department of Urology, China-Japan Union Hospital of Jilin University, Changchun, P.R. China
| | - Hai Li
- Department of Urology, China-Japan Union Hospital of Jilin University, Changchun, P.R. China
| |
Collapse
|
14
|
Amin KN, Umapathy D, Anandharaj A, Ravichandran J, Sasikumar CS, Chandra SKR, Kesavan R, Kunka Mohanram R. miR-23c regulates wound healing by targeting stromal cell-derived factor-1α (SDF-1α/CXCL12) among patients with diabetic foot ulcer. Microvasc Res 2019; 127:103924. [PMID: 31520606 DOI: 10.1016/j.mvr.2019.103924] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2019] [Revised: 09/09/2019] [Accepted: 09/10/2019] [Indexed: 02/06/2023]
Abstract
Diabetic Foot Ulcer (DFU) is the most common in patients who have diabetic peripheral neuropathy and angiopathy as well as a foot deformity. The delayed process of wound healing in diabetic condition is mainly due to reduced expression of the growth factors, persistent inflammatory response and endothelial dysfunction. Emerging evidence indicate that miRNAs play a crucial role in regulating angiogenesis, collectively called as "angiomiRs". The present study aimed to screen the expressions of angiomiRs particularly miR23 family and its association with the various angiogenic factors including SDF-1α in the tissue biopsies isolated from DFU patients. Among the 40 enrolled subjects for this study, 10 were subjected in each group as healthy controls, type 2 diabetic subjects (T2DM), T2DM subjects with uninfected DFU, and T2DM subjects with infected DFU. The expression of both the miR23 family such as hsa-miR-23a, hsa-miR-23b, hsa-miR-23c and angiogenic factors such as SDF-1α, HIF-1α, VEGF, eNOS were investigated in peripheral blood mononuclear cells and tissue biopsy samples using qPCR. We found that the angiogenic factor SDF-1α was significantly decreased in both the circulation and tissue biopsies of patients with T2DM and infected DFU. The SDF-1α at the 3'-untranslated region pairs with target miRNAs namely hsa-miR-23a-3p, hsa-miR-23b-3p and hsa-miR-23c as established using miRNA target prediction algorithm. Further, the tissue-specific expressions of miR-23a and miR-23b were found to be low whereas miR-23c was increased in patients with infected DFU. Moreover, correlation analysis showed that SDF-1α was found to have a significant inverse association with miR-23c. In conclusion, miR-23c may function as a new regulator to inhibit angiogenesis by targeting SDF-1α.
Collapse
Affiliation(s)
- Karan Naresh Amin
- Life Science Division, SRM Research Institute and Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603 203, Tamil Nadu, India
| | - Dhamodharan Umapathy
- Life Science Division, SRM Research Institute and Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603 203, Tamil Nadu, India
| | - Arunkumar Anandharaj
- Indian Institute of Food Processing Technology, Pudukkottai Road, Thanjavur 613005, Tamil Nadu, India
| | - Jayasuriya Ravichandran
- Life Science Division, SRM Research Institute and Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603 203, Tamil Nadu, India
| | - Changam Sheela Sasikumar
- Department of Podiatry, Hycare Super Speciality Hospital, MMDA Colony, Arumbakkam, Chennai 600 106, Tamil Nadu, India
| | - Sathish Kumar Rajappan Chandra
- Interdisciplinary Institute of Indian System of Medicine (IIISM), SRM Institute of Science & Technology, Kattankulathur 603 203, Tamil Nadu, India
| | - Rajesh Kesavan
- Department of Podiatry, Hycare Super Speciality Hospital, MMDA Colony, Arumbakkam, Chennai 600 106, Tamil Nadu, India.
| | - Ramkumar Kunka Mohanram
- Life Science Division, SRM Research Institute and Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603 203, Tamil Nadu, India.
| |
Collapse
|
15
|
Mehraban MH, Motovali-Bashi M, Ghasemi Y. MiR-26a and miR-26b downregulate the expression of sucrase-isomaltase enzyme: A new chapter in diabetes treatment. Biochem Biophys Res Commun 2019; 519:192-197. [PMID: 31493868 DOI: 10.1016/j.bbrc.2019.08.138] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 08/24/2019] [Indexed: 12/29/2022]
Abstract
Type II diabetes is a metabolic disease that has affected 460 million people around the globe and become a heavy burden on health care system. Diabetic patients suffer from hyperglycemia and hyperinsulinemia which can damage vital organs in body like heart, kidneys, eyes and nervous system. Different strategies have been introduced to control or lessen these diabetic complications in which one of the most promising approaches is the inhibition of intestinal sucrase-isomaltase (SI). Inhibition of this enzyme will block the release of glucose into bloodstream and lead to reduced postprandial hyperglycemia. MicroRNAs are small regulatory molecules that play critical roles in different cellular pathways and molecular mechanisms. It is proved that microRNAs have significant effects on cellular mechanisms involved in diabetes and can be used as biomarkers for diagnosis of this metabolic disease. Based on bioinformatics analysis miR-26a and miR-26b can interact with a conserved 3'-UTR region of SI mRNA which lead to a hypothesis that these miRs may have negative regulatory effect on this enzyme. In this study, we investigated the impact of high glucose conditions on expression of sucrase-isomaltase, miR-26a and miR-26b in caco-2 cell line. It is proved that in a simulated diabetic condition there is a reverse correlation between the expression pattern of these miRs and SI. QRT-PCR method was used to evaluate the expression of our target molecules. Interestingly, transfection of miR-26a and miR-26b in caco-2 cell line reduced the transcription of SI mRNA and decreased the sucrase and maltase activity of its active sites. To sum up, our results demonstrate the first evidence of the significant effect of miR-26a and miR-26b on SI expression and activity. We proved that these microRNAs may directly inhibit this enzyme and can be used as a new scaffold in search of finding novel treatments for type II diabetes.
Collapse
Affiliation(s)
| | - Majid Motovali-Bashi
- Genetics Division, Department of Biology, Faculty of Sciences, University of Isfahan, Isfahan, Iran.
| | - Younes Ghasemi
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran; Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
16
|
Srivastava SP, Hedayat AF, Kanasaki K, Goodwin JE. microRNA Crosstalk Influences Epithelial-to-Mesenchymal, Endothelial-to-Mesenchymal, and Macrophage-to-Mesenchymal Transitions in the Kidney. Front Pharmacol 2019; 10:904. [PMID: 31474862 PMCID: PMC6707424 DOI: 10.3389/fphar.2019.00904] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Accepted: 07/18/2019] [Indexed: 12/20/2022] Open
Abstract
microRNAs (miRNAs) are small, non-coding nucleotides that regulate diverse biological processes. Altered microRNA biosynthesis or regulation contributes to pathological processes including kidney fibrosis. Kidney fibrosis is characterized by deposition of excess extracellular matrix (ECM), which is caused by infiltration of immune cells, inflammatory cells, altered chemokines, and cytokines as well as activation and accumulation of fibroblasts in the kidney. These activated fibroblasts can arise from epithelial cells via epithelial-to-mesenchymal transition (EMT), from bone marrow-derived M2 phenotype macrophages via macrophage-to-mesenchymal transition (MMT), from endothelial cells via endothelial-to-mesenchymal transition (EndMT), from resident fibroblasts, and from bone marrow-derived monocytes and play a crucial role in fibrotic events. Disrupted microRNA biosynthesis and aberrant regulation contribute to the activation of mesenchymal programs in the kidney. miR-29 regulates the interaction between dipeptidyl peptidase-4 (DPP-4) and integrin β1 and the associated active transforming growth factor β (TGFβ) and pro-EndMT signaling; however, miR-let-7 targets transforming growth factor β receptors (TGFβRs) to inhibit TGFβ signaling. N-acetyl-seryl-aspartyl-lysyl-proline (AcSDKP) is an endogenous anti-fibrotic peptide, which is associated with fibroblast growth factor receptor 1 (FGFR1) phosphorylation and subsequently responsible for the production of miR-let-7. miR-29 and miR-let-7 family clusters participate in crosstalk mechanisms, which are crucial for endothelial cell homeostasis. The physiological level of AcSDKP is vital for the activation of anti-fibrotic mechanisms including restoration of anti-fibrotic microRNA crosstalk and suppression of profibrotic signaling by mitigating DPP-4-associated mesenchymal activation in the epithelial cells, endothelial cells, and M2 phenotype macrophages. The present review highlights recent advancements in the understanding of both the role of microRNAs in the development of kidney disease and their potential as novel therapeutic targets for fibrotic disease states.
Collapse
Affiliation(s)
| | - Ahmad Fahim Hedayat
- Department of Pediatrics, Yale University School of Medicine, New Haven, CT, United States
| | - Keizo Kanasaki
- Internal Medicine 1, Shimane University Faculty of Medicine, Izumo, Japan
| | - Julie E Goodwin
- Department of Pediatrics, Yale University School of Medicine, New Haven, CT, United States
| |
Collapse
|
17
|
Non-Nutritive Sweeteners and Their Implications on the Development of Metabolic Syndrome. Nutrients 2019; 11:nu11030644. [PMID: 30884834 PMCID: PMC6471792 DOI: 10.3390/nu11030644] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 03/12/2019] [Accepted: 03/13/2019] [Indexed: 12/18/2022] Open
Abstract
Individuals widely use non-nutritive sweeteners (NNS) in attempts to lower their overall daily caloric intake, lose weight, and sustain a healthy diet. There are insufficient scientific data that support the safety of consuming NNS. However, recent studies have suggested that NNS consumption can induce gut microbiota dysbiosis and promote glucose intolerance in healthy individuals that may result in the development of type 2 diabetes mellitus (T2DM). This sequence of events may result in changes in the gut microbiota composition through microRNA (miRNA)-mediated changes. The mechanism(s) by which miRNAs alter gene expression of different bacterial species provides a link between the consumption of NNS and the development of metabolic changes. Another potential mechanism that connects NNS to metabolic changes is the molecular crosstalk between the insulin receptor (IR) and G protein-coupled receptors (GPCRs). Here, we aim to highlight the role of NNS in obesity and discuss IR-GPCR crosstalk and miRNA-mediated changes, in the manipulation of the gut microbiota composition and T2DM pathogenesis.
Collapse
|