1
|
Li J, Wyatt NA, Skiba RM, Kariyawasam GK, Richards JK, Effertz K, Rehman S, Liu Z, Brueggeman RS, Friesen TL. Variability in Chromosome 1 of Select Moroccan Pyrenophora teres f. teres Isolates Overcomes a Highly Effective Barley Chromosome 6H Source of Resistance. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2024; 37:676-687. [PMID: 38888557 DOI: 10.1094/mpmi-10-23-0159-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
Barley net form net blotch (NFNB) is a destructive foliar disease caused by Pyrenophora teres f. teres. Barley line CIho5791, which harbors the broadly effective chromosome 6H resistance gene Rpt5, displays dominant resistance to P. teres f. teres. To genetically characterize P. teres f. teres avirulence/virulence on the barley line CIho5791, we generated a P. teres f. teres mapping population using a cross between the Moroccan CIho5791-virulent isolate MorSM40-3 and the avirulent reference isolate 0-1. Full genome sequences were generated for 103 progenies. Saturated chromosome-level genetic maps were generated, and quantitative trait locus (QTL) mapping identified two major QTL associated with P. teres f. teres avirulence/virulence on CIho5791. The most significant QTL mapped to chromosome (Ch) 1, where the virulent allele was contributed by MorSM40-3. A second QTL mapped to Ch8; however, this virulent allele was contributed by the avirulent parent 0-1. The Ch1 and Ch8 loci accounted for 27 and 15% of the disease variation, respectively, and the avirulent allele at the Ch1 locus was epistatic over the virulent allele at the Ch8 locus. As a validation, we used a natural P. teres f. teres population in a genome-wide association study that identified the same Ch1 and Ch8 loci. We then generated a new reference quality genome assembly of parental isolate MorSM40-3 with annotation supported by deep transcriptome sequencing of infection time points. The annotation identified candidate genes predicted to encode small, secreted proteins, one or more of which are likely responsible for overcoming the CIho5791 resistance. [Formula: see text] The author(s) have dedicated the work to the public domain under the Creative Commons CC0 "No Rights Reserved" license by waiving all of his or her rights to the work worldwide under copyright law, including all related and neighboring rights, to the extent allowed by law, 2024.
Collapse
Affiliation(s)
- Jinling Li
- Department of Plant Pathology, North Dakota State University, Fargo, ND 58102, U.S.A
| | - Nathan A Wyatt
- Department of Plant Pathology, North Dakota State University, Fargo, ND 58102, U.S.A
- Sugarbeet and Potato Research Unit, Edward T. Schafer Agricultural Research Center, USDA-ARS, Fargo, ND 58102, U.S.A
| | - Ryan M Skiba
- Cereal Crops Research Unit, Edward T. Schafer Agricultural Research Center, USDA-ARS, Fargo, ND 58102, U.S.A
| | - Gayan K Kariyawasam
- Department of Plant Pathology, North Dakota State University, Fargo, ND 58102, U.S.A
| | - Jonathan K Richards
- Department of Plant Pathology and Crop Physiology, Louisiana State University Agricultural Center, Baton Rouge, LA 70803, U.S.A
| | - Karl Effertz
- Department of Crop and Soil Science, Washington State University, Pullman, WA 99164, U.S.A
| | - Sajid Rehman
- Biodiversity and Crop Improvement Program, International Center for Agricultural Research in the Dry Areas (ICARDA), Rabat 10100, Morocco
- Field Crop Development Center of the Olds College, Lacombe, Alberta T4L1W8, Canada
| | - Zhaohui Liu
- Department of Plant Pathology, North Dakota State University, Fargo, ND 58102, U.S.A
| | - Robert S Brueggeman
- Department of Crop and Soil Science, Washington State University, Pullman, WA 99164, U.S.A
| | - Timothy L Friesen
- Department of Plant Pathology, North Dakota State University, Fargo, ND 58102, U.S.A
- Cereal Crops Research Unit, Edward T. Schafer Agricultural Research Center, USDA-ARS, Fargo, ND 58102, U.S.A
| |
Collapse
|
2
|
Richards JK, Li J, Koladia V, Wyatt NA, Rehman S, Brueggeman RS, Friesen TL. A Moroccan Pyrenophora teres f. teres Population Defeats Rpt5, the Broadly Effective Resistance on Barley Chromosome 6H. PHYTOPATHOLOGY 2024; 114:193-199. [PMID: 37386751 DOI: 10.1094/phyto-04-23-0117-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/01/2023]
Abstract
Net form net blotch (NFNB), caused by Pyrenophora teres f. teres, is an important barley disease. The centromeric region of barley chromosome 6H has often been associated with resistance or susceptibility to NFNB, including the broadly effective dominant resistance gene Rpt5 derived from barley line CIho 5791. We characterized a population of Moroccan P. teres f. teres isolates that had overcome Rpt5 resistance and identified quantitative trait loci (QTL) that were effective against these isolates. Eight Moroccan P. teres f. teres isolates were phenotyped on barley lines CIho 5791 and Tifang. Six isolates were virulent on CIho 5791, and two were avirulent. A CIho 5791 × Tifang recombinant inbred line (RIL) population was phenotyped with all eight isolates and confirmed the defeat of the 6H resistance locus formerly mapped as Rpt5 in barley line CI9819. A major QTL on chromosome 3H with the resistance allele derived from Tifang, as well as minor QTL, was identified and provided resistance against these isolates. F2 segregation ratios supported dominant inheritance for both the 3H and 6H resistance. Furthermore, inoculation of progeny isolates derived from a cross of P. teres f. teres isolates 0-1 (virulent on Tifang/avirulent on CIho 5791) and MorSM 40-3 (avirulent on Tifang/virulent on CIho 5791) onto the RIL and F2 populations determined that recombination between isolates can generate novel genotypes that overcome both resistance genes. Markers linked to the QTL identified in this study can be used to incorporate both resistance loci into elite barley cultivars for durable resistance.
Collapse
Affiliation(s)
- Jonathan K Richards
- Department of Plant Pathology and Crop Physiology, Louisiana State University Agricultural Center, Baton Rouge, LA 70803, U.S.A
| | - Jinling Li
- Department of Plant Pathology, North Dakota State University, Fargo, ND 58108, U.S.A
| | - Vaidehi Koladia
- Department of Plant Pathology, North Dakota State University, Fargo, ND 58108, U.S.A
| | - Nathan A Wyatt
- Cereal Crops Research Unit, Edward T. Schaffer Agricultural Research Center, USDA-ARS, Fargo, ND 58102, U.S.A
| | - Sajid Rehman
- Biodiversity and Crop Improvement Program, International Center for Agricultural Research in the Dry Areas (ICARDA), Rabat, Morocco 10010
| | - Robert S Brueggeman
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA 99164, U.S.A
| | - Timothy L Friesen
- Department of Plant Pathology, North Dakota State University, Fargo, ND 58108, U.S.A
- Cereal Crops Research Unit, Edward T. Schaffer Agricultural Research Center, USDA-ARS, Fargo, ND 58102, U.S.A
| |
Collapse
|
3
|
Esmail SM, Jarquín D, Börner A, Sallam A. Genome-wide association mapping highlights candidate genes and immune genotypes for net blotch and powdery mildew resistance in barley. Comput Struct Biotechnol J 2023; 21:4923-4932. [PMID: 37867969 PMCID: PMC10585327 DOI: 10.1016/j.csbj.2023.10.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 10/08/2023] [Accepted: 10/08/2023] [Indexed: 10/24/2023] Open
Abstract
Net blotch (NB) and powdery mildew (PM) are major barley diseases with the potential to cause a dramatic loss in grain yield. Breeding for resistant barley genotypes in combination with identifying candidate resistant genes will accelerate the genetic improvement for resistance to NB and PM. To address this challenge, a set of 122 highly diverse barley genotypes from 34 countries were evaluated for NB and PM resistance under natural infection for in two growing seasons. Moreover, four yield traits; plant height (Ph), spike length (SL), spike weight (SW), and the number of spikelets per spike (NOS) were recorded. High genetic variation was found among genotypes in all traits scored in this study. No significant phenotypic correlation was found in the resistance between PM and NB. Immune genotypes for NB and PM were identified. A total of 21 genotypes were immune to both diseases. Of the 21 genotypes, the German genotype HOR_9570 was selected as the most promising genotype that can be used for future breeding programs. Furthermore, a genome-wide association study (GWAS) was used to identify resistant alleles to PM and NB. The results of GWAS revealed a set of 14 and 25 significant SNPs that were associated with increased resistance to PM and NB, respectively. This study provided very important genetic resources that are highly resistant to the Egyptian PM and NB pathotypes and revealed SNP markers that can be utilized to genetically improve resistance to PM and NB.
Collapse
Affiliation(s)
- Samar M. Esmail
- Wheat Disease Research Department, Plant Pathology Research Institute, Agricultural Research Center, Giza, Egypt
| | - Diego Jarquín
- Department of Agronomy, University of Florida, Gainesville, FL 32611, USA
| | - Andreas Börner
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), 06466 Gatersleben, Germany
| | - Ahmed Sallam
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), 06466 Gatersleben, Germany
- Department of Genetics, Faculty of Agriculture, Assiut University, 71526 Assiut, Egypt
| |
Collapse
|
4
|
Alhashel AF, Fiedler JD, Nandety RS, Skiba RM, Bruggeman RS, Baldwin T, Friesen TL, Yang S. Genetic and physical localization of a major susceptibility gene to Pyrenophora teres f. maculata in barley. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2023; 136:118. [PMID: 37103563 PMCID: PMC10140075 DOI: 10.1007/s00122-023-04367-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 04/17/2023] [Indexed: 05/13/2023]
Abstract
KEY MESSAGE Genetic characterization of a major spot form net blotch susceptibility locus to using linkage mapping to identify a candidate gene and user-friendly markers in barley. Spot form net blotch (SFNB), caused by the necrotrophic fungal pathogen Pyrenophora teres f. maculata (Ptm), is an economically important foliar diseases in barley. Although various resistance loci have been identified, breeding for SFNB-resistant varieties has been hampered due to the complex virulence profile of Ptm populations. One resistance locus in the host may be effective against one specific isolate, but it may confer susceptibility to other isolates. A major susceptibility QTL on chromosome 7H, named Sptm1, was consistently identified in many studies. In the present study, we conduct fine mapping to localize Sptm1 with high resolution. A segregating population was developed from selected F2 progenies of the cross Tradition (S) × PI 67381 (R), in which the disease phenotype was determined by the Sptm1 locus alone. Disease phenotypes of critical recombinants were confirmed in the following two consecutive generations. Genetic mapping anchored the Sptm1 gene to an ⁓400 kb region on chromosome 7H. Gene prediction and annotation identified six protein-coding genes in the delimited Sptm1 region, and the gene encoding a putative cold-responsive protein kinase was selected as a strong candidate. Therefore, providing fine localization and candidate of Sptm1 for functional validation, our study will facilitate the understanding of susceptibility mechanism underlying the barley-Ptm interaction and offers a potential target for gene editing to develop valuable materials with broad-spectrum resistance to SFNB.
Collapse
Affiliation(s)
- Abdullah F Alhashel
- Department of Plant Pathology, North Dakota State University, Fargo, ND, 58102, USA
- Department of Plant Protection, College of Food and Agriculture Sciences, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Jason D Fiedler
- Department of Plant Sciences, North Dakota State University, Fargo, ND, 58102, USA
- Cereals Crops Research Unit, Edward T. Schafer Agricultural Research Center, USDA-ARS, Fargo, ND, 58102, USA
| | - Raja Sekhar Nandety
- Department of Plant Sciences, North Dakota State University, Fargo, ND, 58102, USA
- Cereals Crops Research Unit, Edward T. Schafer Agricultural Research Center, USDA-ARS, Fargo, ND, 58102, USA
| | - Ryan M Skiba
- Cereals Crops Research Unit, Edward T. Schafer Agricultural Research Center, USDA-ARS, Fargo, ND, 58102, USA
| | - Robert S Bruggeman
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA, 99164, USA
| | - Thomas Baldwin
- Department of Plant Pathology, North Dakota State University, Fargo, ND, 58102, USA
| | - Timothy L Friesen
- Department of Plant Pathology, North Dakota State University, Fargo, ND, 58102, USA
- Cereals Crops Research Unit, Edward T. Schafer Agricultural Research Center, USDA-ARS, Fargo, ND, 58102, USA
| | - Shengming Yang
- Department of Plant Pathology, North Dakota State University, Fargo, ND, 58102, USA.
- Department of Plant Sciences, North Dakota State University, Fargo, ND, 58102, USA.
- Cereals Crops Research Unit, Edward T. Schafer Agricultural Research Center, USDA-ARS, Fargo, ND, 58102, USA.
| |
Collapse
|
5
|
Mironenko NV, Lashina NM, Baranova OA, Zubkovich AA, Afanasenko OS. Hybridization between Pyrenophora teres Forms in Natural Populations of Russia and the Republic of Belarus. DOKLADY BIOLOGICAL SCIENCES : PROCEEDINGS OF THE ACADEMY OF SCIENCES OF THE USSR, BIOLOGICAL SCIENCES SECTIONS 2022; 507:373-379. [PMID: 36781533 DOI: 10.1134/s0012496622060114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 09/05/2022] [Accepted: 09/09/2022] [Indexed: 02/15/2023]
Abstract
Two forms of the pathogenic fungus Pyrenophora teres, P. teres f. teres (a net form) and P. teres f. maculata (a spot form), cause different disease signs, net or spot blotch, on barley leaves. The net form of P. teres is widespread wherever barley is cultivated, while the spot form was first identified in Krasnodar krai of Russia in 2011 and Brest oblast of Belarus in 2016. The two forms of the pathogen easily mate each other in laboratory conditions, but their hybrids either do not form or are difficult to detect in nature. The question as to whether hybrids between the net and spot forms are produced and maintained in natural populations is pressing and bears applied significance because different genes determine resistance to the different P. teres forms in barley. Hybrid forms may be virulent to resistance donors used in breeding. The objective of this work was to search Russian and Belarussian natural populations for hybrids between P. teres f. teres and P. teres f. maculata with the use of new form-specific markers, Ptt and Ptm. The study included 138 single-conidium isolates from four P. teres f. maculatа and four P. teres f. teres populations. The isolates were collected from commercial barley plantations of Leningrad oblast, Krasnodar krai (Russia), and Brest oblast (Belarus) from 2013 to 2016. A genotyping with 10 form-specific markers was performed in all isolates. Several isolates were found to combine markers of both of the P. teres forms and were conventionally identified as hybrids between the forms. Hypotheses were advanced to explain the occurrence of hybrids in natural populations. The most plausible hypothesis suggests that sexual or somatic hybridization between the two forms coexisting in barley plantations accounts for the origin of the P. teres isolates that combine markers specific to P. teres f. teres and markers specific to P. teres f. maculata in their genomes. It is also possible that a third, possibly ancestral, intermediate form was preserved during divergence in the species P. teres.
Collapse
Affiliation(s)
- N V Mironenko
- All-Russian Institute of Plant Protection, St. Petersburg, Russia.
| | - N M Lashina
- All-Russian Institute of Plant Protection, St. Petersburg, Russia.
| | - O A Baranova
- All-Russian Institute of Plant Protection, St. Petersburg, Russia.
| | - A A Zubkovich
- Agricultural Research and Practical Center, National Academy of Sciences of the Republic of Belarus, Zhodino, Republic of Belarus.
| | - O S Afanasenko
- All-Russian Institute of Plant Protection, St. Petersburg, Russia.
| |
Collapse
|
6
|
Dutilloy E, Oni FE, Esmaeel Q, Clément C, Barka EA. Plant Beneficial Bacteria as Bioprotectants against Wheat and Barley Diseases. J Fungi (Basel) 2022; 8:jof8060632. [PMID: 35736115 PMCID: PMC9225584 DOI: 10.3390/jof8060632] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 06/07/2022] [Accepted: 06/09/2022] [Indexed: 02/07/2023] Open
Abstract
Wheat and barley are the main cereal crops cultivated worldwide and serve as staple food for a third of the world's population. However, due to enormous biotic stresses, the annual production has significantly reduced by 30-70%. Recently, the accelerated use of beneficial bacteria in the control of wheat and barley pathogens has gained prominence. In this review, we synthesized information about beneficial bacteria with demonstrated protection capacity against major barley and wheat pathogens including Fusarium graminearum, Zymoseptoria tritici and Pyrenophora teres. By summarizing the general insights into molecular factors involved in plant-pathogen interactions, we show to an extent, the means by which beneficial bacteria are implicated in plant defense against wheat and barley diseases. On wheat, many Bacillus strains predominantly reduced the disease incidence of F. graminearum and Z. tritici. In contrast, on barley, the efficacy of a few Pseudomonas, Bacillus and Paraburkholderia spp. has been established against P. teres. Although several modes of action were described for these strains, we have highlighted the role of Bacillus and Pseudomonas secondary metabolites in mediating direct antagonism and induced resistance against these pathogens. Furthermore, we advance a need to ascertain the mode of action of beneficial bacteria/molecules to enhance a solution-based crop protection strategy. Moreover, an apparent disjoint exists between numerous experiments that have demonstrated disease-suppressive effects and the translation of these successes to commercial products and applications. Clearly, the field of cereal disease protection leaves a lot to be explored and uncovered.
Collapse
|
7
|
Clare SJ, Çelik Oğuz A, Effertz K, Sharma Poudel R, See D, Karakaya A, Brueggeman RS. Genome-wide association mapping of Pyrenophora teres f. maculata and Pyrenophora teres f. teres resistance loci utilizing natural Turkish wild and landrace barley populations. G3 GENES|GENOMES|GENETICS 2021; 11:6332006. [PMID: 34849783 PMCID: PMC8527468 DOI: 10.1093/g3journal/jkab269] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 07/26/2021] [Indexed: 11/15/2022]
Abstract
Unimproved landraces and wild relatives of crops are sources of genetic diversity that
were lost post domestication in modern breeding programs. To tap into this rich resource,
genome-wide association studies in large plant genomes have enabled the rapid genetic
characterization of desired traits from natural landrace and wild populations. Wild barley
(Hordeum spontaneum), the progenitor of domesticated barley
(Hordeum vulgare), is dispersed across Asia and North Africa, and has
co-evolved with the ascomycetous fungal pathogens Pyrenophora teres f.
teres and P. teres f. maculata, the
causal agents of the diseases net form of net blotch and spot form of net blotch,
respectively. Thus, these wild and local adapted barley landraces from the region of
origin of both the host and pathogen represent a diverse gene pool to identify new sources
of resistance, due to millions of years of co-evolution. The barley—P.
teres pathosystem is governed by complex genetic interactions with dominant,
recessive, and incomplete resistances and susceptibilities, with many isolate-specific
interactions. Here, we provide the first genome-wide association study of wild and
landrace barley from the Fertile Crescent for resistance to both forms of P.
teres. A total of 14 loci, four against P. teres f.
maculata and 10 against P. teres f.
teres, were identified in both wild and landrace populations, showing
that both are genetic reservoirs for novel sources of resistance. We also highlight the
importance of using multiple algorithms to both identify and validate additional loci.
Collapse
Affiliation(s)
- Shaun J Clare
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA 99163, USA
| | - Arzu Çelik Oğuz
- Department of Plant Protection, Faculty of Agriculture, Ankara University, Dışkapı, Ankara 06110, Turkey
| | - Karl Effertz
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA 99163, USA
| | | | - Deven See
- Wheat Health, Genetics and Quality Research Unit, Agricultural Research Service, U.S. Department of Agriculture, Pullman, WA 99163, USA
- Department of Plant Pathology, Washington State University, Pullman, WA 99163, USA
| | - Aziz Karakaya
- Department of Plant Protection, Faculty of Agriculture, Ankara University, Dışkapı, Ankara 06110, Turkey
| | - Robert S Brueggeman
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA 99163, USA
| |
Collapse
|
8
|
Alhashel AF, Sharma Poudel R, Fiedler J, Carlson CH, Rasmussen J, Baldwin T, Friesen TL, Brueggeman RS, Yang S. Genetic mapping of host resistance to the Pyrenophora teres f. maculata isolate 13IM8.3. G3-GENES GENOMES GENETICS 2021; 11:6377783. [PMID: 34586371 DOI: 10.1093/g3journal/jkab341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 09/17/2021] [Indexed: 11/12/2022]
Abstract
Spot form net blotch (SFNB), caused by the necrotrophic fungal pathogen Pyrenophora teres f. maculata (Ptm), is a foliar disease of barley that results in significant yield losses in major growing regions worldwide. Understanding the host-parasite interactions between pathogen virulence/avirulence genes and the corresponding host susceptibility/resistance genes is important for the deployment of genetic resistance against SFNB. Two recombinant inbred mapping populations were developed to characterize genetic resistance/susceptibility to the Ptm isolate 13IM8.3, which was collected from Idaho (ID). An Illumina Infinium array was used to produce a genome wide marker set. Quantitative trait loci (QTL) analysis identified ten significant resistance/susceptibility loci, with two of the QTL being common to both populations. One of the QTL on 5H appears to be novel, while the remaining loci have been reported previously. Single nucleotide polymorphisms (SNPs) closely linked to or delimiting the significant QTL have been converted to user-friendly markers. Loci and associated molecular markers identified in this study will be useful in genetic mapping and deployment of the genetic resistance to SFNB in barley.
Collapse
Affiliation(s)
- Abdullah Fahad Alhashel
- Department of Plant Pathology, North Dakota State University, Fargo, ND 58102, USA
- Department of Plant Protection, College of Food and Agriculture Sciences, King Saud University, Riyadh 11451, Saudi Arabia
| | - Roshan Sharma Poudel
- Department of Plant Pathology, North Dakota State University, Fargo, ND 58102, USA
| | - Jason Fiedler
- Department of Plant Sciences, North Dakota State University, Fargo, ND 58102, USA
- Cereals Crops Research Unit, Edward T. Schafer Agriculture Research Center, USDA-ARS, Fargo, ND 58102, USA
| | - Craig H Carlson
- Cereals Crops Research Unit, Edward T. Schafer Agriculture Research Center, USDA-ARS, Fargo, ND 58102, USA
| | - Jack Rasmussen
- Department of Plant Pathology, North Dakota State University, Fargo, ND 58102, USA
| | - Thomas Baldwin
- Department of Plant Pathology, North Dakota State University, Fargo, ND 58102, USA
| | - Timothy L Friesen
- Department of Plant Pathology, North Dakota State University, Fargo, ND 58102, USA
- Cereals Crops Research Unit, Edward T. Schafer Agriculture Research Center, USDA-ARS, Fargo, ND 58102, USA
| | - Robert S Brueggeman
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA 99164, USA
| | - Shengming Yang
- Department of Plant Pathology, North Dakota State University, Fargo, ND 58102, USA
- Department of Plant Sciences, North Dakota State University, Fargo, ND 58102, USA
- Cereals Crops Research Unit, Edward T. Schafer Agriculture Research Center, USDA-ARS, Fargo, ND 58102, USA
| |
Collapse
|
9
|
Ghomi K, Rabiei B, Sabouri H, Gholamalipour Alamdari E. Association analysis, genetic diversity and population structure of barley (Hordeum vulgare L.) under heat stress conditions using SSR and ISSR markers linked to primary and secondary metabolites. Mol Biol Rep 2021; 48:6673-6694. [PMID: 34495461 DOI: 10.1007/s11033-021-06652-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Accepted: 08/16/2021] [Indexed: 10/20/2022]
Abstract
BACKGROUND Barley is one of the major cereal crops, which can provide a significant source of genes for stress tolerance due to its high diversity and adaptability. Metabolite traits are considered to be significant for adaptation of barley to heat stress. METHODS AND RESULTS In the present study, genetic relationships between 120 barley genotypes were determined with 50 simple sequence repeat (SSR) and 26 inter simple sequence repeat (ISSR) markers under heat stress and non-stress conditions. Moreover, genetic diversity of barley accessions was investigated using the studied markers covering 7 chromosomes of barley. RESULTS In general, 153 and 85 polymorphic alleles were detected for SSR and ISSR and number of the observed polymorphic allele varied between 2-9 and 2-6, with an average of 3.26 and 3.26 alleles per locus, respectively. Markers of Bmag0223, GBMS180/180, HVM7, ISSR22, ISSR25, and ISSR48 were the most informative due to their high polymorphism information content value demonstrating that putative techniques utilized in this research can be powerful and valuable tools in breeding program of barley. Association analysis was performed between 9 important traits and SSR and ISSR markers using four statistical models. The results revealed that the model containing both population structure (Q) and general similarity in genetic background arising from shared kinship (K) factors reduced false positive associations between markers and phenotypes. CONCLUSIONS According to the results, some of markers related to more than one trait under normal conditions (ISSR31-2, HVM62, and GBMS180/180) and heat stress conditions (ISSR20-5, EBmac635, HVM14, and ISSR37-3) were determined, which can be considered to be the most interesting candidates for further studies and simultaneously will provide a useful target for the future breeding programs, such as marker-assisted selection (MAS).
Collapse
Affiliation(s)
- Khadijeh Ghomi
- Department of Agronomy and Plant Breeding, Faculty of Agricultural Sciences, University of Guilan, Persian Gulf Highway, P.O. Box: 41635-1314, Rasht, Guilan, Iran
| | - Babak Rabiei
- Department of Agronomy and Plant Breeding, Faculty of Agricultural Sciences, University of Guilan, Persian Gulf Highway, P.O. Box: 41635-1314, Rasht, Guilan, Iran.
| | - Hossein Sabouri
- Department of Plant Production, Faculty of Agriculture and Natural Resources, Gonbad University, Shahid Fallahi Street, Gonbad-e Kāvūs, Golestan, Iran
| | - Ebrahim Gholamalipour Alamdari
- Department of Plant Production, Faculty of Agriculture and Natural Resources, Gonbad University, Shahid Fallahi Street, Gonbad-e Kāvūs, Golestan, Iran
| |
Collapse
|
10
|
Backes A, Guerriero G, Ait Barka E, Jacquard C. Pyrenophora teres: Taxonomy, Morphology, Interaction With Barley, and Mode of Control. FRONTIERS IN PLANT SCIENCE 2021; 12:614951. [PMID: 33889162 PMCID: PMC8055952 DOI: 10.3389/fpls.2021.614951] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 03/08/2021] [Indexed: 05/27/2023]
Abstract
Net blotch, induced by the ascomycete Pyrenophora teres, has become among the most important disease of barley (Hordeum vulgare L.). Easily recognizable by brown reticulated stripes on the sensitive barley leaves, net blotch reduces the yield by up to 40% and decreases seed quality. The life cycle, the mode of dispersion and the development of the pathogen, allow a quick contamination of the host. Crop residues, seeds, and wild grass species are the inoculum sources to spread the disease. The interaction between the barley plant and the fungus is complex and involves physiological changes with the emergence of symptoms on barley and genetic changes including the modulation of different genes involved in the defense pathways. The genes of net blotch resistance have been identified and their localizations are distributed on seven barley chromosomes. Considering the importance of this disease, several management approaches have been performed to control net blotch. One of them is the use of beneficial bacteria colonizing the rhizosphere, collectively referred to as Plant Growth Promoting Rhizobacteria. Several studies have reported the protective role of these bacteria and their metabolites against potential pathogens. Based on the available data, we expose a comprehensive review of Pyrenophora teres including its morphology, interaction with the host plant and means of control.
Collapse
Affiliation(s)
- Aurélie Backes
- Unité de Recherche Résistance Induite et Bioprotection des Plantes, Université de Reims Champagne-Ardenne, Reims, France
| | - Gea Guerriero
- Environmental Research and Innovation (ERIN) Department, Luxembourg Institute of Science and Technology (LIST), Hautcharage, Luxembourg
| | - Essaid Ait Barka
- Unité de Recherche Résistance Induite et Bioprotection des Plantes, Université de Reims Champagne-Ardenne, Reims, France
| | - Cédric Jacquard
- Unité de Recherche Résistance Induite et Bioprotection des Plantes, Université de Reims Champagne-Ardenne, Reims, France
| |
Collapse
|
11
|
Adhikari A, Steffenson BJ, Smith KP, Smith M, Dill-Macky R. Identification of quantitative trait loci for net form net blotch resistance in contemporary barley breeding germplasm from the USA using genome-wide association mapping. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2020; 133:1019-1037. [PMID: 31900499 DOI: 10.1007/s00122-019-03528-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Accepted: 12/26/2019] [Indexed: 06/10/2023]
Abstract
Association mapping study conducted in a population of 3490 elite barley breeding lines from ten barley breeding programs of the USA identified 12 QTLs for resistance/susceptibility to net form of net blotch. Breeding resistant varieties is the best management strategy for net form of net blotch (NFNB) in barley (Hordeum vulgare L.) caused by Pyrenophora teres f. teres (Ptt). Several resistance QTL have been previously identified in barley via linkage mapping and genome-wide association studies (GWAS). A GWAS conducted in a collection of advanced breeding lines (n = 3490) representing elite germplasm from ten barley breeding programs of the USA identified 42 unique marker-trait associations (MTA) for NFNB resistance. The lines were genotyped with 3072 SNP markers and phenotyped with four Ptt isolates in controlled environment. The lines were used to construct 13 different GWAS panels. Efficient mixed model association method with principal components and kinship was used for GWAS. Significance threshold for MTA was set at a false discovery rate of 0.05. Two, eight, six, one and 25 MTA were identified in chromosomes 1H, 3H, 4H, 5H and 6H, respectively. Based on genetic positions and linkage disequilibrium, these MTA's correspond to two, three, two, one and four QTLs in chromosome 1H, 3H, 4H, 5H and 6H, respectively. A comparison with previous linkage and GWAS studies revealed several previously identified and novel QTLs. Moreover, different genomic regions were found to be responsible for NFNB resistance in two-row versus six-row germplasm. The germplasm-specific SNP markers with additive effects and allelic distribution is reported to facilitate breeders in selection of markers for MAS to introgress novel net blotch resistance.
Collapse
Affiliation(s)
- Anil Adhikari
- Department of Plant Pathology, University of Minnesota, Saint Paul, MN, 55108, USA.
- Soil and Crop Science Department, Texas A&M University, College Station, TX, 77845, USA.
| | - Brian J Steffenson
- Department of Plant Pathology, University of Minnesota, Saint Paul, MN, 55108, USA
| | - Kevin P Smith
- Department of Agronomy and Plant Genetics, University of Minnesota, Saint Paul, MN, 55108, USA
| | - Madeleine Smith
- Department of Plant Pathology, University of Minnesota, Saint Paul, MN, 55108, USA
| | - Ruth Dill-Macky
- Department of Plant Pathology, University of Minnesota, Saint Paul, MN, 55108, USA.
| |
Collapse
|
12
|
Clare SJ, Wyatt NA, Brueggeman RS, Friesen TL. Research advances in the Pyrenophora teres-barley interaction. MOLECULAR PLANT PATHOLOGY 2020; 21:272-288. [PMID: 31837102 PMCID: PMC6988421 DOI: 10.1111/mpp.12896] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Pyrenophora teres f. teres and P. teres f. maculata are significant pathogens that cause net blotch of barley. An increased number of loci involved in P. teres resistance or susceptibility responses of barley as well as interacting P. teres virulence effector loci have recently been identified through biparental and association mapping studies of both the pathogen and host. Characterization of the resistance/susceptibility loci in the host and the interacting effector loci in the pathogen will provide a path for targeted gene validation for better-informed release of resistant barley cultivars. This review assembles concise consensus maps for all loci published for both the host and pathogen, providing a useful resource for the community to be used in pathogen characterization and barley breeding for resistance to both forms of P. teres.
Collapse
Affiliation(s)
- Shaun J. Clare
- Department of Plant PathologyNorth Dakota State UniversityFargoND58108‐6050USA
| | - Nathan A. Wyatt
- Department of Plant PathologyNorth Dakota State UniversityFargoND58108‐6050USA
| | - Robert S. Brueggeman
- Department of Plant PathologyNorth Dakota State UniversityFargoND58108‐6050USA
- Present address:
Department of Crop and Soil ScienceWashington State UniversityPullmanWA99164‐6420
| | - Timothy L. Friesen
- Department of Plant PathologyNorth Dakota State UniversityFargoND58108‐6050USA
- USDA‐ARS Cereal Crops Research UnitNorthern Crop Science LaboratoryEdward T. Schafer Agricultural Research Center1616 Albrecht Boulevard NFargoND58102‐2765USA
| |
Collapse
|
13
|
High-throughput retrotransposon-based genetic diversity of maize germplasm assessment and analysis. Mol Biol Rep 2020; 47:1589-1603. [PMID: 31919750 DOI: 10.1007/s11033-020-05246-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 01/03/2020] [Indexed: 01/08/2023]
Abstract
Maize is one of the world's most important crops and a model for grass genome research. Long terminal repeat (LTR) retrotransposons comprise most of the maize genome; their ability to produce new copies makes them efficient high-throughput genetic markers. Inter-retrotransposon-amplified polymorphisms (IRAPs) were used to study the genetic diversity of maize germplasm. Five LTR retrotransposons (Huck, Tekay, Opie, Ji, and Grande) were chosen, based on their large number of copies in the maize genome, whereas polymerase chain reaction primers were designed based on consensus LTR sequences. The LTR primers showed high quality and reproducible DNA fingerprints, with a total of 677 bands including 392 polymorphic bands showing 58% polymorphism between maize hybrid lines. These markers were used to identify genetic similarities among all lines of maize. Analysis of genetic similarity was carried out based on polymorphic amplicon profiles and genetic similarity phylogeny analysis. This diversity was expected to display ecogeographical patterns of variation and local adaptation. The clustering method showed that the varieties were grouped into three clusters differing in ecogeographical origin. Each of these clusters comprised divergent hybrids with convergent characters. The clusters reflected the differences among maize hybrids and were in accordance with their pedigree. The IRAP technique is an efficient high-throughput genetic marker-generating method.
Collapse
|
14
|
Novakazi F, Afanasenko O, Anisimova A, Platz GJ, Snowdon R, Kovaleva O, Zubkovich A, Ordon F. Genetic analysis of a worldwide barley collection for resistance to net form of net blotch disease (Pyrenophora teres f. teres). TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2019; 132:2633-2650. [PMID: 31209538 DOI: 10.1007/s00122-019-03378-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Accepted: 06/09/2019] [Indexed: 05/28/2023]
Abstract
A total of 449 barley accessions were phenotyped for Pyrenophora teres f. teres resistance at three locations and in greenhouse trials. Genome-wide association studies identified 254 marker-trait associations corresponding to 15 QTLs. Net form of net blotch is one of the most important diseases of barley and is present in all barley growing regions. Under optimal conditions, it causes high yield losses of 10-40% and reduces grain quality. The most cost-effective and environmentally friendly way to prevent losses is growing resistant cultivars, and markers linked to effective resistance factors can accelerate the breeding process. Here, 449 barley accessions expressing different levels of resistance comprising landraces and commercial cultivars from the centres of diversity were selected. The set was phenotyped for seedling resistance to three isolates in controlled-environment tests and for adult plant resistance at three field locations (Belarus, Germany and Australia) and genotyped with the 50 k iSelect chip. Genome-wide association studies using 33,818 markers and a compressed mixed linear model to account for population structure and kinship revealed 254 significant marker-trait associations corresponding to 15 distinct QTL regions. Four of these regions were new QTL that were not described in previous studies, while a total of seven regions influenced resistance in both seedlings and adult plants.
Collapse
Affiliation(s)
- Fluturë Novakazi
- Institute for Resistance Research and Stress Tolerance, Julius Kuehn-Institute, Erwin Baur-Straße 27, 06484, Quedlinburg, Germany
| | - Olga Afanasenko
- All-Russian Research Institute of Plant Protection, 196608 shosse Podbelski 3, Saint Petersburg, Russia
| | - Anna Anisimova
- All-Russian Research Institute of Plant Protection, 196608 shosse Podbelski 3, Saint Petersburg, Russia
| | - Gregory J Platz
- Queensland Department of Agriculture and Fisheries, Hermitage Research Facility, Warwick, QLD, 4370, Australia
| | - Rod Snowdon
- Department of Plant Breeding, IFZ Research Centre for Biosystems, Land Use and Nutrition, Justus Liebig University, Heinrich-Buff-Ring 26, 35392, Giessen, Germany
| | - Olga Kovaleva
- Federal Research Center the N. I. Vavilov All-Russian Institute of Plant Genetic Resources, 42-44, B. Morskaya Street, Saint Petersburg, Russia, 190000
| | - Alexandr Zubkovich
- Republican Unitary Enterprise, The Research and Practical Center of the National Academy of Sciences of Belarus for Arable Farming, Timiriazeva Street 1, 222160, Zhodino, Belarus
| | - Frank Ordon
- Institute for Resistance Research and Stress Tolerance, Julius Kuehn-Institute, Erwin Baur-Straße 27, 06484, Quedlinburg, Germany.
| |
Collapse
|
15
|
Tamang P, Richards JK, Alhashal A, Sharma Poudel R, Horsley RD, Friesen TL, Brueggeman RS. Mapping of barley susceptibility/resistance QTL against spot form net blotch caused by Pyrenophora teres f. maculata using RIL populations. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2019; 132:1953-1963. [PMID: 30895332 DOI: 10.1007/s00122-019-03328-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Accepted: 03/11/2019] [Indexed: 05/12/2023]
Abstract
Spot form net blotch (SFNB) caused by the necrotrophic fungal pathogen Pyrenophora teres f. maculata (Ptm) is an important disease of barley worldwide including the major barley production regions of North America. To characterize SFNB resistance/susceptibility quantitative trait loci (QTL), three recombinant inbred line (RIL) populations were developed from crosses between the malting barley cultivars, Tradition (six row) and Pinnacle (two row), and the two world barley core collection lines, PI67381 and PI84314. Tradition and Pinnacle were susceptible to many North American Ptm isolates, while PI67381 and PI84314 carry resistances to diverse Ptm isolates from across the globe. The RIL populations, Tradition/PI67381, Pinnacle/PI67381, and Pinnacle/PI84314 were genotyped using polymerase chain reaction-mediated genotype-by-sequencing single nucleotide polymorphism marker panels and phenotyped at the seedling stage with six geographically distinct Ptm isolates: FGOB10Ptm-1 (North Dakota, USA), Pin-A14 (Montana, USA), Cel-A17 (Montana, USA), SG1 (Australia), NZKF2 (New Zealand) and DEN2.6 (Denmark). The goal was to determine if the susceptible elite lines contained common susceptibility genes/QTL or if the resistant lines had common resistant genes/QTL effective against diverse Ptm isolates. The QTL analyses identified a total of 12 resistance and/or susceptibility loci on chromosomes 2H, 3H, 4H, 6H, and 7H of which three had not been previously reported. Common major QTL were detected on chromosome 2H (R2 = 14-40%) and 7H (R2 = 24-80%) in all three RIL populations, suggesting underlying genes with broad resistance specificity. The major 7H QTL was shown to be a dominant susceptibility gene in both susceptible malting barley varieties.
Collapse
Affiliation(s)
- Prabin Tamang
- Department of Plant Pathology, North Dakota State University, Fargo, ND, 58108-6050, USA
| | - Jonathan K Richards
- Department of Plant Pathology and Crop Physiology, Louisiana State University Agricultural Center, Baton Rouge, LA, 70803, USA
| | - Abdullah Alhashal
- Department of Plant Pathology, North Dakota State University, Fargo, ND, 58108-6050, USA
| | - Roshan Sharma Poudel
- Department of Plant Pathology, North Dakota State University, Fargo, ND, 58108-6050, USA
| | - Richard D Horsley
- Department of Plant Sciences, North Dakota State University, Fargo, ND, 58108-6050, USA
| | - Timothy L Friesen
- Department of Plant Pathology, North Dakota State University, Fargo, ND, 58108-6050, USA
- Cereal Crops Research Unit, Red River Valley Agricultural Research Center, USDA-ARS, Fargo, ND, 58102-2765, USA
| | - Robert S Brueggeman
- Department of Plant Pathology, North Dakota State University, Fargo, ND, 58108-6050, USA.
| |
Collapse
|
16
|
Rozanova IV, Lashina NM, Mustafin ZS, Gorobets SA, Efimov VM, Afanasenko OS, Khlestkina EK. SNPs associated with barley resistance to isolates of Pyrenophora teres f. teres. BMC Genomics 2019; 20:292. [PMID: 32039701 PMCID: PMC7227216 DOI: 10.1186/s12864-019-5623-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Net blotch caused by Pyrenophra teres f. teres is a major foliar disease of barley. Infection can result in significant yield losses of susceptible cultivars of up to 40%. Of the two forms of net blotch (P. teres f. teres and P. teres f. maculata), P. teres f. teres (net form of net blotch) is the dominant one in Russia. The goal of the current study was to identify genomic regions associated with seedling resistance to several pathotypes of the net form of net blotch in Siberian spring barley genotypes. For this, a genome-wide association study of a Siberian barley collection, genotyped with 50 K Illumina SNP-chip, was carried out. RESULTS Seedling resistance of 94 spring barley cultivars and lines to four Pyrenophora teres f. teres isolates (S10.2, K5.1, P3.4.0, and A2.6.0) was investigated. According to the Tekauz rating scale, 25, 21, 14, and 14% of genotypes were highly resistant, and 19, 8, 9, and 16% of genotypes were moderate-resistant to the isolates S10.2, K5.1, P3.4.0, and A2.6.0, respectively. Eleven genotypes (Alag-Erdene, Alan-Bulag, L-259/528, Kedr, Krymchak 55, Omsky golozyorny 2, Omsky 13709, Narymchanin, Pallidum 394, Severny and Viner) were resistant to all studied isolates. Nine additional cultivars (Aley, Barkhatny, Belogorsky, Bezenchuksky 2, Emelya, G-19980, Merit 57, Mestny Primorsky, Slavaynsky) were resistant to 3 of the 4 isolates. The phenotyping and genotyping data were analysed using several statistical models: GLM + Q, GLM + PCA, GLM + PCA + Q, and the MLM + kinship matrix. In total, 40 SNPs in seven genomic regions associated with net blotch resistance were revealed: the region on chromosome 1H between 57.3 and 62.8 cM associated with resistance to 2 isolates (to P3.4.0 at the significant and K5.1 at the suggestive levels), the region on chromosome 6H between 52.6 and 55.4 cM associated with resistance to 3 isolates (to P3.4.0 at the significant and K5.1 and S10.2 at the suggestive levels), three isolate-specific significant regions (P3.4.0-specific regions on chromosome 2H between 71.0 and 74.1 cM and on chromosome 3H between 12.1 and 17.4 cM, and the A2.6.0-specific region on chromosome 3H between 50.9 and 54.8 cM), as well as two additional regions on chromosomes 2H (between 23.2 and 23.8 cM, resistant to S10.2) and 3 (between 135.6 and 137.5 cM resistant to K5.1) with suggestive SNPs, coinciding, however, with known net blotch resistance quantitative trait loci (QTLs) at the same regions. CONCLUSIONS Seven genomic regions on chromosomes 1H, 2H, 3H, and 6H associated with the resistance to four Pyrenophora teres f. teres isolates were identified in a genome-wide association study of a Siberian spring barley panel. One novel isolate-specific locus on chromosome 3 between 12.1 and 17.4 cM was revealed. Other regions identified in the current study coincided with previously known loci conferring resistance to net blotch. The significant SNPs revealed in the current study can be converted to convenient PCR markers for accelerated breeding of resistant barley cultivars.
Collapse
Affiliation(s)
- Irina V Rozanova
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Lavrentjeva Ave. 10, Novosibirsk, 630090, Russia. .,N.I. Vavilov All-Russian Research Institute of Plant Genetic Resources (VIR), St. Petersburg, 190000, Russia.
| | - Nina M Lashina
- All-Russian Research Institute for Plant Protection, St. Petersburg, 196608, Russia
| | - Zakhar S Mustafin
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Lavrentjeva Ave. 10, Novosibirsk, 630090, Russia
| | - Sofia A Gorobets
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Lavrentjeva Ave. 10, Novosibirsk, 630090, Russia
| | - Vadim M Efimov
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Lavrentjeva Ave. 10, Novosibirsk, 630090, Russia.,Novosibirsk State University, Pirogova, 1, Novosibirsk, 630090, Russia
| | - Olga S Afanasenko
- All-Russian Research Institute for Plant Protection, St. Petersburg, 196608, Russia
| | - Elena K Khlestkina
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Lavrentjeva Ave. 10, Novosibirsk, 630090, Russia.,N.I. Vavilov All-Russian Research Institute of Plant Genetic Resources (VIR), St. Petersburg, 190000, Russia
| |
Collapse
|
17
|
Daba SD, Horsley R, Brueggeman R, Chao S, Mohammadi M. Genome-wide Association Studies and Candidate Gene Identification for Leaf Scald and Net Blotch in Barley ( Hordeum vulgare L.). PLANT DISEASE 2019; 103:880-889. [PMID: 30806577 DOI: 10.1094/pdis-07-18-1190-re] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
We report genomic regions that significantly control resistance to scald, net form (NFNB) and spot form net blotch (SFNB) in barley. Barley genotypes from Ethiopia, ICARDA, and the United States were evaluated in Ethiopia and North Dakota State University (NDSU). Genome-wide association studies (GWAS) were conducted using 23,549 single nucleotide polymorphism (SNP) markers for disease resistance in five environments in Ethiopia. For NFNB and SFNB, we assessed seedling resistance in a glasshouse at NDSU. A large proportion of the Ethiopian landraces and breeding genotypes were resistant to scald and NFNB. Most of genotypes resistant to SFNB were from NDSU. We identified 17, 26, 7, and 1 marker-trait associations (MTAs) for field-scored scald, field-scored net blotch, greenhouse-scored NFNB, and greenhouse-scored SFNB diseases, respectively. Using the genome sequence and the existing literature, we compared the MTAs with previously reported loci and genes for these diseases. For leaf scald, only a few of our MTAs overlap with previous reports. However, the MTAs found for field-scored net blotch as well as NFNB and SFNB mostly overlap with previous reports. We scanned the barley genome for identification of candidate genes within 250 kb of the MTAs, resulting in the identification of 307 barley genes for the 51 MTAs. Some of these genes are related to plant defense responses such as subtilisin-like protease, chalcone synthase, lipoxygenase, and defensin-like proteins.
Collapse
Affiliation(s)
- Sintayehu D Daba
- 1 Purdue University, Department of Agronomy, West Lafayette, IN 47907-2053
| | - Richard Horsley
- 2 North Dakota State University, Department of Plant Sciences, Fargo, ND 58108-6050
| | - Robert Brueggeman
- 3 North Dakota State University, Department of Plant Pathology, Fargo, ND 58102-2765; and
| | | | - Mohsen Mohammadi
- 1 Purdue University, Department of Agronomy, West Lafayette, IN 47907-2053
| |
Collapse
|
18
|
Dinglasan E, Hickey L, Ziems L, Fowler R, Anisimova A, Baranova O, Lashina N, Afanasenko O. Genetic Characterization of Resistance to Pyrenophora teres f. teres in the International Barley Differential Canadian Lake Shore. FRONTIERS IN PLANT SCIENCE 2019; 10:326. [PMID: 30967885 PMCID: PMC6442539 DOI: 10.3389/fpls.2019.00326] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 02/28/2019] [Indexed: 05/05/2023]
Abstract
Genetic resistance to net form of net blotch in the international barley differential Canadian Lake Shore (CLS) was characterized and mapped. A doubled haploid (DH) population generated from a cross between CLS and susceptible cultivar Harrington was evaluated at the seedling stage using eight diverse Pyrenophora teres f. teres (Ptt) isolates and at the adult stage in the field using natural inoculum. To effectively map the CLS resistance, comparative marker frequency analysis (MFA) was performed using 8,762 polymorphic DArT-seq markers, where 'resistant' and 'susceptible' groups each comprised 40 DH lines displaying the most extreme phenotypes. Five DArTseq markers were consistently detected in eight disease assays, which was designated qPttCLS and deemed to harbor the locus underpinning CLS resistance. Four of these markers were present onto the barley DArTseq physical map and spans a region between 398203862 and 435526243 bp which were found to consist several genes involved in important plant functions such as disease response and signaling pathways. While MFA only detected the 3H region, genetic analyses based on segregation patterns were inconsistent, suggesting complex inheritance or variation in phenotypic expression of qPttCLS, particularly in the field. This study represents progress toward connecting Ptt pathotype surveys with the corresponding resistance genes in barley differentials. The markers associated with qPttCLS are useful for marker-assisted selection in breeding programs.
Collapse
Affiliation(s)
- Eric Dinglasan
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St Lucia, QLD, Australia
| | - Lee Hickey
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St Lucia, QLD, Australia
| | - Laura Ziems
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St Lucia, QLD, Australia
| | - Ryan Fowler
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St Lucia, QLD, Australia
| | - Anna Anisimova
- All-Russian Institute of Plant Protection, Saint Petersburg, Russia
| | - Olga Baranova
- All-Russian Institute of Plant Protection, Saint Petersburg, Russia
| | - Nina Lashina
- All-Russian Institute of Plant Protection, Saint Petersburg, Russia
| | - Olga Afanasenko
- All-Russian Institute of Plant Protection, Saint Petersburg, Russia
| |
Collapse
|
19
|
Kalendar R, Amenov A, Daniyarov A. Use of retrotransposon-derived genetic markers to analyse genomic variability in plants. FUNCTIONAL PLANT BIOLOGY : FPB 2018; 46:15-29. [PMID: 30939255 DOI: 10.1071/fp18098] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Accepted: 08/23/2018] [Indexed: 06/09/2023]
Abstract
Transposable elements (TEs) are common mobile genetic elements comprising several classes and making up the majority of eukaryotic genomes. The movement and accumulation of TEs has been a major force shaping the genes and genomes of most organisms. Most eukaryotic genomes are dominated by retrotransposons and minimal DNA transposon accumulation. The 'copy and paste' lifecycle of replicative transposition produces new genome insertions without excising the original element. Horizontal TE transfer among lineages is rare. TEs represent a reservoir of potential genomic instability and RNA-level toxicity. Many TEs appear static and nonfunctional, but some are capable of replicating and mobilising to new positions, and somatic transposition events have been observed. The overall structure of retrotransposons and the domains responsible for the phases of their replication are highly conserved in all eukaryotes. TEs are important drivers of species diversity and exhibit great variety in their structure, size and transposition mechanisms, making them important putative actors in evolution. Because TEs are abundant in plant genomes, various applications have been developed to exploit polymorphisms in TE insertion patterns, including conventional or anchored PCR, and quantitative or digital PCR with primers for the 5' or 3' junction. Alternatively, the retrotransposon junction can be mapped using high-throughput next-generation sequencing and bioinformatics. With these applications, TE insertions can be rapidly, easily and accurately identified, or new TE insertions can be found. This review provides an overview of the TE-based applications developed for plant species and assesses the contributions of TEs to the analysis of plants' genetic diversity.
Collapse
Affiliation(s)
- Ruslan Kalendar
- Department of Agricultural Sciences, PO Box 27 (Latokartanonkaari 5), FI-00014 University of Helsinki, Helsinki, Finland
| | - Asset Amenov
- RSE 'National Center for Biotechnology', 13/5 Kurgalzhynskoye Road, Astana, 010000, Kazakhstan
| | - Asset Daniyarov
- RSE 'National Center for Biotechnology', 13/5 Kurgalzhynskoye Road, Astana, 010000, Kazakhstan
| |
Collapse
|
20
|
Vatter T, Maurer A, Kopahnke D, Perovic D, Ordon F, Pillen K. A nested association mapping population identifies multiple small effect QTL conferring resistance against net blotch (Pyrenophora teres f. teres) in wild barley. PLoS One 2017; 12:e0186803. [PMID: 29073176 PMCID: PMC5658061 DOI: 10.1371/journal.pone.0186803] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Accepted: 10/06/2017] [Indexed: 12/02/2022] Open
Abstract
The net form of net blotch caused by the necrotrophic fungus Pyrenophora teres f. teres is a major disease of barley, causing high yield losses and reduced malting and feed quality. Exploiting the allelic richness of wild barley proved to be a valuable tool to broaden the genetic base of resistance of modern elite cultivars. In this study, a SNP-based nested association mapping (NAM) study was conducted to map QTL for P. teres resistance in the barley population HEB-25 comprising 1,420 lines derived from BC1S3 generation. By scoring the percentage of infected leaf area followed by calculation of the average ordinate (AO) and scoring of the reaction type (RT) in two-year field trials a large variability of net blotch resistance across and within families of HEB-25 was observed. Genotype response to net blotch infection showed a range of 48.2% for AO (0.9-49.1%) and 6.4 for RT (2.2-8.6). NAM based on 5,715 informative SNPs resulted in the identification of 24 QTL for resistance against net blotch. Out of these, six QTL are considered novel showing no correspondence to previously reported QTL for net blotch resistance. Overall, variation of net blotch resistance in HEB-25 turned out to be controlled by small effect QTL. Results indicate the presence of alleles in HEB-25 differing in their effect on net blotch resistance. Results provide valuable information regarding the genetic architecture of the complex barley-P. teres f. teres interaction as well as for the improvement of net blotch resistance of elite barley cultivars.
Collapse
Affiliation(s)
- Thomas Vatter
- Institute for Resistance Research and Stress Tolerance, Julius Kuehn-Institute, Federal Research Centre for Cultivated Plants, Quedlinburg, Germany
| | - Andreas Maurer
- Institute of Agricultural and Nutritional Sciences, Chair of Plant Breeding, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Doris Kopahnke
- Institute for Resistance Research and Stress Tolerance, Julius Kuehn-Institute, Federal Research Centre for Cultivated Plants, Quedlinburg, Germany
| | - Dragan Perovic
- Institute for Resistance Research and Stress Tolerance, Julius Kuehn-Institute, Federal Research Centre for Cultivated Plants, Quedlinburg, Germany
| | - Frank Ordon
- Institute for Resistance Research and Stress Tolerance, Julius Kuehn-Institute, Federal Research Centre for Cultivated Plants, Quedlinburg, Germany
| | - Klaus Pillen
- Institute of Agricultural and Nutritional Sciences, Chair of Plant Breeding, Martin Luther University Halle-Wittenberg, Halle, Germany
| |
Collapse
|
21
|
Wonneberger R, Ficke A, Lillemo M. Identification of quantitative trait loci associated with resistance to net form net blotch in a collection of Nordic barley germplasm. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2017; 130:2025-2043. [PMID: 28653151 DOI: 10.1007/s00122-017-2940-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Accepted: 06/15/2017] [Indexed: 06/07/2023]
Abstract
Association mapping of resistance to Pyrenophora teres f. teres in a collection of Nordic barley germplasm at different developmental stages revealed 13 quantitative loci with mostly small effects. Net blotch, caused by the necrotrophic fungus Pyrenophora teres, is one of the major diseases in barley in Norway causing quantitative and qualitative yield losses. Resistance in Norwegian cultivars and germplasm is generally insufficient and resistance sources have not been extensively explored yet. In this study, we mapped quantitative trait loci (QTL) associated with resistance to net blotch in Nordic germplasm. We evaluated a collection of 209 mostly Nordic spring barley lines for reactions to net form net blotch (NFNB; Pyrenophora teres f. teres) in inoculations with three single conidia isolates at the seedling stage and in inoculated field trials at the adult stage in 4 years. Using 5669 SNP markers genotyped with the Illumina iSelect 9k Barley SNP Chip and a mixed linear model accounting for population structure and kinship, we found a total of 35 significant marker-trait associations for net blotch resistance, corresponding to 13 QTL, on all chromosomes. Out of these QTL, seven conferred resistance only in adult plants and four were only detectable in seedlings. Two QTL on chromosomes 3H and 6H were significant during both seedling inoculations and adult stage field trials. These are promising candidates for breeding programs using marker-assisted selection strategies. The results elucidate the genetic background of NFNB resistance in Nordic germplasm and suggest that NB resistance is conferred by a number of genes each with small-to-moderate effects, making it necessary to pyramid these genes to achieve sufficient levels of resistance.
Collapse
Affiliation(s)
- Ronja Wonneberger
- Department of Plant Sciences, Norwegian University of Life Sciences, P.O. Box 5003, 1432, Ås, Norway
| | - Andrea Ficke
- Division for Biotechnology and Plant Health, Norwegian Institute of Bioeconomy Research, Høgskoleveien 7, 1430, Ås, Norway
| | - Morten Lillemo
- Department of Plant Sciences, Norwegian University of Life Sciences, P.O. Box 5003, 1432, Ås, Norway.
| |
Collapse
|
22
|
Carlsen SA, Neupane A, Wyatt NA, Richards JK, Faris JD, Xu SS, Brueggeman RS, Friesen TL. Characterizing the Pyrenophora teres f. maculata-Barley Interaction Using Pathogen Genetics. G3 (BETHESDA, MD.) 2017; 7:2615-2626. [PMID: 28659291 PMCID: PMC5555467 DOI: 10.1534/g3.117.043265] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Accepted: 06/05/2017] [Indexed: 12/22/2022]
Abstract
Pyrenophora teres f. maculata is the cause of the foliar disease spot form net blotch (SFNB) on barley. To evaluate pathogen genetics underlying the P. teres f. maculata-barley interaction, we developed a 105-progeny population by crossing two globally diverse isolates, one from North Dakota and the other from Western Australia. Progeny were phenotyped on a set of four barley genotypes showing a differential reaction to the parental isolates, then genotyped using a restriction site-associated-genotype-by-sequencing (RAD-GBS) approach. Genetic maps were developed for use in quantitative trait locus (QTL) analysis to identify virulence-associated QTL. Six QTL were identified on five different linkage groups and individually accounted for 20-37% of the disease variation, with the number of significant QTL ranging from two to four for the barley genotypes evaluated. The data presented demonstrate the complexity of virulence involved in the P. teres f. maculata-barley pathosystem and begins to lay the foundation for understanding this important interaction.
Collapse
Affiliation(s)
- Steven A Carlsen
- Department of Plant Pathology, North Dakota State University, Fargo, North Dakota 58102
| | - Anjan Neupane
- Department of Plant Pathology, North Dakota State University, Fargo, North Dakota 58102
| | - Nathan A Wyatt
- Genomics and Bioinformatics Program, Department of Plant Science, North Dakota State University, Fargo, North Dakota 58102
| | - Jonathan K Richards
- Department of Plant Pathology, North Dakota State University, Fargo, North Dakota 58102
| | - Justin D Faris
- Genomics and Bioinformatics Program, Department of Plant Science, North Dakota State University, Fargo, North Dakota 58102
- United States Department of Agriculture-Agricultural Research Service, Cereal Crops Research Unit, Northern Crop Science Laboratory, Fargo, North Dakota 58102
| | - Steven S Xu
- United States Department of Agriculture-Agricultural Research Service, Cereal Crops Research Unit, Northern Crop Science Laboratory, Fargo, North Dakota 58102
| | - Robert S Brueggeman
- Department of Plant Pathology, North Dakota State University, Fargo, North Dakota 58102
- Genomics and Bioinformatics Program, Department of Plant Science, North Dakota State University, Fargo, North Dakota 58102
| | - Timothy L Friesen
- Department of Plant Pathology, North Dakota State University, Fargo, North Dakota 58102
- Genomics and Bioinformatics Program, Department of Plant Science, North Dakota State University, Fargo, North Dakota 58102
- United States Department of Agriculture-Agricultural Research Service, Cereal Crops Research Unit, Northern Crop Science Laboratory, Fargo, North Dakota 58102
| |
Collapse
|
23
|
Richards JK, Friesen TL, Brueggeman RS. Association mapping utilizing diverse barley lines reveals net form net blotch seedling resistance/susceptibility loci. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2017; 130:915-927. [PMID: 28184981 DOI: 10.1007/s00122-017-2860-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Accepted: 01/17/2017] [Indexed: 06/06/2023]
Abstract
A diverse collection of barley lines was phenotyped with three North American Pyrenophora teres f. teres isolates and association analyses detected 78 significant marker-trait associations at 16 genomic loci. Pyrenophora teres f. teres is a necrotrophic fungal pathogen and the causal agent of the economically important foliar disease net form net blotch (NFNB) of barley. The deployment of effective and durable resistance against P. teres f. teres has been hindered by the complexity of quantitative resistance and susceptibility. Several bi-parental mapping populations have been used to identify QTL associated with NFNB disease on all seven barley chromosomes. Here, we report the first genome-wide association study (GWAS) to detect marker-trait associations for resistance or susceptibility to P. teres f. teres. Geographically diverse barley genotypes from a world barley core collection (957) were genotyped with the Illumina barley iSelect chip and phenotyped with three P. teres f. teres isolates collected in two geographical regions of the USA (15A, 6A and LDNH04Ptt19). The best of nine regression models tested were identified for each isolate and used for association analysis resulting in the identification of 78 significant marker-trait associations (MTA; -log10p value >3.0). The MTA identified corresponded to 16 unique genomic loci as determined by analysis of local linkage disequilibrium between markers that did not meet a correlation threshold of R 2 ≥ 0.1, indicating that the markers represented distinct loci. Five loci identified represent novel QTL and were designated QRptts-3HL, QRptts-4HS, QRptts-5HL.1, QRptts-5HL.2, and QRptts-7HL.1. In addition, 55 of the barley lines examined exhibited a high level of resistance to all three isolates and the SNP markers identified will provide useful genetic resources for barley breeding programs.
Collapse
Affiliation(s)
- Jonathan K Richards
- Department of Plant Pathology, North Dakota State University, Fargo, ND, 58108-6050, USA
| | - Timothy L Friesen
- Department of Plant Pathology, North Dakota State University, Fargo, ND, 58108-6050, USA
- Cereal Crops Research Unit, Red River Valley Agricultural Research Center, USDA-ARS, Fargo, ND, 58102-2765, USA
| | - Robert S Brueggeman
- Department of Plant Pathology, North Dakota State University, Fargo, ND, 58108-6050, USA.
| |
Collapse
|
24
|
Burlakoti RR, Gyawali S, Chao S, Smith KP, Horsley RD, Cooper B, Muehlbauer GJ, Neate SM. Genome-Wide Association Study of Spot Form of Net Blotch Resistance in the Upper Midwest Barley Breeding Programs. PHYTOPATHOLOGY 2017; 107:100-108. [PMID: 27552325 DOI: 10.1094/phyto-03-16-0136-r] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Pyrenophora teres f. maculata, the causal agent of spot form of net blotch (SFNB), is an emerging pathogen of barley in the United States and Australia. Compared with net form of net blotch (NFNB), less is known in the U.S. Upper Midwest barley breeding programs about host resistance and quantitative trait loci (QTL) associated with SFNB in breeding lines. The main objective of this study was to identify QTL associated with SFNB resistance in the Upper Midwest two-rowed and six-rowed barley breeding programs using a genome-wide association study approach. A total of 376 breeding lines of barley were evaluated for SFNB resistance at the seedling stage in the greenhouse in Fargo in 2009. The lines were genotyped with 3,072 single nucleotide polymorphism (SNP) markers. Phenotypic evaluation showed a wide range of variability among populations from the four breeding programs and the two barley-row types. The two-rowed barley lines were more susceptible to SFNB than the six-rowed lines. Continuous distributions of SFNB severity indicate the quantitative nature of SFNB resistance. The mixed linear model (MLM) analysis, which included both population structure and kinship matrices, was used to identify significant SNP-SFNB associations. Principal component analysis was used to control false marker-trait association. The linkage disequilibrium (LD) estimates varied among chromosomes (10 to 20 cM). The MLM analysis identified 10 potential QTL in barley: SFNB-2H-8-10, SFNB-2H-38.03, SFNB-3H-58.64, SFNB-3H-78.53, SFNB-3H-91.88, SFNB-3H-117.1, SFNB-5H-155.3, SFNB-6H-5.4, SFNB-6H-33.74, and SFNB-7H-34.82. Among them, four QTL (SFNB-2H-8-10, SFNB-2H-38.03 SFNB-3H-78.53, and SFNB-3H-117.1) have not previously been published. Identification of SFNB resistant lines and QTL associated with SFNB resistance in this study will be useful in the development of barley genotypes with better SFNB resistance.
Collapse
Affiliation(s)
- R R Burlakoti
- First and second authors: Department of Plant Pathology, North Dakota State University, NDSU Dept. 7660, P.O. Box 6050, Fargo 58108-6050; third author: U.S. Department of Agriculture-Agricultural Research Service Cereal Crops Research Unit, 1605 Albrecht Blvd., Biosciences Research Laboratory, Fargo, ND 58105-5674; fourth and seventh authors: Department of Agronomy and Plant Genetics, University of Minnesota, 411 Borlaug Hall, 1991 Upper Buford Circle, St. Paul 55108-6026; fifth author: Department of Plant Sciences, North Dakota State University, NDSU Dept. 7670, P.O. Box 6050, Fargo 58108-6050; sixth author: Busch Agricultural Resources Inc. (BARI), 3515 E. Richards Lake Rd., Ft. Collins, CO 80524; and eighth author: Centre for Crop Health, University of Southern Queensland, Toowoomba, QLD 4350, Australia
| | - S Gyawali
- First and second authors: Department of Plant Pathology, North Dakota State University, NDSU Dept. 7660, P.O. Box 6050, Fargo 58108-6050; third author: U.S. Department of Agriculture-Agricultural Research Service Cereal Crops Research Unit, 1605 Albrecht Blvd., Biosciences Research Laboratory, Fargo, ND 58105-5674; fourth and seventh authors: Department of Agronomy and Plant Genetics, University of Minnesota, 411 Borlaug Hall, 1991 Upper Buford Circle, St. Paul 55108-6026; fifth author: Department of Plant Sciences, North Dakota State University, NDSU Dept. 7670, P.O. Box 6050, Fargo 58108-6050; sixth author: Busch Agricultural Resources Inc. (BARI), 3515 E. Richards Lake Rd., Ft. Collins, CO 80524; and eighth author: Centre for Crop Health, University of Southern Queensland, Toowoomba, QLD 4350, Australia
| | - S Chao
- First and second authors: Department of Plant Pathology, North Dakota State University, NDSU Dept. 7660, P.O. Box 6050, Fargo 58108-6050; third author: U.S. Department of Agriculture-Agricultural Research Service Cereal Crops Research Unit, 1605 Albrecht Blvd., Biosciences Research Laboratory, Fargo, ND 58105-5674; fourth and seventh authors: Department of Agronomy and Plant Genetics, University of Minnesota, 411 Borlaug Hall, 1991 Upper Buford Circle, St. Paul 55108-6026; fifth author: Department of Plant Sciences, North Dakota State University, NDSU Dept. 7670, P.O. Box 6050, Fargo 58108-6050; sixth author: Busch Agricultural Resources Inc. (BARI), 3515 E. Richards Lake Rd., Ft. Collins, CO 80524; and eighth author: Centre for Crop Health, University of Southern Queensland, Toowoomba, QLD 4350, Australia
| | - K P Smith
- First and second authors: Department of Plant Pathology, North Dakota State University, NDSU Dept. 7660, P.O. Box 6050, Fargo 58108-6050; third author: U.S. Department of Agriculture-Agricultural Research Service Cereal Crops Research Unit, 1605 Albrecht Blvd., Biosciences Research Laboratory, Fargo, ND 58105-5674; fourth and seventh authors: Department of Agronomy and Plant Genetics, University of Minnesota, 411 Borlaug Hall, 1991 Upper Buford Circle, St. Paul 55108-6026; fifth author: Department of Plant Sciences, North Dakota State University, NDSU Dept. 7670, P.O. Box 6050, Fargo 58108-6050; sixth author: Busch Agricultural Resources Inc. (BARI), 3515 E. Richards Lake Rd., Ft. Collins, CO 80524; and eighth author: Centre for Crop Health, University of Southern Queensland, Toowoomba, QLD 4350, Australia
| | - R D Horsley
- First and second authors: Department of Plant Pathology, North Dakota State University, NDSU Dept. 7660, P.O. Box 6050, Fargo 58108-6050; third author: U.S. Department of Agriculture-Agricultural Research Service Cereal Crops Research Unit, 1605 Albrecht Blvd., Biosciences Research Laboratory, Fargo, ND 58105-5674; fourth and seventh authors: Department of Agronomy and Plant Genetics, University of Minnesota, 411 Borlaug Hall, 1991 Upper Buford Circle, St. Paul 55108-6026; fifth author: Department of Plant Sciences, North Dakota State University, NDSU Dept. 7670, P.O. Box 6050, Fargo 58108-6050; sixth author: Busch Agricultural Resources Inc. (BARI), 3515 E. Richards Lake Rd., Ft. Collins, CO 80524; and eighth author: Centre for Crop Health, University of Southern Queensland, Toowoomba, QLD 4350, Australia
| | - B Cooper
- First and second authors: Department of Plant Pathology, North Dakota State University, NDSU Dept. 7660, P.O. Box 6050, Fargo 58108-6050; third author: U.S. Department of Agriculture-Agricultural Research Service Cereal Crops Research Unit, 1605 Albrecht Blvd., Biosciences Research Laboratory, Fargo, ND 58105-5674; fourth and seventh authors: Department of Agronomy and Plant Genetics, University of Minnesota, 411 Borlaug Hall, 1991 Upper Buford Circle, St. Paul 55108-6026; fifth author: Department of Plant Sciences, North Dakota State University, NDSU Dept. 7670, P.O. Box 6050, Fargo 58108-6050; sixth author: Busch Agricultural Resources Inc. (BARI), 3515 E. Richards Lake Rd., Ft. Collins, CO 80524; and eighth author: Centre for Crop Health, University of Southern Queensland, Toowoomba, QLD 4350, Australia
| | - G J Muehlbauer
- First and second authors: Department of Plant Pathology, North Dakota State University, NDSU Dept. 7660, P.O. Box 6050, Fargo 58108-6050; third author: U.S. Department of Agriculture-Agricultural Research Service Cereal Crops Research Unit, 1605 Albrecht Blvd., Biosciences Research Laboratory, Fargo, ND 58105-5674; fourth and seventh authors: Department of Agronomy and Plant Genetics, University of Minnesota, 411 Borlaug Hall, 1991 Upper Buford Circle, St. Paul 55108-6026; fifth author: Department of Plant Sciences, North Dakota State University, NDSU Dept. 7670, P.O. Box 6050, Fargo 58108-6050; sixth author: Busch Agricultural Resources Inc. (BARI), 3515 E. Richards Lake Rd., Ft. Collins, CO 80524; and eighth author: Centre for Crop Health, University of Southern Queensland, Toowoomba, QLD 4350, Australia
| | - S M Neate
- First and second authors: Department of Plant Pathology, North Dakota State University, NDSU Dept. 7660, P.O. Box 6050, Fargo 58108-6050; third author: U.S. Department of Agriculture-Agricultural Research Service Cereal Crops Research Unit, 1605 Albrecht Blvd., Biosciences Research Laboratory, Fargo, ND 58105-5674; fourth and seventh authors: Department of Agronomy and Plant Genetics, University of Minnesota, 411 Borlaug Hall, 1991 Upper Buford Circle, St. Paul 55108-6026; fifth author: Department of Plant Sciences, North Dakota State University, NDSU Dept. 7670, P.O. Box 6050, Fargo 58108-6050; sixth author: Busch Agricultural Resources Inc. (BARI), 3515 E. Richards Lake Rd., Ft. Collins, CO 80524; and eighth author: Centre for Crop Health, University of Southern Queensland, Toowoomba, QLD 4350, Australia
| |
Collapse
|
25
|
Tamang P, Neupane A, Mamidi S, Friesen T, Brueggeman R. Association mapping of seedling resistance to spot form net blotch in a worldwide collection of barley. PHYTOPATHOLOGY 2015; 105:500-8. [PMID: 25870925 DOI: 10.1094/phyto-04-14-0106-r] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Spot form net blotch (SFNB), caused by the necrotrophic fungal pathogen Pyrenophora teres f. maculata, is an important foliar disease of barley in major production regions around the world. Deployment of adequate host resistance is challenging because the virulence of P. teres f. maculata is highly variable and characterized minor-effect resistances are typically ineffective against the diverse pathogen populations. A world barley core collection consisting of 2,062 barley accessions of diverse origin and genotype were phenotyped at the seedling stage with four P. teres f. maculata isolates collected from the United States (FGO), New Zealand (NZKF2), Australia (SG1), and Denmark (DEN 2.6). Of the 2,062 barley accessions phenotyped, 1,480 were genotyped with the Illumina barley iSelect chip and passed the quality controls with 5,954 polymorphic markers used for further association mapping analysis. Genome-wide association mapping was utilized to identify and map resistance loci from the seedling disease response data and the single nucleotide polymorphism (SNP) marker data. The best among six different regression models was identified for each isolate and association analysis was performed separately for each. A total of 138 significant (-log10P value>3.0) marker-trait associations (MTA) were detected. Using a 5 cM cutoff, a total of 10, 8, 13, and 10 quantitative trait loci (QTL) associated with SFNB resistance were identified for the FGO, SG1, NZKF2, and DEN 2.6 isolates, respectively. Loci containing from 1 to 34 MTA were identified on all seven barley chromosomes with one locus at 66 to 69 cM on chromosome 2H common to all four isolates. Six distinct loci were identified by the association mapping (AM) analysis that corresponded to previously characterized SFNB resistance QTL identified by biparental population analysis (QRpt4, QRpt6, Rpt4, Rpt6, Rpt7, and a QTL on 4H that was not given a provisional gene or QTL nomenclature). The 21 putative novel loci identified may represent a broad spectrum of resistance and or susceptibility loci. This is the first comprehensive AM study to characterize SFNB resistance loci underlying broad populations of the barley host and P. teres f. maculata pathogen.
Collapse
Affiliation(s)
- Prabin Tamang
- First, second, fourth, and fifth authors: Department of Plant Pathology, North Dakota State University, Fargo, ND 58108-6050; third author: Department of Plant Science, North Dakota State University, Fargo, ND 58108-6050; and fourth author: U.S. Department of Agriculture-Agriculture Research Service, Red River Valley Agricultural Research Center, Cereal Crops Research Unit, Fargo, ND 58102-2765
| | | | | | | | | |
Collapse
|
26
|
Wang X, Mace ES, Platz GJ, Hunt CH, Hickey LT, Franckowiak JD, Jordan DR. Spot form of net blotch resistance in barley is under complex genetic control. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2015; 128:489-99. [PMID: 25575837 DOI: 10.1007/s00122-014-2447-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2014] [Accepted: 12/17/2014] [Indexed: 05/12/2023]
Abstract
Evaluation of resistance to Pyrenophora teres f. maculata in barley breeding populations via association mapping revealed a complex genetic architecture comprising a mixture of major and minor effect genes. In the search for stable resistance to spot form of net blotch (Pyrenophora teres f. maculata, SFNB), association mapping was conducted on four independent barley (Hordeum vulgare L.) breeding populations comprising a total of 898 unique elite breeding lines from the Northern Region Barley Breeding Program in Australia for discovery of quantitative trait loci (QTL) influencing resistance at seedling and adult plant growth stages. A total of 29 significant QTL were validated across multiple breeding populations, with 22 conferring resistance at both seedling and adult plant growth stages. The remaining 7 QTL conferred resistance at either seedling (2 QTL) or adult plant (5 QTL) growth stages only. These 29 QTL represented 24 unique genomic regions, of which five were found to co-locate with previously identified QTL for SFNB. The results indicated that SFNB resistance is controlled by a large number of QTL varying in effect size with large effects QTL on chromosome 7H. A large proportion of the QTL acted in the same direction for both seedling and adult responses, suggesting that phenotypic selection for SFNB resistance performed at either growth stage could achieve adequate levels of resistance. However, the accumulation of specific resistance alleles on several chromosomes must be considered in molecular breeding selection strategies.
Collapse
Affiliation(s)
- Xuemin Wang
- Queensland Alliance for Agriculture and Food Innovation, Hermitage Research Facility, The University of Queensland, Warwick, QLD, 4370, Australia
| | | | | | | | | | | | | |
Collapse
|
27
|
Liu Z, Holmes DJ, Faris JD, Chao S, Brueggeman RS, Edwards MC, Friesen TL. Necrotrophic effector-triggered susceptibility (NETS) underlies the barley-Pyrenophora teres f. teres interaction specific to chromosome 6H. MOLECULAR PLANT PATHOLOGY 2015; 16:188-200. [PMID: 25040207 PMCID: PMC6638325 DOI: 10.1111/mpp.12172] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Barley net form net blotch (NFNB), caused by the necrotrophic fungus Pyrenophora teres f. teres, is a destructive foliar disease in barley-growing regions worldwide. Little is known about the genetic and molecular basis of this pathosystem. Here, we identified a small secreted proteinaceous necrotrophic effector (NE), designated PttNE1, from intercellular wash fluids of the susceptible barley line Hector after inoculation with P. teres f. teres isolate 0-1. Using a barley recombinant inbred line (RIL) population developed from a cross between the sensitive/susceptible line Hector and the insensitive/resistant line NDB 112 (HN population), sensitivity to PttNE1, which we have named SPN1, mapped to a common resistance/susceptibility region on barley chromosome 6H. PttNE1-SPN1 interaction accounted for 31% of the disease variation when the HN population was inoculated with the 0-1 isolate. Strong accumulation of hydrogen peroxide and increased levels of electrolyte leakage were associated with the susceptible reaction, but not the resistant reaction. In addition, the HN RIL population was evaluated for its reactions to 10 geographically diverse P. teres f. teres isolates. Quantitative trait locus (QTL) mapping led to the identification of at least 10 genomic regions associated with disease, with chromosomes 3H and 6H harbouring major QTLs for resistance/susceptibility. SPN1 was associated with all the 6H QTLs, except one. Collectively, this information indicates that the barley-P. teres f. teres pathosystem follows, at least partially, an NE-triggered susceptibility (NETS) model that has been described in other necrotrophic fungal disease systems, especially in the Dothideomycete class of fungi.
Collapse
Affiliation(s)
- Zhaohui Liu
- Department of Plant Pathology, North Dakota State University, Fargo, ND, 58108, USA
| | | | | | | | | | | | | |
Collapse
|
28
|
Kalendar R, Schulman AH. Transposon-based tagging: IRAP, REMAP, and iPBS. Methods Mol Biol 2014; 1115:233-55. [PMID: 24415478 DOI: 10.1007/978-1-62703-767-9_12] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Retrotransposons are a major component of virtually all eukaryotic genomes, which makes them useful as molecular markers. Various molecular marker systems have been developed that exploit the ubiquitous nature of these genetic elements and their property of stable integration into dispersed chromosomal loci that are polymorphic within species. To detect polymorphisms for retrotransposon insertions, marker systems generally rely on PCR amplification between the retrotransposon termini and some component of flanking genomic DNA. The main methods of IRAP, REMAP, RBIP, and SSAP all detect the polymorphic sites at which the retrotransposon DNA is integrated into the genome. Marker systems exploiting these methods can be easily developed and are inexpensively deployed in the absence of extensive genome sequence data. Here, we describe protocols for the IRAP, REMAP, and iPBS techniques, including methods for PCR amplification with a single primer or with two primers, and agarose gel electrophoresis of the product using optimal electrophoresis buffers; we also describe iPBS techniques for the rapid isolation of retrotransposon termini and full-length elements.
Collapse
Affiliation(s)
- Ruslan Kalendar
- MTT/BI Plant Genomics, Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | | |
Collapse
|
29
|
Alzohairy AM, Gyulai GB, Ramadan MF, Edris S, Sabir JSM, Jansen RK, Eissa HF, Bahieldin A. Retrotransposon-based molecular markers for assessment of genomic diversity. FUNCTIONAL PLANT BIOLOGY : FPB 2014; 41:781-789. [PMID: 32481032 DOI: 10.1071/fp13351] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Accepted: 02/19/2014] [Indexed: 06/11/2023]
Abstract
Retrotransposons (RTs) are major components of most eukaryotic genomes. They are ubiquitous, dispersed throughout the genome, and their abundance correlates with genome size. Their copy-and-paste lifestyle in the genome consists of three molecular steps involving transcription of an RNA copy from the genomic RT, followed by reverse transcription to generate cDNA, and finally, reintegration into a new location in the genome. This process leads to new genomic insertions without excision of the original element. The target sites of insertions are relatively random and independent for different taxa; however, some elements cluster together in 'repeat seas' or have a tendency to cluster around the centromeres and telomeres. The structure and copy number of retrotransposon families are strongly influenced by the evolutionary history of the host genome. Molecular markers play an essential role in all aspects of genetics and genomics, and RTs represent a powerful tool compared with other molecular and morphological markers. All features of integration activity, persistence, dispersion, conserved structure and sequence motifs, and high copy number suggest that RTs are appropriate genomic features for building molecular marker systems. To detect polymorphisms for RTs, marker systems generally rely on the amplification of sequences between the ends of the RT, such as (long-terminal repeat)-retrotransposons and the flanking genomic DNA. Here, we review the utility of some commonly used PCR retrotransposon-based molecular markers, including inter-primer binding sequence (IPBS), sequence-specific amplified polymorphism (SSAP), retrotransposon-based insertion polymorphism (RBIP), inter retrotransposon amplified polymorphism (IRAP), and retrotransposon-microsatellite amplified polymorphism (REMAP).
Collapse
Affiliation(s)
- Ahmed M Alzohairy
- Genetics Department, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt
| | - G Bor Gyulai
- Institute of Genetics and Biotechnology, St. István University, Gödöll?, H-2103, Hungary
| | - Mohamed F Ramadan
- Biochemistry Department, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
| | - Sherif Edris
- King Abdulaziz University, Faculty of Science, Department of Biological Sciences, Genomics and Biotechnology Section, Jeddah 21589, Saudi Arabia
| | - Jamal S M Sabir
- King Abdulaziz University, Faculty of Science, Department of Biological Sciences, Genomics and Biotechnology Section, Jeddah 21589, Saudi Arabia
| | - Robert K Jansen
- King Abdulaziz University, Faculty of Science, Department of Biological Sciences, Genomics and Biotechnology Section, Jeddah 21589, Saudi Arabia
| | - Hala F Eissa
- Agricultural Genetic Engineering Research Institute (AGERI), Agriculture Research Center (ARC), Giza, Egypt
| | - Ahmed Bahieldin
- King Abdulaziz University, Faculty of Science, Department of Biological Sciences, Genomics and Biotechnology Section, Jeddah 21589, Saudi Arabia
| |
Collapse
|
30
|
McLean MS, Howlett BJ, Turkington TK, Platz GJ, Hollaway GJ. Spot Form of Net Blotch Resistance in a Diverse Set of Barley Lines in Australia and Canada. PLANT DISEASE 2012; 96:569-576. [PMID: 30727433 DOI: 10.1094/pdis-06-11-0477] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The responses of 95 barley lines and cultivars to spot form of net blotch (SFNB) caused by Pyrenophora teres f. maculata were analyzed as seedlings and adults in Australia and Canada. Cluster analyses revealed complex reaction responses. Only 2 lines (Esperance Orge 289 and TR3189) were resistant to all isolates at the seedling stage, whereas 15 lines and cultivars (81-82/033, Arimont, BYDV-018, CBSS97M00855T-B2-M1-Y1-M2-Y-1M-0Y, CI9776, Keel, Sloop, Torrens, TR326, VB0111, Yarra, VB0229, WI-2477, WI2553, and Wisconsin Pedigree) were resistant toward the two Canadian isolates and mixture of Australian isolates at the adult stages. In Australian field experiments, the effectiveness of SFNB resistance in three barley cultivars (Barque, Cowabbie, and Schooner) and one breeding line (VB9104) with a different source of resistance was tested. Barque, which possessed a resistance gene that provided complete resistance to SFNB, was the most effective and showed no effect on grain yield or quality in the presence of inoculum. Generally, cultivars with seedling or adult resistance had less disease and better grain quality than the susceptible control, Dash, but they were not as effective as Barque. A preliminary differential set of 19 barley lines and cultivars for P. teres f. maculata is proposed.
Collapse
Affiliation(s)
- Mark S McLean
- BioSciences Research, Department of Primary Industries, Horsham, VIC, 3401, Australia, and School of Botany, The University of Melbourne, VIC, 3010, Australia
| | | | - T Kelly Turkington
- Lacombe Research Centre, Agriculture and Agri-food Canada, Lacombe, AB, T4L 1W1, Canada
| | - Greg J Platz
- Department of Employment, Economic Development and Innovation, Warwick, QLD, 4370, Australia
| | - Grant J Hollaway
- BioSciences Research, Department of Primary Industries, Horsham, Australia
| |
Collapse
|
31
|
Schulman AH, Flavell AJ, Paux E, Ellis THN. The application of LTR retrotransposons as molecular markers in plants. Methods Mol Biol 2012; 859:115-153. [PMID: 22367869 DOI: 10.1007/978-1-61779-603-6_7] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Retrotransposons are a major agent of genome evolution. Various molecular marker systems have been developed that exploit the ubiquitous nature of these genetic elements and their property of stable integration into dispersed chromosomal loci that are polymorphic within species. The key methods, SSAP, IRAP, REMAP, RBIP, and ISBP, all detect the sites at which the retrotransposon DNA, which is conserved between families of elements, is integrated into the genome. Marker systems exploiting these methods can be easily developed and inexpensively deployed in the absence of extensive genome sequence data. They offer access to the dynamic and polymorphic, nongenic portion of the genome and thereby complement methods, such as gene-derived SNPs, that target primarily the genic fraction.
Collapse
Affiliation(s)
- Alan H Schulman
- Plant Genomics, MTT Agrifood Research Finland, Jokioinen, Finland.
| | | | | | | |
Collapse
|
32
|
Schweizer P, Stein N. Large-scale data integration reveals colocalization of gene functional groups with meta-QTL for multiple disease resistance in barley. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2011; 24:1492-501. [PMID: 21770767 DOI: 10.1094/mpmi-05-11-0107] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Race-nonspecific and durable resistance of plant genotypes to major pathogens is highly relevant for yield stability and sustainable crop production but difficult to handle in practice due to its polygenic inheritance by quantitative trait loci (QTL). As far as the underlying genes are concerned, very little is currently known in the most important crop plants such as the cereals. Here, we integrated publicly available data for barley (Hordeum vulgare subsp. vulgare) in order to detect the most important genomic regions for QTL-mediated resistance to a number of fungal pathogens and localize specific functional groups of genes within these regions. This identified 20 meta-QTL, including eight hot spots for resistance to multiple diseases that were distributed over all chromosomes. At least one meta-QTL region for resistance to the powdery mildew fungus Blumeria graminis was found to be co-linear between barley and wheat, suggesting partial evolutionary conservation. Large-scale genetic mapping revealed that functional groups of barley genes involved in secretory processes and cell-wall reinforcement were significantly over-represented within QTL for resistance to powdery mildew. Overall, the results demonstrate added value resulting from large-scale genetic and genomic data integration and may inform genomic-selection procedures for race-nonspecific and durable disease resistance in barley.
Collapse
Affiliation(s)
- Patrick Schweizer
- Leibniz-Institut fur Pflanzengenetik und Kulturpflanzenforschung, Germany.
| | | |
Collapse
|
33
|
Liu Z, Ellwood SR, Oliver RP, Friesen TL. Pyrenophora teres: profile of an increasingly damaging barley pathogen. MOLECULAR PLANT PATHOLOGY 2011; 12:1-19. [PMID: 21118345 PMCID: PMC6640222 DOI: 10.1111/j.1364-3703.2010.00649.x] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
UNLABELLED Pyrenophora teres, causal agent of net blotch of barley, exists in two forms, designated P. teres f. teres and P. teres f. maculata, which induce net form net blotch (NFNB) and spot form net blotch (SFNB), respectively. Significantly more work has been performed on the net form than on the spot form although recent activity in spot form research has increased because of epidemics of SFNB in barley-producing regions. Genetic studies have demonstrated that NFNB resistance in barley is present in both dominant and recessive forms, and that resistance/susceptibility to both forms can be conferred by major genes, although minor quantitative trait loci have also been identified. Early work on the virulence of the pathogen showed toxin effector production to be important in disease induction by both forms of pathogen. Since then, several laboratories have investigated effectors of virulence and avirulence, and both forms are complex in their interaction with the host. Here, we assemble recent information from the literature that describes both forms of this important pathogen and includes reports describing the host-pathogen interaction with barley. We also include preliminary findings from a genome sequence survey. TAXONOMY Pyrenophora teres Drechs. Kingdom Fungi; Phylum Ascomycota; Subphylum Pezizomycotina; Class Dothideomycete; Order Pleosporales; Family Pleosporaceae; Genus Pyrenophora, form teres and form maculata. IDENTIFICATION To date, no clear morphological or life cycle differences between the two forms of P. teres have been identified, and therefore they are described collectively. Towards the end of the growing season, the fungus produces dark, globosely shaped pseudothecia, about 1-2mm in diameter, on barley. Ascospores measuring 18-28µm × 43-61µm are light brown and ellipsoidal and often have three to four transverse septa and one or two longitudinal septa in the median cells. Conidiophores usually arise singly or in groups of two or three and are lightly swollen at the base. Conidia measuring 30-174µm × 15-23µm are smoothly cylindrical and straight, round at both ends, subhyaline to yellowish brown, often with four to six pseudosepta. Morphologically, P. teres f. teres and P. teres f. maculata are indistinguishable. HOST RANGE Comprehensive work on the host range of P. teres f. teres has been performed; however, little information on the host range of P. teres f. maculata is available. Hordeum vulgare and H. vulgare ssp. spontaneum are considered to be the primary hosts for P. teres. However, natural infection by P. teres has been observed in other wild Hordeum species and related species from the genera Bromus, Avena and Triticum, including H. marinum, H. murinum, H. brachyantherum, H. distichon, H. hystrix, B. diandrus, A. fatua, A. sativa and T. aestivum (Shipton et al., 1973, Rev. Plant Pathol. 52:269-290). In artificial inoculation experiments under field conditions, P. teres f. teres has been shown to infect a wide range of gramineous species in the genera Agropyron, Brachypodium, Elymus, Cynodon, Deschampsia, Hordelymus and Stipa (Brown et al., 1993, Plant Dis. 77:942-947). Additionally, 43 gramineous species were used in a growth chamber study and at least one of the P. teres f. teres isolates used was able to infect 28 of the 43 species tested. However, of these 28 species, 14 exhibited weak type 1 or 2 reactions on the NFNB 1-10 scale (Tekauz, 1985). These reaction types are small pin-point lesions and could possibly be interpreted as nonhost reactions. In addition, the P. teres f. teres host range was investigated under field conditions by artificially inoculating 95 gramineous species with naturally infected barley straw. Pyrenophora teres f. teres was re-isolated from 65 of the species when infected leaves of adult plants were incubated on nutrient agar plates; however, other than Hordeum species, only two of the 65 host species exhibited moderately susceptible or susceptible field reaction types, with most species showing small dark necrotic lesions indicative of a highly resistant response to P. teres f. teres. Although these wild species have the potential to be alternative hosts, the high level of resistance identified for most of the species makes their role as a source of primary inoculum questionable. DISEASE SYMPTOMS Two types of symptom are caused by P. teres. These are net-type lesions caused by P. teres f. teres and spot-type lesions caused by P. teres f. maculata. The net-like symptom, for which the disease was originally named, has characteristic narrow, dark-brown, longitudinal and transverse striations on infected leaves. The spot form symptom consists of dark-brown, circular to elliptical lesions surrounded by a chlorotic or necrotic halo of varying width.
Collapse
Affiliation(s)
- Zhaohui Liu
- Department of Plant Pathology, North Dakota State University, Fargo, ND 58105, USA
| | | | | | | |
Collapse
|
34
|
Bogacki P, Keiper FJ, Oldach KH. Genetic structure of South Australian Pyrenophora teres populations as revealed by microsatellite analyses. Fungal Biol 2010; 114:834-41. [DOI: 10.1016/j.funbio.2010.08.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2009] [Revised: 06/17/2010] [Accepted: 08/01/2010] [Indexed: 10/19/2022]
|
35
|
St Pierre S, Gustus C, Steffenson B, Dill-Macky R, Smith KP. Mapping net form net blotch and septoria speckled leaf blotch resistance Loci in barley. PHYTOPATHOLOGY 2010; 100:80-84. [PMID: 19968552 DOI: 10.1094/phyto-100-1-0080] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Septoria speckled leaf blotch (SSLB), caused by Septoria passerinii Sacc., and net form net blotch (NB), caused by Pyrenophora teres f. teres Drechsler, are fungal diseases that decrease the yields of barley in the Upper Midwest. An effective way to manage these diseases is to plant resistant cultivars. To characterize the genetics of resistance to both pathogens, two advanced barley breeding lines, one resistant to NB (M120) and another resistant to SSLB (Sep2-72), were crossed, creating a population of 115 recombinant inbred lines. The two parents and the population were evaluated in three greenhouse seedling assays for each pathogen and for simple-sequence repeat and diversity arrays technology markers. Composite interval mapping revealed two major quantitative trait loci (QTL) associated with NB on chromosome 6H, located in bins 2 and 6. The QTL located in bin 6 explained 19 to 48% of the phenotypic variation and the QTL located in bin 2 explained 25 to 44% of the phenotypic variation. A new locus for resistance to SSLB, Rsp4, was identified on chromosome 6H, located in bins 3 to 4. Mapping these genes in elite breeding germplasm will accelerate the development and utilization of marker-assisted selection to enhance resistance to these diseases.
Collapse
Affiliation(s)
- S St Pierre
- Department of Agronomy and Plant Genetics, University of Minnesota, St Paul, MN 55108, USA
| | | | | | | | | |
Collapse
|
36
|
Bogacki P, Oldach KH, Williams KJ. Expression profiling and mapping of defence response genes associated with the barley-Pyrenophora teres incompatible interaction. MOLECULAR PLANT PATHOLOGY 2008; 9:645-60. [PMID: 19018994 PMCID: PMC6640259 DOI: 10.1111/j.1364-3703.2008.00485.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Barley net- and spot-form of net blotch disease are caused by two formae of the hemibiotrophic fungus Pyrenophora teres (P. t. f. teres and P. t. f. maculata). In the present study, suppression subtractive hybridization (SSH) was used in combination with quantitative real-time reverse transcriptase PCR to identify and profile the expression of defence response (DR) genes in the early stages of both barley-P. teres incompatible and compatible interactions. From a pool of 307 unique gene transcripts identified by SSH, 45 candidate DR genes were selected for temporal expression profiling in infected leaf epidermis. Differential expression profiles were observed for 28 of the selected candidates, which were grouped into clusters depending on their expression profiles within the first 48 h after inoculation. The expression profiles characteristic of each gene cluster were very similar in both barley-P. t. f. teres and barley-P. t. f. maculata interactions, indicating that resistance to both pathogens could be mediated by induction of the same group of DR genes. Chromosomal map locations for 21 DR genes were identified using four doubled-haploid mapping populations. The mapped DR genes were distributed across all seven barley chromosomes, with at least one gene mapping to within 15 cM of another on chromosomes 1H, 2H, 5H and 7H. Additionally, some DR genes appeared to co-localize with loci harbouring known resistance genes or quantitative trait loci for net blotch resistance on chromosomes 6H and 7H, as well as loci associated with resistance to other barley diseases. The DR genes are discussed with respect to their map locations and potential functional role in contributing to net blotch disease resistance.
Collapse
Affiliation(s)
- P Bogacki
- Molecular Plant Breeding CRC, South Australian Research and Development Institute, GPO Box 397, Adelaide, SA 5001, Australia.
| | | | | |
Collapse
|