1
|
Islam R, Hong Z. YAP/TAZ as mechanobiological signaling pathway in cardiovascular physiological regulation and pathogenesis. MECHANOBIOLOGY IN MEDICINE 2024; 2:100085. [PMID: 39281415 PMCID: PMC11391866 DOI: 10.1016/j.mbm.2024.100085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/18/2024]
Abstract
Cardiovascular diseases (CVDs) persistently rank as a leading cause of premature death and illness worldwide. The Hippo signaling pathway, known for its highly conserved nature and integral role in regulating organ size, tissue homeostasis, and stem cell function, has been identified as a critical factor in the pathogenesis of CVDs. Recent findings underscore the significance of the Yes-associated protein (YAP) and the Transcriptional Coactivator with PDZ-binding motif (TAZ), collectively referred to as YAP/TAZ. These proteins play pivotal roles as downstream components of the Hippo pathway, in the regulation of cardiovascular development and homeostasis. YAP/TAZ can regulate various cellular processes such as cell proliferation, migration, differentiation, and apoptosis through their interactions with transcription factors, particularly those within the transcriptional enhancer associate domain (TEAD) family. The aim of this review is to provide a comprehensive overview of the current understanding of YAP/TAZ signaling in cardiovascular physiology and pathogenesis. We analyze the regulatory mechanisms of YAP/TAZ activation, explore their downstream effectors, and examine their association across numerous cardiovascular disorders, including myocardial hypertrophy, myocardial infarction, pulmonary hypertension, myocardial ischemia-reperfusion injury, atherosclerosis, angiogenesis, restenosis, and cardiac fibrosis. Furthermore, we investigate the potential therapeutic implications of targeting the YAP/TAZ pathway for the treatment of CVDs. Through this comprehensive review, our aim is to elucidate the current understanding of YAP/TAZ signaling in cardiovascular biology and underscore its potential implications for the diagnosis and therapeutic intervention of CVDs.
Collapse
Affiliation(s)
- Rakibul Islam
- Department of Mechanical Engineering, Texas Tech University, Lubbock, TX 79409, USA
| | - Zhongkui Hong
- Department of Mechanical Engineering, Texas Tech University, Lubbock, TX 79409, USA
| |
Collapse
|
2
|
Bora ES, Arda DB, Erbas O. The renoprotective effect of Tibolone in sepsis-induced acute kidney injury. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub 2024; 168:311-318. [PMID: 38775002 DOI: 10.5507/bp.2024.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Accepted: 05/07/2024] [Indexed: 11/27/2024] Open
Abstract
INTRODUCTION Sepsis-induced acute kidney injury (AKI) remains a major challenge in intensive care, contributing significantly to morbidity and mortality. Tibolone, known for its neuroprotective and hormonal properties, has not been explored for its potential in AKI management. This study investigates the protective effects of Tibolone and its underlying mechanisms involving Sirtuin-1 (SIRT1) and Yes-Associated Protein (YAP) in a rat sepsis model. MATERIALS AND METHODS Thirty-six female Wistar albino rats underwent cecal ligation and puncture (CLP) to induce sepsis. They were randomly assigned to control, CLP+Saline, and CLP+Tibolone groups. Tibolone was administered intraperitoneally. Biomarkers, including Sirtuin (SIRT1), Yes-associated protein (YAP), Tumor necrosis factor (TNF-α), High mobility group box 1 (HMGB1), malondialdehyde (MDA), creatinine, and urea, were assessed. Histopathological examination evaluated renal damage. RESULTS Tibolone administration significantly reduced plasma TNF-α, HMGB1, MDA, creatinine, and urea levels compared to the CLP+Saline group. Moreover, Tibolone elevated SIRT1 and YAP levels in kidney tissues. Histopathological examination demonstrated a significant decrease in tubular epithelial necrosis, luminal debris, dilatation, hemorrhage, and interstitial inflammation in Tibolone-treated rats. CONCLUSION This study unveils the protective role of Tibolone against sepsis-induced AKI in rats. The improvements in inflammatory and oxidative biomarkers and histological evidence suggest Tibolone's potential as a therapeutic intervention in sepsis-associated kidney injury. The upregulation of SIRT1 and YAP indicates their involvement in Tibolone's renoprotective mechanisms. Further investigations are warranted to explore Tibolone's translational potential in human sepsis-induced AKI.
Collapse
Affiliation(s)
- Ejder Saylav Bora
- Department of Emergency Medicine, Faculty of Medicine, Izmir Katip Celebi University, Izmir, Turkey
| | - Duygu Burcu Arda
- Department of Pediatrics, Faculty of Medicine, Cerrahpasa University, Istanbul, Turkey
| | - Oytun Erbas
- Depatment of Physiology, Faculty of Medicine, Demiroglu Bilim University Istanbul, Turkey
| |
Collapse
|
3
|
Mohamed B, Ghareib SA, Alsemeh AE, El-Sayed SS. Telmisartan ameliorates nephropathy and restores the hippo pathway in rats with metabolic syndrome. Eur J Pharmacol 2024; 973:176605. [PMID: 38653362 DOI: 10.1016/j.ejphar.2024.176605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 04/19/2024] [Accepted: 04/19/2024] [Indexed: 04/25/2024]
Abstract
The main objective of this study was to determine if the telmisartan-ameliorative effects of metabolic syndrome (MetS)-evoked nephropathy are attributed to the Hippo pathway. A secondary objective was to investigate the potential of vitamin D3 to enhance telmisartan-favourable effects. A diet composed of 24% fat and 3% salt, along with drinking water containing 10% fructose, was administered for 12 weeks to induce MetS. MetS-rats were given telmisartan (5 mg/kg/day), vitamin D3 (10 μg/kg/day) or both by gavage, starting in the sixth week of experimental diet administration. Assessments performed at closure included renal function, histological examination, catalase, malondialdehyde (MDA), nuclear factor kappa-B (NF-κB), interleukin-6 (IL-6), peroxisome proliferator-activated receptor-γ (PPAR-γ), phosphatase and tensin homolog (PTEN), and transforming growth factor-β (TGF-β). Matrix metalloproteinase-9 (MMP-9) immunostaining was conducted. The expression of the Hippo pathway components, as well as that of angiotensin II type 1 and type 2 (AT1 and AT2), receptors was evaluated. Telmisartan attenuated MetS-evoked nephropathy, as demonstrated by improvement of renal function and histological features, enhancement of catalase, reduction of MDA, inflammation (NF-κB, IL-6), and renal fibrosis (increased PPAR-γ and PTEN and reduced MMP-9 and TGF-β). Telmisartan downregulated AT1-receptor, upregulated AT2-receptor and restored the Hippo pathway. Vitamin D3 replicated most of the telmisartan-elicited effects and enhanced the antifibrotic actions of telmisartan. The alleviative effects of telmisartan on MetS-evoked nephropathy may be related to the restoration of the Hippo pathway. The combination of vitamin D3 and telmisartan exerted more favourable effects on metabolic and nephropathic biomarkers compared with either one administered alone.
Collapse
Affiliation(s)
- Badria Mohamed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Zagazig University, Zagazig, 44519, Egypt.
| | - Salah A Ghareib
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Zagazig University, Zagazig, 44519, Egypt.
| | - Amira Ebrahim Alsemeh
- Department of Human Anatomy and Embryology, Faculty of Medicine, Zagazig University, Zagazig, 44519, Egypt.
| | - Shaimaa S El-Sayed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Zagazig University, Zagazig, 44519, Egypt.
| |
Collapse
|
4
|
Xu Q, Zhuo K, Zhang X, Zhen Y, Liu L, Zhang L, Gu Y, Jia H, Chen Q, Liu M, Dong J, Zhou MS. The role of angiotensin II activation of yes-associated protein/PDZ-binding motif signaling in hypertensive cardiac and vascular remodeling. Eur J Pharmacol 2024; 962:176252. [PMID: 38061470 DOI: 10.1016/j.ejphar.2023.176252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 12/01/2023] [Accepted: 12/01/2023] [Indexed: 12/20/2023]
Abstract
Vascular remodeling is the pathogenic basis of hypertension and end organ injury, and the proliferation of vascular smooth muscle cells (VSMCs) is central to vascular remodeling. Yes-associated protein (YAP) and transcriptional co-activator with PDZ-binding motif (TAZ) are key effectors of the Hippo pathway and crucial for controlling cell proliferation, apoptosis and differentiation. The present study investigated the role of YAP/TAZ in cardiac and vascular remodeling of angiotensin II-induced hypertension. Ang II induced YAP/TAZ activation in the heart and aorta, which was prevented by YAP/TAZ inhibitor verteporfin. Treatment with verteporfin significantly reduced Ang II-induced cardiac and vascular hypertrophy with a mild reduction in systolic blood pressure (SBP), verteporfin attenuated Ang II-induced cardiac and aortic fibrosis with the inhibition of transform growth factor (TGF)β/Smad2/3 fibrotic signaling and extracellular matrix collagen I deposition. Ang II induced Rho A, extracellular signal-regulated kinase 1/2 (ERK1/2) and YAP/TAZ activation in VSMCs, either Rho kinase inhibitor fasudil or ERK inhibitor PD98059 suppressed Ang II-induced YAP/TAZ activation, cell proliferation and fibrosis of VSMCs. Verteporfin also inhibited Ang II-induced VSMC proliferation and fibrotic TGFβ1/Smad2/3 pathway. These results demonstrate that Ang II activates YAP/TAZ via Rho kinase/ERK1/2 pathway in VSMCs, which may contribute to cardiac and vascular remodeling in hypertension. Our results suggest that YAP/TAZ plays a critical role in the pathogenesis of hypertension and end organ damage, and targeting the YAP/TAZ pathway may be a new strategy for the prevention and treatment of hypertension and cardiovascular diseases.
Collapse
Affiliation(s)
- Qian Xu
- Science and Experiment Research Center, Shenyang Medical College, Shenyang, China; Department of Physiology, Shenyang Medical College, Shenyang, China
| | - Kunping Zhuo
- Department of Physiology, Shenyang Medical College, Shenyang, China
| | - Xiaotian Zhang
- Department of Physiology, Shenyang Medical College, Shenyang, China
| | - Yanru Zhen
- Department of Physiology, Shenyang Medical College, Shenyang, China
| | - Limin Liu
- Department of Vasculocardiology, The Second Hospital of Shenyang Medical College, Shenyang, China
| | - Lu Zhang
- Science and Experiment Research Center, Shenyang Medical College, Shenyang, China; Department of Physiology, Shenyang Medical College, Shenyang, China
| | - Yufan Gu
- Department of Physiology, Shenyang Medical College, Shenyang, China
| | - Hui Jia
- Department of Traditional Chinese Medicine, Shenyang Medical College, Shenyang, China
| | - Qing Chen
- Department of Pharmacy, Shenyang Medical College, Shenyang, 110034, China
| | - Meixi Liu
- Department of Clinical Medicine, School of Basic Medicine, Shenyang Medical College, Shenyang, China
| | - Jiawei Dong
- Department of Clinical Medicine, School of Basic Medicine, Shenyang Medical College, Shenyang, China
| | - Ming-Sheng Zhou
- Science and Experiment Research Center, Shenyang Medical College, Shenyang, China; Department of Physiology, Shenyang Medical College, Shenyang, China.
| |
Collapse
|
5
|
Wei Y, Hui VLZ, Chen Y, Han R, Han X, Guo Y. YAP/TAZ: Molecular pathway and disease therapy. MedComm (Beijing) 2023; 4:e340. [PMID: 37576865 PMCID: PMC10412783 DOI: 10.1002/mco2.340] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 06/27/2023] [Accepted: 07/04/2023] [Indexed: 08/15/2023] Open
Abstract
The Yes-associated protein and its transcriptional coactivator with PDZ-binding motif (YAP/TAZ) are two homologous transcriptional coactivators that lie at the center of a key regulatory network of Hippo, Wnt, GPCR, estrogen, mechanical, and metabolism signaling. YAP/TAZ influences the expressions of downstream genes and proteins as well as enzyme activity in metabolic cycles, cell proliferation, inflammatory factor expression, and the transdifferentiation of fibroblasts into myofibroblasts. YAP/TAZ can also be regulated through epigenetic regulation and posttranslational modifications. Consequently, the regulatory function of these mechanisms implicates YAP/TAZ in the pathogenesis of metabolism-related diseases, atherosclerosis, fibrosis, and the delicate equilibrium between cancer progression and organ regeneration. As such, there arises a pressing need for thorough investigation of YAP/TAZ in clinical settings. In this paper, we aim to elucidate the signaling pathways that regulate YAP/TAZ and explore the mechanisms of YAP/TAZ-induce diseases and their potential therapeutic interventions. Furthermore, we summarize the current clinical studies investigating treatments targeting YAP/TAZ. We also address the limitations of existing research on YAP/TAZ and propose future directions for research. In conclusion, this review aims to provide fresh insights into the signaling mediated by YAP/TAZ and identify potential therapeutic targets to present innovative solutions to overcome the challenges associated with YAP/TAZ.
Collapse
Affiliation(s)
- Yuzi Wei
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of StomatologySichuan UniversityChengduSichuanChina
| | - Victoria Lee Zhi Hui
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of StomatologySichuan UniversityChengduSichuanChina
| | - Yilin Chen
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of StomatologySichuan UniversityChengduSichuanChina
- Department of OrthodonticsWest China Hospital of StomatologySichuan UniversityChengduSichuanChina
| | - Ruiying Han
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of StomatologySichuan UniversityChengduSichuanChina
- Department of OrthodonticsWest China Hospital of StomatologySichuan UniversityChengduSichuanChina
| | - Xianglong Han
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of StomatologySichuan UniversityChengduSichuanChina
- Department of OrthodonticsWest China Hospital of StomatologySichuan UniversityChengduSichuanChina
| | - Yongwen Guo
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of StomatologySichuan UniversityChengduSichuanChina
- Department of OrthodonticsWest China Hospital of StomatologySichuan UniversityChengduSichuanChina
- Department of OrthodonticsLanzhou Stomatological HospitalLanzhouGansuChina
| |
Collapse
|
6
|
Chen L, Jin X, Ma J, Xiang B, Li X. YAP at the progression of inflammation. Front Cell Dev Biol 2023; 11:1204033. [PMID: 37397250 PMCID: PMC10311505 DOI: 10.3389/fcell.2023.1204033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 06/05/2023] [Indexed: 07/04/2023] Open
Abstract
Yes-associated protein (YAP) is a transcriptional regulator that affects cell proliferation, organ size and tissue development and regeneration, and has therefore, been an important object of study. In recent years, there has been an increasing research focus on YAP in inflammation and immunology, and the role of YAP in the development of inflammation and in immune escape by tumors has been progressively elucidated. Because YAP signaling involves a variety of different signal transduction cascades, the full range of functions in diverse cells and microenvironments remains incompletely understood. In this article, we discuss the complex involvement of YAP in inflammation, the molecular mechanisms through which it exercises pro- and anti-inflammatory effects under different conditions, and the progress achieved in elucidating the functions of YAP in inflammatory diseases. A thorough understanding of YAP signaling in inflammation will provide a foundation for its use as a therapeutic target in inflammatory diseases.
Collapse
Affiliation(s)
- Libin Chen
- Department of Gastroenterology, The Third Xiangya Hospital of Central South University, Changsha, China
- Hunan Key Laboratory of Nonresolving Inflammation and Cancer, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Xintong Jin
- Department of Gastroenterology, The Third Xiangya Hospital of Central South University, Changsha, China
- Hunan Key Laboratory of Nonresolving Inflammation and Cancer, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Jian Ma
- Hunan Key Laboratory of Nonresolving Inflammation and Cancer, The Third Xiangya Hospital of Central South University, Changsha, China
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Sciences, Central South University, Changsha, China
| | - Bo Xiang
- Hunan Key Laboratory of Nonresolving Inflammation and Cancer, The Third Xiangya Hospital of Central South University, Changsha, China
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Sciences, Central South University, Changsha, China
| | - Xiayu Li
- Department of Gastroenterology, The Third Xiangya Hospital of Central South University, Changsha, China
- Hunan Key Laboratory of Nonresolving Inflammation and Cancer, The Third Xiangya Hospital of Central South University, Changsha, China
| |
Collapse
|
7
|
Mengozzi A, Costantino S, Mongelli A, Mohammed SA, Gorica E, Delfine V, Masi S, Virdis A, Ruschitzka F, Paneni F. Epigenetic Signatures in Arterial Hypertension: Focus on the Microvasculature. Int J Mol Sci 2023; 24:ijms24054854. [PMID: 36902291 PMCID: PMC10003673 DOI: 10.3390/ijms24054854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/25/2023] [Accepted: 03/01/2023] [Indexed: 03/06/2023] Open
Abstract
Systemic arterial hypertension (AH) is a multifaceted disease characterized by accelerated vascular aging and high cardiometabolic morbidity and mortality. Despite extensive work in the field, the pathogenesis of AH is still incompletely understood, and its treatment remains challenging. Recent evidence has shown a deep involvement of epigenetic signals in the regulation of transcriptional programs underpinning maladaptive vascular remodeling, sympathetic activation and cardiometabolic alterations, all factors predisposing to AH. After occurring, these epigenetic changes have a long-lasting effect on gene dysregulation and do not seem to be reversible upon intensive treatment or the control of cardiovascular risk factors. Among the factors involved in arterial hypertension, microvascular dysfunction plays a central role. This review will focus on the emerging role of epigenetic changes in hypertensive-related microvascular disease, including the different cell types and tissues (endothelial cells, vascular smooth muscle cells and perivascular adipose tissue) as well as the involvement of mechanical/hemodynamic factors, namely, shear stress.
Collapse
Affiliation(s)
- Alessandro Mengozzi
- Center for Translational and Experimental Cardiology (CTEC), Zurich University Hospital, University of Zurich, 8952 Schlieren, Switzerland
- Health Science Interdisciplinary Center, Scuola Superiore Sant’Anna, 56127 Pisa, Italy
- Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy
| | - Sarah Costantino
- Center for Translational and Experimental Cardiology (CTEC), Zurich University Hospital, University of Zurich, 8952 Schlieren, Switzerland
- Department of Cardiology, University Heart Center, University Hospital Zurich, University of Zurich, 8091 Zurich, Switzerland
| | - Alessia Mongelli
- Center for Translational and Experimental Cardiology (CTEC), Zurich University Hospital, University of Zurich, 8952 Schlieren, Switzerland
| | - Shafeeq A. Mohammed
- Center for Translational and Experimental Cardiology (CTEC), Zurich University Hospital, University of Zurich, 8952 Schlieren, Switzerland
| | - Era Gorica
- Center for Translational and Experimental Cardiology (CTEC), Zurich University Hospital, University of Zurich, 8952 Schlieren, Switzerland
| | - Valentina Delfine
- Center for Translational and Experimental Cardiology (CTEC), Zurich University Hospital, University of Zurich, 8952 Schlieren, Switzerland
| | - Stefano Masi
- Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy
- Institute of Cardiovascular Science, University College London, London WC1E 6BT, UK
| | - Agostino Virdis
- Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy
| | - Frank Ruschitzka
- Center for Translational and Experimental Cardiology (CTEC), Zurich University Hospital, University of Zurich, 8952 Schlieren, Switzerland
- Department of Cardiology, University Heart Center, University Hospital Zurich, University of Zurich, 8091 Zurich, Switzerland
| | - Francesco Paneni
- Center for Translational and Experimental Cardiology (CTEC), Zurich University Hospital, University of Zurich, 8952 Schlieren, Switzerland
- Department of Cardiology, University Heart Center, University Hospital Zurich, University of Zurich, 8091 Zurich, Switzerland
- Department of Research and Education, University Hospital Zurich, 8091 Zurich, Switzerland
- Correspondence: or francesco.paneni@uzh; Tel.: +41-44-6355096
| |
Collapse
|
8
|
Khalilimeybodi A, Fraley S, Rangamani P. Mechanisms underlying divergent relationships between Ca 2+ and YAP/TAZ signalling. J Physiol 2023; 601:483-515. [PMID: 36463416 PMCID: PMC10986318 DOI: 10.1113/jp283966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 11/29/2022] [Indexed: 12/05/2022] Open
Abstract
Yes-associated protein (YAP) and its homologue TAZ are transducers of several biochemical and biomechanical signals, integrating multiplexed inputs from the microenvironment into higher level cellular functions such as proliferation, differentiation and migration. Emerging evidence suggests that Ca2+ is a key second messenger that connects microenvironmental input signals and YAP/TAZ regulation. However, studies that directly modulate Ca2+ have reported contradictory YAP/TAZ responses: in some studies, a reduction in Ca2+ influx increases the activity of YAP/TAZ, while in others, an increase in Ca2+ influx activates YAP/TAZ. Importantly, Ca2+ and YAP/TAZ exhibit distinct spatiotemporal dynamics, making it difficult to unravel their connections from a purely experimental approach. In this study, we developed a network model of Ca2+ -mediated YAP/TAZ signalling to investigate how temporal dynamics and crosstalk of signalling pathways interacting with Ca2+ can alter the YAP/TAZ response, as observed in experiments. By including six signalling modules (e.g. GPCR, IP3-Ca2+ , kinases, RhoA, F-actin and Hippo-YAP/TAZ) that interact with Ca2+ , we investigated both transient and steady-state cell response to angiotensin II and thapsigargin stimuli. The model predicts that stimuli, Ca2+ transients and frequency-dependent relationships between Ca2+ and YAP/TAZ are primarily mediated by cPKC, DAG, CaMKII and F-actin. Simulation results illustrate the role of Ca2+ dynamics and CaMKII bistable response in switching the direction of changes in Ca2+ -induced YAP/TAZ activity. A frequency-dependent YAP/TAZ response revealed the competition between upstream regulators of LATS1/2, leading to the YAP/TAZ non-monotonic response to periodic GPCR stimulation. This study provides new insights into underlying mechanisms responsible for the controversial Ca2+ -YAP/TAZ relationship observed in experiments. KEY POINTS: YAP/TAZ integrates biochemical and biomechanical inputs to regulate cellular functions, and Ca2+ acts as a key second messenger linking cellular inputs to YAP/TAZ. Studies have reported contradictory Ca2+ -YAP/TAZ relationships for different cell types and stimuli. A network model of Ca2+ -mediated YAP/TAZ signalling was developed to investigate the underlying mechanisms of divergent Ca2+ -YAP/TAZ relationships. The model predicts context-dependent Ca2+ transient, CaMKII bistable response and frequency-dependent activation of LATS1/2 upstream regulators as mechanisms governing the Ca2+ -YAP/TAZ relationship. This study provides new insights into the underlying mechanisms of the controversial Ca2+ -YAP/TAZ relationship to better understand the dynamics of cellular functions controlled by YAP/TAZ activity.
Collapse
Affiliation(s)
- A. Khalilimeybodi
- Department of Mechanical and Aerospace Engineering, Jacobs School of Engineering, University of California San Diego, La Jolla CA 92093
| | - S.I. Fraley
- Department of Bioengineering, Jacobs School of Engineering, University of California San Diego, La Jolla CA 92093
| | - P. Rangamani
- Department of Mechanical and Aerospace Engineering, Jacobs School of Engineering, University of California San Diego, La Jolla CA 92093
| |
Collapse
|
9
|
Li R, Huang W. Yes-Associated Protein and Transcriptional Coactivator with PDZ-Binding Motif in Cardiovascular Diseases. Int J Mol Sci 2023; 24:ijms24021666. [PMID: 36675179 PMCID: PMC9861006 DOI: 10.3390/ijms24021666] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/08/2023] [Accepted: 01/10/2023] [Indexed: 01/18/2023] Open
Abstract
Yes-associated protein (YAP, also known as YAP1) and its paralogue TAZ (with a PDZ-binding motif) are transcriptional coactivators that switch between the cytoplasm and nucleus and regulate the organ size and tissue homeostasis. This review focuses on the research progress on YAP/TAZ signaling proteins in myocardial infarction, cardiac remodeling, hypertension and coronary heart disease, cardiomyopathy, and aortic disease. Based on preclinical studies on YAP/TAZ signaling proteins in cellular/animal models and clinical patients, the potential roles of YAP/TAZ proteins in some cardiovascular diseases (CVDs) are summarized.
Collapse
|
10
|
Qi C, Hu Y, Zeng M, Chen H, Shi J, Jue H, Zhao Z, Liu J, Zhang Z, Xu Y, Wu H. Verteporfin inhibits the dedifferentiation of tubular epithelial cells via TGF-β1/Smad pathway but induces podocyte loss in diabetic nephropathy. Life Sci 2022; 311:121186. [PMID: 36375573 DOI: 10.1016/j.lfs.2022.121186] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/02/2022] [Accepted: 11/08/2022] [Indexed: 11/13/2022]
Abstract
AIMS The dedifferentiation of tubular epithelial cells has been identified as an important trigger of renal fibrosis. The Hippo pathway is a crucial regulator of cell proliferation and differentiation. In this study, we determined the role of Hippo proteins in tubular dedifferentiation in diabetic nephropathy (DN). MAIN METHODS In this study, we measured dedifferentiation markers and Hippo proteins in db/db mice and high glucose treated tubular epithelial cells. Then, verteporfin and knockdown of large tumor suppressor kinase (LATS) 1 and 2 were performed to uncover therapeutic targets for DN. KEY FINDINGS Here, we found dedifferentiation and upregulated Hippo proteins in tubular epithelial cells in DN model both in vivo and in vitro. Both verteporfin and LATS knockdown could inhibit the tubular mesenchymal transition, but verteporfin showed broad inhibitory effect on Hippo proteins, especially nuclear YAP, and exacerbated podocyte loss of DN. LATS2 knockdown did not reverse the tubular E-Cadherin loss while it also induced podocyte apoptosis. Overall, intervention of LATS1 inhibited tubular dedifferentiation efficiently without affecting YAP and bringing podocyte apoptosis. Further mechanistic investigations revealed that the TGF-β1/Smad, instead of the YAP-TEAD-CTGF signaling, might be the underlying pathway through which verteporfin and LATS1 engaged in the tubular dedifferentiation. SIGNIFICANCE In conclusion, verteporfin is not a suitable treatment for DN owing to evitable podocyte loss and apoptosis. Targeting LATS1 is a better choice worthy of further investigation for DN therapy.
Collapse
Affiliation(s)
- Chenyang Qi
- Department of Pathology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China; Department of Nephrology, Shanghai Tenth People's Hospital, Tongji University, Shanghai 200072, China
| | - Yuan Hu
- Department of Pathology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China; Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Mingyao Zeng
- Department of Pathology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Hongru Chen
- Department of Pathology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Jiaoyu Shi
- Department of Pathology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Hao Jue
- Department of Pathology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Zhonghua Zhao
- Department of Pathology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Jun Liu
- Department of Nephrology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Zhigang Zhang
- Department of Pathology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China.
| | - Yanyong Xu
- Key Laboratory of Metabolism and Molecular Medicine of the Ministry of Education, Department of Pathology of School of Basic Medical Sciences, Fudan University, Shanghai 200032, China.
| | - Huijuan Wu
- Department of Pathology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China.
| |
Collapse
|
11
|
New Insights into Hippo/YAP Signaling in Fibrotic Diseases. Cells 2022; 11:cells11132065. [PMID: 35805148 PMCID: PMC9265296 DOI: 10.3390/cells11132065] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 06/25/2022] [Accepted: 06/26/2022] [Indexed: 12/20/2022] Open
Abstract
Fibrosis results from defective wound healing processes often seen after chronic injury and/or inflammation in a range of organs. Progressive fibrotic events may lead to permanent organ damage/failure. The hallmark of fibrosis is the excessive accumulation of extracellular matrix (ECM), mostly produced by pathological myofibroblasts and myofibroblast-like cells. The Hippo signaling pathway is an evolutionarily conserved kinase cascade, which has been described well for its crucial role in cell proliferation, apoptosis, cell fate decisions, and stem cell self-renewal during development, homeostasis, and tissue regeneration. Recent investigations in clinical and pre-clinical models has shown that the Hippo signaling pathway is linked to the pathophysiology of fibrotic diseases in many organs including the lung, heart, liver, kidney, and skin. In this review, we have summarized recent evidences related to the contribution of the Hippo signaling pathway in the development of organ fibrosis. A better understanding of this pathway will guide us to dissect the pathophysiology of fibrotic disorders and develop effective tissue repair therapies.
Collapse
|
12
|
Xu Q, Zhuo K, Cai R, Su X, Zhang L, Liu Y, Zhu L, Ren F, Zhou MS. Activation of Yes-Associated Protein/PDZ-Binding Motif Pathway Contributes to Endothelial Dysfunction and Vascular Inflammation in AngiotensinII Hypertension. Front Physiol 2021; 12:732084. [PMID: 34650444 PMCID: PMC8505766 DOI: 10.3389/fphys.2021.732084] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 08/16/2021] [Indexed: 01/20/2023] Open
Abstract
Yes-associated protein (YAP) and its associated coactivator of PDZ-binding motif (TAZ) are co-transcriptional regulators and down effectors of the Hippo signaling pathway. Recent studies have shown that the Hippo/YAP signaling pathway may play a role in mediating vascular homeostasis. This study investigated the role of YAP/TAZ in endothelial dysfunction and vascular inflammation in angiotensin (Ang)II hypertensive mice. The infusion of AngII (1.1 mg/kg/day by mini-pump) for 3 weeks induced the activation of YAP/TAZ, manifested by decreased cytosolic phosphor-YAP and phosphor-TAZ, and increased YAP/TAZ nuclear translocation, which were prevented by YAP/TAZ inhibitor verteporfin. AngII significantly increased systolic blood pressure (SBP), macrophage infiltration, and expressions of proinflammatory cytokines, and impaired endothelial function in the aorta of the mice. Treatment with verteporfin improved endothelial function and reduced vascular inflammation with a mild reduction in SBP. AngII also induced YAP/TAZ activation in human umbilical vein endothelial cells in vitro, which were prevented by LB-100, an inhibitor of protein phosphatase 2A (PP2A, a major dephosphorylase). Treatment with LB-100 reversed AngII-induced proinflammatory cytokine expression and impairment of phosphor-eNOS expression in vitro. Our results suggest that AngII induces YAP/TAZ activation via PP2A-dependent dephosphorylation, which may contribute to the impairment of endothelial function and the induction of vascular inflammation in hypertension. YAP/TAZ may be a new target for hypertensive vascular injury.
Collapse
Affiliation(s)
- Qian Xu
- Department of Physiology, Shenyang Medical College, Shenyang, China
| | - Kunping Zhuo
- Department of Physiology, Shenyang Medical College, Shenyang, China
| | - Ruiping Cai
- Department of Physiology, Shenyang Medical College, Shenyang, China
| | - Xiaomin Su
- Department of Physiology, Shenyang Medical College, Shenyang, China
| | - Lu Zhang
- Department of Physiology, Shenyang Medical College, Shenyang, China
| | - Yueyang Liu
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, China
| | - Lin Zhu
- Department of Biochemistry and Molecular Biology, Shenyang Medical College, Shenyang, China
| | - Fu Ren
- Department of Anatomy, Shenyang Medical College, Shenyang, China
| | - Ming-Sheng Zhou
- Department of Physiology, Shenyang Medical College, Shenyang, China
| |
Collapse
|