1
|
Moustakas D, Mani I, Pouliakis A, Iacovidou N, Xanthos T. The Effects of IRL-1620 in Post-ischemic Brain Injury: A Systematic Review and Meta-analysis of Experimental Studies. Neurocrit Care 2024; 41:665-680. [PMID: 38724864 DOI: 10.1007/s12028-024-01994-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 04/02/2024] [Indexed: 09/07/2024]
Abstract
BACKGROUND Sovateltide (IRL-1620), an endothelin B receptor agonist, has previously demonstrated neuroprotective and neuroregenerative effects in animal models of acute ischemic stroke. Recently, clinical trials indicated that it could also be effective in humans with stroke. Here, we systematically investigate whether IRL-1620 may be used for the treatment of ischemia-induced brain injury. METHODS A systematic review was performed following the Preferred Reporting Items for Systematic reviews and Meta-Analyses guidelines. MEDLINE (PubMed) and Scopus databases were searched for eligible studies up to December 2022. The databases ClinicalTrials.gov and Pharmazz Inc. were screened for unpublished or ongoing trials. Only studies in English were evaluated for eligibility. Meta-analysis of the included studies was also conducted. RESULTS Finally, seven studies were included in the review, all in animal rat models because of scarcity of clinical trials. Six studies, all in middle cerebral artery occlusion (MCAO) models, were selected for meta-analysis. In the two studies assessing mortality, no deaths were reported in the IRL-1620 group 24 h after MCAO, whereas the vehicle group had almost a five times higher mortality risk (risk ratio 5.3, 95% confidence interval 0.7-40.1, I2 = 0%). In all five studies evaluating outcome on day 7 after MCAO, IRL-1620 was associated with statistically significantly lower neurological deficit and improved motor performance compared with the vehicle. Infract volume, differentiation potential of neuronal progenitor cells, and mitochondrial fate also improved with IRL-1620 administration. CONCLUSIONS According to the above, in animal MCAO models, IRL-1620 enhanced neurogenesis and neuroprotection and improved outcome. Future studies are needed to expand our understanding of its effects in human study participants with acute ischemic stroke as well as in other common causes of cerebral ischemia including cardiac arrest.
Collapse
Affiliation(s)
- Dimitris Moustakas
- Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Iliana Mani
- 2d Department of Internal Medicine, Medical School, Hippokration General Hospital, National and Kapodistrian University of Athens, Vas. Sofias 114, 11527, Athens, Greece.
| | - Abraham Pouliakis
- 2d Department of Pathology, Attikon University General Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Nikoletta Iacovidou
- Neonatal Department, Aretaieio Hospital, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Theodoros Xanthos
- School of Health Sciences, University of West Attica, Athens, Greece
| |
Collapse
|
2
|
Skalka GL, Tsakovska M, Murphy DJ. Kinase signalling adaptation supports dysfunctional mitochondria in disease. Front Mol Biosci 2024; 11:1354682. [PMID: 38434478 PMCID: PMC10906720 DOI: 10.3389/fmolb.2024.1354682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 01/15/2024] [Indexed: 03/05/2024] Open
Abstract
Mitochondria form a critical control nexus which are essential for maintaining correct tissue homeostasis. An increasing number of studies have identified dysregulation of mitochondria as a driver in cancer. However, which pathways support and promote this adapted mitochondrial function? A key hallmark of cancer is perturbation of kinase signalling pathways. These pathways include mitogen activated protein kinases (MAPK), lipid secondary messenger networks, cyclic-AMP-activated (cAMP)/AMP-activated kinases (AMPK), and Ca2+/calmodulin-dependent protein kinase (CaMK) networks. These signalling pathways have multiple substrates which support initiation and persistence of cancer. Many of these are involved in the regulation of mitochondrial morphology, mitochondrial apoptosis, mitochondrial calcium homeostasis, mitochondrial associated membranes (MAMs), and retrograde ROS signalling. This review will aim to both explore how kinase signalling integrates with these critical mitochondrial pathways and highlight how these systems can be usurped to support the development of disease. In addition, we will identify areas which require further investigation to fully understand the complexities of these regulatory interactions. Overall, this review will emphasize how studying the interaction between kinase signalling and mitochondria improves our understanding of mitochondrial homeostasis and can yield novel therapeutic targets to treat disease.
Collapse
Affiliation(s)
- George L. Skalka
- School of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Mina Tsakovska
- School of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Daniel J. Murphy
- School of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom
- CRUK Scotland Institute, Glasgow, United Kingdom
| |
Collapse
|
3
|
Ranjan AK, Gulati A. Advances in Therapies to Treat Neonatal Hypoxic-Ischemic Encephalopathy. J Clin Med 2023; 12:6653. [PMID: 37892791 PMCID: PMC10607511 DOI: 10.3390/jcm12206653] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 10/17/2023] [Accepted: 10/18/2023] [Indexed: 10/29/2023] Open
Abstract
Neonatal hypoxic-ischemic encephalopathy (HIE) is a condition that results in brain damage in newborns due to insufficient blood and oxygen supply during or after birth. HIE is a major cause of neurological disability and mortality in newborns, with over one million neonatal deaths occurring annually worldwide. The severity of brain injury and the outcome of HIE depend on several factors, including the cause of oxygen deprivation, brain maturity, regional blood flow, and maternal health conditions. HIE is classified into mild, moderate, and severe categories based on the extent of brain damage and resulting neurological issues. The pathophysiology of HIE involves different phases, including the primary phase, latent phase, secondary phase, and tertiary phase. The primary and secondary phases are characterized by episodes of energy and cell metabolism failures, increased cytotoxicity and apoptosis, and activated microglia and inflammation in the brain. A tertiary phase occurs if the brain injury persists, characterized by reduced neural plasticity and neuronal loss. Understanding the cellular and molecular aspects of the different phases of HIE is crucial for developing new interventions and therapeutics. This review aims to discuss the pathophysiology of HIE, therapeutic hypothermia (TH), the only approved therapy for HIE, ongoing developments of adjuvants for TH, and potential future drugs for HIE.
Collapse
Affiliation(s)
- Amaresh K Ranjan
- Research and Development, Pharmazz Inc., Willowbrook, IL 60527, USA
| | - Anil Gulati
- Research and Development, Pharmazz Inc., Willowbrook, IL 60527, USA
- Department of Bioengineering, The University of Illinois at Chicago, Chicago, IL 60607, USA
- College of Pharmacy, Midwestern University, Downers Grove, IL 60515, USA
| |
Collapse
|
4
|
Abstract
Sovateltide (Tycamzzi™), a highly selective endothelin-B receptor agonist and synthetic analog of endothelin-1, is being developed by Pharmazz, Inc. as a neural progenitor cell therapeutic agent for the treatment of acute cerebral ischemic stroke (ACIS), hypoxic-ischemic encephalopathy (HIE), spinal cord injuries and Alzheimer's disease. In May 2023, sovateltide was approved in India for the treatment of cerebral ischemic stroke within 24 h of stroke onset. This article summarizes the milestones in the development of sovateltide leading to this first approval for use in patients with ACIS.
Collapse
Affiliation(s)
- Susan J Keam
- Springer Nature, Private Bag 65901, Mairangi Bay, Auckland, 0754, New Zealand.
| |
Collapse
|
5
|
Briyal S, Ranjan AK, Gulati A. Oxidative stress: A target to treat Alzheimer's disease and stroke. Neurochem Int 2023; 165:105509. [PMID: 36907516 DOI: 10.1016/j.neuint.2023.105509] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 02/01/2023] [Accepted: 03/05/2023] [Indexed: 03/13/2023]
Abstract
Oxidative stress has been established as a well-known pathological condition in several neurovascular diseases. It starts with increased production of highly oxidizing free-radicals (e.g. reactive oxygen species; ROS and reactive nitrogen species; RNS) and becomes too high for the endogenous antioxidant system to neutralize them, which results in a significantly disturbed balance between free-radicals and antioxidants levels and causes cellular damage. A number of studies have evidently shown that oxidative stress plays a critical role in activating multiple cell signaling pathways implicated in both progression as well as initiation of neurological diseases. Therefore, oxidative stress continues to remain a key therapeutic target for neurological diseases. This review discusses the mechanisms involved in reactive oxygen species (ROS) generation in the brain, oxidative stress, and pathogenesis of neurological disorders such as stroke and Alzheimer's disease (AD) and the scope of antioxidant therapies for these disorders.
Collapse
Affiliation(s)
- Seema Briyal
- College of Pharmacy, Midwestern University, Downers Grove, IL, 60515, USA.
| | - Amaresh K Ranjan
- College of Pharmacy, Midwestern University, Downers Grove, IL, 60515, USA
| | - Anil Gulati
- College of Pharmacy, Midwestern University, Downers Grove, IL, 60515, USA; Pharmazz Inc. Research and Development, Willowbrook, IL, USA
| |
Collapse
|
6
|
Neuroprotective Strategies for Ischemic Stroke-Future Perspectives. Int J Mol Sci 2023; 24:ijms24054334. [PMID: 36901765 PMCID: PMC10002358 DOI: 10.3390/ijms24054334] [Citation(s) in RCA: 35] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 02/16/2023] [Accepted: 02/20/2023] [Indexed: 02/24/2023] Open
Abstract
Ischemic stroke is the main cause of death and the most common cause of acquired physical disability worldwide. Recent demographic changes increase the relevance of stroke and its sequelae. The acute treatment for stroke is restricted to causative recanalization and restoration of cerebral blood flow, including both intravenous thrombolysis and mechanical thrombectomy. Still, only a limited number of patients are eligible for these time-sensitive treatments. Hence, new neuroprotective approaches are urgently needed. Neuroprotection is thus defined as an intervention resulting in the preservation, recovery, and/or regeneration of the nervous system by interfering with the ischemic-triggered stroke cascade. Despite numerous preclinical studies generating promising data for several neuroprotective agents, successful bench-to-bedside translations are still lacking. The present study provides an overview of current approaches in the research field of neuroprotective stroke treatment. Aside from "traditional" neuroprotective drugs focusing on inflammation, cell death, and excitotoxicity, stem-cell-based treatment methods are also considered. Furthermore, an overview of a prospective neuroprotective method using extracellular vesicles that are secreted from various stem cell sources, including neural stem cells and bone marrow stem cells, is also given. The review concludes with a short discussion on the microbiota-gut-brain axis that may serve as a potential target for future neuroprotective therapies.
Collapse
|
7
|
Sovateltide Mediated Endothelin B Receptors Agonism and Curbing Neurological Disorders. Int J Mol Sci 2022; 23:ijms23063146. [PMID: 35328566 PMCID: PMC8955091 DOI: 10.3390/ijms23063146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 03/08/2022] [Accepted: 03/11/2022] [Indexed: 11/17/2022] Open
Abstract
Neurological/neurovascular disorders constitute the leading cause of disability and the second leading cause of death globally. Major neurological/neurovascular disorders or diseases include cerebral stroke, Alzheimer’s disease, spinal cord injury, neonatal hypoxic-ischemic encephalopathy, and others. Their pathophysiology is considered highly complex and is the main obstacle in developing any drugs for these diseases. In this review, we have described the endothelin system, its involvement in neurovascular disorders, the importance of endothelin B receptors (ETBRs) as a novel potential drug target, and its agonism by IRL-1620 (INN—sovateltide), which we are developing as a drug candidate for treating the above-mentioned neurological disorders/diseases. In addition, we have highlighted the results of our preclinical and clinical studies related to these diseases. The phase I safety and tolerability study of sovateltide has shown it as a safe and tolerable compound at therapeutic dosages. Furthermore, preclinical and clinical phase II studies have demonstrated the efficacy of sovateltide in treating acute ischemic stroke. It is under development as a first-in-class drug. In addition, efficacy studies in Alzheimer’s disease (AD), acute spinal cord injury, and neonatal hypoxic-ischemic encephalopathy (HIE) are ongoing. Successful completion of these studies will validate that ETBRs signaling can be an important target in developing drugs to treat neurological/neurovascular diseases.
Collapse
|
8
|
Ramos MD, Briyal S, Prazad P, Gulati A. Neuroprotective Effect of Sovateltide (IRL 1620, PMZ 1620) in a Neonatal Rat Model of Hypoxic-Ischemic Encephalopathy. Neuroscience 2022; 480:194-202. [PMID: 34826534 DOI: 10.1016/j.neuroscience.2021.11.027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 11/13/2021] [Accepted: 11/15/2021] [Indexed: 11/25/2022]
Abstract
Therapeutic hypothermia with modest results is the only treatment currently available for neonatal hypoxic ischemic encephalopathy (HIE). Endothelin B (ETB) receptors in the brain are shown to have neural restorative capacity. ETB receptors agonist sovateltide alone or as an adjuvant therapy may enhance neurovascular remodeling in HIE. Sprague-Dawley rat pups were grouped based on treatments into (1) Control; (2) HIE + Vehicle; (3) HIE + Hypothermia; (4) HIE + sovateltide; and (5) HIE + sovateltide + hypothermia. HIE was induced on postnatal day (PND) 7, followed by sovateltide (5 µg/kg) intracerebroventricular injection and/or hypothermia. On PND 10, brains were analyzed for the expression of vascular endothelial growth factor (VEGF), nerve growth factor (NGF), ETB receptors, oxidative stress and cellular damage markers. Vehicle-treated animals had high oxidative stress level as indicated by an increase in lipid peroxidation factor, malondialdehyde, and decreased antioxidants, reduced glutathione and superoxide dismutase, compared to control. These effects were reversed in sovateltide alone (p < 0.001) or in combination with the therapeutic hypothermia (p < 0.001), indicating that ETB receptor activation reduces oxidative stress injury following HIE. Animals receiving sovateltide demonstrated a significant (p < 0.0001) upregulation of ETB receptor, VEGF, and NGF expression in the brain compared to vehicle-treated animals. Additionally, sovateltide alone or in combination with therapeutic hypothermia significantly (p < 0.001) reduced cell death when compared to vehicle or therapeutic hypothermia alone, demonstrating that sovateltide is neuroprotective and attenuates neural damage following HIE. These findings are important and merit additional studies for development of new interventions for improving neurodevelopmental outcomes after HIE.
Collapse
Affiliation(s)
- Michelle Davis Ramos
- Advocate Children's Hospital, Department of Neonatology, Park Ridge, IL 60068 United States.
| | - Seema Briyal
- Midwestern University, College of Pharmacy, Downers Grove, IL 60515, United States.
| | - Preetha Prazad
- Advocate Children's Hospital, Department of Neonatology, Park Ridge, IL 60068 United States
| | - Anil Gulati
- Midwestern University, College of Pharmacy, Downers Grove, IL 60515, United States; Pharmazz Inc. Research and Development, Willowbrook, IL 60527, United States
| |
Collapse
|
9
|
Leu T, Fandrey J, Schreiber T. (H)IF applicable: promotion of neurogenesis by induced HIF-2 signalling after ischaemia. Pflugers Arch 2021; 473:1287-1299. [PMID: 34251509 PMCID: PMC8302505 DOI: 10.1007/s00424-021-02600-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 06/16/2021] [Accepted: 06/23/2021] [Indexed: 11/26/2022]
Abstract
HIF-2 represents a tissue-specific isoform of the hypoxia-inducible factors (HIFs) which regulate oxygen homeostasis in the cell. In acute oxygen deficiency, HIF transcription factors ensure the timely restoration of adequate oxygen supply. Particularly in medical conditions such as stroke, which have a high mortality risk due to ischaemic brain damage, rapid recovery of oxygen supply is of extraordinary importance. Nevertheless, the endogenous mechanisms are often not sufficient to respond to severe hypoxic stress with restoring oxygenation and fail to protect the tissue. Herein, we analysed murine neurospheres without functioning HIF-2α and found that special importance in the differentiation of neurons can be attributed to HIF-2 in the brain. Other processes, such as cell migration and signal transduction of different signalling pathways, appear to be mediated to some extent via HIF-2 and illustrate the function of HIF-2 in brain remodelling. Without hypoxic stress, HIF-2 in the brain presumably focuses on the fine-tuning of the neural network. However, a therapeutically increase of HIF-2 has the potential to regenerate or replace destroyed brain tissue and help minimize the consequences of an ischaemic stroke.
Collapse
Affiliation(s)
- Tristan Leu
- Institute of Physiology, University Duisburg-Essen, 45147, Essen, Germany
| | - Joachim Fandrey
- Institute of Physiology, University Duisburg-Essen, 45147, Essen, Germany.
| | - Timm Schreiber
- Institute of Physiology, University Duisburg-Essen, 45147, Essen, Germany
- Institute of Physiology, Pathophysiology and Toxicology and Center for Biomedical Education and Research (ZBAF), University of Witten/Herdecke, 58453, Witten, Germany
| |
Collapse
|
10
|
Baroncini A, Maffulli N, Eschweiler J, Tingart M, Migliorini F. Pharmacological management of secondary spinal cord injury. Expert Opin Pharmacother 2021; 22:1793-1800. [PMID: 33899630 DOI: 10.1080/14656566.2021.1918674] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Introduction: Secondary spinal cord injury (SCI) sets on immediately after trauma and, despite prompt treatment, may become chronic. SCI is a complex condition and presents numerous challenges to patients and physicians alike, also considering the lack of an approved pharmacological therapy.Areas covered: This review describes the pathophysiological mechanisms leading to secondary SCI to highlight possible targets for pharmacological therapy. Furthermore, an extensive search of the literature on different databases (PubMed, Google scholar, Embase, and Scopus) and of the current clinical trials (clinicaltrials.gov) was performed to investigate the current outlook for the pharmacological management of SCI. Only drugs with performed or ongoing clinical trials were considered.Expert opinion: Pharmacological therapy aims to improve motor and sensory function in patients. Overall, drugs are divided into neuroprotective compounds, which aim to limit the damage induced by the pro-inflammatory and pro-apoptotic milieu of SCI, and neuroregenerative drugs, which induce neuronal and axonal regrowth. While many compounds have been trialed with promising results, none has yet completed a stage III trial and has been approved for the pharmacological management of SCI.
Collapse
Affiliation(s)
- Alice Baroncini
- Department of Orthopaedic Surgery, RWTH Aachen University Clinic, Aachen, Germany
| | - Nicola Maffulli
- Department of Medicine, Surgery and Dentistry, University of Salerno, Baronissi, Italy.,School of Pharmacy and Bioengineering, Keele University School of Medicine, Stoke on Trent, UK.,Centre for Sports and Exercise Medicine, Mile End Hospital, Queen Mary University of London, Barts and the London School of Medicine and Dentistry, London, UK
| | - Jörg Eschweiler
- Department of Orthopaedic Surgery, RWTH Aachen University Clinic, Aachen, Germany
| | - Markus Tingart
- Department of Orthopaedic Surgery, RWTH Aachen University Clinic, Aachen, Germany
| | - Filippo Migliorini
- Department of Orthopaedic Surgery, RWTH Aachen University Clinic, Aachen, Germany
| |
Collapse
|
11
|
Zhong L, Yan J, Li H, Meng L. HDAC9 Silencing Exerts Neuroprotection Against Ischemic Brain Injury via miR-20a-Dependent Downregulation of NeuroD1. Front Cell Neurosci 2021; 14:544285. [PMID: 33584204 PMCID: PMC7873949 DOI: 10.3389/fncel.2020.544285] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 11/25/2020] [Indexed: 12/17/2022] Open
Abstract
Cerebral stroke is an acute cerebrovascular disease that is a leading cause of death and disability worldwide. Stroke includes ischemic stroke and hemorrhagic strokes, of which the incidence of ischemic stroke accounts for 60–70% of the total number of strokes. Existing preclinical evidence suggests that inhibitors of histone deacetylases (HDACs) are a promising therapeutic intervention for stroke. In this study, the purpose was to investigate the possible effect of HDAC9 on ischemic brain injury, with the underlying mechanism related to microRNA-20a (miR-20a)/neurogenic differentiation 1 (NeuroD1) explored. The expression of HDAC9 was first detected in the constructed middle cerebral artery occlusion (MCAO)-provoked mouse model and oxygen-glucose deprivation (OGD)-induced cell model. Next, primary neuronal apoptosis, expression of apoptosis-related factors (Bax, cleaved caspase3 and bcl-2), LDH leakage rate, as well as the release of inflammatory factors (TNF-α, IL-1β, and IL-6) were evaluated by assays of TUNEL, Western blot, and ELISA. The relationships among HDAC9, miR-20a, and NeuroD1 were validated by in silico analysis and ChIP assay. HDAC9 was highly-expressed in MCAO mice and OGD-stimulated cells. Silencing of HDAC9 inhibited neuronal apoptosis and inflammatory factor release in vitro. HDAC9 downregulated miR-20a by enriching in its promoter region, while silencing of HDCA9 promoted miR-20a expression. miR-20a targeted Neurod1 and down-regulated its expression. Silencing of HDAC9 diminished OGD-induced neuronal apoptosis and inflammatory factor release in vitro as well as ischemic brain injury in vivo by regulating the miR-20a/NeuroD1 signaling. Overall, our study revealed that HDAC9 silencing could retard ischemic brain injury through the miR-20a/Neurod1 signaling.
Collapse
Affiliation(s)
- Liangjun Zhong
- Department of Neurosurgery, Pingyin County People's Hospital, Jinan, China
| | - Jinxiang Yan
- Department of Neurosurgery, Ningyang No. 1 People's Hospital, Tai'an, China
| | - Haitao Li
- Department of Neurology, Qihe County People's Hospital, Dezhou, China
| | - Lei Meng
- Department of Neurosurgery, Shandong Provincial Hospital, Jinan, China
| |
Collapse
|
12
|
Gulati A, Agrawal N, Vibha D, Misra UK, Paul B, Jain D, Pandian J, Borgohain R. Safety and Efficacy of Sovateltide (IRL-1620) in a Multicenter Randomized Controlled Clinical Trial in Patients with Acute Cerebral Ischemic Stroke. CNS Drugs 2021; 35:85-104. [PMID: 33428177 PMCID: PMC7872992 DOI: 10.1007/s40263-020-00783-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/05/2020] [Indexed: 12/23/2022]
Abstract
BACKGROUND Sovateltide (IRL-1620, PMZ-1620), an endothelin-B receptor agonist, has been previously shown to increase cerebral blood flow, have anti-apoptotic activity and produce neurovascular remodeling when administered intravenously following acute cerebral ischemic stroke in rats. Its safety and tolerability were confirmed in healthy human volunteers (CTRI/2016/11/007509). OBJECTIVE Our objective was to determine the safety, tolerability and efficacy of sovateltide as an addition to standard of care (SOC) in patients with acute cerebral ischemic stroke. METHODS A prospective, multicentric, randomized, double-blind, placebo-controlled study was conducted to compare the safety (primary objective) and efficacy (secondary objective) of sovateltide in patients with acute cerebral ischemic stroke. Adult males or females aged 18-70 years who had experienced a radiologically confirmed ischemic stroke within the last 24 h were included in the study. Patients with intracranial hemorrhage and those receiving endovascular therapy were excluded. Patients randomized to the sovateltide group received three doses of sovateltide (each dose 0.3 µg/kg) administered as an intravenous bolus over 1 min at an interval of 3 ± 1 h on day 1, day 3 and day 6 (total dose of 0.9 µg/kg/day). Patients randomized to the placebo group received an equal volume of saline. Every patient in both groups received SOC for stroke. Efficacy was evaluated using neurological outcomes based on National Institute of Health Stroke Scale (NIHSS), modified Rankin Scale (mRS) and Barthel Index (BI) scores from day 1 through day 90. Quality of life was measured using the EuroQoL-5 Dimensions (EQ-5D) and Stroke-Specific Quality of Life (SSQoL) at 60 and 90 days of follow-up. RESULTS A total of 40 patients with acute cerebral ischemic stroke were enrolled in this study, of whom 36 completed the 90-day follow-up. Patients received saline (n = 18; 11 male and 7 female) or sovateltide (n = 18; 15 male and 3 female) within 24 h of onset of stroke. The number of patients receiving investigational drug within 20 h of onset of stroke was 14/18 in the saline group and 10/18 in the sovateltide group. The baseline characteristics and SOC in both cohorts was similar. Sovateltide was well-tolerated, and all patients received complete treatment with no incidence of drug-related adverse events. Hemodynamic, biochemical or hematological parameters were not affected by sovateltide. Sovateltide treatment resulted in improved mRS and BI scores on day 6 compared with day 1 (p < 0.0001), an effect not seen in the saline group. Sovateltide increased the frequency of favorable outcomes at 3 months. An improvement of ≥ 2 points on the mRS was observed in 60 and 40% of patients in the sovateltide and saline groups, respectively (p = 0.0519; odds ratio [OR] 5.25). An improvement on the BI of ≥ 40 points was seen in 64 and 36% of the sovateltide and saline groups, respectively (p = 0.0112; OR 12.44). An improvement of ≥6 points on the NIHSS was seen in 56% of patients in the sovateltide group versus 43% in the saline group (p = 0.2714; OR 2.275). The number of patients with complete recovery (defined as an NIHSS score of 0 and a BI of 100) was significantly greater (p < 0.05) in the sovateltide group than in the saline group. An assessment of complete recovery using an mRS score of 0 did not show a statistically significant difference between the treatment groups. Sovateltide treatment resulted in improved quality of life as measured by the EQ-5D and SSQoL on day 90. CONCLUSION Sovateltide was safe and well-tolerated and resulted in improved neurological outcomes in patients with acute cerebral ischemic stroke 90 days post-treatment. TRIAL REGISTRATION The study is registered at CTRI/2017/11/010654 and NCT04046484.
Collapse
Affiliation(s)
- Anil Gulati
- Pharmazz, Inc., 50 West 75th Street, Suite 105, Willowbrook, IL, 60527, USA.
- Midwestern University, Downers Grove, IL, USA.
| | | | - Deepti Vibha
- All India Inst of Medical Sciences, New Delhi, India
| | - U K Misra
- Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, India
| | | | | | | | | |
Collapse
|
13
|
Abstract
Although 31 years have passed since the discovery of endothelin, that pioneering report, and the subsequent flood of influential studies elucidating its molecular and clinical details, have since paved the way for thousands of publications. They showed the promise of endothelin and the vast amount of work that remains to be done to fully unleash the potential this peptide possesses, both as a key physiological regulator and as a therapeutic target. Endothelin conferences and their proceedings have served as a host for many of these breakthrough studies, and in keeping with this fine tradition, Endothelin XVI will host novel research articles presented at the Sixteenth International Conference on Endothelin (ET-16) as its proceedings. On September 22-25, 2019, ET-16 was held at Kobe Port Oasis, Kobe, Japan, where numerous important discoveries were presented to the scientific community for the first time, many of which are compiled and published in this special issue. As the Editors of this special issue that comprises in-depth reviews, insightful editorials, and numerous original research articles discussing findings from various biomedical fields, we are extremely proud to present Endothelin XVI. We sincerely hope for the continued growth of this field for the benefit of the patients and the advancement of biomedical science.
Collapse
Affiliation(s)
- Bambang Widyantoro
- Department of Cardiology and Vascular Medicine, Faculty of Medicine, Universitas Indonesia, National Cardiovascular Centre Harapan Kita, Jakarta, Indonesia
| | - Noriaki Emoto
- Laboratory of Clinical Pharmaceutical Science, Kobe Pharmaceutical University, 4-19-1 Motoyamakita, Higashinada, Kobe 658-8558, Japan.,Division of Cardiovascular Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki, Chuo, Kobe 650-0017, Japan
| |
Collapse
|
14
|
Widyantoro B, Ryanto GRT, Emoto N. The Sixteenth International Conference on Endothelin (ET-16), Kobe, 2019. Can J Physiol Pharmacol 2020; 98:viii-xii. [PMID: 32926649 DOI: 10.1139/cjpp-2020-0462] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The Sixteenth International Conference on Endothelin (ET-16) was held September 22-25, 2019, in Kobe Port Oasis, Kobe, Japan, and co-chaired by Noriaki Emoto, MD, PhD, from Kobe Pharmaceutical University and Bambang Widyantoro, MD, PhD, from the University of Indonesia. As the sixteenth iteration of this biannual conference that has been held since 1988, ET-16 provided a platform for researchers of all generations from all parts of the world to present novel discoveries in the field of endothelin. ET-16 returned to Asia and to Kobe, Japan, after 6 years of alternating venues with North America and Europe, with over 100 participants attending, sharing, and discussing the newest findings on endothelin and endothelin receptor antagonists in science and medicine.
Collapse
Affiliation(s)
- Bambang Widyantoro
- Department of Cardiology and Vascular Medicine, Faculty of Medicine, Universitas Indonesia, National Cardiovascular Centre Harapan Kita, Jakarta, Indonesia
| | - Gusty Rizky Teguh Ryanto
- Laboratory of Clinical Pharmaceutical Science, Kobe Pharmaceutical University, 4-19-1 Motoyamakita, Higashinada, Kobe 658-8558, Japan.,Division of Cardiovascular Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki, Chuo, Kobe 650-0017, Japan
| | - Noriaki Emoto
- Laboratory of Clinical Pharmaceutical Science, Kobe Pharmaceutical University, 4-19-1 Motoyamakita, Higashinada, Kobe 658-8558, Japan.,Division of Cardiovascular Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki, Chuo, Kobe 650-0017, Japan
| |
Collapse
|