1
|
Gouvi G, Gariou-Papalexiou A, Augustinos AA, Drosopoulou E, Tsiamis G, Bourtzis K, Zacharopoulou A. The Chromosomes of Zeugodacus tau and Zeugodacus cucurbitae: A Comparative Analysis. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.854723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Availability of polytene chromosomes and development of polytene chromosome maps have greatly facilitated genetic analysis in Diptera and understanding of chromosomal organization. In tephritids, following the first polytene chromosome maps constructed for the Mediterranean fruit fly, Ceratitis capitata, additional maps have been developed for only few species belonging to the main genera of agricultural importance that are Anastrepha, Bactrocera, Ceratitis, Dacus, Rhagoletis, and Zeugodacus. Comparison of the polytene chromosomes of these species has pointed to the presence of chromosomal rearrangements that can, at least partially, shed light to the chromosomal evolution in this family. Up to now, polytene chromosome maps are available only for one Zeugodacus species, that is Zeugodacus cucurbitae. Here we report the cytogenetic analysis of the mitotic and polytene chromosomes of the pumpkin fly, Zeugodacus tau, along with a comparative analysis with polytene chromosomes of Zeugodacus cucurbitae as well as other tephritids. In situ hybridization experiments resulting to chromosomal localization of selected genes in both species are also presented. The genes used as markers are hsp70, hsp83, scarlet and white pupae. The established homologies presented in this study verify that the two Zeugodacus species are genetically close and support the current taxonomic placement of the Zeugodacus genus. The differences in polytene chromosome level, in combination with results of in situ hybridization experiments, reveal the presence of chromosomal rearrangements, mainly inversions, to both closely and distantly related species, which could potentially be a useful diagnostic tool.
Collapse
|
2
|
Augustinos AA, Moraiti CA, Drosopoulou E, Kounatidis I, Mavragani-Tsipidou P, Bourtzis K, Papadopoulos NT. Old residents and new arrivals of Rhagoletis species in Europe. BULLETIN OF ENTOMOLOGICAL RESEARCH 2019; 109:701-712. [PMID: 30744707 DOI: 10.1017/s0007485319000063] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The genus Rhagoletis (Diptera: Tephritidae) comprises more than 65 species distributed throughout Europe, Asia and America, including many species of high economic importance. Currently, there are three Rhagoletis species that infest fruits and nuts in Europe. The European cherry fruit fly, Rhagoletis cerasi (may have invaded Europe a long time ago from the Caucasian area of West Asia), and two invasive species (recently introduced from North America): the eastern American cherry fruit fly, R. cingulata, and the walnut husk fly, R. completa. The presence of different Rhagoletis species may enhance population dynamics and establish an unpredictable economic risk for several fruit and nut crops in Europe. Despite their excessive economic importance, little is known on population dynamics, genetics and symbiotic associations for making sound pest control decisions in terms of species-specific, environmental friendly pest control methods. To this end, the current paper (a) summarizes recently accumulated genetic and population data for the European Rhagoletis species and their association with the endosymbiont Wolbachia pipientis, and (b) explores the possibility of using the current knowledge for implementing the innovative biological control methods of sterile insect technique and incompatible insect technique.
Collapse
Affiliation(s)
- A A Augustinos
- Department of Environmental and Natural Resources Management, University of Patras, Agrinio, Greece
- Insect Pest Control Laboratory, Joint FAO/IAEA Programme of Nuclear Techniques in Food and Agriculture, Vienna, Austria
| | - C A Moraiti
- Department of Agriculture, Crop Production and Rural Environment, University of Thessaly, N. Ionia (Volos), Magnesia, Greece
| | - E Drosopoulou
- Department of Genetics, Development and Molecular Biology, School of Biology, Faculty of Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - I Kounatidis
- Cell Biology, Development, and Genetics Laboratory, Department of Biochemistry, University of Oxford, South Park Road, Oxford OX1 3QU, UK
- Diamond Light Source, Harwell Science & Innovation Campus, Didcot, Oxfordshire, OX11 0DE, UK
| | - P Mavragani-Tsipidou
- Department of Genetics, Development and Molecular Biology, School of Biology, Faculty of Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - K Bourtzis
- Insect Pest Control Laboratory, Joint FAO/IAEA Programme of Nuclear Techniques in Food and Agriculture, Vienna, Austria
| | - N T Papadopoulos
- Department of Agriculture, Crop Production and Rural Environment, University of Thessaly, N. Ionia (Volos), Magnesia, Greece
| |
Collapse
|
3
|
Augustinos AA, Tsiamis G, Cáceres C, Abd-Alla AMM, Bourtzis K. Taxonomy, Diet, and Developmental Stage Contribute to the Structuring of Gut-Associated Bacterial Communities in Tephritid Pest Species. Front Microbiol 2019; 10:2004. [PMID: 31555239 PMCID: PMC6727639 DOI: 10.3389/fmicb.2019.02004] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 08/15/2019] [Indexed: 11/30/2022] Open
Abstract
Insect-symbiont interactions are receiving much attention in the last years. Symbiotic communities have been found to influence a variety of parameters regarding their host physiology and fitness. Gut symbiotic communities can be dynamic, changing through time and developmental stage. Whether these changes represent real differential needs and preferential relationships has not been addressed yet. In this study, we characterized the structure of symbiotic communities of five laboratory populations that represent five Tephritidae species that are targets for pest control management through the sterile insect technique (SIT), namely Bactrocera oleae, Anastrepha grandis, Anastrepha ludens, and two morphotypes of Anastrepha fraterculus (sp.1 and the Andean lineage). These populations are under artificial or semi artificial rearing conditions and their characterization was performed for different developmental stages and age. Our results demonstrate the presence of a symbiotic community comprising mainly from different Enterobacteriaceae genera. These communities are dynamic across developmental stages, although not highly variable, and appear to have a species-specific profile. Additional factors may contribute to the observed structuring, including diet, rearing practices, and the degree of domestication. Comparison of these results with those derived from natural populations could shed light to changes occurring in the symbiotic level during domestication of Tephritidae populations. Further studies will elucidate whether the changes are associated with modification of the behavior in laboratory strains and assess their effects in the quality of the mass rearing insects. This could be beneficial for improving environmentally friendly, species-specific, pest control methods, such as the SIT.
Collapse
Affiliation(s)
- Antonios A Augustinos
- Insect Pest Control Laboratory, Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture, Vienna, Austria
| | - George Tsiamis
- Department of Environmental Engineering, University of Patras, Agrinio, Greece
| | - Carlos Cáceres
- Insect Pest Control Laboratory, Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture, Vienna, Austria
| | - Adly M M Abd-Alla
- Insect Pest Control Laboratory, Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture, Vienna, Austria
| | - Kostas Bourtzis
- Insect Pest Control Laboratory, Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture, Vienna, Austria
| |
Collapse
|
4
|
Drosopoulou E, Pantelidou C, Gariou-Papalexiou A, Augustinos AA, Chartomatsidou T, Kyritsis GA, Bourtzis K, Mavragani-Tsipidou P, Zacharopoulou A. The chromosomes and the mitogenome of Ceratitis fasciventris (Diptera: Tephritidae): two genetic approaches towards the Ceratitis FAR species complex resolution. Sci Rep 2017; 7:4877. [PMID: 28687799 PMCID: PMC5501848 DOI: 10.1038/s41598-017-05132-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Accepted: 05/25/2017] [Indexed: 11/29/2022] Open
Abstract
Ceratitis fasciventris is a serious agricultural pest of the Tephritidae family that belongs to the African Ceratitis FAR species complex. Species limits within the FAR complex are obscure and multidisciplinary approaches have attempted to resolve phylogenetic relationships among its members. These studies support the existence of at least three additional species in the complex, C. anonnae, C. rosa and C. quilicii, while they indicate the presence of two structured populations (F1 and F2) within the C. fasciventris species. In the present study we present the mitotic karyotype, polytene chromosome maps, in situ hybridization data and the complete mitochondrial genome sequence of an F2 population of C. fasciventris. This is the first polytene chromosome map and complete mitogenome of a member of the FAR complex and only the second reported for the Ceratitis genus. Both polytene chromosomes and mitochondrial sequence could provide valuable information and be used as reference for comparative analysis among the members of the complex towards the clarification of their phylogenetic relationships.
Collapse
Affiliation(s)
- Elena Drosopoulou
- Department of Genetics, Development and Molecular Biology, School of Biology, Faculty of Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece.
| | - Christina Pantelidou
- Department of Genetics, Development and Molecular Biology, School of Biology, Faculty of Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | | | - Antonios A Augustinos
- Department of Biology, University of Patras, Patras, Greece.,Insect Pest Control Laboratory, Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture, Seibersdorf, Vienna, Austria
| | - Tatiana Chartomatsidou
- Department of Genetics, Development and Molecular Biology, School of Biology, Faculty of Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Georgios A Kyritsis
- Insect Pest Control Laboratory, Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture, Seibersdorf, Vienna, Austria
| | - Kostas Bourtzis
- Insect Pest Control Laboratory, Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture, Seibersdorf, Vienna, Austria
| | - Penelope Mavragani-Tsipidou
- Department of Genetics, Development and Molecular Biology, School of Biology, Faculty of Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | | |
Collapse
|
5
|
Gariou-Papalexiou A, Giardini MC, Augustinos AA, Drosopoulou E, Lanzavecchia SB, Cladera JL, Caceres C, Bourtzis K, Mavragani-Tsipidou P, Zacharopoulou A. Cytogenetic Analysis of the South American Fruit Fly Anastrepha fraterculus (Diptera:Tephritidae) Species Complex: Construction of Detailed Photographic Polytene Chromosome Maps of the Argentinian Af. sp.1 Member. PLoS One 2016; 11:e0157192. [PMID: 27362546 PMCID: PMC4928812 DOI: 10.1371/journal.pone.0157192] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Accepted: 05/25/2016] [Indexed: 01/28/2023] Open
Abstract
Genetic and cytogenetic studies constitute a significant basis for understanding the biology of insect pests and the design and the construction of genetic tools for biological control strategies. Anastrepha fraterculus is an important pest of the Tephritidae family. It is distributed from southern Texas through eastern Mexico, Central America and South America causing significant crop damage and economic losses. Currently it is considered as a species complex; until now seven members have been described based on multidisciplinary approaches. Here we report the cytogenetic analysis of an Argentinian population characterized as Af. sp.1 member of the Anastrepha fraterculus species complex. The mitotic karyotype and the first detailed photographic maps of the salivary gland polytene chromosomes are presented. The mitotic metaphase complement consists of six (6) pairs of chromosomes, including one pair of heteromorphic sex chromosomes, with the male being the heterogametic sex. The analysis of the salivary gland polytene complement shows a total number of five long chromosomes that correspond to the five autosomes of the mitotic karyotype and a heterochromatic network corresponding to the sex chromosomes. Comparison of the polytene chromosome maps between this species and Anastrepha ludens shows significant similarity. The polytene maps presented here are suitable for cytogenetic studies that could shed light on the species limits within this species complex and support the development of genetic tools for sterile insect technique (SIT) applications.
Collapse
Affiliation(s)
| | - María Cecilia Giardini
- Instituto de Genética EA Favret, Instituto Nacional Tecnología Agropecuaria, Hurlingham, Provincia de Buenos Aires, Argentina
| | - Antonios A. Augustinos
- Biology Department, University of Patras, Patras, Greece
- Insect Pest Control Laboratory, Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture, Seibersdorf, Vienna, Austria
| | - Elena Drosopoulou
- Department of Genetics, Development and Molecular Biology, School of Biology, Faculty of Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Silvia B. Lanzavecchia
- Instituto de Genética EA Favret, Instituto Nacional Tecnología Agropecuaria, Hurlingham, Provincia de Buenos Aires, Argentina
| | - Jorge L. Cladera
- Instituto de Genética EA Favret, Instituto Nacional Tecnología Agropecuaria, Hurlingham, Provincia de Buenos Aires, Argentina
| | - Carlos Caceres
- Insect Pest Control Laboratory, Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture, Seibersdorf, Vienna, Austria
| | - Kostas Bourtzis
- Insect Pest Control Laboratory, Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture, Seibersdorf, Vienna, Austria
| | - Penelope Mavragani-Tsipidou
- Department of Genetics, Development and Molecular Biology, School of Biology, Faculty of Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | | |
Collapse
|
6
|
Augustinos AA, Drosopoulou E, Gariou-Papalexiou A, Asimakis ED, Cáceres C, Tsiamis G, Bourtzis K, Penelope Mavragani-Tsipidou, Zacharopoulou A. Cytogenetic and symbiont analysis of five members of the B. dorsalis complex (Diptera, Tephritidae): no evidence of chromosomal or symbiont-based speciation events. Zookeys 2015:273-98. [PMID: 26798263 PMCID: PMC4714073 DOI: 10.3897/zookeys.540.9857] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Accepted: 07/20/2015] [Indexed: 11/26/2022] Open
Abstract
The Bactroceradorsalis species complex, currently comprising about 90 entities has received much attention. During the last decades, considerable effort has been devoted to delimiting the species of the complex. This information is of great importance for agriculture and world trade, since the complex harbours several pest species of major economic importance and other species that could evolve into global threats. Speciation in Diptera is usually accompanied by chromosomal rearrangements, particularly inversions that are assumed to reduce/eliminate gene flow. Other candidates currently receiving much attention regarding their possible involvement in speciation are reproductive symbionts, such as Wolbachia, Spiroplasma, Arsenophonus, Rickettsia and Cardinium. Such symbionts tend to spread quickly through natural populations and can cause a variety of phenotypes that promote pre-mating and/or post-mating isolation and, in addition, can affect the biology, physiology, ecology and evolution of their insect hosts in various ways. Considering all these aspects, we present: (a) a summary of the recently gained knowledge on the cytogenetics of five members of the Bactroceradorsalis complex, namely Bactroceradorsaliss.s., Bactrocerainvadens, Bactroceraphilippinensis, Bactrocerapapayae and Bactroceracarambolae, supplemented by additional data from a Bactroceradorsaliss.s. colony from China, as well as by a cytogenetic comparison between the dorsalis complex and the genetically close species, Bactroceratryoni, and, (b) a reproductive symbiont screening of 18 different colonized populations of these five taxa. Our analysis did not reveal any chromosomal rearrangements that could differentiate among them. Moreover, screening for reproductive symbionts was negative for all colonies derived from different geographic origins and/or hosts. There are many different factors that can lead to speciation, and our data do not support chromosomal and/or symbiotic-based speciation phenomena in the taxa under study.
Collapse
Affiliation(s)
- Antonios A Augustinos
- Department of Biology, University of Patras, Patras, Greece; Insect Pest Control Laboratory, Joint FAO/IAEA Programme of Nuclear Techniques in Food and Agriculture, Seibersdorf, Vienna, Austria; Department of Environmental and Natural Resources Management, University of Patras, Agrinio, Greece
| | - Elena Drosopoulou
- Department of Genetics, Development and Molecular Biology, School of Biology, Faculty of Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | | | - Elias D Asimakis
- Department of Environmental and Natural Resources Management, University of Patras, Agrinio, Greece
| | - Carlos Cáceres
- Insect Pest Control Laboratory, Joint FAO/IAEA Programme of Nuclear Techniques in Food and Agriculture, Seibersdorf, Vienna, Austria
| | - George Tsiamis
- Department of Environmental and Natural Resources Management, University of Patras, Agrinio, Greece
| | - Kostas Bourtzis
- Insect Pest Control Laboratory, Joint FAO/IAEA Programme of Nuclear Techniques in Food and Agriculture, Seibersdorf, Vienna, Austria
| | - Penelope Mavragani-Tsipidou
- Department of Genetics, Development and Molecular Biology, School of Biology, Faculty of Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | | |
Collapse
|
7
|
Giardini MC, Milla FH, Lanzavecchia S, Nieves M, Cladera JL. Sex chromosomes in mitotic and polytene tissues of Anastrepha fraterculus (Diptera, Tephritidae) from Argentina: a review. Zookeys 2015:83-94. [PMID: 26798255 PMCID: PMC4714065 DOI: 10.3897/zookeys.540.6058] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Accepted: 09/02/2015] [Indexed: 11/12/2022] Open
Abstract
Cytogenetics, which is considered a fundamental tool to understand basic genetic and genomic issues of species, has greatly contributed to the description of polymorphisms both at inter- and intra-specific level. In fact, cytogenetics was one of the first approaches used to propose Anastrephafraterculus (Diptera: Tephritidae) as a complex of cryptic species. Different morphological variants of sex chromosomes have been reported among Argentinean populations of Anastrephafraterculus. However, since this high structural variability in sex chromosomes does not pose a reproductive barrier, their role in speciation is yet to be unveiled. This review provides an update on general aspects of cytogenetics in Argentinean Anastrephafraterculus populations, focused on the prevalence of X-Y arrangements.
Collapse
Affiliation(s)
- María Cecilia Giardini
- Laboratorio de Genética de Insectos de Importancia Económica, Instituto de Genética 'Ewald A. Favret', CICVyA, Instituto Nacional de Tecnología Agropecuaria (INTA), Hurlingham, Buenos Aires, Argentina
| | - Fabián H Milla
- Laboratorio de Genética de Insectos de Importancia Económica, Instituto de Genética 'Ewald A. Favret', CICVyA, Instituto Nacional de Tecnología Agropecuaria (INTA), Hurlingham, Buenos Aires, Argentina
| | - Silvia Lanzavecchia
- Laboratorio de Genética de Insectos de Importancia Económica, Instituto de Genética 'Ewald A. Favret', CICVyA, Instituto Nacional de Tecnología Agropecuaria (INTA), Hurlingham, Buenos Aires, Argentina
| | - Mariela Nieves
- Grupo de Investigación en Biología Evolutiva, Departamento de Ecología, Genética y Evolución, IEGEBA-Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Jorge L Cladera
- Laboratorio de Genética de Insectos de Importancia Económica, Instituto de Genética 'Ewald A. Favret', CICVyA, Instituto Nacional de Tecnología Agropecuaria (INTA), Hurlingham, Buenos Aires, Argentina
| |
Collapse
|
8
|
Augustinos AA, Drosopoulou E, Gariou-Papalexiou A, Bourtzis K, Mavragani-Tsipidou P, Zacharopoulou A. The Bactrocera dorsalis species complex: comparative cytogenetic analysis in support of Sterile Insect Technique applications. BMC Genet 2014; 15 Suppl 2:S16. [PMID: 25471636 PMCID: PMC4255788 DOI: 10.1186/1471-2156-15-s2-s16] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Background The Bactrocera dorsalis species complex currently harbors approximately 90 different members. The species complex has undergone many revisions in the past decades, and there is still an ongoing debate about the species limits. The availability of a variety of tools and approaches, such as molecular-genomic and cytogenetic analyses, are expected to shed light on the rather complicated issues of species complexes and incipient speciation. The clarification of genetic relationships among the different members of this complex is a prerequisite for the rational application of sterile insect technique (SIT) approaches for population control. Results Colonies established in the Insect Pest Control Laboratory (IPCL) (Seibersdorf, Vienna), representing five of the main economic important members of the Bactrocera dorsalis complex were cytologically characterized. The taxa under study were B. dorsalis s.s., B. philippinensis, B. papayae, B. invadens and B. carambolae. Mitotic and polytene chromosome analyses did not reveal any chromosomal characteristics that could be used to distinguish between the investigated members of the B. dorsalis complex. Therefore, their polytene chromosomes can be regarded as homosequential with the reference maps of B. dorsalis s.s.. In situ hybridization of six genes further supported the proposed homosequentiallity of the chromosomes of these specific members of the complex. Conclusions The present analysis supports that the polytene chromosomes of the five taxa under study are homosequential. Therefore, the use of the available polytene chromosome maps for B. dorsalis s.s. as reference maps for all these five biological entities is proposed. Present data provide important insight in the genetic relationships among the different members of the B. dorsalis complex, and, along with other studies in the field, can facilitate SIT applications targeting this complex. Moreover, the availability of 'universal' reference polytene chromosome maps for members of the complex, along with the documented application of in situ hybridization, can facilitate ongoing and future genome projects in this complex.
Collapse
|
9
|
Augustinos AA, Asimakopoulou AK, Moraiti CA, Mavragani-Tsipidou P, Papadopoulos NT, Bourtzis K. Microsatellite and Wolbachia analysis in Rhagoletis cerasi natural populations: population structuring and multiple infections. Ecol Evol 2014; 4:1943-62. [PMID: 24963388 PMCID: PMC4063487 DOI: 10.1002/ece3.553] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2012] [Revised: 03/05/2013] [Accepted: 03/09/2013] [Indexed: 11/09/2022] Open
Abstract
Rhagoletis cerasi (Diptera: Tephritidae) is a major pest of sweet and sour cherries in Europe and parts of Asia. Despite its economic significance, there is a lack of studies on the genetic structure of R. cerasi populations. Elucidating the genetic structure of insects of economic importance is crucial for developing phenological-predictive models and environmental friendly control methods. All natural populations of R. cerasi have been found to harbor the endosymbiont Wolbachia pipientis, which widely affects multiple biological traits contributing to the evolution of its hosts, and has been suggested as a tool for the biological control of insect pests and disease vectors. In the current study, the analysis of 18 R. cerasi populations collected in Greece, Germany, and Russia using 13 microsatellite markers revealed structuring of R. cerasi natural populations, even at close geographic range. We also analyzed the Wolbachia infection status of these populations using 16S rRNA-, MLST- and wsp-based approaches. All 244 individuals screened were positive for Wolbachia. Our results suggest the fixation of the wCer1 strain in Greece while wCer2, wCer4, wCer5, and probably other uncharacterized strains were also detected in multiply infected individuals. The role of Wolbachia and its potential extended phenotypes needs a thorough investigation in R. cerasi. Our data suggest an involvement of this symbiont in the observed restriction in the gene flow in addition to a number of different ecological factors.
Collapse
Affiliation(s)
- Antonios A Augustinos
- Department of Environmental and Natural Resources Management, University of Western GreeceAgrinio, Greece
- Department of Biochemistry and Biotechnology, University of ThessalyLarissa, Greece
- Insect Pest Control Laboratory, Joint FAO/IAEA Programme of Nuclear Techniques in Food and AgricultureVienna, Austria
| | | | - Cleopatra A Moraiti
- Department of Agriculture, Crop Production and Rural Environment, University of ThessalyN. Ionia (Volos), Magnesia, Greece
| | - Penelope Mavragani-Tsipidou
- Department of Genetics, Development and Molecular Biology, School of Biology, Faculty of Sciences, Aristotle University of ThessalonikiThessaloniki, Greece
| | - Nikolaos T Papadopoulos
- Department of Agriculture, Crop Production and Rural Environment, University of ThessalyN. Ionia (Volos), Magnesia, Greece
| | - Kostas Bourtzis
- Department of Environmental and Natural Resources Management, University of Western GreeceAgrinio, Greece
- Insect Pest Control Laboratory, Joint FAO/IAEA Programme of Nuclear Techniques in Food and AgricultureVienna, Austria
- Biomedical Sciences Research Center Al. FlemingVari, Greece
| |
Collapse
|
10
|
Daniel C, Grunder J. Integrated Management of European Cherry Fruit Fly Rhagoletis cerasi (L.): Situation in Switzerland and Europe. INSECTS 2012; 3:956-88. [PMID: 26466721 PMCID: PMC4553558 DOI: 10.3390/insects3040956] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2012] [Revised: 09/28/2012] [Accepted: 10/08/2012] [Indexed: 11/26/2022]
Abstract
The European cherry fruit fly, Rhagoletis cerasi (L.) (Diptera: Tephritidae), is a highly destructive pest. The low tolerance for damaged fruit requires preventive insecticide treatments for a marketable crop. The phase-out of old insecticides threatens cherry production throughout the European Union (EU). Consequently, new management techniques and tools are needed. With the increasing number of dwarf tree orchards covered against rain to avoid fruit splitting, crop netting has become a viable, cost-effective method of cherry fruit fly control. Recently, a biocontrol method using the entomopathogenic fungus Beauveria bassiana has been developed for organic agriculture. However, for most situations, there is still a lack of efficient and environmentally sound insecticides to control this pest. This review summarizes the literature from over one hundred years of research on R. cerasi with focus on the biology and history of cherry fruit fly control as well as on antagonists and potential biocontrol organisms. We will present the situation of cherry fruit fly regulation in different European countries, give recommendations for cherry fruit fly control, show gaps in knowledge and identify future research opportunities.
Collapse
Affiliation(s)
- Claudia Daniel
- Research Institute of Organic Agriculture (FiBL), Ackerstrasse 21, Postfach 219, CH-5070 Frick, Switzerland.
| | - Jürg Grunder
- Zurich University of Applied Sciences (ZHAW), Department of Natural Resources Sciences, Grueental, P.O. Box 335, CH-8820 Waedenswil, Switzerland.
| |
Collapse
|
11
|
Drosopoulou E, Nakou I, Síchová J, Kubíčková S, Marec F, Mavragani-Tsipidou P. Sex chromosomes and associated rDNA form a heterochromatic network in the polytene nuclei of Bactrocera oleae (Diptera: Tephritidae). Genetica 2012; 140:169-80. [PMID: 22825842 DOI: 10.1007/s10709-012-9668-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2012] [Accepted: 07/11/2012] [Indexed: 10/28/2022]
Abstract
The olive fruit fly, Bactrocera oleae, has a diploid set of 2n = 12 chromosomes including a pair of sex chromosomes, XX in females and XY in males, but polytene nuclei show only five polytene chromosomes, obviously formed by five autosome pairs. Here we examined the fate of the sex chromosomes in the polytene complements of this species using fluorescence in situ hybridization (FISH) with the X and Y chromosome-derived probes, prepared by laser microdissection of the respective chromosomes from mitotic metaphases. Specificity of the probes was verified by FISH in preparations of mitotic chromosomes. In polytene nuclei, both probes hybridized strongly to a granular heterochromatic network, indicating thus underreplication of the sex chromosomes. The X chromosome probe (in both female and male nuclei) highlighted most of the granular mass, whereas the Y chromosome probe (in male nuclei) identified a small compact body of this heterochromatic network. Additional hybridization signals of the X probe were observed in the centromeric region of polytene chromosome II and in the telomeres of six polytene arms. We also examined distribution of the major ribosomal DNA (rDNA) using FISH with an 18S rDNA probe in both mitotic and polytene chromosome complements of B. oleae. In mitotic metaphases, the probe hybridized exclusively to the sex chromosomes. The probe signals localized a discrete rDNA site at the end of the short arm of the X chromosome, whereas they appeared dispersed over the entire dot-like Y chromosome. In polytene nuclei, the rDNA was found associated with the heterochromatic network representing the sex chromosomes. Only in nuclei with preserved nucleolar structure, the probe signals were scattered in the restricted area of the nucleolus. Thus, our study clearly shows that the granular heterochromatic network of polytene nuclei in B. oleae is formed by the underreplicated sex chromosomes and associated rDNA.
Collapse
Affiliation(s)
- Elena Drosopoulou
- Department of Genetics, Development and Molecular Biology, School of Biology, Faculty of Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | | | | | | | | | | |
Collapse
|
12
|
Genetic and cytogenetic analysis of the American cherry fruit fly, Rhagoletis cingulata (Diptera: Tephritidae). Genetica 2012; 139:1449-64. [DOI: 10.1007/s10709-012-9644-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2011] [Accepted: 03/12/2012] [Indexed: 10/28/2022]
|
13
|
Drosopoulou E, Nestel D, Nakou I, Kounatidis I, Papadopoulos NT, Bourtzis K, Mavragani-Tsipidou P. Cytogenetic analysis of the Ethiopian fruit fly Dacus ciliatus (Diptera: Tephritidae). Genetica 2011; 139:723-32. [PMID: 21505759 DOI: 10.1007/s10709-011-9575-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2011] [Accepted: 04/02/2011] [Indexed: 11/25/2022]
Abstract
The Ethiopian fruit fly, Dacus ciliatus, is an important pest of cucurbits, which recently invaded the Middle East. The genetics and cytogenetics of D. ciliatus have been scarcely studied. Such information is, however, an essential basis for understanding the biology of insect pests, as well as for the design of modern control strategies. We report here the mitotic karyotype and detailed photographic maps of the salivary gland polytene chromosomes of this species. The mitotic metaphase complement consists of six pairs of chromosomes, including one pair of heteromorphic sex (XX/XY) chromosomes. The heterogametic sex is ascribed to the male. The analysis of the salivary gland polytene complement shows a total number of five long chromosomes (10 polytene arms), which correspond to the five autosomes of the mitotic nuclei, and a heterochromatic mass corresponding to the sex chromosomes. Banding patterns, as well as the most characteristic features and prominent landmarks of each polytene chromosome are presented and discussed. Chromosomal homologies between D. ciliatus and Bactrocera oleae are proposed by comparing chromosome banding patterns and by in situ hybridization of the hsp70 gene.
Collapse
Affiliation(s)
- E Drosopoulou
- Department of Genetics, Development and Molecular Biology, School of Biology, Faculty of Sciences, Aristotle University of Thessaloniki (AUTH), 54124 Thessaloniki, Greece
| | | | | | | | | | | | | |
Collapse
|
14
|
Gabrieli P, Gomulski LM, Bonomi A, Siciliano P, Scolari F, Franz G, Jessup A, Malacrida AR, Gasperi G. Interchromosomal duplications on the Bactrocera oleae Y chromosome imply a distinct evolutionary origin of the sex chromosomes compared to Drosophila. PLoS One 2011; 6:e17747. [PMID: 21408187 PMCID: PMC3049792 DOI: 10.1371/journal.pone.0017747] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2010] [Accepted: 02/11/2011] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Diptera have an extraordinary variety of sex determination mechanisms, and Drosophila melanogaster is the paradigm for this group. However, the Drosophila sex determination pathway is only partially conserved and the family Tephritidae affords an interesting example. The tephritid Y chromosome is postulated to be necessary to determine male development. Characterization of Y sequences, apart from elucidating the nature of the male determining factor, is also important to understand the evolutionary history of sex chromosomes within the Tephritidae. We studied the Y sequences from the olive fly, Bactrocera oleae. Its Y chromosome is minute and highly heterochromatic, and displays high heteromorphism with the X chromosome. METHODOLOGY/PRINCIPAL FINDINGS A combined Representational Difference Analysis (RDA) and fluorescence in-situ hybridization (FISH) approach was used to investigate the Y chromosome to derive information on its sequence content. The Y chromosome is strewn with repetitive DNA sequences, the majority of which are also interdispersed in the pericentromeric regions of the autosomes. The Y chromosome appears to have accumulated small and large repetitive interchromosomal duplications. The large interchromosomal duplications harbour an importin-4-like gene fragment. Apart from these importin-4-like sequences, the other Y repetitive sequences are not shared with the X chromosome, suggesting molecular differentiation of these two chromosomes. Moreover, as the identified Y sequences were not detected on the Y chromosomes of closely related tephritids, we can infer divergence in the repetitive nature of their sequence contents. CONCLUSIONS/SIGNIFICANCE The identification of Y-linked sequences may tell us much about the repetitive nature, the origin and the evolution of Y chromosomes. We hypothesize how these repetitive sequences accumulated and were maintained on the Y chromosome during its evolutionary history. Our data reinforce the idea that the sex chromosomes of the Tephritidae may have distinct evolutionary origins with respect to those of the Drosophilidae and other Dipteran families.
Collapse
Affiliation(s)
- Paolo Gabrieli
- Department of Animal Biology, University of Pavia, Pavia, Italy
| | | | - Angelica Bonomi
- Department of Animal Biology, University of Pavia, Pavia, Italy
| | - Paolo Siciliano
- Department of Animal Biology, University of Pavia, Pavia, Italy
| | | | - Gerald Franz
- Entomology Unit, FAO/IAEA Agriculture and Biotechnology Laboratory, Joint FAO/IAEA Programme, International Atomic Energy Agency, Vienna, Austria
| | - Andrew Jessup
- Entomology Unit, FAO/IAEA Agriculture and Biotechnology Laboratory, Joint FAO/IAEA Programme, International Atomic Energy Agency, Vienna, Austria
| | | | | |
Collapse
|
15
|
Augustinos AA, Asimakopoulou AK, Papadopoulos NT, Bourtzis K. Cross-amplified microsatellites in the European cherry fly, Rhagoletis cerasi: medium polymorphic-highly informative markers. BULLETIN OF ENTOMOLOGICAL RESEARCH 2011; 101:45-52. [PMID: 20609274 DOI: 10.1017/s0007485310000167] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
The European cherry fruit fly, Rhagoletis cerasi (Diptera: Tephritidae), is a major pest of cherries in Europe and parts of Asia. Despite its big economic significance, there is a lack of studies on the genetic structure of its natural populations. Knowledge about an insect pest on molecular, genetic and population levels facilitates the development of environmentally friendly control methods. In this study, we present the development of 13 microsatellite markers for R. cerasi, through cross-species amplification. These markers have been used for the genotyping of 130 individuals from five different sampling sites in Greece. Our results indicate that (i) cross-species amplification is a versatile and rapid tool for developing microsatellite markers in Rhagoletis spp., (ii) the microsatellite markers presented here constitute an important tool for population studies on this pest, and (iii) there is clear structuring of natural European cherry fly populations.
Collapse
Affiliation(s)
- A A Augustinos
- Department of Environmental and Natural Resources Management, University of Ioannina, 2, Seferi St., 30100 Agrinio, Greece.
| | | | | | | |
Collapse
|
16
|
Papanastasiou SA, Nestel D, Diamantidis AD, Nakas CT, Papadopoulos NT. Physiological and biological patterns of a highland and a coastal population of the European cherry fruit fly during diapause. JOURNAL OF INSECT PHYSIOLOGY 2011; 57:83-93. [PMID: 20933516 DOI: 10.1016/j.jinsphys.2010.09.008] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2010] [Revised: 09/25/2010] [Accepted: 09/25/2010] [Indexed: 05/30/2023]
Abstract
Adult emergence of univoltine temperate insect species and its synchronization with specific host phenological stages is mainly regulated by obligatory pupal diapause. Although a few studies have investigated the factors affecting diapause intensity, little attention has been paid to the physiological alterations and metabolic regulation that take place during diapause. Here, we describe differences in diapause between a highland and a coastal Greek population of the European cherry fruit fly Rhagoletis cerasi, a major pest of sweet and sour cherries in many European countries. Pupae of both populations were exposed to the environmental conditions prevailing in the two areas and diapause termination was observed under laboratory conditions. The regulation of energetic metabolites during the long pupae stage was examined under both field and laboratory conditions. Differences in diapause intensity revealed that the two populations have adapted to the local geographical and climatic conditions and have different requirements for low temperatures to terminate diapause. The coastal population undergoes a shorter diapause and adults emerge more rapidly, especially in the highland area. The highland population failed to terminate diapause (<40% adult emergence) in the coastal area. Both populations draw on their major energetic reserves (lipids and protein) similarly during diapause. Nevertheless, regulation of carbohydrate and glycogen reserves seems to vary between the populations: major peaks of these stored nutrients occur on different dates in the two populations, suggesting a differential regulation. Differences in diapause intensity imply a genetic differentiation between the two populations. The importance of our findings in understanding the physiological patterns during obligatory diapause of a univoltine insect species, as well as the practical implications for the development of specific phenological models for the European cherry fruit fly are discussed.
Collapse
Affiliation(s)
- Stella A Papanastasiou
- Laboratory of Entomology and Agricultural Zoology, Department of Agriculture, Crop Production and Rural Environment, University of Thessaly, Greece
| | | | | | | | | |
Collapse
|
17
|
Zacharopoulou A, Augustinos AA, Sayed WAA, Robinson AS, Franz G. Mitotic and polytene chromosomes analysis of the oriental fruit fly, Bactrocera dorsalis (Hendel) (Diptera: Tephritidae). Genetica 2010; 139:79-90. [PMID: 20844937 DOI: 10.1007/s10709-010-9495-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2010] [Accepted: 08/27/2010] [Indexed: 11/28/2022]
Abstract
The Oriental fruit fly, Batrocera dorsalis s.s. (Hendel) is one of the most destructive agricultural pests, belonging to a large group of difficult to distinguish morphologically species, referred as the B. dorsalis complex. We report here a cytogenetic analysis of two laboratory strains of the species and provide a photographic polytene chromosome map from larval salivary glands. The mitotic complement consists of six chromosome pairs including a heteromorphic sex (XX/XY) chromosome pair. Analysis of the polytene complement has shown a total of five polytene chromosomes (10 polytene arms) that correspond to the five autosomes. The most important landmarks of each polytene chromosome and characteristic asynapsis at a specific chromosomal region are presented and discussed. Chromosomal homology between B. dorsalis and Ceratitis capitata has been determined by comparing chromosome banding patterns. The detection of chromosome inversions in both B. dorsalis strains is shown and discussed. Our results show that the polytene maps presented here are suitable for cytogenetic analysis of this species and can be used for comparative studies among species of the Tephritidae family. They also provide a diagnostic tool that could accelerate species identification within the B. dorsalis complex and could shed light on the ongoing speciation in this complex. Polytene chromosome maps can facilitate the development of biological control methods and support the genome mapping project of the species that is currently in progress.
Collapse
Affiliation(s)
- Antigone Zacharopoulou
- Joint FAO/IAEA Programme of Nuclear Techniques in Food and Agriculture, International Atomic Energy Agency, Agency's Laboratories, Seibersdorf, Austria.
| | | | | | | | | |
Collapse
|
18
|
Augustinos AA, Stratikopoulos EE, Drosopoulou E, Kakani EG, Mavragani-Tsipidou P, Zacharopoulou A, Mathiopoulos KD. Isolation and characterization of microsatellite markers from the olive fly, Bactrocera oleae, and their cross-species amplification in the Tephritidae family. BMC Genomics 2008; 9:618. [PMID: 19099577 PMCID: PMC2635384 DOI: 10.1186/1471-2164-9-618] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2008] [Accepted: 12/19/2008] [Indexed: 11/10/2022] Open
Abstract
Background The Tephritidae family of insects includes the most important agricultural pests of fruits and vegetables, belonging mainly to four genera (Bactrocera, Ceratitis, Anastrepha and Rhagoletis). The olive fruit fly, Bactrocera oleae, is the major pest of the olive fruit. Currently, its control is based on chemical insecticides. Environmentally friendlier methods have been attempted in the past (Sterile Insect Technique), albeit with limited success. This was mainly attributed to the lack of knowledge on the insect's behaviour, ecology and genetic structure of natural populations. The development of molecular markers could facilitate the access in the genome and contribute to the solution of the aforementioned problems. We chose to focus on microsatellite markers due to their abundance in the genome, high degree of polymorphism and easiness of isolation. Results Fifty-eight microsatellite-containing clones were isolated from the olive fly, Bactrocera oleae, bearing a total of sixty-two discrete microsatellite motifs. Forty-two primer pairs were designed on the unique sequences flanking the microsatellite motif and thirty-one of them amplified a PCR product of the expected size. The level of polymorphism was evaluated against wild and laboratory flies and the majority of the markers (93.5%) proved highly polymorphic. Thirteen of them presented a unique position on the olive fly polytene chromosomes by in situ hybridization, which can serve as anchors to correlate future genetic and cytological maps of the species, as well as entry points to the genome. Cross-species amplification of these markers to eleven Tephritidae species and sequencing of thirty-one of the amplified products revealed a varying degree of conservation that declines outside the Bactrocera genus. Conclusion Microsatellite markers are very powerful tools for genetic and population analyses, particularly in species deprived of any other means of genetic analysis. The presented set of microsatellite markers possesses all features that would render them useful in such analyses. This could also prove helpful for species where SIT is a desired outcome, since the development of effective SIT can be aided by detailed knowledge at the genetic and molecular level. Furthermore, their presented efficacy in several other species of the Tephritidae family not only makes them useful for their analysis but also provides tools for phylogenetic comparisons among them.
Collapse
Affiliation(s)
- Antonios A Augustinos
- Department of Biochemistry and Biotechnology, University of Thessaly, Thessaly, Greece.
| | | | | | | | | | | | | |
Collapse
|