1
|
Allen GJP, Quijada-Rodriguez AR, Wilson JM, Weihrauch D. The role of the antennal glands and gills in acid-base regulation and ammonia excretion of a marine osmoconforming brachyuran. Comp Biochem Physiol A Mol Integr Physiol 2024; 292:111619. [PMID: 38438092 DOI: 10.1016/j.cbpa.2024.111619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 02/28/2024] [Accepted: 02/29/2024] [Indexed: 03/06/2024]
Abstract
The excretory mechanisms of stenohaline marine osmoconforming crabs are often compared to those of the more extensively characterized euryhaline osmoregulating crabs. These comparisons may have limitations, given that unlike euryhaline brachyurans the gills of stenohaline marine osmoconformers possess ion-leaky paracellular pathways and lack the capacity to undergo ultrastructural changes that can promote ion-transport processes in dilute media. Furthermore, the antennal glands of stenohaline marine osmoconformers are poorly characterized making it difficult to determine what role urinary processes play in excretion. In the presented study, ammonia excretory processes as well as related acid-base equivalent transport rates and mechanisms were investigated in the Dungeness crab, Metacarcinus magister - an economically valuable stenohaline marine osmoconforming crab. Isolated and perfused gills were found to predominantly eliminate ammonia through a microtubule network-dependent active NH4+ transport mechanism that is likely performed by cells lining the arterial pockets of the gill lamella where critical Na+/K+-ATPase detection was observed. The V-type H+-ATPase - a vital component to transbranchial ammonia excretion mechanisms of euryhaline crabs - was not found to contribute significantly to ammonia excretion; however, this may be due to the transporter's unexpected apical localization. Although unconnected to ammonia excretion rates, a membrane-bound isoform of carbonic anhydrase was localized to the apical and basolateral membranes of lamella suited for respiration. Urine was found to contain significantly less ammonia as well as carbonate species than the hemolymph, indicating that unlike those of some euryhaline crabs the antennal glands of the Dungeness crab reabsorb these molecules rather than eliminate them for excretion.
Collapse
Affiliation(s)
- Garett Joseph Patrick Allen
- Marine Research Station, Institute of Cellular and Organismic Biology, Academia Sinica, Jiaoxi Township, Yilan County, Taiwan.
| | | | - Jonathan M Wilson
- Department of Biology, Wilfrid Laurier University, Waterloo, Ontario, Canada
| | - Dirk Weihrauch
- Department of Biological Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| |
Collapse
|
2
|
Fehsenfeld S, Yoon GR, Quijada-Rodriguez AR, Kandachi-Toujas H, Calosi P, Breton S, Weihrauch D. Short-term exposure to high pCO 2 leads to decreased branchial cytochrome C oxidase activity in the presence of octopamine in a decapod. Comp Biochem Physiol A Mol Integr Physiol 2024; 291:111603. [PMID: 38346534 DOI: 10.1016/j.cbpa.2024.111603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 02/07/2024] [Accepted: 02/08/2024] [Indexed: 02/18/2024]
Abstract
In a recent mechanistic study, octopamine was shown to promote proton transport over the branchial epithelium in green crabs, Carcinus maenas. Here, we follow up on this finding by investigating the involvement of octopamine in an environmental and physiological context that challenges acid-base homeostasis, the response to short-term high pCO2 exposure (400 Pa) in a brackish water environment. We show that hyperregulating green crabs experienced a respiratory acidosis as early as 6 h of exposure to hypercapnia, with a rise in hemolymph pCO2 accompanied by a simultaneous drop of hemolymph pH. The slightly delayed increase in hemolymph HCO3- observed after 24 h helped to restore hemolymph pH to initial values by 48 h. Circulating levels of the biogenic amine octopamine were significantly higher in short-term high pCO2 exposed crabs compared to control crabs after 48 h. Whole animal metabolic rates, intracellular levels of octopamine and cAMP, as well as branchial mitochondrial enzyme activities for complex I + III and citrate synthase were unchanged in posterior gill #7 after 48 h of hypercapnia. However, application of octopamine in gill respirometry experiments suppressed branchial metabolic rate in posterior gills of short-term high pCO2 exposed animals. Furthermore, branchial enzyme activity of cytochrome C oxidase decreased in high pCO2 exposed crabs after 48 h. Our results indicate that hyperregulating green crabs are capable of quickly counteracting a hypercapnia-induced respiratory acidosis. The role of octopamine in the acclimation of green crabs to short-term hypercapnia seems to entail the alteration of branchial metabolic pathways, possibly targeting mitochondrial cytochrome C in the gill. Our findings help advancing our current limited understanding of endocrine components in hypercapnia acclimation. SUMMARY STATEMENT: Acid-base compensation upon short-term high pCO2 exposure in hyperregulating green crabs started after 6 h and was accomplished by 48 h with the involvement of the biogenic amine octopamine, accumulation of hemolymph HCO3-, and regulation of mitochondrial complex IV (cytochrome C oxidase).
Collapse
Affiliation(s)
- Sandra Fehsenfeld
- Laboratoire de Physiologie Écologique et Évolutive Marine, Département de Biologie, Chimie et Géographie, Université du Québec à Rimouski, Rimouski, Canada; Department of Biological Sciences, University of Manitoba, Winnipeg, Canada.
| | - Gwangseok R Yoon
- Department of Biological Sciences, University of Manitoba, Winnipeg, Canada; Department of Biological Sciences, University of Toronto Scarborough, Toronto, Canada
| | - Alex R Quijada-Rodriguez
- Department of Biological Sciences, University of Manitoba, Winnipeg, Canada; Department of Biology, Wilfrid Laurier University, Waterloo, Canada
| | - Haluka Kandachi-Toujas
- Laboratoire de Physiologie Écologique et Évolutive Marine, Département de Biologie, Chimie et Géographie, Université du Québec à Rimouski, Rimouski, Canada
| | - Piero Calosi
- Laboratoire de Physiologie Écologique et Évolutive Marine, Département de Biologie, Chimie et Géographie, Université du Québec à Rimouski, Rimouski, Canada
| | - Sophie Breton
- Département de Sciences Biologiques, Université de Montréal, Montréal, Canada
| | - Dirk Weihrauch
- Department of Biological Sciences, University of Manitoba, Winnipeg, Canada
| |
Collapse
|
3
|
Quijada-Rodriguez AR, Fehsenfeld S, Marini AM, Wilson JM, Nash MT, Sachs M, Towle DW, Weihrauch D. Branchial CO 2 and ammonia excretion in crustaceans: Involvement of an apical Rhesus-like glycoprotein. Acta Physiol (Oxf) 2024; 240:e14078. [PMID: 38205922 DOI: 10.1111/apha.14078] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 10/13/2023] [Accepted: 12/14/2023] [Indexed: 01/12/2024]
Abstract
AIM To determine whether the crustacean Rh1 protein functions as a dual CO2 /ammonia transporter and investigate its role in branchial ammonia excretion and acid-base regulation. METHODS Sequence analysis of decapod Rh1 proteins was used to determine the conservation of amino acid residues putatively involved in ammonia transport and CO2 binding in human and bacterial Rh proteins. Using the Carcinus maenas Rh1 protein (CmRh1) as a representative of decapod Rh1 proteins, we test the ammonia and CO2 transport capabilities of CmRh1 through heterologous expression in yeast and Xenopus oocytes coupled with site-directed mutagenesis. Quantitative PCR was used to assess the distribution of CmRh1 mRNA in various tissues. Western blotting was used to assess CmRh1 protein expression changes in response to high environmental ammonia and CO2 . Further, immunohistochemistry was used to assess sub-cellular localization of CmRh1 and a membrane-bound carbonic anhydrase (CmCAg). RESULTS Sequence analysis of decapod Rh proteins revealed high conservation of several amino acid residues putatively involved in conducting ammonia transport and CO2 binding. Expression of CmRh1 in Xenopus oocytes enhanced both ammonia and CO2 transport which was nullified in CmRh1 D180N mutant oocytes. Transport of the ammonia analog methylamine by CmRh1 is dependent on both ionized and un-ionized ammonia/methylamine species. CmRh1 was co-localized with CmCAg to the apical membrane of the crustacean gill and only experienced decreased protein expression in the anterior gills when exposed to high environmental ammonia. CONCLUSION CmRh1 is the first identified apical transporter-mediated route for ammonia and CO2 excretion in the crustacean gill. Our findings shed further light on the potential universality of dual ammonia and CO2 transport capacity of Rhesus glycoproteins in both vertebrates and invertebrates.
Collapse
Affiliation(s)
- Alex R Quijada-Rodriguez
- Department of Biological Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
- Department of Biology, Wilfrid Laurier University, Waterloo, Ontario, Canada
| | - Sandra Fehsenfeld
- Department of Biological Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
- Département de biologie, chimie et géographie, Université du Québec à Rimouski, Rimouski, Quebec, Canada
| | - Anna-Maria Marini
- Biology of Membrane Transport Laboratory, Molecular Biology Department, Université Libre de Bruxelles, Bruxelles, Belgium
- WELBIO, Wavre, Belgium
| | - Jonathan M Wilson
- Department of Biology, Wilfrid Laurier University, Waterloo, Ontario, Canada
| | - Mikyla T Nash
- Department of Biological Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Maria Sachs
- Department of Biological Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - David W Towle
- Mount Desert Island Biological Laboratory, Salisbury Cove, Maine, USA
| | - Dirk Weihrauch
- Department of Biological Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| |
Collapse
|
4
|
Fehsenfeld S, Quijada-Rodriguez AR, Calosi P, Weihrauch D. The role of octopamine and crustacean hyperglycemic hormone (CHH) in branchial acid-base regulation in the European green crab, Carcinus maenas. J Comp Physiol B 2023; 193:509-522. [PMID: 37563322 DOI: 10.1007/s00360-023-01507-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 06/28/2023] [Accepted: 07/19/2023] [Indexed: 08/12/2023]
Abstract
Crustaceans' endocrinology is a vastly understudied area of research. The major focus of the studies on this topic to date has been on the molting cycle (and in particular, the role of crustacean hyperglycemic hormone (CHH)), as well as the role of other hormones in facilitating physiological phenotypic adjustments to salinity changes. Additionally, while many recent studies have been conducted on the acclimation and adaptation capacity of crustaceans to a changing environment, only few have investigated internal hormonal balance especially with respect to an endocrine response to environmental challenges. Consequently, our study aimed to identify and characterize endocrine components of acid-base regulation in the European green crab, Carcinus maenas. We show that both the biogenic amine octopamine (OCT) and the CHH are regulatory components of branchial acid-base regulation. While OCT suppressed branchial proton excretion, CHH seemed to promote it. Both hormones were also capable of enhancing branchial ammonia excretion. Furthermore, mRNA abundance for branchial receptors (OCT-R), or G-protein receptor activated soluble guanylate cyclase (sGC1b), are affected by environmental change such as elevated pCO2 (hypercapnia) and high environmental ammonia (HEA). Our findings support a role for both OCT and CHH in the general maintenance of steady-state acid-base maintenance in the gill, as well as regulating the acid-base response to environmental challenges that C. maenas encounters on a regular basis in the habitats it dwells in and more so in the future ocean.
Collapse
Affiliation(s)
- Sandra Fehsenfeld
- Laboratoire de Physiologie Écologique et Évolutive Marine, Département de Biologie, Chimie et Géographie, Université du Québec à Rimouski, Rimouski, Canada.
- Department of Biological Sciences, University of Manitoba, Winnipeg, Canada.
| | | | - Piero Calosi
- Laboratoire de Physiologie Écologique et Évolutive Marine, Département de Biologie, Chimie et Géographie, Université du Québec à Rimouski, Rimouski, Canada
| | - Dirk Weihrauch
- Department of Biological Sciences, University of Manitoba, Winnipeg, Canada
| |
Collapse
|
5
|
Sachs M, Quijada-Rodriguez AR, Hans S, Weihrauch D. Characterization of two novel ammonia transporters, HIAT1α and HIAT1β, in the American Horseshoe Crab, Limulus polyphemus. Comp Biochem Physiol A Mol Integr Physiol 2023; 278:111365. [PMID: 36577451 DOI: 10.1016/j.cbpa.2022.111365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 12/23/2022] [Accepted: 12/23/2022] [Indexed: 12/26/2022]
Abstract
The American horseshoe crab, Limulus polyphemus, excretes nitrogenous waste in the form of toxic ammonia across their book gills. The mechanism of this branchial excretion is yet unknown. In the current study, two isoforms of a novel ammonia transporter, LpHIAT1α and LpHIAT1β, have been identified in L. polyphemus. Both isoforms have 12 predicted transmembrane regions and share 82.7% of amino acid identity to each other, and 77-86% amino acid homology to HIAT1 found in fish and crustaceans. In L. polyphemus, both isoforms were expressed in the gills, coxal glands, and brain. Slightly higher mRNA expression levels of LpHIAT1α were observed in the peripheral mitochondria-poor region of the gill (PMPA), central mitochondria-rich region of the gill (CMRA), and brain compared to the LpHIAT1β isoform. A functional expression analysis of LpHIAT1α and LpHIAT1β in Xenopus laevis oocytes resulted in a significantly lower uptake of the radiolabeled ammonia analogue 3H-methylamine when compared to controls, indicating an ammonia excretory function of the proteins. Exposure to elevated environmental ammonia (HEA, 1 mmol l-1 NH4Cl) caused an increase in mRNA expression of LpHIAT1β in the ion-conductive ventral gill half. High mRNA expression of both isoforms in the brain, and the observation that LpHIAT1α and LpHIAT1β likely mediate cellular ammonia excretion, suggests that these highly conserved ammonia transporters have an important housekeeping function in cellular ammonia elimination.
Collapse
Affiliation(s)
- Maria Sachs
- University of Manitoba, Department of Biological Sciences, 66 Chancellors Circle, Winnipeg, MB R3T 2N2, Canada
| | - Alex R Quijada-Rodriguez
- University of Manitoba, Department of Biological Sciences, 66 Chancellors Circle, Winnipeg, MB R3T 2N2, Canada
| | - Stephanie Hans
- University of Manitoba, Department of Biological Sciences, 66 Chancellors Circle, Winnipeg, MB R3T 2N2, Canada
| | - Dirk Weihrauch
- University of Manitoba, Department of Biological Sciences, 66 Chancellors Circle, Winnipeg, MB R3T 2N2, Canada.
| |
Collapse
|
6
|
Fehsenfeld S, Quijada-Rodriguez AR, Zhouyao H, Durant AC, Donini A, Sachs M, Eck P, Weihrauch D. Hiat1 as a new transporter involved in ammonia regulation. Sci Rep 2023; 13:4416. [PMID: 36932112 PMCID: PMC10023664 DOI: 10.1038/s41598-023-31503-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 03/13/2023] [Indexed: 03/19/2023] Open
Abstract
The orphan transporter hippocampus-abundant transcript 1 (Hiat1) was first identified in the mammalian brain. Its specific substrate specificity, however, has not been investigated to date. Here, we identified and analyzed Hiat1 in a crustacean, the green crab Carcinus maenas. Our phylogenetic analysis showed that Hiat1 protein is conserved at a considerable level between mammals and this invertebrate (ca. 78% identical and conserved amino acids). Functional expression of Carcinus maenas Hiat1 in Xenopus laevis oocytes demonstrated the capability to transport ammonia (likely NH4+) in a sodium-dependent manner. Furthermore, applying quantitative polymerase chain reaction, our results indicated a physiological role for Carcinus maenas Hiat1 in ammonia homeostasis, as mRNA abundance increased in posterior gills in response to elevated circulating hemolymph ammonia upon exposure to high environmental ammonia. Its ubiquitous mRNA expression pattern also suggests an essential role in general cellular detoxification of ammonia. Overall, our results introduce a new ubiquitously expressed ammonia transporter, consequently demanding revision of our understanding of ammonia handling in key model systems from mammalian kidneys to crustacean and fish gills.
Collapse
Affiliation(s)
- Sandra Fehsenfeld
- Département de Biologie, Chimie et Géographie, Université du Quebec à Rimouski, 300 Allée des Ursulines, Rimouski, QC, G5L 3A1, Canada.
- Department of Biological Sciences, University of Manitoba, 50 Sifton Road, Winnipeg, MB, R3T 2N2, Canada.
| | - Alex R Quijada-Rodriguez
- Department of Biological Sciences, University of Manitoba, 50 Sifton Road, Winnipeg, MB, R3T 2N2, Canada
| | - Haonan Zhouyao
- Department of Food and Human Nutritional Sciences, University of Manitoba, 35 Chancellor's Circle, Winnipeg, MB, R3T 2N2, Canada
| | - Andrea C Durant
- Department of Biology, York University, 4700 Keele St, Toronto, ON, M3J 1P3, Canada
- Department of Biological Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, ON, M1C 1A4, Canada
| | - Andrew Donini
- Department of Biology, York University, 4700 Keele St, Toronto, ON, M3J 1P3, Canada
| | - Maria Sachs
- Department of Biological Sciences, University of Manitoba, 50 Sifton Road, Winnipeg, MB, R3T 2N2, Canada
| | - Peter Eck
- Department of Food and Human Nutritional Sciences, University of Manitoba, 35 Chancellor's Circle, Winnipeg, MB, R3T 2N2, Canada
| | - Dirk Weihrauch
- Department of Biological Sciences, University of Manitoba, 50 Sifton Road, Winnipeg, MB, R3T 2N2, Canada
| |
Collapse
|
7
|
Wood CM. Exercise and emersion in air and recovery in seawater in the green crab (Carcinus maenas): Effects on nitrogenous wastes and branchial chamber fluid chemistry. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART A, ECOLOGICAL AND INTEGRATIVE PHYSIOLOGY 2023; 339:163-179. [PMID: 36369453 DOI: 10.1002/jez.2669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 09/25/2022] [Accepted: 10/07/2022] [Indexed: 11/13/2022]
Abstract
At low tide, the green crab, which is capable of breathing air, may leave the water and walk on the foreshore, carrying branchial chamber fluid (BCF). N-waste metabolism was examined in crabs at rest in seawater (32 ppt, 13°C), and during 18-h recovery in seawater after 1 h of exhaustive exercise (0.25 BL s-1 ) on a treadmill in air (20°C-23°C), or 1 h of quiet emersion in air. Measurements were made in parallel to O2 consumption (ṀO2 ), acid-base, cardio-respiratory, and ion data reported previously. At rest, the ammonia-N excretion rate (ṀAmm = 44 µmol-N kg-1 h-1 ) and ammonia quotient (AQ; ṀAmm /ṀO2 = 0.088) were low for a carnivore. Immediately after exercise and return to seawater, ṀAmm increased by 65-fold above control rates. After emersion alone and return to seawater, ṀAmm increased by 17-fold. These ammonia-N bursts were greater, but transient relative to longer-lasting elevations in ṀO2 , resulting in temporal disturbances of AQ. Intermittent excretion of urea-N and urate-N at rest and during recovery indicated the metabolic importance of these N-wastes. Hemolymph glutamate, glutamine, and PNH3 did not change. Hemolymph ammonia-N, urea-N, and urate-N concentrations increased after exercise and more moderately after emersion, with urate-N exhibiting the largest absolute increments, and urea-N the longest-lasting elevations. All three N-wastes were present in the BCF, with ammonia-N and PNH3 far above hemolymph levels even at rest. BCF volume declined by 34% postemersion and 77% postexercise, with little change in osmolality but large increases in ammonia-N concentrations. Neither rapid flushing of stored BCF nor clearance of hemolymph ammonia-N could explain the surges in ṀAmm after return to seawater.
Collapse
Affiliation(s)
- Chris M Wood
- Department of Zoology, University of British Columbia, Vancouver, British Columbia, Canada.,Bamfield Marine Sciences Centre, Bamfield, British Columbia, Canada.,Department of Biology, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
8
|
Allen GJP, Sachs M, Nash MT, Quijada-Rodriguez AR, Klymasz-Swartz A, Weihrauch D. Identification of different physiological functions within the gills and epipodites of the American lobster: Differences in metabolism, transbranchial transport, and mRNA expression. Comp Biochem Physiol A Mol Integr Physiol 2023; 276:111344. [PMID: 36379379 DOI: 10.1016/j.cbpa.2022.111344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 11/08/2022] [Accepted: 11/09/2022] [Indexed: 11/15/2022]
Abstract
Transbranchial transport processes are responsible for the homeostatic regulation of most essential physiological functions in aquatic crustaceans. Due to their widespread use as laboratory models, brachyuran crabs are commonly used to predict how other decapod crustaceans respond to environmental stressors including ocean acidification and warming waters. Non-brachyuran species such as the economically-valuable American lobster, Homarus americanus, possess trichobranchiate gills and epipodites that are known to be anatomically distinct from the phyllobranchiate gills of brachyurans; however, studies have yet to define their potential physiological differences. Our results indicate that the pleuro-, arthro-, and podobranch gills of the lobster are functionally homogenous and similar to the respiratory gills of brachyurans as indicated by equivalent rates of H+Eq., CO2, HCO3-, and ammonia transport and mRNA expression of related transporters and enzymes. The epipodites were found to be functionally distinct, being capable of greater individual rates of H+Eq., CO2, and ammonia transport despite mRNA transcript levels of related transporters and enzymes being only a fraction found in the gills. Collectively, mathematical estimates infer that the gills are responsible for 91% of the lobster's branchial HCO3- accumulation whereas the epipodites are responsible for 66% of branchial ammonia excretion suggesting different mechanisms exist in these tissues. Furthermore, the greater metabolic rate and amino acid catabolism in the epipodites suggest that the tissue much of the CO2 and ammonia excreted by this tissue originates intracellularly rather than systemically. These results provide evidence that non-brachyuran species must be carefully compared to brachyuran models.
Collapse
Affiliation(s)
| | - Maria Sachs
- Department of Biological Sciences, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada
| | - Mikyla Tara Nash
- Department of Biological Sciences, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada
| | | | - Aaron Klymasz-Swartz
- Department of Zoology, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | - Dirk Weihrauch
- Department of Biological Sciences, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada
| |
Collapse
|
9
|
Quijada-Rodriguez AR, Allen GJP, Nash MT, Weihrauch D. Postprandial nitrogen and acid-base regulation in the seawater acclimated green crab, Carcinus maenas. Comp Biochem Physiol A Mol Integr Physiol 2022; 267:111171. [PMID: 35183760 DOI: 10.1016/j.cbpa.2022.111171] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 02/07/2022] [Accepted: 02/15/2022] [Indexed: 11/25/2022]
Abstract
The effects of feeding (meal of 3% of body mass) on acid-base and nitrogen homeostasis were investigated in the seawater acclimated green shore crab, Carcinus maenas. Feeding did not change gastric fluid pH (~pH 6); however, feeding was associated with a respiratory acidosis. Hemolymph HCO3- did not increase during this acidosis, although titratable and net acid efflux changed from an uptake to an excretion. Feeding affected the crabs' nitrogen homeostasis causing a substantial increase in hemolymph ammonia and urea concentrations after six hours. At this point, hemolymph urea accounted for ~1/3 of nitrogenous waste accumulated within the hemolymph, suggesting a potential role in ammonia detoxification. The postprandial increase in hemolymph ammonia coincided with an 18-fold increase in ammonia excretion rates that accounted for the majority of net acid excreted by the crabs. Urea excretion rates did not increase after feeding; however, branchial urease activity increased, implying that the gills may possess a mechanism to form excretable ammonia through the catabolism of urea. Our results demonstrate that despite an acidic gastric compartment, C. maenas does not experience a postprandial alkaline tide and that any feeding related acid-base challenges are primarily derived from metabolic acid production. Our findings also indicate that unlike the bicarbonate buffering acid-base compensatory response induced by hypercapnia and emersion, acid-base challenges upon feeding are compensated through changes in the excretion of acid equivalents, mainly in the form of ammonia.
Collapse
Affiliation(s)
| | - Garett J P Allen
- Biological Sciences, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada
| | - Mikyla T Nash
- Biological Sciences, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada
| | - Dirk Weihrauch
- Biological Sciences, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada
| |
Collapse
|
10
|
Tripp A, Allen GJP, Quijada-Rodriguez AR, Yoon GR, Weihrauch D. Effects of single and dual-stressor elevation of environmental temperature and P CO2 on metabolism and acid-base regulation in the Louisiana red swamp crayfish, Procambarus clarkii. Comp Biochem Physiol A Mol Integr Physiol 2022; 266:111151. [PMID: 35026389 DOI: 10.1016/j.cbpa.2022.111151] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 01/06/2022] [Accepted: 01/07/2022] [Indexed: 12/01/2022]
Abstract
Elevation of temperature and CO2 levels within the world's aquatic environments is expected to cause numerous physiological challenges to their inhabitants. While effects on marine ecosystems have been well studied, freshwater ecosystems have rarely been examined using a dual-stressor approach leaving our understanding of its inhabitants upon these challenges unclear. We aimed to identify the affects of elevated temperature and hypercapnia in isolation and in combination on the metabolic and acid-base regulatory processes of a freshwater crayfish, Procambarus clarkii. Crayfish were exposed to freshwater conditions that may be prevalent by the year 2100 and metabolic responses were determined after 14-days of exposure. In addition, changes in branchial mRNA expression of acid-base linked transporters were investigated. Interactions between exposure conditions influenced extracellular pH as well as the nitrogen physiology and routine metabolic rate of the crayfish. Crayfish exposed to individual and combined elevations in temperature and/or hypercapnia maintained an extracellular pH similar to that of control crayfish. Dual-stressor exposed crayfish seem to elevate the importance of ammonium as an excretable acid-equivalent based on an overall increase in the branchial mRNA expression of transporters related to ammonia excretion including the Na+/K+-ATPase, Rhesus-protein, and the V-type H+-ATPase. Overall, hypercapnia and dual-stressor conditions caused a metabolic depression that may have long-lasting consequences such as limited locomotion, growth, and reproduction. Future generations of crayfish given the chance to adapt over several generations may ameliorate these consequences.
Collapse
Affiliation(s)
- Ashley Tripp
- Department of Biological Sciences, University of Manitoba, Winnipeg R3T 2N2, Canada
| | - Garett J P Allen
- Department of Biological Sciences, University of Manitoba, Winnipeg R3T 2N2, Canada
| | | | - Gwangseok R Yoon
- Department of Biological Sciences, University of Manitoba, Winnipeg R3T 2N2, Canada
| | - Dirk Weihrauch
- Department of Biological Sciences, University of Manitoba, Winnipeg R3T 2N2, Canada.
| |
Collapse
|
11
|
Allen GJP, Wang MC, Tseng YC, Weihrauch D. Effects of emersion on acid-base regulation, osmoregulation, and nitrogen physiology in the semi-terrestrial mangrove crab, Helice formosensis. J Comp Physiol B 2021; 191:455-468. [PMID: 33616745 DOI: 10.1007/s00360-021-01354-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 01/15/2021] [Accepted: 01/28/2021] [Indexed: 01/21/2023]
Abstract
Emersion limits water availability and impairs the gill function of water-breathing animals resulting in a reduced capacity to regulate respiratory gas exchange, acid-base balance, and nitrogenous waste excretion. Semi-terrestrial crustaceans such as Helice formosensis mitigate these physiological consequences by modifying and recycling urine and branchial water shifting some branchial workload to the antennal glands. To investigate how this process occurs, Helice formosensis were emersed for up to 160 h and their hemolymph and urinary acid-base, nitrogenous waste, free amino acids, and osmoregulatory parameters were investigated. Upon emersion, crabs experienced a respiratory acidosis that is restored by bicarbonate accumulation and ammonia reduction within the hemolymph and urine after 24 h. Prolonged emersion caused an overcompensatory metabolic alkalosis potentially limiting the crab's ability to remain emersed. During the alkalosis, hemolymph ammonia was maintained at control levels while urinary ammonia remained reduced by 60% of control values. During emersion, ammonia may be temporarily converted to alanine as part of the Cahill cycle until re-immersion where crabs can revert alanine to ammonia for excretion coinciding with the crabs' observed delayed ammonia excretion response. The presence of high hemolymph alanine concentrations even when immersed may indicate this cycle's use outside of emersion or in preparation for emersion. Furthermore, H. formosensis appears to be uniquely capable of actively suppressing its rate of desiccation in absence of behavioral changes, in part by creating hyperosmotic urine that mitigates evaporative water loss.
Collapse
Affiliation(s)
| | - Min-Chen Wang
- Marine Research Station, Institute of Cellular and Organismal Biology, Academia Sinica, Yilan County, Taiwan ROC
| | - Yung-Che Tseng
- Marine Research Station, Institute of Cellular and Organismal Biology, Academia Sinica, Yilan County, Taiwan ROC
| | - Dirk Weihrauch
- Department of Biological Sciences, University of Manitoba, Winnipeg, MB, Canada.
| |
Collapse
|
12
|
Allen GJP, Weihrauch D. Exploring the versatility of the perfused crustacean gill as a model for transbranchial transport processes. Comp Biochem Physiol B Biochem Mol Biol 2021; 254:110572. [PMID: 33556621 DOI: 10.1016/j.cbpb.2021.110572] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 01/27/2021] [Accepted: 01/28/2021] [Indexed: 01/01/2023]
Abstract
The study of transbranchial ion and gas transport of water-breathing animals has long been a useful means of modeling transport processes of higher vertebrate organs through comparative physiology. The molecular era of biological research has brought forward valuable information detailing shifts in gene expression related to environmental stress and the sub-cellular localization of transporters; however, purely molecular studies can cause hypothetical transport mechanisms and hypotheses to be accepted without any direct physiological proof. Isolated perfused gill experiments are useful for testing most of these hypotheses and can sometimes be used outright to develop a well-supported working model for transport processes relating to an animal's osmoregulation, acid-base balance, nitrogen excretion, and respiratory gas exchange as well as their sensitivity to pollutants and environmental stress. The technique allows full control of internal hemolymph-like saline as well as the ambient environmental fluid compositions and can measure the electrophysiological properties of the gill as well as the transport rates of ions and gases as they traverse the gill epithelium. Additives such as pharmaceuticals or peptides as well as the exclusion of ions from the media are commonly used to identify the importance of specific transporters to transport mechanisms. The technique can also be used to identify the penetrance, retention, and localization of pollutants within the gill epithelium or to explore the uptake and metabolism of nutrients directly from the ambient environment. While this technique can be applied to virtually any isolatable organ, the anatomy and rigidity of the decapod crustacean gill make it an ideal candidate for most experimental designs.
Collapse
Affiliation(s)
| | - Dirk Weihrauch
- Department of Biological Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada.
| |
Collapse
|
13
|
Brown J, Whiteley NM, Bailey AM, Graham H, Hop H, Rastrick SPS. Contrasting responses to salinity and future ocean acidification in arctic populations of the amphipod Gammarus setosus. MARINE ENVIRONMENTAL RESEARCH 2020; 162:105176. [PMID: 33096461 DOI: 10.1016/j.marenvres.2020.105176] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 09/10/2020] [Accepted: 10/06/2020] [Indexed: 06/11/2023]
Abstract
Climate change is leading to alterations in salinity and carbonate chemistry in arctic/sub-arctic marine ecosystems. We examined three nominal populations of the circumpolar arctic/subarctic amphipod, Gammarus setosus, along a salinity gradient in the Kongsfjorden-Krossfjorden area of Svalbard. Field and laboratory experiments assessed physiological (haemolymph osmolality and gill Na+/K+-ATPase activity, NKA) and energetic responses (metabolic rates, MO2, and Cellular Energy Allocation, CEA). In the field, all populations had similar osmregulatory capacities and MO2, but lower-salinity populations had lower CEA. Reduced salinity (S = 23) and elevated pCO2 (~1000 μatm) in the laboratory for one month increased gill NKA activities and reduced CEA in all populations, but increased MO2 in the higher-salinity population. Elevated pCO2 did not interact with salinity and had no effect on NKA activities or CEA, but reduced MO2 in all populations. Reduced CEA in lower-rather than higher-salinity populations may have longer term effects on other energy demanding processes (growth and reproduction).
Collapse
Affiliation(s)
- James Brown
- Department of Biological Sciences, University of Chester, Thomas Building, Parkgate Road, Chester, CH1 4BJ, UK.
| | - Nia M Whiteley
- School of Natural Sciences, Bangor University, Deiniol Road, Bangor, Gwynedd. LL57 2UW, UK
| | | | - Helen Graham
- Institute of Marine Research, P.O. Box 1870, Nordnes, 5817, Bergen, Norway
| | - Haakon Hop
- Norwegian Polar Institute, Fram Centre, 9296, Tromsø, Norway
| | | |
Collapse
|
14
|
Allen GJP, Kuan PL, Tseng YC, Hwang PP, Quijada-Rodriguez AR, Weihrauch D. Specialized adaptations allow vent-endemic crabs (Xenograpsus testudinatus) to thrive under extreme environmental hypercapnia. Sci Rep 2020; 10:11720. [PMID: 32678186 PMCID: PMC7367285 DOI: 10.1038/s41598-020-68656-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Accepted: 06/29/2020] [Indexed: 12/13/2022] Open
Abstract
Shallow hydrothermal vent environments are typically very warm and acidic due to the mixing of ambient seawater with volcanic gasses (> 92% CO2) released through the seafloor making them potential ‘natural laboratories’ to study long-term adaptations to extreme hypercapnic conditions. Xenograpsus testudinatus, the shallow hydrothermal vent crab, is the sole metazoan inhabitant endemic to vents surrounding Kueishantao Island, Taiwan, where it inhabits waters that are generally pH 6.50 with maximum acidities reported as pH 5.50. This study assessed the acid–base regulatory capacity and the compensatory response of X. testudinatus to investigate its remarkable physiological adaptations. Hemolymph parameters (pH, [HCO3−], \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\text{P}}_{{{\text{CO}}_{2} }}$$\end{document}PCO2, [NH4+], and major ion compositions) and the whole animal’s rates of oxygen consumption and ammonia excretion were measured throughout a 14-day acclimation to pH 6.5 and 5.5. Data revealed that vent crabs are exceptionally strong acid–base regulators capable of maintaining homeostatic pH against extreme hypercapnia (pH 5.50, 24.6 kPa \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\text{P}}_{{{\text{CO}}_{2} }}$$\end{document}PCO2) via HCO3−/Cl− exchange, retention and utilization of extracellular ammonia. Intact crabs as well as their isolated perfused gills maintained \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\text{P}}_{{{\text{CO}}_{2} }}$$\end{document}PCO2tensions below environmental levels suggesting the gills can excrete CO2 against a hemolymph-directed \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\text{P}}_{{{\text{CO}}_{2} }}$$\end{document}PCO2 gradient. These specialized physiological mechanisms may be amongst the adaptations required by vent-endemic animals surviving in extreme conditions.
Collapse
Affiliation(s)
- Garett J P Allen
- Biological Sciences, University of Manitoba, 190 Dysart Rd., Winnipeg, MB, R3T 2M8, Canada
| | - Pou-Long Kuan
- Institute of Cellular and Organismal Biology's Marine Research Station, Academia Sinica, No. 23-10 Dawen Rd., Jiaoxi, 262, Yilan County, Taiwan
| | - Yung-Che Tseng
- Institute of Cellular and Organismal Biology's Marine Research Station, Academia Sinica, No. 23-10 Dawen Rd., Jiaoxi, 262, Yilan County, Taiwan
| | - Pung-Pung Hwang
- Institute of Cellular and Organismal Biology, Academia Sinica, No. 128, Section 2, Academia Rd., Nangang District, Taipei City, 11529, Taiwan
| | | | - Dirk Weihrauch
- Biological Sciences, University of Manitoba, 190 Dysart Rd., Winnipeg, MB, R3T 2M8, Canada.
| |
Collapse
|
15
|
Fehsenfeld S, Kolosov D, Wood CM, O'Donnell MJ. Section-specific H + flux in renal tubules of fasted and fed goldfish. ACTA ACUST UNITED AC 2019; 222:jeb.200964. [PMID: 31138633 DOI: 10.1242/jeb.200964] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 05/21/2019] [Indexed: 12/12/2022]
Abstract
A recent study demonstrated that in response to a feeding-induced metabolic acidosis, goldfish (Carassius auratus) adjust epithelial protein and/or mRNA expression in their kidney tubules for multiple transporters known to be relevant for acid-base regulation. These include Na+/H+ exchanger (NHE), V-type H+-ATPase (V-ATPase), cytoplasmic carbonic anhydrase, HCO3 - transporters and Rhesus proteins. Consequently, renal acid output in the form of protons and NH4 + increases. However, little is known about the mechanistic details of renal acid-base regulation in C. auratus and teleost fishes in general. The present study applied the scanning ion-selective electrode technique (SIET) to measure proton flux in proximal, distal and connecting tubules of goldfish. We detected increased H+ efflux into the extracellular fluid from the tubule in fed animals, resulting from paracellular back-flux of H+ through the tight junction. By applying inhibitors for selected acid-base regulatory epithelial transporters, we found that cytosolic carbonic anhydrase and HCO3 - transporters were important in mediating H+ flux in all three tubule segments of fed goldfish. Contrastingly, V-ATPase seemed to play a role in H+ flux only in proximal and distal tubules, and NHE in proximal and connecting tubules. We developed working models for transport of acid-base relevant equivalents (H+, HCO3 -, NH3/NH4 +) for each tubule segment in C. auratus kidney. While the proximal tubule appears to play a major role in both H+ secretion and HCO3 - reabsorption, the distal and connecting tubules seem to mainly serve for HCO3 - reabsorption and NH3/NH4 + secretion.
Collapse
Affiliation(s)
- Sandra Fehsenfeld
- Département de Biologie, Chimie et Géographie, Université du Québec à Rimouski, Rimouski, QC, G5L 3A1, Canada .,Department of Zoology, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Dennis Kolosov
- Department of Biology, McMaster University, Hamilton, ON, L8S 4K1, Canada
| | - Chris M Wood
- Department of Zoology, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada.,Department of Biology, McMaster University, Hamilton, ON, L8S 4K1, Canada
| | | |
Collapse
|
16
|
Klymasz-Swartz AK, Allen GJP, Treberg JR, Yoon GR, Tripp A, Quijada-Rodriguez AR, Weihrauch D. Impact of climate change on the American lobster (Homarus americanus): Physiological responses to combined exposure of elevated temperature and pCO 2. Comp Biochem Physiol A Mol Integr Physiol 2019; 235:202-210. [PMID: 31207282 DOI: 10.1016/j.cbpa.2019.06.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 06/10/2019] [Accepted: 06/10/2019] [Indexed: 12/17/2022]
Abstract
The physiological consequences of exposing marine organisms to predicted future ocean scenarios, i.e. simultaneous increase in temperature and pCO2, have only recently begun to be investigated. Adult American lobster (Homarus americanus) were exposed to either current (16 °C, 47 Pa pCO2, pH 8.10) or predicted year 2300 (20 °C, 948 Pa pCO2, pH 7.10) ocean parameters for 14-16 days prior to assessing physiological changes in their hemolymph parameters as well as whole animal ammonia excretion and resting metabolic rate. Acclimation of lobster simultaneously to elevated pCO2 and temperature induced a prolonged respiratory acidosis that was only partially compensated for via accumulation of extracellular HCO3- and ammonia. Furthermore, acclimated animals possessed significantly higher ammonia excretion and oxygen consumption rates suggesting that future ocean scenarios may increase basal energetic demands on H. americanus. Enzyme activity related to protein metabolism (glutamine dehydrogenase, alanine aminotransferase, and aspartate aminotransferase) in hepatopancreas and muscle tissue were unaltered in future ocean scenario exposed animals; however, muscular citrate synthase activity was reduced suggesting that, while protein catabolism may be unchanged, the net energetic output of muscle may be compromised in future scenarios. Overall, H. americanus acclimated to ocean conditions predicted for the year 2300 appear to be incapable of fully compensating against climate change-related acid-base challenges and experience an increase in metabolic waste excretion and oxygen consumption. Combining our study with past literature on H. americanus suggests that the whole lifecycle from larvae to adult stages is at risk of severe growth, survival and reproductive consequences due to climate change.
Collapse
Affiliation(s)
| | - Garett J P Allen
- University of Manitoba, Department of Biological Sciences, Winnipeg, R3T2N2, MB, Canada
| | - Jason R Treberg
- University of Manitoba, Department of Biological Sciences, Winnipeg, R3T2N2, MB, Canada
| | - Gwangseok R Yoon
- University of Manitoba, Department of Biological Sciences, Winnipeg, R3T2N2, MB, Canada
| | - Ashley Tripp
- University of Manitoba, Department of Biological Sciences, Winnipeg, R3T2N2, MB, Canada
| | | | - Dirk Weihrauch
- University of Manitoba, Department of Biological Sciences, Winnipeg, R3T2N2, MB, Canada.
| |
Collapse
|
17
|
Brauner CJ, Shartau RB, Damsgaard C, Esbaugh AJ, Wilson RW, Grosell M. Acid-base physiology and CO2 homeostasis: Regulation and compensation in response to elevated environmental CO2. FISH PHYSIOLOGY 2019. [DOI: 10.1016/bs.fp.2019.08.003] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
18
|
Sensitivity to near-future CO 2 conditions in marine crabs depends on their compensatory capacities for salinity change. Sci Rep 2018; 8:15639. [PMID: 30353120 PMCID: PMC6199311 DOI: 10.1038/s41598-018-34089-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Accepted: 10/09/2018] [Indexed: 01/01/2023] Open
Abstract
Marine crabs inhabit shallow coastal/estuarine habitats particularly sensitive to climate change, and yet we know very little about the diversity of their responses to environmental change. We report the effects of a rarely studied, but increasingly prevalent, combination of environmental factors, that of near-future pCO2 (~1000 µatm) and a physiologically relevant 20% reduction in salinity. We focused on two crab species with differing abilities to cope with natural salinity change, and revealed via physiological and molecular studies that salinity had an overriding effect on ion exchange in the osmoregulating shore crab, Carcinus maenas. This species was unaffected by elevated CO2, and was able to hyper-osmoregulate and maintain haemolymph pH homeostasis for at least one year. By contrast, the commercially important edible crab, Cancer pagurus, an osmoconformer, had limited ion-transporting capacities, which were unresponsive to dilute seawater. Elevated CO2 disrupted haemolymph pH homeostasis, but there was some respite in dilute seawater due to a salinity-induced metabolic alkalosis (increase in HCO3- at constant pCO2). Ultimately, Cancer pagurus was poorly equipped to compensate for change, and exposures were limited to 9 months. Failure to understand the full spectrum of species-related vulnerabilities could lead to erroneous predictions of the impacts of a changing marine climate.
Collapse
|
19
|
Effects of ocean acidification and salinity variations on the physiology of osmoregulating and osmoconforming crustaceans. J Comp Physiol B 2018; 188:729-738. [DOI: 10.1007/s00360-018-1167-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Revised: 05/16/2018] [Accepted: 05/24/2018] [Indexed: 12/22/2022]
|
20
|
Maus B, Bock C, Pörtner HO. Water bicarbonate modulates the response of the shore crab Carcinus maenas to ocean acidification. J Comp Physiol B 2018; 188:749-764. [PMID: 29796734 DOI: 10.1007/s00360-018-1162-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Revised: 05/02/2018] [Accepted: 05/09/2018] [Indexed: 01/06/2023]
Abstract
Ocean acidification causes an accumulation of CO2 in marine organisms and leads to shifts in acid-base parameters. Acid-base regulation in gill breathers involves a net increase of internal bicarbonate levels through transmembrane ion exchange with the surrounding water. Successful maintenance of body fluid pH depends on the functional capacity of ion-exchange mechanisms and associated energy budget. For a detailed understanding of the dependence of acid-base regulation on water parameters, we investigated the physiological responses of the shore crab Carcinus maenas to 4 weeks of ocean acidification [OA, P(CO2)w = 1800 µatm], at variable water bicarbonate levels, paralleled by changes in water pH. Cardiovascular performance was determined together with extra-(pHe) and intracellular pH (pHi), oxygen consumption, haemolymph CO2 parameters, and ion composition. High water P(CO2) caused haemolymph P(CO2) to rise, but pHe and pHi remained constant due to increased haemolymph and cellular [HCO3-]. This process was effective even under reduced seawater pH and bicarbonate concentrations. While extracellular cation concentrations increased throughout, anion levels remained constant or decreased. Despite similar levels of haemolymph pH and ion concentrations under OA, metabolic rates, and haemolymph flow were significantly depressed by 40 and 30%, respectively, when OA was combined with reduced seawater [HCO3-] and pH. Our findings suggest an influence of water bicarbonate levels on metabolic rates as well as on correlations between blood flow and pHe. This previously unknown phenomenon should direct attention to pathways of acid-base regulation and their potential feedback on whole-animal energy demand, in relation with changing seawater carbonate parameters.
Collapse
Affiliation(s)
- Bastian Maus
- Integrative Ecophysiology, Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Am Handelshafen 12, 27570, Bremerhaven, Germany
| | - Christian Bock
- Integrative Ecophysiology, Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Am Handelshafen 12, 27570, Bremerhaven, Germany.
| | - Hans-O Pörtner
- Integrative Ecophysiology, Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Am Handelshafen 12, 27570, Bremerhaven, Germany
- Department of Biology/Chemistry, University of Bremen, 28334, Bremen, Germany
| |
Collapse
|
21
|
Weihrauch D, Allen GJP. Ammonia excretion in aquatic invertebrates: new insights and questions. J Exp Biol 2018; 221:221/2/jeb169219. [DOI: 10.1242/jeb.169219] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
ABSTRACT
Invertebrates employ a variety of ammonia excretion strategies to facilitate their survival in diverse aquatic environments, including freshwater, seawater and the water film surrounding soil particles. Various environmental properties set innate challenges for an organism's ammonia excretory capacity. These include the availability of NaCl and the respective ion-permeability of the organism's transport epithelia, and the buffering capacity of their immediate surrounding medium. To this end, some transporters seem to be conserved in the excretory process. This includes the Na+/K+(NH4+)-ATPase (NKA), the NH3/CO2 dual gas-channel Rhesus (Rh)-proteins and novel ammonia transporters (AMTs), which have been identified in several invertebrates but appear to be absent from vertebrates. In addition, recent evidence strongly suggests that the hyperpolarization-activated cyclic nucleotide-gated K+ channel (HCN) plays a significant role in ammonia excretion and is highly conserved throughout the animal kingdom. Furthermore, microtubule-dependent vesicular excretion pathways have been found in marine and soil-dwelling species, where, unlike freshwater systems, acid-trapping of excreted ammonia is difficult or absent owing to the high environmental buffering capacity of the surroundings. Finally, although ammonia is known to be a toxic nitrogenous waste product, certain marine species readily maintain potentially toxic hemolymph ammonia as a sort of ammonia homeostasis, which suggests that ammonia is involved in physiological processes and does not exist simply for excretion. Such findings are discussed within this Commentary and are hypothesized to be involved in acid–base regulation. We also describe excretory organs and processes that are dependent on environmental constraints and indicate gaps in the current knowledge in these topics.
Collapse
Affiliation(s)
- Dirk Weihrauch
- University of Manitoba, Department of Biological Sciences, Winnipeg, R3T2N2, MB, Canada
| | - Garett J. P. Allen
- University of Manitoba, Department of Biological Sciences, Winnipeg, R3T2N2, MB, Canada
| |
Collapse
|
22
|
Hans S, Quijada-Rodriguez AR, Allen GJP, Onken H, Treberg JR, Weihrauch D. Ammonia excretion and acid-base regulation in the American horseshoe crab, Limulus polyphemus. J Exp Biol 2018; 221:jeb.151894. [DOI: 10.1242/jeb.151894] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Accepted: 01/10/2018] [Indexed: 01/14/2023]
Abstract
Many studies have investigated ammonia excretion and acid-base regulation in aquatic arthropods, yet current knowledge of marine chelicerates is non-existent. In American horseshoe crabs (Limulus polyphemus), book gills bear physiologically distinct regions: dorsal and ventral half-lamellae, and central mitochondria-rich (CMRA) and peripheral mitochondria-poor areas (PMPA). CMRA and ventral half-lamella exhibited characteristics important to ammonia excretion and/or acid-base regulation as supported by high expression levels of Rhesus-protein 1 (LpRh-1), cytoplasmic carbonic anhydrase (CA-2), and hyperpolarization-activated cyclic nucleotide-gated K+ channel (HCN) compared to PMPA and dorsal half-lamella. The half-lamellae displayed remarkable differences; the ventral epithelium was ion-leaky whilst the dorsal counterpart possessed an exceptionally tight epithelium. LpRh-1 was more abundant than LpRh-2 in all investigated tissues, but LpRh-2 was more prevalent in the PMPA than CMRA. Ammonia influx associated with high ambient ammonia (HAA) treatment was counteracted by intact animals and complemented by upregulation of branchial CA-2, V-type H+-ATPase (HAT), HCN, and LpRh-1 mRNA expression. The dorsal epithelium demonstrated characteristics of active ammonia excretion, however, an influx was observed across the ventral epithelium due to the tissue's high ion conductance, although the influx rate was not proportionately high considering the ∼3-fold inwardly-directed ammonia gradient. Novel findings suggest a role for the coxal gland in excretion and maintaining hemolymph ammonia regulation under HAA. Hypercapnic exposure induced compensatory respiratory acidosis and partial metabolic depression. Functional differences between 2 halves of a branchial lamella may be physiologically beneficial in reducing backflow of waste products into adjacent lamellae, especially in fluctuating environments where ammonia levels can increase.
Collapse
Affiliation(s)
- Stephanie Hans
- Department of Biological Sciences, University of Manitoba, Winnipeg, Canada
| | | | - Garett J. P. Allen
- Department of Biological Sciences, University of Manitoba, Winnipeg, Canada
| | - Horst Onken
- Department of Biological Sciences, Wagner College, New York, USA
| | - Jason R. Treberg
- Department of Biological Sciences, University of Manitoba, Winnipeg, Canada
- Department of Human Nutritional Sciences, University of Manitoba, Winnipeg, Canada
| | - Dirk Weihrauch
- Department of Biological Sciences, University of Manitoba, Winnipeg, Canada
| |
Collapse
|
23
|
Quijada-Rodriguez AR, Schultz AG, Wilson JM, He Y, Allen GJP, Goss GG, Weihrauch D. Ammonia-independent sodium uptake mediated by Na + channels and NHEs in the freshwater ribbon leech Nephelopsis obscura. ACTA ACUST UNITED AC 2017; 220:3270-3279. [PMID: 28684464 DOI: 10.1242/jeb.159459] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Accepted: 07/03/2017] [Indexed: 12/18/2022]
Abstract
Freshwater organisms actively take up ions from their environment to counter diffusive ion losses due to inhabiting hypo-osmotic environments. The mechanisms behind active Na+ uptake are quite well understood in freshwater teleosts; however, the mechanisms employed by invertebrates are not. Pharmacological and molecular approaches were used to investigate Na+ uptake mechanisms and their link to ammonia excretion in the ribbon leech Nephelopsis obscura At the molecular level, we identified a Na+ channel and a Na+/H+ exchanger (NHE) in the skin of N. obscura, where the NHE was up-regulated when acclimated to extremely low [Na+] (0.05 mmol l-1, pH 5) conditions. Additionally, we found that leeches in dilute freshwater environments use both a vacuolar-type H+-ATPase (VHA)-assisted uptake via a Na+ channel and a NHE-based mechanisms for Na+ uptake. Immunolocalization of VHA and Na+/K+-ATPase (NKA) indicated at least two cell types present within leech skin, VHA+ and VHA- cells, where the VHA+ cells are probably involved in Na+ uptake. NKA was present throughout the epithelium. We also found that increasing ammonia excretion by decreasing water pH, ammonia loading leeches or exposing leeches to high environmental ammonia does not affect Na+ uptake, providing indications that an NHE-Rh metabolon is not present and that ammonia excretion and Na+ uptake are not coupled in N. obscura To our knowledge, this is the first study showing the mechanisms of Na+ uptake and their links to ammonia excretion in a freshwater invertebrate, where results suggest an ammonia-independent Na+ uptake mechanism relying on both Na+ channels and NHEs.
Collapse
Affiliation(s)
| | - Aaron G Schultz
- School of Life and Environmental Sciences, Deakin University, Locked Bag 20000, Geelong, VIC 3220, Australia
| | - Jonathan M Wilson
- Department of Biology, Wilfrid Laurier University, Waterloo, ON, Canada N2L 3C5
| | - Yuhe He
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada T6G 2E9
| | - Garett J P Allen
- Department of Biological Sciences, University of Manitoba, Winnipeg, MB, Canada R3T2N2
| | - Greg G Goss
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada T6G 2E9
| | - Dirk Weihrauch
- Department of Biological Sciences, University of Manitoba, Winnipeg, MB, Canada R3T2N2
| |
Collapse
|
24
|
Thiel D, Hugenschütt M, Meyer H, Paululat A, Quijada-Rodriguez AR, Purschke G, Weihrauch D. Ammonia excretion in the marine polychaete Eurythoe complanata (Annelida). ACTA ACUST UNITED AC 2016; 220:425-436. [PMID: 27852754 DOI: 10.1242/jeb.145615] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Accepted: 11/11/2016] [Indexed: 12/31/2022]
Abstract
Ammonia is a toxic waste product from protein metabolism and needs to be either converted into less toxic molecules or, in the case of fish and aquatic invertebrates, excreted directly as is. In contrast to fish, very little is known regarding the ammonia excretion mechanism and the participating excretory organs in marine invertebrates. In the current study, ammonia excretion in the marine burrowing polychaete Eurythoe complanata was investigated. As a potential site for excretion, the 100-200 µm long, 30-50 µm wide and up to 25 µm thick dentrically branched, well ventilated and vascularized branchiae (gills) were identified. In comparison to the main body, the branchiae showed considerably higher mRNA expression levels of Na+/K+-ATPase, V-type H+-ATPase, cytoplasmic carbonic anhydrase (CA-2), a Rhesus-like protein, and three different ammonia transporters (AMTs). Experiments on the intact organism revealed that ammonia excretion did not occur via apical ammonia trapping, but was regulated by a basolateral localized V-type H+-ATPase, carbonic anhydrase and intracellular cAMP levels. Interestingly, the V-type H+-ATPase seems to play a role in ammonia retention. A 1 week exposure to 1 mmol l-1 NH4Cl (HEA) did not cause a change in ammonia excretion rates, while the three branchial expressed AMTs showed a tendency to be down-regulated. This indicates a shift of function in the branchial ammonia excretion processes under these conditions.
Collapse
Affiliation(s)
- Daniel Thiel
- University of Osnabrück, Fachbereich Biologie, Department of Zoology, Osnabrück 49069, Germany
| | - Maja Hugenschütt
- University of Osnabrück, Fachbereich Biologie, Department of Zoology, Osnabrück 49069, Germany
| | - Heiko Meyer
- University of Osnabrück, Fachbereich Biologie, Department of Zoology, Osnabrück 49069, Germany
| | - Achim Paululat
- University of Osnabrück, Fachbereich Biologie, Department of Zoology, Osnabrück 49069, Germany
| | | | - Günter Purschke
- University of Osnabrück, Fachbereich Biologie, Department of Zoology, Osnabrück 49069, Germany
| | - Dirk Weihrauch
- University of Manitoba, Department of Biological Sciences, Winnipeg, Manitoba, Canada
| |
Collapse
|