1
|
Bonnefond L, Pinaud D, Bollache L, Schmidt NM, Lang J, Hansen LH, Sittler B, Moreau J, Gilg O. Intraseasonal variations in the spatial behaviour of an Arctic predator. MOVEMENT ECOLOGY 2025; 13:13. [PMID: 40038802 DOI: 10.1186/s40462-024-00522-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 12/06/2024] [Indexed: 03/06/2025]
Abstract
BACKGROUND In highly constrained ecosystems such as in the Arctic, animals must constantly adjust their movements to cope with the highly versatile environmental conditions. However, to date most studies have focused on interseasonal differences in spatial behaviour, while intraseasonal dynamics are less described. METHODS To fill this knowledge gap, we studied the movement patterns of an Arctic predator, the arctic fox (Vulpes lagopus) at the intraseasonal scale. To unravel temporal patterns in space use and movement metrics, we used GPS data collected on 20 individual foxes between 2017 and 2023 in North-East Greenland. RESULTS We showed that weekly full and core home range sizes (estimated by means of Autocorrelated Kernel Density Estimates), and daily mean relative turning angles stayed constant throughout the summer. Conversely, daily distance travelled, mean daily speed and daily proportion of 'active' time showed intraseasonal variations. These fine-scale metrics had a hump-shaped distribution, peaking in mid-July, with males and non-breeding foxes travelling longer distances and being faster. Site-specific patterns were also identified, with foxes having smaller territories in the two most productive sites but moving shorter distances and at lower speeds at the poorest site. CONCLUSION Our study provides novel insights into how predators adjust their space use and behaviour to intraseasonal variations in environmental conditions. Specifically, we show that different movement metrics show different intraseasonal patterns. We also underline the importance of considering small spatiotemporal scales to fully understand predators' spatial behaviour.
Collapse
Affiliation(s)
- Laura Bonnefond
- Centre d'Etudes Biologiques de Chizé, UMR 7372, CNRS & La Rochelle Université, Villiers-en-bois, 79360, France.
- Université de Bourgogne, Dijon, 21078, France.
| | - David Pinaud
- Centre d'Etudes Biologiques de Chizé, UMR 7372, CNRS & La Rochelle Université, Villiers-en-bois, 79360, France
| | - Loïc Bollache
- UMR 6249 Chrono-Environnement, CNRS, Université de Franche-Comté, Besançon cedex, 25030, France
- Groupe de Recherche en Ecologie Arctique (GREA), Francheville, 21440, France
| | - Niels Martin Schmidt
- Department of Ecoscience and Arctic Research Centre, Aarhus University, Frederiksborgvej 399, Roskilde, 4000, Denmark
| | - Johannes Lang
- Groupe de Recherche en Ecologie Arctique (GREA), Francheville, 21440, France
- Working Group Wildlife Research - Clinic for Birds, Reptiles, Amphibians and Fish, Justus Liebig University Giessen, Giessen, 35392, Germany
| | - Lars Holst Hansen
- Department of Ecoscience and Arctic Research Centre, Aarhus University, Frederiksborgvej 399, Roskilde, 4000, Denmark
| | - Benoît Sittler
- Groupe de Recherche en Ecologie Arctique (GREA), Francheville, 21440, France
- Nature Conservation and Landscape Ecology, University of Freiburg, Tennebacher Straße 4, Freiburg, 79106, Germany
| | - Jérôme Moreau
- Centre d'Etudes Biologiques de Chizé, UMR 7372, CNRS & La Rochelle Université, Villiers-en-bois, 79360, France
- Groupe de Recherche en Ecologie Arctique (GREA), Francheville, 21440, France
- UMR CNRS 6282 Biogéosciences, Équipe Écologie Évolutive, Université de Bourgogne, Dijon, 21000, France
| | - Olivier Gilg
- UMR 6249 Chrono-Environnement, CNRS, Université de Franche-Comté, Besançon cedex, 25030, France
- Groupe de Recherche en Ecologie Arctique (GREA), Francheville, 21440, France
| |
Collapse
|
2
|
Parracciani C, Maiorano L, Ciucci P. Seasonal and anthropogenic effects on niche overlap and habitat selection by sympatric bears ( Ursus arctos marsicanus) and wolves ( Canis lupus) in a human-dominated landscape. Ecol Evol 2024; 14:e70225. [PMID: 39376475 PMCID: PMC11456754 DOI: 10.1002/ece3.70225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 05/29/2024] [Accepted: 08/12/2024] [Indexed: 10/09/2024] Open
Abstract
Interspecific interactions among species of the same guild play a critical role in shaping their realized niches, and their understanding may disclose mechanisms of coexistence. Investigating interactions among apex predators is of ecological and management interest, especially in human-dominated landscapes where type and intensity of their interspecific competition may be affected by human interference. During 2005-2010, we investigated, by means of GPS-telemetry, interactions between brown bears (n = 19) and wolves (n = 7) in a long-established national park in the central Apennines, Italy, where bears and wolves have always coexisted close to humans. Based on a K-select analysis and a randomization approach, we assessed the extent of overlap between the species' niches on a seasonal basis. Bears and wolves clearly segregated in fall but not during summer when overlap between their realized niches suggests a convergent adaptation to a seasonal peak of anthropogenic pressure. However, using multi-species resource selection functions (RSFs) at the home range level (i.e., third-order selection), we revealed that habitat selection by bears and wolves was reciprocally affected also when their niches overlapped, possibly disclosing mechanisms of fine-scale resource partitioning. In early summer, bears selected areas with a high probability of resource selection by wolves, but in late summer avoided areas positively selected by wolves. On the contrary, wolves avoided areas where the probability of resource selection by bears was high, both in late summer and fall. These results indicate that bears and wolves do interact in our study area and, although the actual behavioral mechanisms are unknown, they reciprocally and asymmetrically affect their realized niche and habitat selection patterns. Further research is needed to better understand how anthropogenic factors impact intraguild interactions and what are the effects at the population and community levels.
Collapse
Affiliation(s)
- Cecilia Parracciani
- Department of Biology and Biotechnologies “Charles Darwin”University of Rome La SapienzaRomeItaly
| | - Luigi Maiorano
- Department of Biology and Biotechnologies “Charles Darwin”University of Rome La SapienzaRomeItaly
| | - Paolo Ciucci
- Department of Biology and Biotechnologies “Charles Darwin”University of Rome La SapienzaRomeItaly
| |
Collapse
|
3
|
Musto C, Cerri J, Capizzi D, Fontana MC, Rubini S, Merialdi G, Berzi D, Ciuti F, Santi A, Rossi A, Barsi F, Gelmini L, Fiorentini L, Pupillo G, Torreggiani C, Bianchi A, Gazzola A, Prati P, Sala G, Apollonio M, Delogu M, Biancardi A, Uboldi L, Moretti A, Garbarino C. First evidence of widespread positivity to anticoagulant rodenticides in grey wolves (Canis lupus). THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 915:169990. [PMID: 38232835 DOI: 10.1016/j.scitotenv.2024.169990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 01/05/2024] [Accepted: 01/05/2024] [Indexed: 01/19/2024]
Abstract
Second-generation Anticoagulant Rodenticides (ARs) can be critical for carnivores, due to their widespread use and impacts. However, although many studies explored the impacts of ARs on small and mesocarnivores, none assessed the extent to which they could contaminate large carnivores in anthropized landscapes. We filled this gap by exploring spatiotemporal trends in grey wolf (Canis lupus) exposure to ARs in central and northern Italy, by subjecting a large sample of dead wolves (n = 186) to the LC-MS/MS method. Most wolves (n = 115/186, 61.8 %) tested positive for ARs (1 compound, n = 36; 2 compounds, n = 47; 3 compounds, n = 16; 4 or more compounds, n = 16). Bromadiolone, brodifacoum and difenacoum, were the most common compounds, with brodifacoum and bromadiolone being the ARs that co-occurred the most (n = 61). Both the probability of testing positive for multiple ARs and the concentration of brodifacoum, and bromadiolone in the liver, systematically increased in wolves that were found at more anthropized sites. Moreover, wolves became more likely to test positive for ARs through time, particularly after 2020. Our results underline that rodent control, based on ARs, increases the risks of unintentional poisoning of non-target wildlife. However, this risk does not only involve small and mesocarnivores, but also large carnivores at the top of the food chain, such as wolves. Therefore, rodent control is adding one further conservation threat to endangered large carnivores in anthropized landscapes of Europe, whose severity could increase over time and be far higher than previously thought. Large-scale monitoring schemes for ARs in European large carnivores should be devised as soon as possible.
Collapse
Affiliation(s)
- Carmela Musto
- Department of Veterinary Medical Sciences, University of Bologna, 40064 Bologna, Italy.
| | - Jacopo Cerri
- Department of Veterinary Medicine, University of Sassari, 07100 Sassari, Italy.
| | - Dario Capizzi
- Directorate for Environment, Latium Region, 00173 Rome, Italy
| | - Maria Cristina Fontana
- Istituto Zooprofilattico della Lombardia e dell'Emilia-Romagna "B. Ubertini", 25124 Brescia, Italy
| | - Silva Rubini
- Istituto Zooprofilattico della Lombardia e dell'Emilia-Romagna "B. Ubertini", 25124 Brescia, Italy
| | - Giuseppe Merialdi
- Istituto Zooprofilattico della Lombardia e dell'Emilia-Romagna "B. Ubertini", 25124 Brescia, Italy
| | - Duccio Berzi
- Centro per lo Studio e la Documentazione sul Lupo, 50033 Firenze, Italy
| | - Francesca Ciuti
- Centro per lo Studio e la Documentazione sul Lupo, 50033 Firenze, Italy
| | - Annalisa Santi
- Istituto Zooprofilattico della Lombardia e dell'Emilia-Romagna "B. Ubertini", 25124 Brescia, Italy
| | - Arianna Rossi
- Istituto Zooprofilattico della Lombardia e dell'Emilia-Romagna "B. Ubertini", 25124 Brescia, Italy
| | - Filippo Barsi
- Istituto Zooprofilattico della Lombardia e dell'Emilia-Romagna "B. Ubertini", 25124 Brescia, Italy
| | - Luca Gelmini
- Istituto Zooprofilattico della Lombardia e dell'Emilia-Romagna "B. Ubertini", 25124 Brescia, Italy
| | - Laura Fiorentini
- Istituto Zooprofilattico della Lombardia e dell'Emilia-Romagna "B. Ubertini", 25124 Brescia, Italy
| | - Giovanni Pupillo
- Istituto Zooprofilattico della Lombardia e dell'Emilia-Romagna "B. Ubertini", 25124 Brescia, Italy
| | - Camilla Torreggiani
- Istituto Zooprofilattico della Lombardia e dell'Emilia-Romagna "B. Ubertini", 25124 Brescia, Italy
| | - Alessandro Bianchi
- Istituto Zooprofilattico della Lombardia e dell'Emilia-Romagna "B. Ubertini", 25124 Brescia, Italy
| | - Alessandra Gazzola
- Istituto Zooprofilattico della Lombardia e dell'Emilia-Romagna "B. Ubertini", 25124 Brescia, Italy
| | - Paola Prati
- Istituto Zooprofilattico della Lombardia e dell'Emilia-Romagna "B. Ubertini", 25124 Brescia, Italy
| | - Giovanni Sala
- Istituto Zooprofilattico della Lombardia e dell'Emilia-Romagna "B. Ubertini", 25124 Brescia, Italy
| | - Marco Apollonio
- Department of Veterinary Medicine, University of Sassari, 07100 Sassari, Italy
| | - Mauro Delogu
- Department of Veterinary Medical Sciences, University of Bologna, 40064 Bologna, Italy
| | - Alberto Biancardi
- Istituto Zooprofilattico della Lombardia e dell'Emilia-Romagna "B. Ubertini", 25124 Brescia, Italy
| | - Laura Uboldi
- Istituto Zooprofilattico della Lombardia e dell'Emilia-Romagna "B. Ubertini", 25124 Brescia, Italy
| | - Alessandro Moretti
- Istituto Zooprofilattico della Lombardia e dell'Emilia-Romagna "B. Ubertini", 25124 Brescia, Italy
| | - Chiara Garbarino
- Istituto Zooprofilattico della Lombardia e dell'Emilia-Romagna "B. Ubertini", 25124 Brescia, Italy
| |
Collapse
|
4
|
Cerri J, Musto C, Stefanini FM, di Nicola U, Riganelli N, Fontana MC, Rossi A, Garbarino C, Merialdi G, Ciuti F, Berzi D, Delogu M, Apollonio M. A human-neutral large carnivore? No patterns in the body mass of gray wolves across a gradient of anthropization. PLoS One 2023; 18:e0282232. [PMID: 37262076 DOI: 10.1371/journal.pone.0282232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 02/11/2023] [Indexed: 06/03/2023] Open
Abstract
The gray wolf (Canis lupus) expanded its distribution in Europe over the last few decades. To better understand the extent to which wolves could re-occupy their historical range, it is important to test if anthropization can affect their fitness-related traits. After having accounted for ecologically relevant confounders, we assessed how anthropization influenced i) the growth of wolves during their first year of age (n = 53), ii) sexual dimorphism between male and female adult wolves (n = 121), in a sample of individuals that had been found dead in Italy between 1999 and 2021. Wolves in anthropized areas have a smaller overall variation in their body mass, during their first year of age. Because they already have slightly higher body weight at 3-5 months, possibly due to the availability of human-derived food sources. The difference in the body weight of adult females and males slightly increases with anthropization. However, this happens because of an increase in the body mass of males only, possibly due to sex-specific differences in dispersal and/or to "dispersal phenotypes". Anthropization in Italy does not seem to have any clear, nor large, effect on the body mass of wolves. As body mass is in turn linked to important processes, like survival and reproduction, our findings indicates that wolves could potentially re-occupy most of their historical range in Europe, as anthropized landscapes do not seem to constrain such of an important life-history trait. Wolf management could therefore be needed across vast spatial scales and in anthropized areas prone to social conflicts.
Collapse
Affiliation(s)
- Jacopo Cerri
- Department of Veterinary Medicine, University of Sassari, Sassari, Italy
| | - Carmela Musto
- Department of Veterinary Medical Sciences, University of Bologna, Bologna, Italy
| | - Federico M Stefanini
- Dipartimento di Scienze e Politiche Ambientali, Università degli Studi di Milano "La Statale", Milano, Italy
| | | | | | - Maria C Fontana
- Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia-Romagna Bruno Ubertino, Brescia, Italy
| | - Arianna Rossi
- Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia-Romagna Bruno Ubertino, Brescia, Italy
| | - Chiara Garbarino
- Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia-Romagna Bruno Ubertino, Brescia, Italy
| | - Giuseppe Merialdi
- Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia-Romagna Bruno Ubertino, Brescia, Italy
| | | | | | - Mauro Delogu
- Department of Veterinary Medical Sciences, University of Bologna, Bologna, Italy
| | - Marco Apollonio
- Department of Veterinary Medicine, University of Sassari, Sassari, Italy
| |
Collapse
|
5
|
Merli E, Mattioli L, Bassi E, Bongi P, Berzi D, Ciuti F, Luccarini S, Morimando F, Viviani V, Caniglia R, Galaverni M, Fabbri E, Scandura M, Apollonio M. Estimating Wolf Population Size and Dynamics by Field Monitoring and Demographic Models: Implications for Management and Conservation. Animals (Basel) 2023; 13:1735. [PMID: 37889658 PMCID: PMC10252110 DOI: 10.3390/ani13111735] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 05/04/2023] [Accepted: 05/18/2023] [Indexed: 10/29/2023] Open
Abstract
We estimated the current size and dynamics of the wolf population in Tuscany and investigated the trends and demographic drivers of population changes. Estimates were obtained by two different approaches: (i) mixed-technique field monitoring (from 2014 to 2016) that found the minimum observed pack number and estimated population size, and (ii) an individual-based model (run by Vortex software v. 10.3.8.0) with demographic inputs derived from a local intensive study area and historic data on population size. Field monitoring showed a minimum population size of 558 wolves (SE = 12.005) in 2016, with a density of 2.74 individuals/100 km2. The population model described an increasing trend with an average annual rate of increase λ = 1.075 (SE = 0.014), an estimated population size of about 882 individuals (SE = 9.397) in 2016, and a density of 4.29 wolves/100 km2. Previously published estimates of wolf population were as low as 56.2% compared to our field monitoring estimation and 34.6% in comparison to our model estimation. We conducted sensitivity tests to analyze the key parameters driving population changes based on juvenile and adult mortality rates, female breeding success, and litter size. Mortality rates played a major role in determining intrinsic growth rate changes, with adult mortality accounting for 62.5% of the total variance explained by the four parameters. Juvenile mortality was responsible for 35.8% of the variance, while female breeding success and litter size had weak or negligible effects. We concluded that reliable estimates of population abundance and a deeper understanding of the role of different demographic parameters in determining population dynamics are crucial to define and carry out appropriate conservation and management strategies to address human-wildlife conflicts.
Collapse
Affiliation(s)
- Enrico Merli
- Department of Veterinary Medicine, University of Sassari, 07100 Sassari, Italy
| | - Luca Mattioli
- Wildlife Service, Tuscany Region, 50127 Florence, Italy
| | - Elena Bassi
- Department of Veterinary Medicine, University of Sassari, 07100 Sassari, Italy
| | - Paolo Bongi
- Department of Veterinary Medicine, University of Sassari, 07100 Sassari, Italy
| | - Duccio Berzi
- Department of Veterinary Medicine, University of Sassari, 07100 Sassari, Italy
| | - Francesca Ciuti
- Department of Veterinary Medicine, University of Sassari, 07100 Sassari, Italy
| | - Siriano Luccarini
- Department of Veterinary Medicine, University of Sassari, 07100 Sassari, Italy
| | - Federico Morimando
- Department of Veterinary Medicine, University of Sassari, 07100 Sassari, Italy
| | - Viviana Viviani
- Department of Veterinary Medicine, University of Sassari, 07100 Sassari, Italy
| | - Romolo Caniglia
- Unit for Conservation Genetics (BIO-CGE), Italian Institute for Environmental Protection and Research (ISPRA), 40064 Bologna, Italy
| | | | - Elena Fabbri
- Unit for Conservation Genetics (BIO-CGE), Italian Institute for Environmental Protection and Research (ISPRA), 40064 Bologna, Italy
| | - Massimo Scandura
- Department of Veterinary Medicine, University of Sassari, 07100 Sassari, Italy
| | - Marco Apollonio
- Department of Veterinary Medicine, University of Sassari, 07100 Sassari, Italy
| |
Collapse
|
6
|
König HJ, Kiffner C, Kuhls K, Uthes S, Harms V, Wieland R. Planning for wolf-livestock coexistence: landscape context predicts livestock depredation risk in agricultural landscapes. Animal 2023; 17:100719. [PMID: 36801550 DOI: 10.1016/j.animal.2023.100719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 01/13/2023] [Accepted: 01/17/2023] [Indexed: 01/26/2023] Open
Abstract
Extensive pastoral livestock systems in Central Europe provide multiple ecosystem services and support biodiversity in agricultural landscapes but their viability is challenged by livestock depredation (LD) associated with the recovery of wolf populations. Variation in the spatial distribution of LD depends on a suite of factors, most of which are unavailable at the appropriate scales. To assess if LD patterns can be predicted sufficiently with land use data alone at the scale of one federal state in Germany, we employed a machine-learning-supported resource selection approach. The model used LD monitoring data, and publicly available land use data to describe the landscape configuration at LD and control sites (resolution 4 km * 4 km). We used SHapley Additive exPlanations to assess the importance and effects of landscape configuration and cross-validation to evaluate the model performance. Our model predicted the spatial distribution of LD events with a mean accuracy of 74%. The most influential land use features included grassland, farmland and forest. The risk of livestock depredation was high if these three landscape features co-occurred with a specific proportion. A high share of grassland, combined with a moderate proportion of forest and farmland, increased LD risk. We then used the model to predict the LD risk in five regions; the resulting risk maps showed high congruence with observed LD events. While of correlative nature and lacking specific information on wolf and livestock distribution and husbandry practices, our pragmatic modelling approach can guide spatial prioritisation of damage prevention or mitigation practices to improve livestock-wolf coexistence in agricultural landscapes.
Collapse
Affiliation(s)
- Hannes J König
- Leibniz Centre for Agricultural Landscape Research (ZALF), Eberswalder Straße 84, D 15374 Müncheberg, Germany
| | - Christian Kiffner
- Leibniz Centre for Agricultural Landscape Research (ZALF), Eberswalder Straße 84, D 15374 Müncheberg, Germany
| | - Katrin Kuhls
- Technical University of Applied Sciences Wildau, Hochschulring 1, Haus 16, D 15745 Wildau, Germany
| | - Sandra Uthes
- Leibniz Centre for Agricultural Landscape Research (ZALF), Eberswalder Straße 84, D 15374 Müncheberg, Germany.
| | - Verena Harms
- Brandenburg State Office for the Environment (LfU), Seeburger Chaussee 2, OT Groß Glienicke, D 14476 Potsdam, Germany
| | - Ralf Wieland
- Leibniz Centre for Agricultural Landscape Research (ZALF), Eberswalder Straße 84, D 15374 Müncheberg, Germany
| |
Collapse
|
7
|
Torretta E, Corradini A, Pedrotti L, Bani L, Bisi F, Dondina O. Hide-and-Seek in a Highly Human-Dominated Landscape: Insights into Movement Patterns and Selection of Resting Sites of Rehabilitated Wolves ( Canis lupus) in Northern Italy. Animals (Basel) 2022; 13:ani13010046. [PMID: 36611657 PMCID: PMC9817923 DOI: 10.3390/ani13010046] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 11/18/2022] [Accepted: 12/19/2022] [Indexed: 12/25/2022] Open
Abstract
Assessing the behavioural responses of floating wolves to human presence is crucial for investigating the chance of wolf populations expanding into urbanised landscapes. We studied the movement ecology of three rehabilitated wolves in a highly human-dominated landscape (Po Plain, Italy) to explore wolf's plasticity amid widespread human pressure. To reach this aim, we estimated individual 95% utilisation distributions (UD) after the release and inspected both 95% UDs and net squared displacements to identify individual movement patterns; tested for differences in movement patterns during day and night; and analysed the selection of resting sites during dispersal movement in a highly human-altered environment. Both the 95% UDs and step lengths were smaller for wolves settling in suitable areas than for those settling in more urbanised areas. All wolves exhibited strong temporal segregation with humans during all movement phases, particularly while dispersing across highly urbanised areas. Main roads and proximity to built-up areas were shown to limit wolves' dispersal, whereas small-wooded patches that provide shelter during rest facilitated long-distance movements. This study provides important insights into wolf movement and settling in urban and peri-urban areas, providing critical knowledge to promote human-carnivore coexistence.
Collapse
Affiliation(s)
- Elisa Torretta
- Department of Earth and Environmental Sciences, University of Pavia, Via Ferrata 1, 27100 Pavia, Italy
| | - Andrea Corradini
- Animal Ecology Unit, Research and Innovation Centre, Fondazione Edmund Mach, Via Edmund Mach, 1, 38098 San Michele all’Adige, Italy
| | | | - Luciano Bani
- Department of Earth and Environmental Sciences, University of Milano-Bicocca, Piazza della Scienza 1, 20126 Milan, Italy
| | - Francesco Bisi
- Environment Analysis and Management Unit, Guido Tosi Research Group, Department of Theoretical and Applied Sciences, Insubria University, Via J. H. Dunant, 3-I, 21100 Varese, Italy
| | - Olivia Dondina
- Department of Earth and Environmental Sciences, University of Milano-Bicocca, Piazza della Scienza 1, 20126 Milan, Italy
- Correspondence:
| |
Collapse
|
8
|
Viola P, Girotti P, Adriani S, Ronchi B, Zaccaroni M, Primi R. Does the Wolf ( Canis lupus) Exhibit Human Habituation Behaviours after Rehabilitation and Release into the Wild? A Case Report from Central Italy. Animals (Basel) 2022; 12:ani12243495. [PMID: 36552415 PMCID: PMC9774959 DOI: 10.3390/ani12243495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/07/2022] [Accepted: 12/08/2022] [Indexed: 12/14/2022] Open
Abstract
The knowledge of how wolves’ movement patterns and habitat selection are affected by habituation to persons after a period of veterinary isolation, treatment and non-agonistic experience with humans is scarce. Unnatural behaviours could be transferred by imitation to members of the pack and to subsequent generations, increasing direct interaction risks. We used GPS data from a rescued radio-collared female wolf after an 11-day rehabilitation to estimate home range, movement patterns, circadian rhythms, and habitat selection, searching for signals of eventual behavioural distortions. In the period 1 August−26 November 2013, 870 valid locations were acquired. The wolf moved within a minimum convex polygon (95%) of 6541.1 ha (79% wooded), avoiding anthropized areas. Nocturnal and diurnal displacements were significantly different (p < 0.01). Nocturnal displacements were 4409.4 ± 617.5 m during summer and 3684.8 ± 468.1 m during autumn, without differences between seasons. Diurnal movements were significantly higher (p < 0.01) in the summer (2239.0 ± 329.0 m) than in the autumn (595.9 ± 110.3 m), when the hunting season was running. As for a wild wolf, clear complementarity concerning human activities was recorded and no habituation signals were detected, but this is only a first case study that aims to be a stimulus for further research and a call for widespread data sharing.
Collapse
Affiliation(s)
- Paolo Viola
- Department of Agricultural and Forest Sciences, University of Tuscia, 01100 Viterbo, Italy
| | - Pedro Girotti
- Department of Agricultural and Forest Sciences, University of Tuscia, 01100 Viterbo, Italy
| | - Settimio Adriani
- Department of Agricultural and Forest Sciences, University of Tuscia, 01100 Viterbo, Italy
| | - Bruno Ronchi
- Department of Agricultural and Forest Sciences, University of Tuscia, 01100 Viterbo, Italy
| | - Marco Zaccaroni
- Department of Biology, University of Florence, 50019 Florence, Italy
| | - Riccardo Primi
- Department of Agricultural and Forest Sciences, University of Tuscia, 01100 Viterbo, Italy
- Correspondence: ; Tel.: +39-0761-357-463
| |
Collapse
|
9
|
Dickie M, Serrouya R, Avgar T, McLoughlin P, McNay RS, DeMars C, Boutin S, Ford AT. Resource exploitation efficiency collapses the home range of an apex predator. Ecology 2022; 103:e3642. [DOI: 10.1002/ecy.3642] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 10/13/2021] [Accepted: 10/29/2021] [Indexed: 11/07/2022]
Affiliation(s)
- M. Dickie
- Alberta Biodiversity Monitoring Institute, University of Alberta Edmonton Alberta Canada
- Department of Biology University of British Columbia Kelowna British Columbia Canada
| | - R. Serrouya
- Alberta Biodiversity Monitoring Institute, University of Alberta Edmonton Alberta Canada
| | - T. Avgar
- Department of Wildland Resources and Ecology Center Utah State University Logan Utah US
| | - P. McLoughlin
- Department of Biology University of Saskatchewan, 112 Science Place Saskatoon Saskatchewan Canada
| | - R. S. McNay
- Wildlife Infometrics, 3 – 220 Mackenzie Blvd Mackenzie British Columbia Canada
| | - C. DeMars
- Alberta Biodiversity Monitoring Institute, University of Alberta Edmonton Alberta Canada
| | - S. Boutin
- Department of Biological Sciences University of Alberta Edmonton Alberta Canada
| | - A. T. Ford
- Department of Biology University of British Columbia Kelowna British Columbia Canada
| |
Collapse
|
10
|
Dondina O, Meriggi A, Bani L, Orioli V. Decoupling residents and dispersers from detection data improve habitat selection modelling: the case study of the wolf in a natural corridor. ETHOL ECOL EVOL 2022. [DOI: 10.1080/03949370.2021.1988724] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Olivia Dondina
- Department of Earth and Environmental Sciences, University of Milano-Bicocca, Piazza della Scienza 1, Milano 20126, Italy
| | - Alberto Meriggi
- Department of Earth and Environmental Sciences, University of Pavia, Via Ferrata 1, Pavia 27100, Italy
| | - Luciano Bani
- Department of Earth and Environmental Sciences, University of Milano-Bicocca, Piazza della Scienza 1, Milano 20126, Italy
| | - Valerio Orioli
- Department of Earth and Environmental Sciences, University of Milano-Bicocca, Piazza della Scienza 1, Milano 20126, Italy
| |
Collapse
|
11
|
Pal R, Panwar A, Goyal SP, Sathyakumar S. Space Use by Woolly Wolf Canis lupus chanco in Gangotri National Park, Western Himalaya, India. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2021.782339] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The woolly wolf Canis lupus chanco is increasingly being accepted as a unique taxon that needs immediate protection and management; however, information on its ecology remains limited across its range. We used camera trapping data set of 4 years (2015–2019) to investigate seasonal activity patterns and space use and assessed woolly wolf food habits in the Gangotri National Park, western Himalaya, India. We used generalized linear mixed models to assess the distribution of the wolf about prey, seasonal livestock grazing, human presence, habitat, and seasons. We observed a positive association with elevation and a negative response to an increase in ruggedness. The capture of wolves increased in winters, indicating a possible effect of snow on the ranging pattern. Spatial avoidance to anthropogenic pressure was not evident in our study; however, temporal avoidance was observed. The activity pattern of the wolf varied among seasons. Wolves were mostly active in the morning and late evening hours in summer and showed a diurnal activity pattern in winter. A less diverse diet was observed where the mean percentage frequency of occurrence and relative biomass was highest for bharal, followed by livestock. Himalayan marmot Marmota himalayana, birds, and rodents also form minor constituents to the diet. Synthesizing all three factors (space, diet, and activity), it may be stated that the wolf presence in the region is influenced by both wild prey availability and seasonality. Therefore, conservation of woolly wolves would require securing a vast landscape with optimal wild prey.
Collapse
|
12
|
Schulte L, De Angelis D, Babic N, Reljić S. Very Small Home Ranges of Two Gravid European Brown Bears during Hyperphagia. Animals (Basel) 2021; 11:3580. [PMID: 34944355 PMCID: PMC8697980 DOI: 10.3390/ani11123580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 12/06/2021] [Accepted: 12/13/2021] [Indexed: 11/16/2022] Open
Abstract
In September 2019, two gravid female brown bears (Ursus arctos) were captured and equipped with GPS/GSM collars in Paklenica National Park (Croatia). Home ranges during hyperphagia were analyzed to describe the spatiotemporal requirements. Mean seasonal home ranges were very small with 9.2 km2 and 7.5 km2 (Brownian Bridge Movement Model 95%). During the tracking period, both bears used different territories and showed little to no use of overlapping area. The bears in our study spent a considerable time in proximity of artificial feeding sites, indicating a probable use of these structures as a food resource (mean 15.7% and 30.7%). Furthermore, the bears approached very close to human structures such as 8.9 m and 4.4 m. As most encounters between humans and bears occur during hyperphagia, it is important to offer refugia from human disturbance, especially as the National Park is not only used by residents, but also by tourists. To adapt management according to the animal's needs, further studies should include more individuals from different age and sex classes. Both females were gravid. It remains unclear whether gravidity has an effect on the home range and should be further investigated.
Collapse
Affiliation(s)
- Laura Schulte
- Department of Behavioural Ecology, Bielefeld University, 33615 Bielefeld, Germany
| | - Daniele De Angelis
- Department of Biology and Biotechnology “Charles Darwin” BBCD, Sapienza University of Rome, 00185 Rome, Italy;
| | - Natarsha Babic
- School of Biological Sciences, Clayton Campus, Monash University, Melbourne, VIC 3800, Australia;
| | - Slaven Reljić
- Biology Department, Faculty of Veterinary Medicine, University of Zagreb, 10000 Zagreb, Croatia;
| |
Collapse
|
13
|
Gervasi V, Linnell JD, Berce T, Boitani L, Cerne R, Ciucci P, Cretois B, Derron-Hilfiker D, Duchamp C, Gastineau A, Grente O, Huber D, Iliopoulos Y, Karamanlidis AA, Kojola I, Marucco F, Mertzanis Y, Männil P, Norberg H, Pagon N, Pedrotti L, Quenette PY, Reljic S, Salvatori V, Talvi T, von Arx M, Gimenez O. Ecological correlates of large carnivore depredation on sheep in Europe. Glob Ecol Conserv 2021. [DOI: 10.1016/j.gecco.2021.e01798] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
14
|
Giroux A, Ortega Z, Oliveira-Santos LGR, Attias N, Bertassoni A, Desbiez ALJ. Sexual, allometric and forest cover effects on giant anteaters' movement ecology. PLoS One 2021; 16:e0253345. [PMID: 34407068 PMCID: PMC8372905 DOI: 10.1371/journal.pone.0253345] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 06/02/2021] [Indexed: 11/23/2022] Open
Abstract
Knowing the influence of intrinsic and environmental traits on animals’ movement is a central interest of ecology and can aid to enhance management decisions. The giant anteater (Myrmecophaga tridactyla) is a vulnerable mammal that presents low capacity for physiological thermoregulation and uses forests as thermal shelters. Here, we aim to provide reliable estimates of giant anteaters’ movement patterns and home range size, as well as untangle the role of intrinsic and environmental drivers on their movement. We GPS-tracked 19 giant anteaters in Brazilian savannah. We used a continuous-time movement model to estimate their movement patterns (described by home range crossing time, daily distance moved and directionality), and provide an autocorrelated kernel density estimate of home range size. Then, we used mixed structural equations to integratively model the effects of sex, body mass and proportion of forest cover on movement patterns and home range size, considering the complex net of interactions between these variables. Male giant anteaters presented more intensive space use and larger home range than females with similar body mass, as it is expected in polygynous social mating systems. Males and females increased home range size with increasing body mass, but the allometric scaling of intensity of space use was negative for males and positive for females, indicating different strategies in search for resources. With decreasing proportion of forest cover inside their home ranges, and, consequently, decreasing thermal quality of their habitat, giant anteaters increased home range size, possibly to maximize the chances of accessing thermal shelters. As frequency and intensity of extreme weather events and deforestation are increasing, effective management efforts need to consider the role of forests as an important thermal resource driving spatial requirements of this species. We highlight that both intrinsic and environmental drivers of animal movement should be integrated to better guide management strategies.
Collapse
Affiliation(s)
- Aline Giroux
- Ecology Department, Federal University of Mato Grosso do Sul (UFMS), Campo Grande, Mato Grosso do Sul, Brazil
- * E-mail:
| | - Zaida Ortega
- Ecology Department, Federal University of Mato Grosso do Sul (UFMS), Campo Grande, Mato Grosso do Sul, Brazil
- Zoology Department, University of Granada, Granada, Granada, Spain
| | | | - Nina Attias
- Institute for the Conservation of Wild Animals (ICAS), Campo Grande, Mato Grosso do Sul, Brazil
| | - Alessandra Bertassoni
- Ecology and Evolution Department, Federal University of Goiás (UFG), Goiânia, Goiás, Brazil
- Institute for Research and Conservation of Tamanduas in Brazil (Tamanduá Institute), Parnaíba, Piauí, Brazil
| | - Arnaud Léonard Jean Desbiez
- Institute for the Conservation of Wild Animals (ICAS), Campo Grande, Mato Grosso do Sul, Brazil
- Institute for Ecological Research (IPÊ), Nazaré Paulista, São Paulo, Brazil
- Royal Zoological Society of Scotland (RZSS), Murrayfield, Edinburgh, United Kingdom
| |
Collapse
|
15
|
Careddu G, Ciucci P, Mondovì S, Calizza E, Rossi L, Costantini ML. Gaining insight into the assimilated diet of small bear populations by stable isotope analysis. Sci Rep 2021; 11:14118. [PMID: 34238974 PMCID: PMC8266819 DOI: 10.1038/s41598-021-93507-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 06/24/2021] [Indexed: 12/02/2022] Open
Abstract
Apennine brown bears (Ursus arctos marsicanus) survive in an isolated and critically endangered population, and their food habits have been studied using traditional scat analysis. To complement current dietary knowledge, we applied Stable Isotope Analysis (SIA) to non-invasively collected bear hairs that had been individually recognized through multilocus genotyping. We analysed carbon (δ13C) and nitrogen (δ15N) stable isotopes of hair sections and bear key foods in a Bayesian mixing models framework to reconstruct the assimilated diet on a seasonal basis and to assess gender and management status effects. In total, we analysed 34 different seasonal bear key foods and 35 hair samples belonging to 27 different bears (16 females and 11 males) collected during a population survey in 2014. Most bears showed wide δ15N and δ13C ranges and individual differences in seasonal isotopic patterns. Vegetable matter (herbs, fleshy fruits and hard mast) represented the major component of the assimilated diet across the dietary seasons, whereas vegetable crops were rarely and C4 plants (i.e., corn) never consumed. We confirmed an overall low consumption of large mammals by Apennine bears consistently between sexes, with highest values in spring followed by early summer but null in the other seasons. We also confirmed that consumption of fleshy fruits peaked in late summer, when wild predominated over cultivated fleshy fruits, even though the latter tended to be consumed in higher proportion in autumn. Male bears had higher δ 15N values than females in spring and autumn. Our findings also hint at additional differences in the assimilated diet between sexes, with females likely consuming more herbs during spring, ants during early summer, and hard mast during fall compared to males. In addition, although effect sizes were small and credibility intervals overlapped considerably, management bears on average were 0.9‰ lower in δ 13C and 2.9‰ higher in δ 15N compared to non-management bears, with differences in isotopic values between the two bear categories peaking in autumn. While non-management bears consumed more herbs, wild fleshy fruits, and hard mast, management bears tended to consume higher proportions of cultivated fruits, ants, and large mammals, possibly including livestock. Although multi-year sampling and larger sample sizes are needed to support our findings, our application confirms that SIA can effectively integrate previous knowledge and be efficiently conducted using samples non-invasively collected during population surveys.
Collapse
Affiliation(s)
- Giulio Careddu
- Department of Environmental Biology, Sapienza University of Rome, Rome, Italy
| | - Paolo Ciucci
- Department of Biology and Biotechnologies "Charles Darwin", Sapienza University of Rome, Rome, Italy.
| | - Stella Mondovì
- Department of Environmental Biology, Sapienza University of Rome, Rome, Italy.,Department of Biology and Biotechnologies "Charles Darwin", Sapienza University of Rome, Rome, Italy
| | - Edoardo Calizza
- Department of Environmental Biology, Sapienza University of Rome, Rome, Italy
| | - Loreto Rossi
- Department of Environmental Biology, Sapienza University of Rome, Rome, Italy
| | | |
Collapse
|
16
|
Pletenev A, Kruchenkova E, Mikhnevich Y, Rozhnov V, Goltsman M. The overabundance of resources leads to small but exclusive home ranges in Arctic fox (Vulpes lagopus) on Bering Island. Polar Biol 2021. [DOI: 10.1007/s00300-021-02888-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
17
|
Kordosky JR, Gese EM, Thompson CM, Terletzky PA, Purcell KL, Schneiderman JD. Landscape use by fishers ( Pekania pennanti): core areas differ in habitat than the entire home range. CAN J ZOOL 2021. [DOI: 10.1139/cjz-2020-0073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Home ranges have long been studied in animal ecology. Core areas may be used at a greater proportion than the rest of the home range, implying the core contains dependable resources. The Pacific fisher (Pekania pennanti (Erxleben, 1777)) is a rare mesocarnivore occupying a small area in the Sierra Nevada Mountains, California, USA. Once statewide, fishers declined in the 1900s due to trapping, habitat fragmentation, and development. Recently, drought induced by climate change may be affecting this population. We examined space use of fishers in their core versus their home range for levels of anthropogenic modifications (housing density, road density, silvicultural treatments), habitat types, and tree mortality. We found core areas contained more late-successional forest and minimal human activity compared with their territory. Their core had higher levels of dense canopy and higher amounts of conifer cover, while minimizing the amount of buildings, developed habitat, and low canopy cover. Fishers may in effect be seeking refugia by minimizing their exposure to these elements in their core. Conserving landscape components used by fishers in their core areas will be important for the persistence of this isolated population.
Collapse
Affiliation(s)
| | - Eric M. Gese
- U.S. Department of Agriculture, Wildlife Services, National Wildlife Research Center, Department of Wildland Resources, Utah State University, Logan, UT 84322, USA
| | - Craig M. Thompson
- U.S. Department of Agriculture, Forest Service, Region 1, Missoula, MT 59804, USA
| | | | - Kathryn L. Purcell
- U.S. Department of Agriculture, Forest Service, Pacific Southwest Research Station, Fresno, CA 93710, USA
| | | |
Collapse
|
18
|
De Angelis D, Huber D, Reljic S, Ciucci P, Kusak J. Factors affecting the home range of Dinaric-Pindos brown bears. J Mammal 2021. [DOI: 10.1093/jmammal/gyab018] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Abstract
Studying how animals interact with their environment is fundamental to informing conservation and management efforts, especially when examining large, wide-ranging carnivores in human-dominated landscapes. We hypothesized that the home ranges of bears are configured to exploit supplemental food (corn) and avoid people. In 2004–2016, we tracked 10 brown bears from the Dinaric-Pindos population using GPS telemetry, then used Brownian bridge movement models to estimate their home ranges. We related seasonal home range size to circadian period and density of supplemental feeding sites using generalized linear mixed-effect models. We also used ecological-niche factor analysis to study habitat composition within home range core areas in study areas characterized by different levels of human encroachment. We found that home range size was inversely related to density of supplemental feeding sites, and bears had larger home ranges at night (x̅ = 103.3 ± 72.8 km2) than during the day (x̅ = 62.3 ± 16.6 km2). Our results also revealed that bears living in more human-influenced areas concentrated their use far from human settlements and agricultural lands but stayed close to supplemental feeding sites. Our data suggest that bears alter their space-use patterns at the home range level in response to anthropogenic land use and food availability.
Collapse
Affiliation(s)
- Daniele De Angelis
- Department of Biology and Biotechnologies “Charles Darwin”, Sapienza University of Rome, Viale dell’Universita` 32, 00185 Rome, Italy
| | - Djuro Huber
- Faculty of Veterinary Medicine, University of Zagreb, Heinzelova 55, 10000 Zagreb, Croatia
- Institute of Nature Conservation, Polish Academy of Sciences, Mickiewicza Av. 33, 31120 Kraków, Poland
| | - Slaven Reljic
- Faculty of Veterinary Medicine, University of Zagreb, Heinzelova 55, 10000 Zagreb, Croatia
| | - Paolo Ciucci
- Department of Biology and Biotechnologies “Charles Darwin”, Sapienza University of Rome, Viale dell’Universita` 32, 00185 Rome, Italy
| | - Josip Kusak
- Faculty of Veterinary Medicine, University of Zagreb, Heinzelova 55, 10000 Zagreb, Croatia
| |
Collapse
|
19
|
Marino F, Kansky R, Shivji I, Di Croce A, Ciucci P, Knight AT. Understanding drivers of human tolerance to gray wolves and brown bears as a strategy to improve landholder–carnivore coexistence. CONSERVATION SCIENCE AND PRACTICE 2021. [DOI: 10.1111/csp2.265] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Affiliation(s)
- Filippo Marino
- Department of Life Sciences Imperial College London, Silwood Park Campus Berkshire UK
- College of Life and Environmental Sciences, Centre for Ecology and Conservation University of Exeter Penryn Cornwall UK
| | - Ruth Kansky
- Department of Conservation Ecology and Entomology University of Stellenbosch Matieland South Africa
| | - Irene Shivji
- Department of Life Sciences Imperial College London, Silwood Park Campus Berkshire UK
- Riserva Naturale Regionale Monte Genzana e Alto Gizio Pettorano sul Gizio L'Aquila Italy
| | - Antonio Di Croce
- Riserva Naturale Regionale Monte Genzana e Alto Gizio Pettorano sul Gizio L'Aquila Italy
| | - Paolo Ciucci
- Department of Biology and Biotechnology University of Rome La Sapienza Rome Italy
| | - Andrew T. Knight
- Department of Life Sciences Imperial College London, Silwood Park Campus Berkshire UK
- School of Biological Sciences The University of Western Australia (UWA) Perth Western Australia Australia
| |
Collapse
|
20
|
Roda F, Sentilles J, Molins C, Duchamp C, Hansen É, Jean N. Wolf scat detection dog improves wolf genetic monitoring in new French colonized areas. JOURNAL OF VERTEBRATE BIOLOGY 2021. [DOI: 10.25225/jvb.20102] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Fabrice Roda
- Office Français de la Biodiversité, Service départemental du Var, Draguignan, France; e-mail: ,
| | - Jérôme Sentilles
- Office Français de la Biodiversité, Direction de la Recherche et de l'Appui Scientifique, Unité Prédateurs et Animaux Déprédateurs et Exotiques, Equipe ours, Villeneuve-de-Rivière, France; e-mail:
| | - Caroline Molins
- Office Français de la Biodiversité, Direction de la Recherche et de l'Appui Scientifique, Unité petite faune sédentaire et espèces outre-mer, Gap, France; e-mail:
| | - Christophe Duchamp
- Office Français de la Biodiversité, Direction de la Recherche et de l'Appui Scientifique, Unité Prédateurs et Animaux Déprédateurs et Exotiques, Equipe loup-lynx, Gap, France; e-mail:
| | - Éric Hansen
- Office Français de la Biodiversité, Direction interrégionale Provence-Alpes-Côte d'Azur et Corse, Les jardins de la Duranne, bâtiment A, Aix-en-Provence Cedex, France; e-mail:
| | - Nicolas Jean
- Office Français de la Biodiversité, Direction des Grands Prédateurs Terrestres, Gap, France; e-mail:
| |
Collapse
|
21
|
Cimatti M, Ranc N, Benítez‐López A, Maiorano L, Boitani L, Cagnacci F, Čengić M, Ciucci P, Huijbregts MAJ, Krofel M, López‐Bao JV, Selva N, Andren H, Bautista C, Ćirović D, Hemmingmoore H, Reinhardt I, Marenče M, Mertzanis Y, Pedrotti L, Trbojević I, Zetterberg A, Zwijacz‐Kozica T, Santini L. Large carnivore expansion in Europe is associated with human population density and land cover changes. DIVERS DISTRIB 2021. [DOI: 10.1111/ddi.13219] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Affiliation(s)
- Marta Cimatti
- Department of Environmental Science Institute for Wetland and Water Research Faculty of Science Radboud University Nijmegen The Netherlands
- Department of Biology and Biotechnologies “Charles Darwin” “La Sapienza” University of Rome Rome Italy
| | - Nathan Ranc
- Organismic and Evolutionary Biology Department Harvard University Cambridge MA USA
- Department of Biodiversity and Molecular Ecology Research and Innovation Centre Fondazione Edmund Mach Trento Italy
| | - Ana Benítez‐López
- Department of Environmental Science Institute for Wetland and Water Research Faculty of Science Radboud University Nijmegen The Netherlands
- Integrative Ecology Group Estación Biológica de Doñana (EBD‐CSIC) Sevilla Spain
| | - Luigi Maiorano
- Department of Biology and Biotechnologies “Charles Darwin” “La Sapienza” University of Rome Rome Italy
| | - Luigi Boitani
- Department of Biology and Biotechnologies “Charles Darwin” “La Sapienza” University of Rome Rome Italy
| | - Francesca Cagnacci
- Department of Biodiversity and Molecular Ecology Research and Innovation Centre Fondazione Edmund Mach Trento Italy
| | - Mirza Čengić
- Department of Environmental Science Institute for Wetland and Water Research Faculty of Science Radboud University Nijmegen The Netherlands
| | - Paolo Ciucci
- Department of Biology and Biotechnologies “Charles Darwin” “La Sapienza” University of Rome Rome Italy
| | - Mark A. J. Huijbregts
- Department of Environmental Science Institute for Wetland and Water Research Faculty of Science Radboud University Nijmegen The Netherlands
| | - Miha Krofel
- Department for Forestry and Renewable Forest Resources Biotechnical Faculty University of Ljubljana Ljubljana Slovenia
| | | | - Nuria Selva
- Institute of Nature Conservation Polish Academy of Sciences Kraków Poland
| | - Henrik Andren
- Grimsö Wildlife Research Station Department of Ecology Swedish University of Agricultural Sciences Uppsala Sweden
| | - Carlos Bautista
- Institute of Nature Conservation Polish Academy of Sciences Kraków Poland
| | - Duško Ćirović
- Faculty of Biology University of Belgrade Belgrade Serbia
| | - Heather Hemmingmoore
- Grimsö Wildlife Research Station Department of Ecology Swedish University of Agricultural Sciences Uppsala Sweden
| | - Ilka Reinhardt
- LUPUS – German Institute for Wolf Monitoring and Research Spreewitz Germany
| | | | - Yorgos Mertzanis
- Callisto – Wildlife and Nature Conservation Society Thessaloniki Greece
| | - Luca Pedrotti
- Forest and Wildlife Service Provincia di Trento Italy
| | - Igor Trbojević
- Faculty of Sciences University of Banja Luka Banja Luka Bosnia and Herzegovina
- Faculty of Ecology Independent University of Banja Luka Banja Luka Bosnia and Herzegovina
| | | | | | - Luca Santini
- Department of Environmental Science Institute for Wetland and Water Research Faculty of Science Radboud University Nijmegen The Netherlands
- Institute of Research on Terrestrial Ecosystems National Research Council Montelibretti Italy
| |
Collapse
|
22
|
Bauduin S, Grente O, Santostasi NL, Ciucci P, Duchamp C, Gimenez O. An individual-based model to explore the impacts of lesser-known social dynamics on wolf populations. Ecol Modell 2020. [DOI: 10.1016/j.ecolmodel.2020.109209] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
23
|
Bassi E, Gazzola A, Bongi P, Scandura M, Apollonio M. Relative impact of human harvest and wolf predation on two ungulate species in Central Italy. Ecol Res 2020. [DOI: 10.1111/1440-1703.12130] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Elena Bassi
- Department of Veterinary Medicine University of Sassari Sassari Italy
| | - Andrea Gazzola
- Association for the Conservation of Biological Diversity (ACDB) Focşani Romania
| | - Paolo Bongi
- Department of Veterinary Medicine University of Sassari Sassari Italy
| | - Massimo Scandura
- Department of Veterinary Medicine University of Sassari Sassari Italy
| | - Marco Apollonio
- Department of Veterinary Medicine University of Sassari Sassari Italy
| |
Collapse
|
24
|
Ciucci P, Mancinelli S, Boitani L, Gallo O, Grottoli L. Anthropogenic food subsidies hinder the ecological role of wolves: Insights for conservation of apex predators in human-modified landscapes. Glob Ecol Conserv 2020. [DOI: 10.1016/j.gecco.2019.e00841] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
|
25
|
Mastrantonio G, Grazian C, Mancinelli S, Bibbona E. New formulation of the logistic-Gaussian process to analyze trajectory tracking data. Ann Appl Stat 2019. [DOI: 10.1214/19-aoas1289] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
26
|
Mengüllüoğlu D, İlaslan E, Emir H, Berger A. Diet and wild ungulate preferences of wolves in northwestern Anatolia during winter. PeerJ 2019; 7:e7446. [PMID: 31497386 PMCID: PMC6708370 DOI: 10.7717/peerj.7446] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Accepted: 07/09/2019] [Indexed: 11/20/2022] Open
Abstract
The gray wolf (Canis lupus) is making a comeback in many habitats in central Europe, where it has been once extirpated. Although densities are still low to moderate, this comeback already raises management concerns. In Anatolia, the gray wolf is one of the most common predator species occupying almost all kind of habitats. Although its numbers were reduced in some parts of the country, it has never been extirpated and lived in sympatry with humans. In this study we investigated, for the first time, the winter diet of wolves in north-west Anatolia, where a multispecies wild ungulate community occurs in sympatry with high density livestock. We selected two geographically close but different habitats (steppe and forest) with different wild prey availabilities and compositions. In both areas ungulate contribution to winter diet biomass was more than 90%. Wolf pack size (four to eight wolves) were higher in the study area where livestock numbers and human disturbance were lower and wild prey were more available. In both study areas, wild boar (Sus scrofa) was the main and most preferred food item (Chesson's α = 0.7 - 0.9) and it occurred at higher density where wolf pack size was smaller. We could not find a high preference (Chesson's α = 0.3) and high winter predation pressure on the reintroduced Anatolian wild sheep (Ovis gmelinii anatolica) population that occurs in the study area covered by steppe vegetation. Contribution of livestock and food categories other than wild ungulates to wolf diet stayed low. Wolves can help mitigate human-wildlife conflict regulating wild boar numbers, the most common conflict-causing ungulate species in Anatolia. Instead of managing wolf numbers in human dominated landscapes, we recommend reintroduction of wild ungulates to the areas where they became locally extinct and replaced by livestock.
Collapse
Affiliation(s)
- Deniz Mengüllüoğlu
- Department of Evolutionary Ecology, Leibniz Institute for Zoo and Wildlife Research (IZW Berlin), Berlin, Germany.,Department of Biology, Chemistry and Pharmacy, Freie Universität Berlin, Berlin, Germany
| | | | - Hasan Emir
- Wildlife Department (WDT), Turkish Ministry of Agriculture and Forestry, Ankara, Turkey
| | - Anne Berger
- Department of Evolutionary Ecology, Leibniz Institute for Zoo and Wildlife Research (IZW Berlin), Berlin, Germany
| |
Collapse
|
27
|
Fattorini N, Brunetti C, Baruzzi C, Chiatante G, Lovari S, Ferretti F. Temporal variation in foraging activity and grouping patterns in a mountain-dwelling herbivore: Environmental and endogenous drivers. Behav Processes 2019; 167:103909. [PMID: 31330169 DOI: 10.1016/j.beproc.2019.103909] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2019] [Revised: 07/12/2019] [Accepted: 07/17/2019] [Indexed: 02/07/2023]
Abstract
In temperate ecosystems, seasonality influences animal behaviour. Food availability, weather, photoperiod and endogenous factors relevant to the biological cycle of individuals have been shown as major drivers of temporal changes in activity rhythms and group size/structure of herbivorous species. We evaluated how diurnal female foraging activity and grouping patterns of a mountain herbivore, the Apennine chamois Rupicapra pyrenaica ornata, varied during a decreasing gradient of pasture availability along the summer-autumn progression (July-October), a crucial period for the life cycle of mountain ungulates. Females increased diurnal foraging activity, possibly because of constrains elicited by variation in environmental factors. Size of mixed groups did not vary, in contrast with the hypothesis that groups should be smaller when pasture availability is lower. Proportion of females in groups increased, possibly suggesting that they concentrated on patchily distributed nutritious forbs. Occurrence of yearlings in groups decreased, which may have depended on dispersal of chamois in this age class. Presence of kids in groups did not show variation through summer-autumn, suggesting a close mother-juvenile relationship even at the end of weaning and/or, possibly, low summer mortality. Both endogenous and environmental factors contribute to shape variation in foraging activity and grouping behaviour in mountain-dwelling herbivores.
Collapse
Affiliation(s)
- Niccolò Fattorini
- Department of Life Sciences, University of Siena. Via P.A. Mattioli 4, 53100 Siena, Italy.
| | - Claudia Brunetti
- Department of Life Sciences, University of Siena. Via P.A. Mattioli 4, 53100 Siena, Italy
| | - Carolina Baruzzi
- Department of Life Sciences, University of Siena. Via P.A. Mattioli 4, 53100 Siena, Italy
| | - Gianpasquale Chiatante
- Department of Earth and Environmental Sciences, University of Pavia, Via Ferrata 1, 27100 Pavia, Italy
| | - Sandro Lovari
- Department of Life Sciences, University of Siena. Via P.A. Mattioli 4, 53100 Siena, Italy; Maremma Natural History Museum, Strada Corsini 5, 58100 Grosseto, Italy
| | - Francesco Ferretti
- Department of Life Sciences, University of Siena. Via P.A. Mattioli 4, 53100 Siena, Italy
| |
Collapse
|
28
|
Mancinelli S, Falco M, Boitani L, Ciucci P. Social, behavioural and temporal components of wolf (
Canis lupus
) responses to anthropogenic landscape features in the central Apennines, Italy. J Zool (1987) 2019. [DOI: 10.1111/jzo.12708] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- S. Mancinelli
- Department of Biology and Biotechnologies “Charles Darwin” University of Rome “La Sapienza” Rome Italy
| | - M. Falco
- Department of Biology and Biotechnologies “Charles Darwin” University of Rome “La Sapienza” Rome Italy
| | - L. Boitani
- Department of Biology and Biotechnologies “Charles Darwin” University of Rome “La Sapienza” Rome Italy
| | - P. Ciucci
- Department of Biology and Biotechnologies “Charles Darwin” University of Rome “La Sapienza” Rome Italy
| |
Collapse
|
29
|
Mancinelli S, Ciucci P. Beyond home: Preliminary data on wolf extraterritorial forays and dispersal in Central Italy. Mamm Biol 2018. [DOI: 10.1016/j.mambio.2018.08.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
30
|
Mattioli L, Canu A, Passilongo D, Scandura M, Apollonio M. Estimation of pack density in grey wolf ( Canis lupus) by applying spatially explicit capture-recapture models to camera trap data supported by genetic monitoring. Front Zool 2018; 15:38. [PMID: 30305834 PMCID: PMC6171198 DOI: 10.1186/s12983-018-0281-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Accepted: 09/07/2018] [Indexed: 11/10/2022] Open
Abstract
Background Density estimation is a key issue in wildlife management but is particularly challenging and labour-intensive for elusive species. Recently developed approaches based on remotely collected data and capture-recapture models, though representing a valid alternative to more traditional methods, have found little application to species with limited morphological variation. We implemented a camera trap capture-recapture study to survey wolf packs in a 560-km2 area of Central Italy. Individual recognition of focal animals (alpha) in the packs was possible by relying on morphological and behavioural traits and was validated by non-invasive genotyping and inter-observer agreement tests. Two types (Bayesian and likelihood-based) of spatially explicit capture-recapture (SCR) models were fitted on wolf pack capture histories, thus obtaining an estimation of pack density in the area. Results In two sessions of camera trapping surveys (2014 and 2015), we detected a maximum of 12 wolf packs. A Bayesian model implementing a half-normal detection function without a trap-specific response provided the most robust result, corresponding to a density of 1.21 ± 0.27 packs/100 km2 in 2015. Average pack size varied from 3.40 (summer 2014, excluding pups and lone-transient wolves) to 4.17 (late winter-spring 2015, excluding lone-transient wolves). Conclusions We applied for the first time a camera-based SCR approach in wolves, providing the first robust estimate of wolf pack density for an area of Italy. We showed that this method is applicable to wolves under the following conditions: i) the existence of sufficient phenotypic/behavioural variation and the recognition of focal individuals (i.e. alpha, verified by non-invasive genotyping); ii) the investigated area is sufficiently large to include a minimum number of packs (ideally 10); iii) a pilot study is carried out to pursue an adequate sampling design and to train operators on individual wolf recognition. We believe that replicating this approach in other areas can allow for an assessment of density variation across the wolf range and would provide a reliable reference parameter for ecological studies.
Collapse
Affiliation(s)
- Luca Mattioli
- Settore Attività Faunistico Venatoria, Pesca Dilettantistica, Pesca in mare, Regione Toscana, Via A. Testa 2, I-52100 Arezzo, Italy
| | - Antonio Canu
- 2Department of Veterinary Medicine, University of Sassari, via Vienna 2, I-07100 Sassari, Italy
| | - Daniela Passilongo
- 2Department of Veterinary Medicine, University of Sassari, via Vienna 2, I-07100 Sassari, Italy
| | - Massimo Scandura
- 2Department of Veterinary Medicine, University of Sassari, via Vienna 2, I-07100 Sassari, Italy
| | - Marco Apollonio
- 2Department of Veterinary Medicine, University of Sassari, via Vienna 2, I-07100 Sassari, Italy
| |
Collapse
|
31
|
|
32
|
Fattorini N, Brunetti C, Baruzzi C, Macchi E, Pagliarella MC, Pallari N, Lovari S, Ferretti F. Being “hangry”: food depletion and its cascading effects on social behaviour. Biol J Linn Soc Lond 2018. [DOI: 10.1093/biolinnean/bly119] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Affiliation(s)
- Niccolò Fattorini
- Department of Life Sciences, University of Siena, Via P.A. Mattioli, Siena, Italy
| | - Claudia Brunetti
- Department of Life Sciences, University of Siena, Via P.A. Mattioli, Siena, Italy
| | - Carolina Baruzzi
- Department of Life Sciences, University of Siena, Via P.A. Mattioli, Siena, Italy
| | - Elisabetta Macchi
- Department of Veterinary Sciences, University of Torino, Via L. Da Vinci, Grugliasco (TO), Italy
| | - Maria Chiara Pagliarella
- Department of Bioscience and Territory, University of Molise, Via F. De Sanctis, Campobasso, Italy
| | - Noemi Pallari
- Department of Life Sciences, University of Siena, Via P.A. Mattioli, Siena, Italy
| | - Sandro Lovari
- Department of Life Sciences, University of Siena, Via P.A. Mattioli, Siena, Italy
- Maremma Natural History Museum, Strada Corsini, Grosseto, Italy
| | - Francesco Ferretti
- Department of Life Sciences, University of Siena, Via P.A. Mattioli, Siena, Italy
| |
Collapse
|
33
|
Ciucci P, Boitani L, Falco M, Maiorano L. Hierarchical, multi-grain rendezvous site selection by wolves in southern Italy. J Wildl Manage 2018. [DOI: 10.1002/jwmg.21440] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Paolo Ciucci
- Department of Biology and Biotechnologies “Charles Darwin”; University of Rome La Sapienza; Viale dell'Università 32 Roma 00185 Italy
| | - Luigi Boitani
- Department of Biology and Biotechnologies “Charles Darwin”; University of Rome La Sapienza; Viale dell'Università 32 Roma 00185 Italy
| | - Matteo Falco
- Department of Biology and Biotechnologies “Charles Darwin”; University of Rome La Sapienza; Viale dell'Università 32 Roma 00185 Italy
| | - Luigi Maiorano
- Department of Biology and Biotechnologies “Charles Darwin”; University of Rome La Sapienza; Viale dell'Università 32 Roma 00185 Italy
| |
Collapse
|