1
|
McLeod L, Barchi L, Tumino G, Tripodi P, Salinier J, Gros C, Boyaci HF, Ozalp R, Borovsky Y, Schafleitner R, Barchenger D, Finkers R, Brouwer M, Stein N, Rabanus-Wallace MT, Giuliano G, Voorrips R, Paran I, Lefebvre V. Multi-environment association study highlights candidate genes for robust agronomic quantitative trait loci in a novel worldwide Capsicum core collection. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 116:1508-1528. [PMID: 37602679 DOI: 10.1111/tpj.16425] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 07/13/2023] [Accepted: 08/04/2023] [Indexed: 08/22/2023]
Abstract
Investigating crop diversity through genome-wide association studies (GWAS) on core collections helps in deciphering the genetic determinants of complex quantitative traits. Using the G2P-SOL project world collection of 10 038 wild and cultivated Capsicum accessions from 10 major genebanks, we assembled a core collection of 423 accessions representing the known genetic diversity. Since complex traits are often highly dependent upon environmental variables and genotype-by-environment (G × E) interactions, multi-environment GWAS with a 10 195-marker genotypic matrix were conducted on a highly diverse subset of 350 Capsicum annuum accessions, extensively phenotyped in up to six independent trials from five climatically differing countries. Environment-specific and multi-environment quantitative trait loci (QTLs) were detected for 23 diverse agronomic traits. We identified 97 candidate genes potentially implicated in 53 of the most robust and high-confidence QTLs for fruit flavor, color, size, and shape traits, and for plant productivity, vigor, and earliness traits. Investigating the genetic architecture of agronomic traits in this way will assist the development of genetic markers and pave the way for marker-assisted selection. The G2P-SOL pepper core collection will be available upon request as a unique and universal resource for further exploitation in future gene discovery and marker-assisted breeding efforts by the pepper community.
Collapse
Affiliation(s)
- Louis McLeod
- INRAE, GAFL, Montfavet, France
- INRAE, A2M, Montfavet, France
| | - Lorenzo Barchi
- Department of Agricultural, Forest and Food Sciences (DISAFA), Plant Genetics, University of Torino, Grugliasco, Italy
| | - Giorgio Tumino
- Plant Breeding, Wageningen University and Research (WUR), Wageningen, The Netherlands
| | - Pasquale Tripodi
- Research Centre for Vegetable and Ornamental Crops, Council for Agricultural Research and Economics (CREA), Pontecagnano Faiano, Italy
| | | | | | | | - Ramazan Ozalp
- Bati Akdeniz Agricultural Research Institute (BATEM), Antalya, Türkiye
| | - Yelena Borovsky
- The Volcani Center, Institute of Plant Sciences, Agricultural Research Organization (ARO), Rishon LeZion, Israel
| | - Roland Schafleitner
- Vegetable Diversity and Improvement, World Vegetable Center, Shanhua, Taiwan
| | - Derek Barchenger
- Vegetable Diversity and Improvement, World Vegetable Center, Shanhua, Taiwan
| | - Richard Finkers
- Plant Breeding, Wageningen University and Research (WUR), Wageningen, The Netherlands
| | - Matthijs Brouwer
- Plant Breeding, Wageningen University and Research (WUR), Wageningen, The Netherlands
| | - Nils Stein
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Seeland, Corre, Gatersleben, Germany
- Department of Crop Sciences, Center for Integrated Breeding Research, Georg-August-University, Göttingen, Germany
| | | | - Giovanni Giuliano
- Casaccia Research Centre, Italian National Agency for New Technologies, Energy, and Sustainable Economic Development (ENEA), Rome, Italy
| | - Roeland Voorrips
- Plant Breeding, Wageningen University and Research (WUR), Wageningen, The Netherlands
| | - Ilan Paran
- The Volcani Center, Institute of Plant Sciences, Agricultural Research Organization (ARO), Rishon LeZion, Israel
| | | |
Collapse
|
2
|
Mangino G, Arrones A, Plazas M, Pook T, Prohens J, Gramazio P, Vilanova S. Newly Developed MAGIC Population Allows Identification of Strong Associations and Candidate Genes for Anthocyanin Pigmentation in Eggplant. FRONTIERS IN PLANT SCIENCE 2022; 13:847789. [PMID: 35330873 PMCID: PMC8940277 DOI: 10.3389/fpls.2022.847789] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 01/20/2022] [Indexed: 05/17/2023]
Abstract
Multi-parent advanced generation inter-cross (MAGIC) populations facilitate the genetic dissection of complex quantitative traits in plants and are valuable breeding materials. We report the development of the first eggplant MAGIC population (S3 Magic EGGplant InCanum, S3MEGGIC; 8-way), constituted by the 420 S3 individuals developed from the intercrossing of seven cultivated eggplant (Solanum melongena) and one wild relative (S. incanum) parents. The S3MEGGIC recombinant population was genotyped with the eggplant 5k probes SPET platform and phenotyped for anthocyanin presence in vegetative plant tissues (PA) and fruit epidermis (FA), and for the light-insensitive anthocyanic pigmentation under the calyx (PUC). The 7,724 filtered high-confidence single-nucleotide polymorphisms (SNPs) confirmed a low residual heterozygosity (6.87%), a lack of genetic structure in the S3MEGGIC population, and no differentiation among subpopulations carrying a cultivated or wild cytoplasm. Inference of haplotype blocks of the nuclear genome revealed an unbalanced representation of the founder genomes, suggesting a cryptic selection in favour or against specific parental genomes. Genome-wide association study (GWAS) analysis for PA, FA, and PUC detected strong associations with two myeloblastosis (MYB) genes similar to MYB113 involved in the anthocyanin biosynthesis pathway, and with a COP1 gene which encodes for a photo-regulatory protein and may be responsible for the PUC trait. Evidence was found of a duplication of an ancestral MYB113 gene with a translocation from chromosome 10 to chromosome 1 compared with the tomato genome. Parental genotypes for the three genes were in agreement with the identification of the candidate genes performed in the S3MEGGIC population. Our new eggplant MAGIC population is the largest recombinant population in eggplant and is a powerful tool for eggplant genetics and breeding studies.
Collapse
Affiliation(s)
- Giulio Mangino
- Instituto de Conservación y Mejora de la Agrodiversidad Valenciana, Universitat Politècnica de València, Valencia, Spain
| | - Andrea Arrones
- Instituto de Conservación y Mejora de la Agrodiversidad Valenciana, Universitat Politècnica de València, Valencia, Spain
| | - Mariola Plazas
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas-Universitat Politècnica de València, Valencia, Spain
| | - Torsten Pook
- Animal Breeding and Genetics Group, Department of Animal Sciences, Center for Integrated Breeding Research, University of Göttingen, Göttingin, Germany
| | - Jaime Prohens
- Instituto de Conservación y Mejora de la Agrodiversidad Valenciana, Universitat Politècnica de València, Valencia, Spain
| | - Pietro Gramazio
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas-Universitat Politècnica de València, Valencia, Spain
| | - Santiago Vilanova
- Instituto de Conservación y Mejora de la Agrodiversidad Valenciana, Universitat Politècnica de València, Valencia, Spain
| |
Collapse
|
3
|
Parisi M, Alioto D, Tripodi P. Overview of Biotic Stresses in Pepper ( Capsicum spp.): Sources of Genetic Resistance, Molecular Breeding and Genomics. Int J Mol Sci 2020; 21:E2587. [PMID: 32276403 PMCID: PMC7177692 DOI: 10.3390/ijms21072587] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 04/03/2020] [Accepted: 04/05/2020] [Indexed: 12/16/2022] Open
Abstract
Pepper (Capsicum spp.) is one of the major vegetable crops grown worldwide largely appreciated for its economic importance and nutritional value. This crop belongs to the large Solanaceae family, which, among more than 90 genera and 2500 species of flowering plants, includes commercially important vegetables such as tomato and eggplant. The genus includes over 30 species, five of which (C. annuum, C. frutescens, C. chinense, C. baccatum, and C. pubescens) are domesticated and mainly grown for consumption as food and for non-food purposes (e.g., cosmetics). The main challenges for vegetable crop improvement are linked to the sustainable development of agriculture, food security, the growing consumers' demand for food. Furthermore, demographic trends and changes to climate require more efficient use of plant genetic resources in breeding programs. Increases in pepper consumption have been observed in the past 20 years, and for maintaining this trend, the development of new resistant and high yielding varieties is demanded. The range of pathogens afflicting peppers is very broad and includes fungi, viruses, bacteria, and insects. In this context, the large number of accessions of domesticated and wild species stored in the world seed banks represents a valuable resource for breeding in order to transfer traits related to resistance mechanisms to various biotic stresses. In the present review, we report comprehensive information on sources of resistance to a broad range of pathogens in pepper, revisiting the classical genetic studies and showing the contribution of genomics for the understanding of the molecular basis of resistance.
Collapse
Affiliation(s)
- Mario Parisi
- CREA Research Centre for Vegetable and Ornamental Crops, 84098 Pontecagnano Faiano, Italy;
| | - Daniela Alioto
- Dipartimento di Agraria, Università degli Studi di Napoli Federico II, 80055 Portici, Naples, Italy;
| | - Pasquale Tripodi
- CREA Research Centre for Vegetable and Ornamental Crops, 84098 Pontecagnano Faiano, Italy;
| |
Collapse
|
4
|
Lee J. Development and Evolution of Molecular Markers and Genetic Maps in Capsicum Species. COMPENDIUM OF PLANT GENOMES 2019. [DOI: 10.1007/978-3-319-97217-6_5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
5
|
Scaldaferro MA, Moscone EA. Cytology and DNA Content Variation of Capsicum Genomes. COMPENDIUM OF PLANT GENOMES 2019. [DOI: 10.1007/978-3-319-97217-6_4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
6
|
Barchenger DW, Lamour KH, Bosland PW. Challenges and Strategies for Breeding Resistance in Capsicum annuum to the Multifarious Pathogen, Phytophthora capsici. FRONTIERS IN PLANT SCIENCE 2018; 9:628. [PMID: 29868083 PMCID: PMC5962783 DOI: 10.3389/fpls.2018.00628] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2017] [Accepted: 04/20/2018] [Indexed: 05/20/2023]
Abstract
Phytophthora capsici is the most devastating pathogen for chile pepper production worldwide and current management strategies are not effective. The population structure of the pathogen is highly variable and few sources of widely applicable host resistance have been identified. Recent genomic advancements in the host and the pathogen provide important insights into the difficulties reported by epidemiological and physiological studies published over the past century. This review highlights important challenges unique to this complex pathosystem and suggests strategies for resistance breeding to help limit losses associated with P. capsici.
Collapse
Affiliation(s)
- Derek W. Barchenger
- Department of Plant and Environmental Sciences, New Mexico State University, Las Cruces, NM, United States
| | - Kurt H. Lamour
- Department of Entomology and Plant Pathology, The University of Tennessee, Knoxville, Knoxville, TN, United States
| | - Paul W. Bosland
- Department of Plant and Environmental Sciences, New Mexico State University, Las Cruces, NM, United States
| |
Collapse
|
7
|
Mangal M, Srivastava A, Sharma R, Kalia P. Conservation and Dispersion of Genes Conferring Resistance to Tomato Begomoviruses between Tomato and Pepper Genomes. FRONTIERS IN PLANT SCIENCE 2017; 8:1803. [PMID: 29163560 PMCID: PMC5681951 DOI: 10.3389/fpls.2017.01803] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2017] [Accepted: 10/04/2017] [Indexed: 06/07/2023]
Abstract
In the present climate change scenario, controlling plant disease through exploitation of host plant resistance could contribute toward the sustainable crop production and global food security. In this respect, the identification of new sources of resistance and utilization of genetic diversity within the species may help in the generation of cultivars with improved disease resistance. Begomoviruses namely, Tomato yellow leaf curl virus (TYLCV) and Chilli leaf curl virus (ChLCV) are known to cause major yield losses in several economically important crop plants of the family Solanaceae. Though co-occurrence, association and synergistic interactions among these viruses in the host plants is reported, whether orthologous genetic loci in related host plants could be responsible for conferring resistance to these viruses has not been investigated yet. Several loci including Ty1, Ty2, Ty3, Ty4, and ty5 have been reported to confer resistance to leaf curl viruses in tomato. Here, we examined the pepper orthologous markers, corresponding to these QTL regions, for polymorphism between ChLCV susceptible and resistant genotypes of pepper. Further, to examine if the polymorphic markers are segregating with the disease resistance, Bulk Segregant Analysis (BSA) was performed on F2 population derived from crosses between resistant and susceptible lines. However, none of the markers showed polymorphism in BSA suggesting that the tested markers are not linked to genes/QTLs responsible for conferring resistance to ChLCV in the selected genotypes. In silico analysis was performed to study the synteny and collinearity of genes located within these QTL regions in tomato and pepper genomes, which revealed that more than 60% genes located in Ty2 and Ty4, 13.71% genes in Ty1, 23.07% in Ty3, and 44.77% genes located within ty5 QTL region in tomato are conserved in pepper genome. However, despite such a high conservation in gene content, the linkage relationship in these regions seems to be greatly affected by gross rearrangements in both the species.
Collapse
Affiliation(s)
- Manisha Mangal
- Division of Vegetable Science, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Arpita Srivastava
- Division of Vegetable Science, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Rita Sharma
- Crop Genetics and Informatics Group, School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Pritam Kalia
- Division of Vegetable Science, ICAR-Indian Agricultural Research Institute, New Delhi, India
| |
Collapse
|
8
|
Kim SB, Kang WH, Huy HN, Yeom SI, An JT, Kim S, Kang MY, Kim HJ, Jo YD, Ha Y, Choi D, Kang BC. Divergent evolution of multiple virus-resistance genes from a progenitor in Capsicum spp. THE NEW PHYTOLOGIST 2017; 213:886-899. [PMID: 27612097 DOI: 10.1111/nph.14177] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Accepted: 07/31/2016] [Indexed: 05/11/2023]
Abstract
Plants have evolved hundreds of nucleotide-binding and leucine-rich domain proteins (NLRs) as potential intracellular immune receptors, but the evolutionary mechanism leading to the ability to recognize specific pathogen effectors is elusive. Here, we cloned Pvr4 (a Potyvirus resistance gene in Capsicum annuum) and Tsw (a Tomato spotted wilt virus resistance gene in Capsicum chinense) via a genome-based approach using independent segregating populations. The genes both encode typical NLRs and are located at the same locus on pepper chromosome 10. Despite the fact that these two genes recognize completely different viral effectors, the genomic structures and coding sequences of the two genes are strikingly similar. Phylogenetic studies revealed that these two immune receptors diverged from a progenitor gene of a common ancestor. Our results suggest that sequence variations caused by gene duplication and neofunctionalization may underlie the evolution of the ability to specifically recognize different effectors. These findings thereby provide insight into the divergent evolution of plant immune receptors.
Collapse
Affiliation(s)
- Saet-Byul Kim
- Department of Plant Science, Plant Genomics and Breeding Institute, Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, 151-921, Korea
| | - Won-Hee Kang
- Department of Plant Science, Plant Genomics and Breeding Institute, Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, 151-921, Korea
- Department of Horticulture, Institute of Agriculture & Life Science, Gyeongsang National University, Jinju, 660-701, Korea
| | - Hoang Ngoc Huy
- Department of Plant Science, Plant Genomics and Breeding Institute, Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, 151-921, Korea
| | - Seon-In Yeom
- Department of Horticulture, Institute of Agriculture & Life Science, Gyeongsang National University, Jinju, 660-701, Korea
| | - Jeong-Tak An
- Department of Plant Science, Plant Genomics and Breeding Institute, Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, 151-921, Korea
| | - Seungill Kim
- Department of Plant Science, Plant Genomics and Breeding Institute, Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, 151-921, Korea
| | - Min-Young Kang
- Department of Plant Science, Plant Genomics and Breeding Institute, Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, 151-921, Korea
| | - Hyun Jung Kim
- Department of Eco-Friendly Horticulture, Cheonan Yonam College, Cheonan, 331-709, Korea
| | - Yeong Deuk Jo
- Department of Plant Science, Plant Genomics and Breeding Institute, Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, 151-921, Korea
- Korea Atomic Energy Research Institute, Jeongeup, 580-185, Korea
| | - Yeaseong Ha
- Department of Plant Science, Plant Genomics and Breeding Institute, Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, 151-921, Korea
| | - Doil Choi
- Department of Plant Science, Plant Genomics and Breeding Institute, Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, 151-921, Korea
| | - Byoung-Cheorl Kang
- Department of Plant Science, Plant Genomics and Breeding Institute, Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, 151-921, Korea
| |
Collapse
|
9
|
Barbary A, Djian-Caporalino C, Marteu N, Fazari A, Caromel B, Castagnone-Sereno P, Palloix A. Plant Genetic Background Increasing the Efficiency and Durability of Major Resistance Genes to Root-knot Nematodes Can Be Resolved into a Few Resistance QTLs. FRONTIERS IN PLANT SCIENCE 2016; 7:632. [PMID: 27242835 PMCID: PMC4861812 DOI: 10.3389/fpls.2016.00632] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Accepted: 04/25/2016] [Indexed: 05/24/2023]
Abstract
With the banning of most chemical nematicides, the control of root-knot nematodes (RKNs) in vegetable crops is now based essentially on the deployment of single, major resistance genes (R-genes). However, these genes are rare and their efficacy is threatened by the capacity of RKNs to adapt. In pepper, several dominant R-genes are effective against RKNs, and their efficacy and durability have been shown to be greater in a partially resistant genetic background. However, the genetic determinants of this partial resistance were unknown. Here, a quantitative trait loci (QTL) analysis was performed on the F2:3 population from the cross between Yolo Wonder, an accession considered partially resistant or resistant, depending on the RKN species, and Doux Long des Landes, a susceptible cultivar. A genetic linkage map was constructed from 130 F2 individuals, and the 130 F3 families were tested for resistance to the three main RKN species, Meloidogyne incognita, M. arenaria, and M. javanica. For the first time in the pepper-RKN pathosystem, four major QTLs were identified and mapped to two clusters. The cluster on chromosome P1 includes three tightly linked QTLs with specific effects against individual RKN species. The fourth QTL, providing specific resistance to M. javanica, mapped to pepper chromosome P9, which is known to carry multiple NBS-LRR repeats, together with major R-genes for resistance to nematodes and other pathogens. The newly discovered cluster on chromosome P1 has a broad spectrum of action with major additive effects on resistance. These data highlight the role of host QTLs involved in plant-RKN interactions and provide innovative potential for the breeding of new pepper cultivars or rootstocks combining quantitative resistance and major R-genes, to increase both the efficacy and durability of RKN control by resistance genes.
Collapse
Affiliation(s)
- Arnaud Barbary
- INRA, University of Nice Sophia Antipolis, CNRS, UMR 1355-7254, Institut Sophia AgrobiotechSophia Antipolis, France
| | - Caroline Djian-Caporalino
- INRA, University of Nice Sophia Antipolis, CNRS, UMR 1355-7254, Institut Sophia AgrobiotechSophia Antipolis, France
| | - Nathalie Marteu
- INRA, University of Nice Sophia Antipolis, CNRS, UMR 1355-7254, Institut Sophia AgrobiotechSophia Antipolis, France
| | - Ariane Fazari
- INRA, University of Nice Sophia Antipolis, CNRS, UMR 1355-7254, Institut Sophia AgrobiotechSophia Antipolis, France
| | - Bernard Caromel
- INRA, UR1052, Génétique et Amélioration des Fruits et LégumesMontfavet, France
| | - Philippe Castagnone-Sereno
- INRA, University of Nice Sophia Antipolis, CNRS, UMR 1355-7254, Institut Sophia AgrobiotechSophia Antipolis, France
| | - Alain Palloix
- INRA, UR1052, Génétique et Amélioration des Fruits et LégumesMontfavet, France
| |
Collapse
|
10
|
Ultra-High Density, Transcript-Based Genetic Maps of Pepper Define Recombination in the Genome and Synteny Among Related Species. G3-GENES GENOMES GENETICS 2015; 5:2341-55. [PMID: 26355020 PMCID: PMC4632054 DOI: 10.1534/g3.115.020040] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Our ability to assemble complex genomes and construct ultradense genetic maps now allows the determination of recombination rates, translocations, and the extent of genomic collinearity between populations, species, and genera. We developed two ultradense genetic linkage maps for pepper from single-position polymorphisms (SPPs) identified de novo with a 30,173 unigene pepper genotyping array. The Capsicum frutescens × C. annuum interspecific and the C. annuum intraspecific genetic maps were constructed comprising 16,167 and 3,878 unigene markers in 2108 and 783 genetic bins, respectively. Accuracies of marker groupings and orders are validated by the high degree of collinearity between the two maps. Marker density was sufficient to locate the chromosomal breakpoint resulting in the P1/P8 translocation between C. frutescens and C. annuum to a single bin. The two maps aligned to the pepper genome showed varying marker density along the chromosomes. There were extensive chromosomal regions with suppressed recombination and reduced intraspecific marker density. These regions corresponded to the pronounced nonrecombining pericentromeric regions in tomato, a related Solanaceous species. Similar to tomato, the extent of reduced recombination appears to be more pronounced in pepper than in other plant species. Alignment of maps with the tomato and potato genomes shows the presence of previously known translocations and a translocation event that was not observed in previous genetic maps of pepper.
Collapse
|
11
|
Tan S, Cheng JW, Zhang L, Qin C, Nong DG, Li WP, Tang X, Wu ZM, Hu KL. Construction of an interspecific genetic map based on InDel and SSR for mapping the QTLs affecting the initiation of flower primordia in pepper (Capsicum spp.). PLoS One 2015; 10:e0119389. [PMID: 25781878 PMCID: PMC4363154 DOI: 10.1371/journal.pone.0119389] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Accepted: 01/30/2015] [Indexed: 01/18/2023] Open
Abstract
Re-sequencing permits the mining of genome-wide variations on a large scale and provides excellent resources for the research community. To accelerate the development and application of molecular markers and identify the QTLs affecting the flowering time-related trait in pepper, a total of 1,038 pairs of InDel and 674 SSR primers from different sources were used for genetic mapping using the F2 population (n = 154) derived from a cross between BA3 (C. annuum) and YNXML (C. frutescens). Of these, a total of 224 simple PCR-based markers, including 129 InDels and 95 SSRs, were validated and integrated into a map, which was designated as the BY map. The BY map consisted of 13 linkage groups (LGs) and spanned a total genetic distance of 1,249.77 cM with an average marker distance of 5.60 cM. Comparative analysis of the genetic and physical map based on the anchored markers showed that the BY map covered nearly the whole pepper genome. Based on the BY map, one major and five minor QTLs affecting the number of leaves on the primary axis (Nle) were detected on chromosomes P2, P7, P10 and P11 in 2012. The major QTL on P2 was confirmed based on another subset of the same F2 population (n = 147) in 2014 with selective genotyping of markers from the BY map. With the accomplishment of pepper whole genome sequencing and annotations (release 2.0), 153 candidate genes were predicted to embed in the Nle2.2 region, of which 12 important flowering related genes were obtained. The InDel/SSR-based interspecific genetic map, QTLs and candidate genes obtained by the present study will be useful for the downstream isolation of flowering time-related gene and other genetic applications for pepper.
Collapse
Affiliation(s)
- Shu Tan
- College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Jiao-Wen Cheng
- College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Li Zhang
- College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Cheng Qin
- College of Horticulture, South China Agricultural University, Guangzhou, China; Pepper Institute, Zunyi Academy of Agricultural Sciences, Zunyi, Guizhou, China; Maize Research Institute of Sichuan Agricultural University / Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, Chengdu, China
| | - Ding-Guo Nong
- College of Agriculture, Guangxi University, Nanning, China
| | - Wei-Peng Li
- College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Xin Tang
- College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Zhi-Ming Wu
- College of Horticulture and Landscape Architecture, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Kai-Lin Hu
- College of Horticulture, South China Agricultural University, Guangzhou, China
| |
Collapse
|
12
|
Li W, Cheng J, Wu Z, Qin C, Tan S, Tang X, Cui J, Zhang L, Hu K. An InDel-based linkage map of hot pepper ( Capsicum annuum). MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2015; 35:32. [PMID: 25620878 PMCID: PMC4300394 DOI: 10.1007/s11032-015-0219-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Accepted: 11/27/2014] [Indexed: 05/03/2023]
Abstract
Two independent pepper (Capsicum annuum) genomes were published recently, opening a new era of molecular genetics research on pepper. However, pepper molecular marker technologies are still mainly focusing on the simple sequence repeats derived from public database or genomic library. The development and application of the third generation marker system such as single nucleotide polymorphisms, structure variations as well as insertion/deletion polymorphisms (InDels) is still in its infancy. In the present study, we developed InDel markers for pepper genetic mapping with the convenience of two whole-genome re-sequenced inbred lines BA3 (C. annuum) and B702 (C. annuum). A total of 154,519 and 149,755 InDel (1-5 bp) sites were identified for BA3 and B702, respectively, by the alignment of re-sequencing reads to Zunla-1 reference genome. Then, 14,498 InDel sites (only 4 and 5 bp) that are different between BA3 and B702 were predicted. Finally, within a random set of 1,000 primer pairs, 251 InDel markers were validated and mapped onto a linkage map using F2 population derived from the intraspecific cross BA3 × B702. The first InDel-based map, named as BB-InDel map, consisted of 12 linkage groups, covered a genetic distance of 1,178.01 cM and the average distance between bin markers was 5.01 cM. Compared to the Zunla-1 reference physical map, high consistency was observed on all 12 chromosomes, and the total length of scaffold anchored and physical distance covered by this map was 299.66 and 2,558.68 Mb, respectively, which accounted for 8.95 and 76.38 % of the Zunla-1 reference genome (3.35 Gb), respectively. Furthermore, 37 scaffolds (total length of 36.21 Mb) from the pseudo-chromosome (P0) of the current genome assembly were newly assigned to the corresponding chromosomes by 40 InDel markers. Thus, this map provided good genome coverage and would be useful for basic and applied research in pepper.
Collapse
Affiliation(s)
- Weipeng Li
- College of Horticulture, South China Agricultural University, Wushan Road 483, Guangzhou, 510642 Guangdong China
| | - Jiaowen Cheng
- College of Horticulture, South China Agricultural University, Wushan Road 483, Guangzhou, 510642 Guangdong China
| | - Zhiming Wu
- College of Horticulture and Landscape Architecture, Zhongkai University of Agriculture and Engineering, Zhongkai Road 501, Guangzhou, 510225 Guangdong China
| | - Cheng Qin
- College of Horticulture, South China Agricultural University, Wushan Road 483, Guangzhou, 510642 Guangdong China
- Pepper Institute, Zunyi Academy of Agricultural Sciences, Zunyi, 563102 Guizhou China
- Maize Research Institute of Sichuan Agricultural University/Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, Chengdu, 611130 Sichuan China
| | - Shu Tan
- College of Horticulture, South China Agricultural University, Wushan Road 483, Guangzhou, 510642 Guangdong China
| | - Xin Tang
- College of Horticulture, South China Agricultural University, Wushan Road 483, Guangzhou, 510642 Guangdong China
| | - Junjie Cui
- College of Horticulture, South China Agricultural University, Wushan Road 483, Guangzhou, 510642 Guangdong China
| | - Li Zhang
- College of Horticulture, South China Agricultural University, Wushan Road 483, Guangzhou, 510642 Guangdong China
| | - Kailin Hu
- College of Horticulture, South China Agricultural University, Wushan Road 483, Guangzhou, 510642 Guangdong China
| |
Collapse
|
13
|
Quenouille J, Paulhiac E, Moury B, Palloix A. Quantitative trait loci from the host genetic background modulate the durability of a resistance gene: a rational basis for sustainable resistance breeding in plants. Heredity (Edinb) 2014; 112:579-87. [PMID: 24569635 DOI: 10.1038/hdy.2013.138] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2013] [Revised: 11/06/2013] [Accepted: 11/08/2013] [Indexed: 11/09/2022] Open
Abstract
The combination of major resistance genes with quantitative resistance factors is hypothesized as a promising breeding strategy to preserve the durability of resistant cultivar, as recently observed in different pathosystems. Using the pepper (Capsicum annuum)/Potato virus Y (PVY, genus Potyvirus) pathosystem, we aimed at identifying plant genetic factors directly affecting the frequency of virus adaptation to the major resistance gene pvr2(3) and at comparing them with genetic factors affecting quantitative resistance. The resistance breakdown frequency was a highly heritable trait (h(2)=0.87). Four loci including additive quantitative trait loci (QTLs) and epistatic interactions explained together 70% of the variance of pvr2(3) breakdown frequency. Three of the four QTLs controlling pvr2(3) breakdown frequency were also involved in quantitative resistance, strongly suggesting that QTLs controlling quantitative resistance have a pleiotropic effect on the durability of the major resistance gene. With the first mapping of QTLs directly affecting resistance durability, this study provides a rationale for sustainable resistance breeding. Surprisingly, a genetic trade-off was observed between the durability of PVY resistance controlled by pvr2(3) and the spectrum of the resistance against different potyviruses. This trade-off seemed to have been resolved by the combination of minor-effect durability QTLs under long-term farmer selection.
Collapse
Affiliation(s)
- J Quenouille
- 1] INRA, UR1052 GAFL, Montfavet Cedex, France [2] INRA, UR407 Pathologie Végétale, Montfavet Cedex, France
| | - E Paulhiac
- INRA, UR1052 GAFL, Montfavet Cedex, France
| | - B Moury
- INRA, UR407 Pathologie Végétale, Montfavet Cedex, France
| | - A Palloix
- INRA, UR1052 GAFL, Montfavet Cedex, France
| |
Collapse
|
14
|
Ashrafi H, Hill T, Stoffel K, Kozik A, Yao J, Chin-Wo SR, Van Deynze A. De novo assembly of the pepper transcriptome (Capsicum annuum): a benchmark for in silico discovery of SNPs, SSRs and candidate genes. BMC Genomics 2012; 13:571. [PMID: 23110314 PMCID: PMC3545863 DOI: 10.1186/1471-2164-13-571] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2012] [Accepted: 10/22/2012] [Indexed: 11/24/2022] Open
Abstract
Background Molecular breeding of pepper (Capsicum spp.) can be accelerated by developing DNA markers associated with transcriptomes in breeding germplasm. Before the advent of next generation sequencing (NGS) technologies, the majority of sequencing data were generated by the Sanger sequencing method. By leveraging Sanger EST data, we have generated a wealth of genetic information for pepper including thousands of SNPs and Single Position Polymorphic (SPP) markers. To complement and enhance these resources, we applied NGS to three pepper genotypes: Maor, Early Jalapeño and Criollo de Morelos-334 (CM334) to identify SNPs and SSRs in the assembly of these three genotypes. Results Two pepper transcriptome assemblies were developed with different purposes. The first reference sequence, assembled by CAP3 software, comprises 31,196 contigs from >125,000 Sanger-EST sequences that were mainly derived from a Korean F1-hybrid line, Bukang. Overlapping probes were designed for 30,815 unigenes to construct a pepper Affymetrix GeneChip® microarray for whole genome analyses. In addition, custom Python scripts were used to identify 4,236 SNPs in contigs of the assembly. A total of 2,489 simple sequence repeats (SSRs) were identified from the assembly, and primers were designed for the SSRs. Annotation of contigs using Blast2GO software resulted in information for 60% of the unigenes in the assembly. The second transcriptome assembly was constructed from more than 200 million Illumina Genome Analyzer II reads (80–120 nt) using a combination of Velvet, CLC workbench and CAP3 software packages. BWA, SAMtools and in-house Perl scripts were used to identify SNPs among three pepper genotypes. The SNPs were filtered to be at least 50 bp from any intron-exon junctions as well as flanking SNPs. More than 22,000 high-quality putative SNPs were identified. Using the MISA software, 10,398 SSR markers were also identified within the Illumina transcriptome assembly and primers were designed for the identified markers. The assembly was annotated by Blast2GO and 14,740 (12%) of annotated contigs were associated with functional proteins. Conclusions Before availability of pepper genome sequence, assembling transcriptomes of this economically important crop was required to generate thousands of high-quality molecular markers that could be used in breeding programs. In order to have a better understanding of the assembled sequences and to identify candidate genes underlying QTLs, we annotated the contigs of Sanger-EST and Illumina transcriptome assemblies. These and other information have been curated in a database that we have dedicated for pepper project.
Collapse
Affiliation(s)
- Hamid Ashrafi
- Seed Biotechnology Center, University of California, Davis, 1 Shields Ave, Davis, CA 95616, USA.
| | | | | | | | | | | | | |
Collapse
|
15
|
Mimura Y, Inoue T, Minamiyama Y, Kubo N. An SSR-based genetic map of pepper (Capsicum annuum L.) serves as an anchor for the alignment of major pepper maps. BREEDING SCIENCE 2012; 62:93-8. [PMID: 23136519 PMCID: PMC3405950 DOI: 10.1270/jsbbs.62.93] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2011] [Accepted: 12/08/2011] [Indexed: 05/13/2023]
Abstract
Of the Capsicum peppers (Capsicum spp.), cultivated C. annuum is the most commercially important, but has lacked an intraspecific linkage map based on sequence-specific PCR markers in accord with haploid chromosome numbers. We constructed a linkage map of pepper using a doubled haploid (DH) population derived from a cross between two C. annuum genotypes, a bell-type cultivar 'California Wonder' and a Malaysian small-fruited cultivar 'LS2341 (JP187992)', which is used as a source of resistance to bacterial wilt (Ralstonia solanacearum). A set of 253 markers (151 SSRs, 90 AFLPs, 10 CAPSs and 2 sequence-tagged sites) was on the map which we constructed, spanning 1,336 cM. This is the first SSR-based map to consist of 12 linkage groups, corresponding to the haploid chromosome number in an intraspecific cross of C. annuum. As this map has a lot of PCR-based anchor markers, it is easy to compare it to other pepper genetic maps. Therefore, this map and the newly developed markers will be useful for cultivated C. annuum breeding.
Collapse
Affiliation(s)
- Yutaka Mimura
- Agriculture and Forestry Technology Department, Kyoto Prefectural Agriculture, Forestry and Fisheries Technology Centre, Amarube-cho, Kameoka, Kyoto 621-0806, Japan
- Corresponding author (e-mail: )
| | - Takahiro Inoue
- Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, 74 Oji, Kitainayazuma, Seika, Kyoto 619-0244, Japan
| | - Yasuhiro Minamiyama
- Faculty of Education, Wakayama University, 930 Sakaedani, Wakayama 640-8510, Japan
| | - Nakao Kubo
- Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, 74 Oji, Kitainayazuma, Seika, Kyoto 619-0244, Japan
- Biotechnology Research Department (KAB), Kyoto Prefectural Agriculture, Forestry and Fisheries Technology Centre, 74 Oji, Kitainayazuma, Seika, Kyoto 619-0244, Japan
| |
Collapse
|
16
|
Barchi L, Lanteri S, Portis E, Stàgel A, Valè G, Toppino L, Rotino GL. Segregation distortion and linkage analysis in eggplant (Solanum melongena L.). Genome 2011; 53:805-15. [PMID: 20962887 DOI: 10.1139/g10-073] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
An anther-derived doubled haploid (DH) population and an F2 mapping population were developed from an intraspecific hybrid between the eggplant breeding lines 305E40 and 67/3. The former incorporates an introgressed segment from Solanum aethiopicum Gilo Group carrying the gene Rfo-sa1, which confers resistance to Fusarium oxysporum; the latter is a selection from an intraspecific cross involving two conventional eggplant varieties and lacks Rfo-sa1. Initially, 28 AFLP primer combinations (PCs) were applied to a sample of 93 F2 individuals and 93 DH individuals, from which 170 polymorphic AFLP fragments were identified. In the DH population, the segregation of 117 of these AFLPs as well as markers closely linked to Rfo-sa1 was substantially distorted, while in the F2 population, segregation distortion was restricted to just 10 markers, and thus the latter was chosen for map development. A set of 141 F2 individuals was genotyped with 73 AFLP PCs (generating 406 informative markers), 32 SSRs, 4 tomato RFLPs, and 3 CAPS markers linked to Rfo-sa1. This resulted in the assignment of 348 markers to 12 major linkage groups. The framework map covered 718.7 cM, comprising 238 markers (212 AFLPs, 22 SSRs, 1 RFLP, and the Rfo-sa1 CAPS). Marker order and inter-marker distances in this eggplant map were largely consistent with those reported in a recently published SSR-based map. From an eggplant breeding perspective, DH populations produced by anther culture appear to be subject to massive segregation distortion and thus may not be very efficient in capturing the full range of genetic variation present in the parental lines.
Collapse
Affiliation(s)
- Lorenzo Barchi
- University of Turin, Department of Exploitation and Protection of the Agricultural and Forestry Resources (DiVaPRA), Plant Genetics and Breeding, Via Grugliasco (TO), Italy
| | | | | | | | | | | | | |
Collapse
|
17
|
Park M, Jo S, Kwon JK, Park J, Ahn JH, Kim S, Lee YH, Yang TJ, Hur CG, Kang BC, Kim BD, Choi D. Comparative analysis of pepper and tomato reveals euchromatin expansion of pepper genome caused by differential accumulation of Ty3/Gypsy-like elements. BMC Genomics 2011; 12:85. [PMID: 21276256 PMCID: PMC3042944 DOI: 10.1186/1471-2164-12-85] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2010] [Accepted: 01/29/2011] [Indexed: 11/23/2022] Open
Abstract
Background Among the Solanaceae plants, the pepper genome is three times larger than that of tomato. Although the gene repertoire and gene order of both species are well conserved, the cause of the genome-size difference is not known. To determine the causes for the expansion of pepper euchromatic regions, we compared the pepper genome to that of tomato. Results For sequence-level analysis, we generated 35.6 Mb of pepper genomic sequences from euchromatin enriched 1,245 pepper BAC clones. The comparative analysis of orthologous gene-rich regions between both species revealed insertion of transposons exclusively in the pepper sequences, maintaining the gene order and content. The most common type of the transposon found was the LTR retrotransposon. Phylogenetic comparison of the LTR retrotransposons revealed that two groups of Ty3/Gypsy-like elements (Tat and Athila) were overly accumulated in the pepper genome. The FISH analysis of the pepper Tat elements showed a random distribution in heterochromatic and euchromatic regions, whereas the tomato Tat elements showed heterochromatin-preferential accumulation. Conclusions Compared to tomato pepper euchromatin doubled its size by differential accumulation of a specific group of Ty3/Gypsy-like elements. Our results could provide an insight on the mechanism of genome evolution in the Solanaceae family.
Collapse
Affiliation(s)
- Minkyu Park
- Interdisciplinary Program in Agriculture Biotechnology, Seoul National University, Seoul 151-921, Korea
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Lebeau A, Daunay MC, Frary A, Palloix A, Wang JF, Dintinger J, Chiroleu F, Wicker E, Prior P. Bacterial wilt resistance in tomato, pepper, and eggplant: genetic resources respond to diverse strains in the Ralstonia solanacearum species complex. PHYTOPATHOLOGY 2011; 101:154-65. [PMID: 20795852 DOI: 10.1094/phyto-02-10-0048] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Bacterial wilt, caused by strains belonging to the Ralstonia solanacearum species complex, inflicts severe economic losses in many crops worldwide. Host resistance remains the most effective control strategy against this disease. However, wilt resistance is often overcome due to the considerable variation among pathogen strains. To help breeders circumvent this problem, we assembled a worldwide collection of 30 accessions of tomato, eggplant and pepper (Core-TEP), most of which are commonly used as sources of resistance to R. solanacearum or for mapping quantitative trait loci. The Core-TEP lines were challenged with a core collection of 12 pathogen strains (Core-Rs2) representing the phylogenetic diversity of R. solanacearum. We observed six interaction phenotypes, from highly susceptible to highly resistant. Intermediate phenotypes resulted from the plants' ability to tolerate latent infections (i.e., bacterial colonization of vascular elements with limited or no wilting). The Core-Rs2 strains partitioned into three pathotypes on pepper accessions, five on tomato, and six on eggplant. A "pathoprofile" concept was developed to characterize the strain clusters, which displayed six virulence patterns on the whole set of Core-TEP host accessions. Neither pathotypes nor pathoprofiles were phylotype specific. Pathoprofiles with high aggressiveness were mainly found in strains from phylotypes I, IIB, and III. One pathoprofile included a strain that overcame almost all resistance sources.
Collapse
Affiliation(s)
- A Lebeau
- CIRAD, UMR Peuplements Végétaux et Bioagresseurs en Milieu Tropicale, 7 Chemin de l'IRAT, 97410, Saint-Pierre Cedex, La Réunion, France
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Foster JM, Hausbeck MK. Resistance of Pepper to Phytophthora Crown, Root, and Fruit Rot Is Affected by Isolate Virulence. PLANT DISEASE 2010; 94:24-30. [PMID: 30754398 DOI: 10.1094/pdis-94-1-0024] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Greenhouse and laboratory experiments were conducted to determine the virulence of four Phytophthora capsici isolates from Michigan to 31 bell and hot pepper cultivars and breeding lines. Resistance to crown and root rot was assessed following the inoculation of soilless media with P. capsici-infested millet seed. In a detached fruit assay, fruit rot resistance was evaluated following inoculation with zoospore suspensions of 1.75 × 106 zoospores/ml. The four isolates differed in virulence to pepper lines screened for crown and root rot resistance and were considered to be four different physiological races. The pepper lines CM334, NY07-8001, NY07-8006, and NY07-8007 were resistant to the isolates tested. None of the commercial cultivars were resistant to P. capsici isolate 12889, but several cultivars were resistant to the other isolates screened. The isolates varied in their ability to cause infection on the fruits of the different cultivars. Overall, pepper fruit were more susceptible to P. capsici than the roots and crowns. Management of Phytophthora crown and root rot of pepper can be improved through the use of resistant cultivars. However, since isolate virulence affects resistance, cultivar resistance will need to be utilized on a local scale accordingly.
Collapse
Affiliation(s)
| | - M K Hausbeck
- Professor, Department of Plant Pathology, Michigan State University, East Lansing 48824
| |
Collapse
|
20
|
Wu F, Eannetta NT, Xu Y, Durrett R, Mazourek M, Jahn MM, Tanksley SD. A COSII genetic map of the pepper genome provides a detailed picture of synteny with tomato and new insights into recent chromosome evolution in the genus Capsicum. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2009; 118:1279-93. [PMID: 19229514 DOI: 10.1007/s00122-009-0980-y] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2008] [Accepted: 01/20/2009] [Indexed: 05/20/2023]
Abstract
We report herein the development of a pepper genetic linkage map which comprises 299 orthologous markers between the pepper and tomato genomes (including 263 conserved ortholog set II or COSII markers). The expected position of additional 288 COSII markers was inferred in the pepper map via pepper-tomato synteny, bringing the total orthologous markers in the pepper genome to 587. While pepper maps have been previously reported, this is the first complete map in the sense that all markers could be placed in 12 linkage groups corresponding to the 12 chromosomes. The map presented herein is relevant to the genomes of cultivated C. annuum and wild C. annuum (as well as related Capsicum species) which differ by a reciprocal chromosome translocation. This map is also unique in that it is largely based on COSII markers, which permits the inference of a detailed syntenic relationship between the pepper and tomato genomes-shedding new light on chromosome evolution in the Solanaceae. Since divergence from their last common ancestor is approximately 20 million years ago, the two genomes have become differentiated by a minimum number of 19 inversions and 6 chromosome translocations, as well as numerous putative single gene transpositions. Nevertheless, the two genomes share 35 conserved syntenic segments (CSSs) within which gene/marker order is well preserved. The high resolution COSII synteny map described herein provides a platform for cross-reference of genetic and genomic information (including the tomato genome sequence) between pepper and tomato and therefore will facilitate both applied and basic research in pepper.
Collapse
Affiliation(s)
- Feinan Wu
- Department of Plant Breeding and Genetics, Cornell University, Ithaca, NY 14853, USA.
| | | | | | | | | | | | | |
Collapse
|
21
|
Lee HR, Bae IH, Park SW, Kim HJ, Min WK, Han JH, Kim KT, Kim BD. Construction of an integrated pepper map using RFLP, SSR, CAPS, AFLP, WRKY, rRAMP, and BAC end sequences. Mol Cells 2009; 27:21-37. [PMID: 19214431 DOI: 10.1007/s10059-009-0002-6] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2008] [Revised: 10/01/2008] [Accepted: 10/02/2008] [Indexed: 11/29/2022] Open
Abstract
Map-based cloning to find genes of interest, markerassisted selection (MAS), and marker-assisted breeding (MAB) all require good genetic maps with high reproducible markers. For map construction as well as chromosome assignment, development of single copy PCR-based markers and map integration process are necessary. In this study, the 132 markers (57 STS from BAC-end sequences, 13 STS from RFLP, and 62 SSR) were newly developed as single copy type PCR-based markers. They were used together with 1830 markers previously developed in our lab to construct an integrated map with the Joinmap 3.0 program. This integrated map contained 169 SSR, 354 RFLP, 23 STS from BAC-end sequences, 6 STS from RFLP, 152 AFLP, 51 WRKY, and 99 rRAMP markers on 12 chromosomes. The integrated map contained four genetic maps of two interspecific (Capsicum annuum 'TF68' and C. chinense 'Habanero') and two intraspecific (C. annuum 'CM334' and C. annuum 'Chilsungcho') populations of peppers. This constructed integrated map consisted of 805 markers (map distance of 1858 cM) in interspecific populations and 745 markers (map distance of 1892 cM) in intraspecific populations. The used pepper STS were first developed from end sequences of BAC clones from Capsicum annuum 'CM334'. This integrated map will provide useful information for construction of future pepper genetic maps and for assignment of linkage groups to pepper chromosomes.
Collapse
Affiliation(s)
- Heung-Ryul Lee
- Department of Plant Science, Seoul National University, Seoul, 151-921, Korea
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Palloix A, Ayme V, Moury B. Durability of plant major resistance genes to pathogens depends on the genetic background, experimental evidence and consequences for breeding strategies. THE NEW PHYTOLOGIST 2009; 183:190-199. [PMID: 19344475 DOI: 10.1111/j.1469-8137.2009.02827.x] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
* The breakdown of plant resistance by pathogen populations is a limit to the genetic control of crop disease. Polygenic resistance is postulated as a durable alternative to defeated major resistance genes. Here, we tested this postulate in the pepper-Potato virus Y interaction. * The virus was selected for virulence towards monogenic and polygenic host resistance, using serial inoculations in laboratory and in natural epidemic conditions. The frequency of resistance breakdown and the genetic changes in the virus avirulence gene were analysed. * The monogenic resistance provided by the pvr2(3) gene was defeated at high frequency when introgressed in a susceptible genetic background whereas it was not when combined to partial resistance quantitative trait loci. The suppression of emergence of virulent mutants because of the genetic background resulted both from a differential selection effect and the necessity for the virus to generate multiple mutations. The virus adaptation to the polygenic resistance required a step-by-step selection with a primary selection for virulence towards the major gene, followed by selection for adaptation to the genetic background. * Polygenic resistance proved more durable than monogenic resistance, but breeding strategies giving priority to major resistance factors may jeopardize the progress in durability expected from polygenic resistance.
Collapse
Affiliation(s)
- A Palloix
- INRA Avignon, GAFL, UR1052, BP194, F-84143 Montfavet cedex, France
| | - V Ayme
- INRA Avignon, GAFL, UR1052, BP194, F-84143 Montfavet cedex, France
- INRA Avignon, Unité de pathologie Végétale, UR 407, BP94, F-84143 Montfavet cedex, France
| | - B Moury
- INRA Avignon, Unité de pathologie Végétale, UR 407, BP94, F-84143 Montfavet cedex, France
| |
Collapse
|
23
|
Mimura Y, Kageyama T, Minamiyama Y, Hirai M. QTL Analysis for Resistance to Ralstonia solanacearum in Capsicum Accession ‘LS2341’. ACTA ACUST UNITED AC 2009. [DOI: 10.2503/jjshs1.78.307] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
24
|
Tomita R, Murai J, Miura Y, Ishihara H, Liu S, Kubotera Y, Honda A, Hatta R, Kuroda T, Hamada H, Sakamoto M, Munemura I, Nunomura O, Ishikawa K, Genda Y, Kawasaki S, Suzuki K, Meksem K, Kobayashi K. Fine mapping and DNA fiber FISH analysis locates the tobamovirus resistance gene L3 of Capsicum chinense in a 400-kb region of R-like genes cluster embedded in highly repetitive sequences. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2008; 117:1107-1118. [PMID: 18663424 PMCID: PMC2755798 DOI: 10.1007/s00122-008-0848-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2008] [Accepted: 07/11/2008] [Indexed: 05/26/2023]
Abstract
The tobamovirus resistance gene L(3) of Capsicum chinense was mapped using an intra-specific F2 population (2,016 individuals) of Capsicum annuum cultivars, into one of which had been introduced the C. chinense L(3) gene, and an inter-specific F2 population (3,391 individuals) between C. chinense and Capsicum frutescence. Analysis of a BAC library with an AFLP marker closely linked to L(3)-resistance revealed the presence of homologs of the tomato disease resistance gene I2. Partial or full-length coding sequences were cloned by degenerate PCR from 35 different pepper I2 homologs and 17 genetic markers were generated in the inter-specific combination. The L(3) gene was mapped between I2 homolog marker IH1-04 and BAC-end marker 189D23M, and located within a region encompassing two different BAC contigs consisting of four and one clones, respectively. DNA fiber FISH analysis revealed that these two contigs are separated from each other by about 30 kb. DNA fiber FISH results and Southern blotting of the BAC clones suggested that the L(3) locus-containing region is rich in highly repetitive sequences. Southern blot analysis indicated that the two BAC contigs contain more than ten copies of the I2 homologs. In contrast to the inter-specific F2 population, no recombinant progeny were identified to have a crossover point within two BAC contigs consisting of seven and two clones in the intra-specific F2 population. Moreover, distribution of the crossover points differed between the two populations, suggesting linkage disequilibrium in the region containing the L locus.
Collapse
Affiliation(s)
- R. Tomita
- Iwate Biotechnology Research Center, 22-174-4 Narita, Kitakami, Iwate 024-0003 Japan
| | - J. Murai
- Iwate Biotechnology Research Center, 22-174-4 Narita, Kitakami, Iwate 024-0003 Japan
- Research Institute, Osaka Medical Center for Cancer and Cardiovascular Diseases, Osaka, Osaka 537-8511 Japan
| | - Y. Miura
- Iwate Biotechnology Research Center, 22-174-4 Narita, Kitakami, Iwate 024-0003 Japan
- Nippon Flour Mills Co., Ltd, Central Laboratory, Atsugi, Kanagawa 243-0041 Japan
| | - H. Ishihara
- Department of Plant, Soil and Agricultural Systems, Southern Illinois University at Carbondale, Carbondale, IL 62901-4415 USA
- Max Planck Institute for Molecular Plant Physiology, Am Muehlenberg 1, 14476 Potsdam, Germany
| | - S. Liu
- Department of Plant, Soil and Agricultural Systems, Southern Illinois University at Carbondale, Carbondale, IL 62901-4415 USA
| | - Y. Kubotera
- Iwate Biotechnology Research Center, 22-174-4 Narita, Kitakami, Iwate 024-0003 Japan
| | - A. Honda
- Iwate Biotechnology Research Center, 22-174-4 Narita, Kitakami, Iwate 024-0003 Japan
| | - R. Hatta
- Iwate Biotechnology Research Center, 22-174-4 Narita, Kitakami, Iwate 024-0003 Japan
| | - T. Kuroda
- Iwate Biotechnology Research Center, 22-174-4 Narita, Kitakami, Iwate 024-0003 Japan
- Crop Center, Niigata Agricultural Research Institute, Nagaoka, Niigata 940-0826 Japan
| | - H. Hamada
- Iwate Biotechnology Research Center, 22-174-4 Narita, Kitakami, Iwate 024-0003 Japan
- National Agricultural Research Center, Tsukuba, Ibaraki 305-8666 Japan
| | - M. Sakamoto
- Iwate Biotechnology Research Center, 22-174-4 Narita, Kitakami, Iwate 024-0003 Japan
| | - I. Munemura
- Iwate Biotechnology Research Center, 22-174-4 Narita, Kitakami, Iwate 024-0003 Japan
| | - O. Nunomura
- Japan Horticultural Production and Research Institute, Matsudo, Chiba 270-2221 Japan
| | - K. Ishikawa
- Japan Horticultural Production and Research Institute, Matsudo, Chiba 270-2221 Japan
| | - Y. Genda
- Japan Horticultural Production and Research Institute, Matsudo, Chiba 270-2221 Japan
| | - S. Kawasaki
- National Institute of Agrobiological Resources, Tsukuba, Ibaraki 305-8602 Japan
| | - K. Suzuki
- Iwate Biotechnology Research Center, 22-174-4 Narita, Kitakami, Iwate 024-0003 Japan
- School of Environmental Science, University of Shiga Prefecture, Hikone, Shiga 522-8533 Japan
| | - K. Meksem
- Department of Plant, Soil and Agricultural Systems, Southern Illinois University at Carbondale, Carbondale, IL 62901-4415 USA
| | - K. Kobayashi
- Iwate Biotechnology Research Center, 22-174-4 Narita, Kitakami, Iwate 024-0003 Japan
| |
Collapse
|
25
|
Truco MJ, Antonise R, Lavelle D, Ochoa O, Kozik A, Witsenboer H, Fort SB, Jeuken MJW, Kesseli RV, Lindhout P, Michelmore RW, Peleman J. A high-density, integrated genetic linkage map of lettuce (Lactuca spp.). TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2007; 115:735-46. [PMID: 17828385 DOI: 10.1007/s00122-007-0599-9] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2006] [Accepted: 06/17/2007] [Indexed: 05/17/2023]
Abstract
An integrated map for lettuce comprising of 2,744 markers was developed from seven intra- and inter-specific mapping populations. A total of 560 markers that segregated in two or more populations were used to align the individual maps. 2,073 AFLP, 152 RFLP, 130 SSR, and 360 RAPD as well as 29 other markers were assigned to nine chromosomal linkage groups that spanned a total of 1,505 cM and ranged from 136 to 238 cM. The maximum interval between markers in the integrated map is 43 cM and the mean interval is 0.7 cM. The majority of markers segregated close to Mendelian expectations in the intra-specific crosses. In the two L. saligna x L. sativa inter-specific crosses, a total of 155 and 116 markers in 13 regions exhibited significant segregation distortion. Data visualization tools were developed to curate, display and query the data. The integrated map provides a framework for mapping ESTs in one core mapping population relative to phenotypes that segregate in other populations. It also provides large numbers of markers for marker assisted selection, candidate gene identification, and studies of genome evolution in the Compositae.
Collapse
Affiliation(s)
- M J Truco
- Department of Plant Sciences, University of California, Davis, CA 95616, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Barchi L, Bonnet J, Boudet C, Signoret P, Nagy I, Lanteri S, Palloix A, Lefebvre V. A high-resolution, intraspecific linkage map of pepper (Capsicum annuum L.) and selection of reduced recombinant inbred line subsets for fast mapping. Genome 2007; 50:51-60. [PMID: 17546071 DOI: 10.1139/g06-140] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A high-resolution, intraspecific linkage map of pepper (Capsicum annuum L.) was constructed from a population of 297 recombinant inbred lines. The parents were the large-fruited inbred cultivar 'Yolo Wonder' and the hot pepper line 'Criollo de Morelos 334', which is heavily used as a source of resistance to a number of diseases. A set of 587 markers (507 amplified fragment length polymorphisms, 40 simple sequence repeats, 19 restriction fragment length polymorphisms, 17 sequence-specific amplified polymorphisms, and 4 sequence tagged sites) were used to generate the map; of these, 489 were assembled into 49 linkage groups (LGs), including 14 LGs with 10 to 60 markers per LG and 35 with 2 to 9 markers per LG. The framework map covered 1857 cM with an average intermarker distance of 5.71 cM. Twenty-three LGs, composed of 69% of the markers and covering 1553 cM, were assigned to 1 of the 12 haploid pepper chromosomes, leaving 26 LGs (304 cM) unassigned. The chromosome framework map built with 250 markers led to a high level of mapping confidence and an average intermarker distance of 6.54 cM. By applying MapPop software, it was possible to select smaller subsets of 141 or 93 most informative individuals with a view to reducing the time and cost of further mapping and phenotyping. To define the smallest number of individuals sufficient for assigning any new marker to a chromosome, subsets from 12 to 45 individuals and a set of 13 markers distributed over all 12 chromosomes were screened. In most cases, the markers were correctly assigned to their expected chromosome, but the accuracy of the map position decreased as the number of individuals was reduced.
Collapse
Affiliation(s)
- Lorenzo Barchi
- INRA, UR1052 Génétique et Amélioration des Fruits et Légumes, BP94, Montfavet F-84140, France
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Djian-Caporalino C, Fazari A, Arguel MJ, Vernie T, VandeCasteele C, Faure I, Brunoud G, Pijarowski L, Palloix A, Lefebvre V, Abad P. Root-knot nematode (Meloidogyne spp.) Me resistance genes in pepper (Capsicum annuum L.) are clustered on the P9 chromosome. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2007; 114:473-86. [PMID: 17136373 DOI: 10.1007/s00122-006-0447-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2006] [Accepted: 10/25/2006] [Indexed: 05/12/2023]
Abstract
The root-knot nematode (Meloidogyne spp.) is a major plant pathogen, affecting several solanaceous crops worldwide. In Capsicum annuum, resistance to this pathogen is controlled by several independent dominant genes--the Me genes. Six Me genes have previously been shown to be stable at high temperature in three highly resistant and genetically distant accessions: PI 322719, PI 201234, and CM334 (Criollo de Morelos 334). Some genes (Me4, Mech1, and Mech2) are specific to certain Meloidogyne species or populations, whereas others (Me1, Me3, and Me7) are effective against a wide range of Meloidogyne species, including M. arenaria, M. javanica, and M. incognita, the most common species in Mediterranean and tropical areas. These genes direct different response patterns in root cells depending on the pepper line and nematode species. Allelism tests and fine mapping using the BSA-AFLP approach showed these genes to be different but linked, with a recombination frequency of 0.02-0.18. Three of the PCR-based markers identified in several genetic backgrounds were common to the six Me genes. Comparative mapping with CarthaGene software indicated that these six genes clustered in a single genomic region within a 28 cM interval. Four markers were used to anchor this cluster on the P9 chromosome on an intraspecific reference map for peppers. Other disease resistance factors have earlier been mapped in the vicinity of this cluster. This genomic area is colinear to chromosome T12 of tomato and chromosome XII of potato. Four other nematode resistance genes have earlier been identified in this area, suggesting that these nematode resistance genes are located in orthologous genomic regions in Solanaceae.
Collapse
Affiliation(s)
- C Djian-Caporalino
- INRA, UMR 1064 Interactions Plantes Microorganismes et Santé Végétale, BP167, F-06903, Sophia Antipolis, France.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Yi G, Lee JM, Lee S, Choi D, Kim BD. Exploitation of pepper EST-SSRs and an SSR-based linkage map. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2006; 114:113-30. [PMID: 17047912 DOI: 10.1007/s00122-006-0415-y] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2006] [Accepted: 09/23/2006] [Indexed: 05/12/2023]
Abstract
As genome and cDNA sequencing projects progress, a tremendous amount of sequence information is becoming publicly available. These sequence resources can be exploited for gene discovery and marker development. Simple sequence repeat (SSR) markers are among the most useful because of their great variability, abundance, and ease of analysis. By in silico analysis of 10,232 non-redundant expressed sequence tags (ESTs) in pepper as a source of SSR markers, 1,201 SSRs were found, corresponding to one SSR in every 3.8 kb of the ESTs. Eighteen percent of the SSR-ESTs were dinucleotide repeats, 66.0% were trinucleotide, 7.7% tetranucleotide, and 8.2% pentanucleotide; AAG (14%) and AG (12.4%) motifs were the most abundant repeat types. Based on the flanking sequences of these 1,201 SSRs, 812 primer pairs that satisfied melting temperature conditions and PCR product sizes were designed. 513 SSRs (63.1%) were successfully amplified and 150 of them (29.2%) showed polymorphism between Capsicum annuum 'TF68' and C. chinense 'Habanero'. Dinucleotide SSRs and EST-SSR markers containing AC-motifs were the most polymorphic. Polymorphism increased with repeat length and repeat number. The polymorphic EST-SSRs were mapped onto the previously generated pepper linkage map, using 107 F(2) individuals from an interspecific cross of TF68 x Habanero. One-hundred and thirtynine EST-SSRs were located on the linkage map in addition to 41 previous SSRs and 63 RFLP markers, forming 14 linkage groups (LGs) and spanning 2,201.5 cM. The EST-SSR markers were distributed over all the LGs. This SSR-based map will be useful as a reference map in Capsicum and should facilitate the use of molecular markers in pepper breeding.
Collapse
Affiliation(s)
- Gibum Yi
- Department of Plant Science, College of Agriculture and Life Sciences and Center for Plant Molecular Genetics and Breeding Research, Seoul National University, Seoul, 151-921, South Korea
| | | | | | | | | |
Collapse
|
29
|
Djian-Caporalino C, Lefebvre V, Sage-Daubèze AM, Palloix A. Capsicum. GENETIC RESOURCES, CHROMOSOME ENGINEERING, AND CROP IMPROVEMENT 2006. [DOI: 10.1201/9781420009569.ch6] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
30
|
Ruffel S, Gallois JL, Moury B, Robaglia C, Palloix A, Caranta C. Simultaneous mutations in translation initiation factors eIF4E and eIF(iso)4E are required to prevent pepper veinal mottle virus infection of pepper. J Gen Virol 2006; 87:2089-2098. [PMID: 16760413 DOI: 10.1099/vir.0.81817-0] [Citation(s) in RCA: 121] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Capsicum resistance to Pepper veinal mottle virus (PVMV) results from complementation between the pvr2 and pvr6 resistance genes: recessive alleles at these two loci are necessary for resistance, whereas any dominant allele confers susceptibility. In line with previous results showing that pvr2 resistance alleles encode mutated versions of the eukaryotic translation initiation factor 4E (eIF4E), the involvement of other members of the eIF4E multigenic family in PVMV resistance was investigated. It was demonstrated that pvr6 corresponds to an eIF(iso)4E gene, predicted to encode the second cap-binding isoform identified in plants. Comparative genetic mapping in pepper and tomato indicated that eIF(iso)4E maps in the same genomic region as pvr6. Sequence analysis revealed an 82 nt deletion in eIF(iso)4E cDNAs from genotypes with the pvr6 resistance allele, leading to a truncated protein. This deletion was shown to co-segregate with pvr6 in doubled haploid and F(2) progeny. Transient expression in a PVMV-resistant genotype of eIF(iso)4E derived from a genotype with the pvr6(+) susceptibility allele resulted in loss of resistance to subsequent PVMV inoculation, confirming that pvr6 encodes the translation factor eIF(iso)4E. Similarly, transient expression of eIF4E from a genotype with the pvr2(+)-eIF4E susceptibility allele also resulted in loss of resistance, demonstrating that wild-type eIF4E and eIF(iso)4E are susceptibility factors for PVMV and that resistance results from the combined effect of mutations in the two cap-binding isoforms. Thus, whilst most potyviruses specifically require one eIF4E isoform to perform their replication cycle, PVMV uses either eIF4E or eIF(iso)4E for infection of pepper.
Collapse
Affiliation(s)
- Sandrine Ruffel
- INRA, Genetics and Breeding of Fruits and Vegetables, Domaine St Maurice, BP 94, F-84143 Montfavet, France
| | - Jean-Luc Gallois
- INRA, Genetics and Breeding of Fruits and Vegetables, Domaine St Maurice, BP 94, F-84143 Montfavet, France
| | - Benoît Moury
- Plant Pathology, Domaine St Maurice, BP 94, F-84143 Montfavet, France
| | - Christophe Robaglia
- Laboratoire de Génétique et Biophysique des Plantes, CEA-CNRS-Université Aix-Marseille II, Faculté des Sciences de Luminy, F-13009 Marseille, France
| | - Alain Palloix
- INRA, Genetics and Breeding of Fruits and Vegetables, Domaine St Maurice, BP 94, F-84143 Montfavet, France
| | - Carole Caranta
- INRA, Genetics and Breeding of Fruits and Vegetables, Domaine St Maurice, BP 94, F-84143 Montfavet, France
| |
Collapse
|
31
|
Ogundiwin EA, Berke TF, Massoudi M, Black LL, Huestis G, Choi D, Lee S, Prince JP. Construction of 2 intraspecific linkage maps and identification of resistance QTLs forPhytophthora capsiciroot-rot and foliar-blight diseases of pepper (CapsicumannuumL.). Genome 2005; 48:698-711. [PMID: 16094437 DOI: 10.1139/g05-028] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Two linkage maps of pepper were constructed and used to identify quantitative trait loci (QTLs) conferring resistance to Phytophthora capsici. Inoculations were done with 7 isolates: 3 from Taiwan, 3 from California, and 1 from New Mexico. The first map was constructed from a set of recombinant inbred lines (RILs) of the PSP-11 (susceptible) × PI201234 (resistant) cross; and the second map was from a set of F2lines of the Joe E. Parker' (susceptible) × 'Criollo de Morelos 334' (resistant) cross. The RIL map covered 1466.1 cM of the pepper genome, and it consisted of 144 markers - 91 amplified fragment length polymorphisms (AFLPs), 34 random amplified polymorphic DNA (RAPDs), 15 simple sequence repeats (SSRs), 1 sequence characterized amplified region (SCAR), and 3 morphological markers - distributed over 17 linkage groups. The morphological markers mapped on this population were erect fruit habit (up), elongated fruit shape (fse), and fasciculate fruit clusters (fa). The F2map consisted of 113 markers (51 AFLPs, 45 RAPDs, 14 SSRs, and 3 SCARs) distributed in 16 linkage groups, covering a total of 1089.2 cM of the pepper genome. Resistance to both root rot and foliar blight were evaluated in the RIL population using the 3 Taiwan isolates; the remaining isolates were used for the root-rot test only. Sixteen chromosomal regions of the RIL map contained single QTLs or clusters of resistance QTLs that had an effect on root rot and (or) foliar blight, revealing a complex set of genetics involved in resistance to P. capsici. Five QTLs were detected in the F2map that had an effect on resistance to root rot.Key words: Phytophthora capsici, QTLs, fasciculate, resistance, isolates, pepper, fruit shape.
Collapse
|
32
|
Ruffel S, Gallois JL, Lesage ML, Caranta C. The recessive potyvirus resistance gene pot-1 is the tomato orthologue of the pepper pvr2-eIF4E gene. Mol Genet Genomics 2005; 274:346-53. [PMID: 15971038 DOI: 10.1007/s00438-005-0003-x] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2005] [Accepted: 04/27/2005] [Indexed: 10/25/2022]
Abstract
The translation initiation factor 4E (eIF4E) has been implicated in naturally occurring resistance to Potato virus Y (PVY) determined by the pvr2 locus in pepper (Capsicum annuum). Here, the molecular basis of the recessive resistance to PVY and Tobacco etch virus (TEV) controlled by the pot-1 locus in tomato (Lycopersicon esculentum; now Solanum lycopersicum) was investigated. On the basis of genetic mapping data that indicated that pot-1 and pvr2 are located in syntenic regions of the tomato and pepper genomes, the possible involvement of eIF4E in pot-1-mediated resistance was assessed. Genetic mapping of members of the eIF4E multigenic family in tomato introgression lines revealed that an eIF4E locus indeed maps in the same genomic region as pot-1. By comparing eIF4E coding sequences between resistant and susceptible Lycopersicon genotypes, a small number of polymorphisms that co-segregate with the pot-1 locus were identified, suggesting that this gene could be involved in resistance to potyviruses. Functional complementation experiments using Potato virus X-mediated transient expression of eIF4E from a susceptible genotype in a resistant pepper genotype confirmed that a small number of amino acid substitutions in the eIF4E protein indeed account for resistance/susceptibility to both the PVY and TEV, and consequently that pot-1 and pvr2 are orthologues. Taken together, these results support the role of this eIF4E gene as a key component of recessive resistance to potyviruses, and validate the comparative genomic approach for the molecular characterization of recessive resistance genes.
Collapse
Affiliation(s)
- S Ruffel
- Institut National de la Recherche Agronomique, Genetics and Breeding of Fruits and Vegetables, Dom. St Maurice, BP94, 84143, Montfavet Cedex, France
| | | | | | | |
Collapse
|
33
|
Lafortune D, Béramis M, Daubèze AM, Boissot N, Palloix A. Partial Resistance of Pepper to Bacterial Wilt Is Oligogenic and Stable Under Tropical Conditions. PLANT DISEASE 2005; 89:501-506. [PMID: 30795429 DOI: 10.1094/pd-89-0501] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Genetic analysis of resistance of pepper to bacterial wilt was performed in the doubled haploid progeny from a cross between a resistant parental line PM 687 and a susceptible cultivar Yolo Wonder. After artificial inoculation with a local isolate of Ralstonia solanacearum, the progeny consisting of 90 lines was transplanted into a naturally infested field in Guadeloupe, Lesser Antilles. The 2 years of experimentation resulted in repeatable results, with a high heritability of the resistance, attesting the reliability of the evaluation procedure and the stability of the resistance over years. Two to five genes with additive effects were estimated to control the resistance, indicating an oligogenic control as observed in tomato sources of resistance. Relationships with resistance to other soilborne or tropical diseases were examined. Susceptibility to Tobacco mosaic virus (TMV) and to nematodes (Meloidogyne spp.) were significantly linked with resistance to bacterial wilt, whereas neither resistance to Phytophthora capsici nor to Leveillula taurica were linked. The similarity of the genetics of resistance to bacterial wilt in pepper and tomato and linkage with TMV resistance locus warrant the comparative mapping of the resistance quantitative trait loci in the genomes of the two species.
Collapse
Affiliation(s)
- Denis Lafortune
- INRA-URPV, Domaine Duclos, Prise d'eau, 97170 Petit Bourg, France
| | - Michel Béramis
- INRA-URPV, Domaine Duclos, Prise d'eau, 97170 Petit Bourg, France
| | | | | | | |
Collapse
|
34
|
Quirin EA, Ogundiwin EA, Prince JP, Mazourek M, Briggs MO, Chlanda TS, Kim KT, Falise M, Kang BC, Jahn MM. Development of sequence characterized amplified region (SCAR) primers for the detection of Phyto.5.2, a major QTL for resistance to Phytophthora capsici Leon. in pepper. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2005; 110:605-12. [PMID: 15657741 DOI: 10.1007/s00122-004-1874-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2004] [Accepted: 11/06/2004] [Indexed: 05/24/2023]
Abstract
Phytophthora capsici causes devastating disease on many crop species, including Capsicum. Resistance in Capsicum annuum is genetically and physiologically complex. A panel of Capsicum germplasm that included genotypes from both C. annuum and C. chinense showing highly resistant, highly susceptible and intermediate or tolerant responses to the pathogen, respectively, was screened with a series of randomly amplified polymorphic sequence primers to determine which genomic regions contribute to the highest level of resistance. One primer, OpD04, amplified a single band only in those C. annuum and C. chinense genotypes showing the highest level of resistance. The amplified product was cloned, sequenced and used to design longer primers in order to generate a sequence characterized amplified region marker which was then mapped in a reference mapping population and a screened population segregating for resistance to P. capsici. These primers were observed to define a locus on pepper chromosome 5 tightly linked to Phyto.5.2, one of six quantitative trait loci (QTL) previously reported to contribute to P. capsici resistance. These results indicate that the Phyto.5.2 QTL may be widely distributed in highly resistant germplasm and provide improved resolution for this QTL. This work also defines the first breeding tools for this system, allowing for the rapid selection of genotypes likely to be highly resistant to P. capsici.
Collapse
Affiliation(s)
- E A Quirin
- Department of Plant Breeding and Genetics, Cornell University, Ithaca, NY, I4853, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Voorrips RE, Finkers R, Sanjaya L, Groenwold R. QTL mapping of anthracnose ( Colletotrichum spp.) resistance in a cross between Capsicum annuum and C. chinense. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2004; 109:1275-82. [PMID: 15309301 DOI: 10.1007/s00122-004-1738-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2004] [Accepted: 05/25/2004] [Indexed: 05/09/2023]
Abstract
Anthracnose fruit rot is an economically important disease that affects pepper production in Indonesia. Strong resistance to two causal pathogens, Colletotrichum gloeosporioides and C. capsici, was found in an accession of Capsicum chinense. The inheritance of this resistance was studied in an F(2) population derived from a cross of this accession with an Indonesian hot pepper variety ( Capsicum annuum) using a quantitative trait locus (QTL) mapping approach. In laboratory tests where ripe fruits were artificially inoculated with either C. gloeosporioides or C. capsici, three resistance-related traits were scored: the infection frequency, the true lesion diameter (averaged over all lesions that actually developed), and the overall lesion diameter (averaged over all inoculation points, including those that did not develop lesions). One main QTL was identified with highly significant and large effects on all three traits after inoculation with C. gloeosporioides and on true lesion diameter after inoculation with C. capsici. Three other QTL with smaller effects were found for overall lesion diameter and true lesion diameter after inoculation with C. gloeosporioides, two of which also had an effect on infection frequency. Interestingly, the resistant parent carried a susceptible allele for a QTL for all three traits that was closely linked to the main QTL. The results with C. capsici were based on less observations and therefore less informative. Although the main QTL was shown to have an effect on true lesion diameter after inoculation with C. capsici, no significant QTL were identified for overall lesion diameter or infection frequency.
Collapse
Affiliation(s)
- Roeland E Voorrips
- Plant Research International, P.O. Box 16, 6700 AA Wageningen, The Netherlands.
| | | | | | | |
Collapse
|
36
|
Wang LH, Zhang BX, Lefebvre V, Huang SW, Daubèze AM, Palloix A. QTL analysis of fertility restoration in cytoplasmic male sterile pepper. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2004; 109:1058-63. [PMID: 15173931 DOI: 10.1007/s00122-004-1715-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2003] [Accepted: 04/27/2004] [Indexed: 05/24/2023]
Abstract
Fertility restoration of Peterson's cytoplasmic male-sterility in pepper (Capsicum annuum L.) is quantitative and environment-dependent. QTL analysis of fertility restoration was performed based on the test-cross progeny of 77013A (a strict cytoplasmic-genetic male sterile line) and a doubled haploid population of 114 lines obtained from an F1 hybrid between Yolo wonder (a sterility maintainer line) and Perennial (a fertility-restorer line). The fertility of the test-crossed lines was assessed under greenhouse and open field conditions using three criteria related to pollen or seed production. One major QTL for fertility restoration was mapped to chromosome P6. It was significant in all the environments and for all the traits, accounting for 20-69% of the phenotypic variation, depending on the trait. Four additional minor QTLs were also detected on chromosomes P5, P2, and linkage groups PY3 and PY1, accounting for 7-17% of the phenotypic variation. Most of the alleles increasing fertility originated from the restorer parent, except for two alleles at minor QTLs. Phenotypic analysis and genetic dissection indicated that breeding pepper for complete sterility of female lines and high hybrid fertility requires complex combinations of alleles from both parents and a strict control of the environment.
Collapse
Affiliation(s)
- L H Wang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, 12 Zhongguancun Nandajie, Beijing, 100081, China
| | | | | | | | | | | |
Collapse
|
37
|
Thabuis A, Lefebvre V, Bernard G, Daubèze AM, Phaly T, Pochard E, Palloix A. Phenotypic and molecular evaluation of a recurrent selection program for a polygenic resistance to Phytophthora capsici in pepper. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2004; 109:342-351. [PMID: 15014880 DOI: 10.1007/s00122-004-1633-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2003] [Accepted: 02/09/2004] [Indexed: 05/24/2023]
Abstract
'Criollo de Morelos 334' (CM334) is one of the most promising sources of resistance to Phytophthora capsici in pepper. This Mexican accession is distantly related to bell pepper and its resistance displays a complex inheritance. The QTLs involved in resistance to P. capsici were previously mapped. In order to transfer the resistance factors from CM334 into a bell pepper genetic background, a modified, recurrent breeding scheme was initiated. The breeding population was divided into three sub-populations which were screened by distinct phenotypic tests of increasing severity. The plants from the first sub-population were screened with low-severity tests and backcrossed to the susceptible bell pepper; the plants from the second and third sub-populations were screened by more severe resistance tests and crossed with the plants from the first and second sub-populations, respectively. In this study, the phenotypic data for the three sub-populations during five screening/intermating cycles were analysed. In parallel, the changes in allelic frequencies at molecular markers linked to the resistance QTLs were reported. The resistance phenotype and allelic frequencies strongly depended on the sub-population and screening severity. Regarding allelic frequency changes across the selection cycles, a loss of resistant QTL alleles was observed in the first sub-population, particularly for the low-effect QTLs, whereas a better conservation of the resistant QTL alleles was observed in the two other sub-populations. The same trend was observed in the phenotypic data with an increasing resistance level from the first to the third sub-populations. The changes in the allelic frequencies of loci not linked to resistance QTLs and for horticultural traits across the breeding process indicated that the recovery of the recipient parent genome was not significantly affected by the selection for resistance.
Collapse
Affiliation(s)
- A Thabuis
- Genetics and Breeding of Fruits and Vegetables, Institut National de la Recherche Agronomique, BP94, 84143 Montfavet Cedex, France
| | | | | | | | | | | | | |
Collapse
|
38
|
Gupta PK, Rustgi S. Molecular markers from the transcribed/expressed region of the genome in higher plants. Funct Integr Genomics 2004; 4:139-62. [PMID: 15095058 DOI: 10.1007/s10142-004-0107-0] [Citation(s) in RCA: 128] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2003] [Revised: 12/16/2003] [Accepted: 12/19/2003] [Indexed: 10/26/2022]
Abstract
In recent years, molecular marker technology in higher plants has witnessed a shift from the so-called random DNA markers (RDMs), developed in the past arbitrarily from genomic DNA and cDNA, to the molecular markers representing the transcriptome and the other coding sequences. These markers have been described as gene targeted markers (GTMs). Another specific class of markers includes the so-called functional markers (FMs), which are supposed to have a cause and effect relationship with the traits of interest. In this review, we first describe the development of these markers representing the transcriptome or genes per se; we then discuss the uses of these markers in some detail and finally add a note on the future directions of research and the implications of the wider application of these markers in crop improvement programmes. Using suitable examples, we describe markers of different classes derived from cDNA clones, expressed sequence tags (ESTs), gene sequences and the unique (coding) sequences obtained through methyl filtration or genome normalization (high C(0) t fraction) from gDNA libraries. While we briefly describe RFLPs, SSRs, AFLPs and SNPs developed from the transcriptome (cDNA clones and EST databases), we have discussed in more detail some of the novel markers developed from the transcriptome and specific genes. These novel markers include expressed sequence tag polymorphisms (ESTPs), conserved orthologue set (COS) markers, amplified consensus genetic markers (ACGMs), gene specific tags (GSTs), resistance gene analogues (RGAs) and exon-retrotransposon amplification polymorphism (ERAP). Uses of these markers have been discussed in some detail under the following headings: development of transcript and functional maps, estimations of genetic diversity, marker-assisted selection (MAS), candidate-gene (CG) approach and map-based cloning, genetical genomics and identification of eQTLs, study of genome organization and taxonomic and phylogenetic studies. At the end, we also append a list of websites relevant to further studies on the transcriptome. For want of space, considerable information including voluminous data in the form of 12 tables, and a long list of references cited in these tables, has been placed on the Internet as electronic supplementary material (ESM), which the readers may find useful.
Collapse
Affiliation(s)
- P K Gupta
- Molecular Biology Laboratory, Department of Genetics and Plant Breeding, Ch. Charan Singh University, 250 004, Meerut, India.
| | | |
Collapse
|
39
|
Lefebvre V, Daubèze AM, Rouppe van der Voort J, Peleman J, Bardin M, Palloix A. QTLs for resistance to powdery mildew in pepper under natural and artificial infections. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2003; 107:661-6. [PMID: 12819909 DOI: 10.1007/s00122-003-1307-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2003] [Accepted: 02/02/2003] [Indexed: 05/20/2023]
Abstract
Epidemics of powdery mildew due to Leveillula taurica is an increasing problem in pepper production areas, particularly in coastal regions or greenhouse cultivation. The highly resistant genitor 'H3' was submitted to genetic analysis and QTL mapping in order to promote the introgression of its oligogenic resistance into large and sweet-fruited cultivars. The doubled-haploid progeny from the cross 'H3' (resistant) by 'Vania' (susceptible) was tested for resistance under both natural field infection and artificial inoculation tests, and QTL detection was compared for those two methods. Seven genomic regions including additive QTLs and epistatic interactions were detected, explaining altogether the major part of genotypic variance. Two genomic regions were common to both the evaluation methods, whereas other QTLs were method-specific, reflecting the environment dependence of powdery mildew epidemics. Orthologies with tomato genomic regions carrying resistance genes to L. taurica and Oidium lycopersicum were revealed by comparative mapping with pepper. Tight linkages between the detected QTLs and virus resistance or fruit color traits in pepper were also shown, which adds to the agronomic importance of these regions in pepper breeding programs.
Collapse
Affiliation(s)
- V Lefebvre
- Institut National de la Recherche Agronomique, Genetics and Breeding of Fruits and Vegetables, BP94, 84143 Montfavet cedex, France.
| | | | | | | | | | | |
Collapse
|
40
|
Thabuis A, Palloix A, Pflieger S, Daubèze AM, Caranta C, Lefebvre V. Comparative mapping of Phytophthora resistance loci in pepper germplasm: evidence for conserved resistance loci across Solanaceae and for a large genetic diversity. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2003; 106:1473-85. [PMID: 12750791 DOI: 10.1007/s00122-003-1206-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2002] [Accepted: 09/25/2002] [Indexed: 05/20/2023]
Abstract
Phytophthora capsici Leonian, known as the causal agent of the stem, collar and root rot, is one of the most serious problems limiting the pepper crop in many areas in the world. Genetic resistance to the parasite displays complex inheritance. Quantitative trait locus (QTL) analysis was performed in three intraspecific pepper populations, each involving an unrelated resistant accession. Resistance was evaluated by artificial inoculations of roots and stems, allowing the measurement of four components involved in different steps of the plant-pathogen interaction. The three genetic maps were aligned using common markers, which enabled the detection of QTLs involved in each resistance component and the comparison of resistance factors existing among the three resistant accessions. The major resistance factor was found to be common to the three populations. Another resistance factor was found conserved between two populations, the others being specific to a single cross. This comparison across intraspecific germplasm revealed a large variability for quantitative resistance loci to P. capsici. It also provided insights both into the allelic relationships between QTLs across pepper germplasm and for the comparative mapping of resistance factors across the Solanaceae.
Collapse
Affiliation(s)
- A Thabuis
- INRA, Genetics and Breeding of Fruits and Vegetables, BP 94, 84143 Montfavet cedex, France
| | | | | | | | | | | |
Collapse
|