1
|
Ali M, Polgári D, Sepsi A, Kontra L, Dalmadi Á, Havelda Z, Sági L, Kis A. Rapid and cost-effective molecular karyotyping in wheat, barley, and their cross-progeny by chromosome-specific multiplex PCR. PLANT METHODS 2024; 20:37. [PMID: 38444026 PMCID: PMC10913579 DOI: 10.1186/s13007-024-01162-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 02/20/2024] [Indexed: 03/07/2024]
Abstract
BACKGROUND Interspecific hybridisation is a powerful tool for increasing genetic diversity in plant breeding programmes. Hexaploid wheat (Triticum aestivum, 2n = 42) × barley (Hordeum vulgare, 2n = 14) intergeneric hybrids can contribute to the transfer of agronomically useful traits by creating chromosome addition or translocation lines as well as full hybrids. Information on the karyotype of hybrid progenies possessing various combinations of wheat and barley chromosomes is thus essential for the subsequent breeding steps. Since the standard technique of chromosome in situ hybridisation is labour-intensive and requires specific skills. a routine, cost-efficient, and technically less demanding approach is beneficial both for research and breeding. RESULTS We developed a Multiplex Polymerase Chain Reaction (MPCR) method to identify individual wheat and barley chromosomes. Chromosome-specific primer pairs were designed based on the whole genome sequences of 'Chinese Spring' wheat and 'Golden Promise' barley as reference cultivars. A pool of potential primers was generated by applying a 20-nucleotide sliding window with consecutive one-nucleotide shifts on the reference genomes. After filtering for optimal primer properties and defined amplicon sizes to produce an ordered ladder-like pattern, the primer pool was manually curated and sorted into four MPCR primer sets for the wheat A, B, and D sub-genomes, and for the barley genome. The designed MPCR primer sets showed high chromosome specificity in silico for the genome sequences of all 18 wheat and barley cultivars tested. The MPCR primers proved experimentally also chromosome-specific for the reference cultivars as well as for 13 additional wheat and four barley genotypes. Analyses of 16 wheat × barley F1 hybrid plants demonstrated that the MPCR primer sets enable the fast and one-step detection of all wheat and barley chromosomes. Finally, the established genotyping system was fully corroborated with the standard genomic in situ hybridisation (GISH) technique. CONCLUSIONS Wheat and barley chromosome-specific MPCR offers a fast, labour-friendly, and versatile alternative to molecular cytogenetic detection of individual chromosomes. This method is also suitable for the high-throughput analysis of distinct (sub)genomes, and, in contrast to GISH, can be performed with any tissue type. The designed primer sets proved to be highly chromosome-specific over a wide range of wheat and barley genotypes as well as in wheat × barley hybrids. The described primer design strategy can be extended to many species with precise genome sequence information.
Collapse
Affiliation(s)
- Mohammad Ali
- Institute of Genetics and Biotechnology, Hungarian University of Agriculture and Life Sciences, Gödöllő, 2100, Hungary
- Doctoral School of Plant Sciences, Hungarian University of Agriculture and Life Sciences, Gödöllő, 2100, Hungary
| | - Dávid Polgári
- Institute of Genetics and Biotechnology, Hungarian University of Agriculture and Life Sciences, Gödöllő, 2100, Hungary
- Centre for Agricultural Research, Hungarian Research Network, Martonvásár, 2462, Hungary
- Agribiotechnology and Precision Breeding for Food Security National Laboratory, Plant Biotechnology Section, Centre for Agricultural Research, Martonvásár, 2462, Hungary
| | - Adél Sepsi
- Centre for Agricultural Research, Hungarian Research Network, Martonvásár, 2462, Hungary
| | - Levente Kontra
- Institute of Genetics and Biotechnology, Hungarian University of Agriculture and Life Sciences, Gödöllő, 2100, Hungary
- Institute of Experimental Medicine, Bioinformatics Core Facility, Hungarian Research Network, Budapest, 1083, Hungary
| | - Ágnes Dalmadi
- Institute of Genetics and Biotechnology, Hungarian University of Agriculture and Life Sciences, Gödöllő, 2100, Hungary
- Agribiotechnology and Precision Breeding for Food Security National Laboratory, Plant Biotechnology Section, Hungarian University of Agriculture and Life Sciences, Gödöllő, 2100, Hungary
| | - Zoltán Havelda
- Institute of Genetics and Biotechnology, Hungarian University of Agriculture and Life Sciences, Gödöllő, 2100, Hungary
- Agribiotechnology and Precision Breeding for Food Security National Laboratory, Plant Biotechnology Section, Hungarian University of Agriculture and Life Sciences, Gödöllő, 2100, Hungary
| | - László Sági
- Centre for Agricultural Research, Hungarian Research Network, Martonvásár, 2462, Hungary.
- Agribiotechnology and Precision Breeding for Food Security National Laboratory, Plant Biotechnology Section, Centre for Agricultural Research, Martonvásár, 2462, Hungary.
| | - András Kis
- Institute of Genetics and Biotechnology, Hungarian University of Agriculture and Life Sciences, Gödöllő, 2100, Hungary.
| |
Collapse
|
2
|
Tan B, Zhao L, Li L, Zhang H, Zhu W, Xu L, Wang Y, Zeng J, Fan X, Sha L, Wu D, Cheng Y, Zhang H, Chen G, Zhou Y, Kang H. Identification of a Wheat- Psathyrostachys huashanica 7Ns Ditelosomic Addition Line Conferring Early Maturation by Cytological Analysis and Newly Developed Molecular and FISH Markers. FRONTIERS IN PLANT SCIENCE 2021; 12:784001. [PMID: 34956281 PMCID: PMC8695443 DOI: 10.3389/fpls.2021.784001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 11/12/2021] [Indexed: 06/14/2023]
Abstract
Early maturation is an important objective in wheat breeding programs that could facilitate multiple-cropping systems, decrease disaster- and disease-related losses, ensure stable wheat production, and increase economic benefits. Exploitation of novel germplasm from wild relatives of wheat is an effective means of breeding for early maturity. Psathyrostachys huashanica Keng f. ex P. C. KUO (2n=2x=14, NsNs) is a promising source of useful genes for wheat genetic improvement. In this study, we characterized a novel wheat-P. huashanica line, DT23, derived from distant hybridization between common wheat and P. huashanica. Fluorescence in situ hybridization (FISH) and sequential genomic in situ hybridization (GISH) analyses indicated that DT23 is a stable wheat-P. huashanica ditelosomic addition line. FISH painting and PCR-based landmark unique gene markers analyses further revealed that DT23 is a wheat-P. huashanica 7Ns ditelosomic addition line. Observation of spike differentiation and the growth period revealed that DT23 exhibited earlier maturation than the wheat parents. This is the first report of new earliness per se (Eps) gene(s) probably associated with a group 7 chromosome of P. huashanica. Based on specific locus-amplified fragment sequencing technology, 45 new specific molecular markers and 19 specific FISH probes were developed for the P. huashanica 7Ns chromosome. Marker validation analyses revealed that two specific markers distinguished the Ns genome chromosomes of P. huashanica and the chromosomes of other wheat-related species. These newly developed FISH probes specifically detected Ns genome chromosomes of P. huashanica in the wheat background. The DT23 line will be useful for breeding early maturing wheat. The specific markers and FISH probes developed in this study can be used to detect and trace P. huashanica chromosomes and chromosomal segments carrying elite genes in diverse materials.
Collapse
Affiliation(s)
- Binwen Tan
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
| | - Lei Zhao
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
| | - Lingyu Li
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
| | - Hao Zhang
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
| | - Wei Zhu
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
| | - Lili Xu
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Yi Wang
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
| | - Jian Zeng
- College of Resources, Sichuan Agricultural University, Chengdu, China
| | - Xing Fan
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
| | - Lina Sha
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Dandan Wu
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
| | - Yiran Cheng
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
| | - Haiqin Zhang
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Guoyue Chen
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
| | - Yonghong Zhou
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
| | - Houyang Kang
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
3
|
Lenykó-Thegze A, Fábián A, Mihók E, Makai D, Cseh A, Sepsi A. Pericentromeric chromatin reorganisation follows the initiation of recombination and coincides with early events of synapsis in cereals. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 107:1585-1602. [PMID: 34171148 DOI: 10.1111/tpj.15391] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 06/04/2021] [Accepted: 06/14/2021] [Indexed: 06/13/2023]
Abstract
The reciprocal exchange of genetic information between homologous chromosomes during meiotic recombination is essential to secure balanced chromosome segregation and to promote genetic diversity. The chromosomal position and frequency of reciprocal genetic exchange shapes the efficiency of breeding programmes and influences crop improvement under a changing climate. In large genome cereals, such as wheat and barley, crossovers are consistently restricted to subtelomeric chromosomal regions, thus preventing favourable allele combinations being formed within a considerable proportion of the genome, including interstitial and pericentromeric chromatin. Understanding the key elements driving crossover designation is therefore essential to broaden the regions available for crossovers. Here, we followed early meiotic chromatin dynamism in cereals through the visualisation of a homologous barley chromosome arm pair stably transferred into the wheat genetic background. By capturing the dynamics of a single chromosome arm at the same time as detecting the undergoing events of meiotic recombination and synapsis, we showed that subtelomeric chromatin of homologues synchronously transitions to an open chromatin structure during recombination initiation. By contrast, pericentromeric and interstitial regions preserved their closed chromatin organisation and become unpackaged only later, concomitant with initiation of recombinatorial repair and the initial assembly of the synaptonemal complex. Our results raise the possibility that the closed pericentromeric chromatin structure in cereals may influence the fate decision during recombination initiation, as well as the spatial development of synapsis, and may also explain the suppression of crossover events in the proximity of the centromeres.
Collapse
Affiliation(s)
- Andrea Lenykó-Thegze
- Department of Biological Resources, Eötvös Loránd Research Network, Centre for Agricultural Research, Brunszvik u. 2, Martonvásár, 2462, Hungary
| | - Attila Fábián
- Department of Biological Resources, Eötvös Loránd Research Network, Centre for Agricultural Research, Brunszvik u. 2, Martonvásár, 2462, Hungary
| | - Edit Mihók
- Department of Biological Resources, Eötvös Loránd Research Network, Centre for Agricultural Research, Brunszvik u. 2, Martonvásár, 2462, Hungary
| | - Diána Makai
- Department of Biological Resources, Eötvös Loránd Research Network, Centre for Agricultural Research, Brunszvik u. 2, Martonvásár, 2462, Hungary
| | - András Cseh
- Department of Molecular Breeding, Eötvös Loránd Research Network, Centre for Agricultural Research, Brunszvik u. 2, Martonvásár, 2462, Hungary
| | - Adél Sepsi
- Department of Biological Resources, Eötvös Loránd Research Network, Centre for Agricultural Research, Brunszvik u. 2, Martonvásár, 2462, Hungary
- Department of Applied Biotechnology and Food Science (ABÉT), BME, Budapest University of Technology and Economics, Műegyetem rkp. 3-9, Budapest, 1111, Hungary
| |
Collapse
|
4
|
Adonina IG, Timonova EM, Salina EA. Introgressive Hybridization of Common Wheat: Results and Prospects. RUSS J GENET+ 2021. [DOI: 10.1134/s1022795421030029] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
5
|
Ivanizs L, Monostori I, Farkas A, Megyeri M, Mikó P, Türkösi E, Gaál E, Lenykó-Thegze A, Szőke-Pázsi K, Szakács É, Darkó É, Kiss T, Kilian A, Molnár I. Unlocking the Genetic Diversity and Population Structure of a Wild Gene Source of Wheat, Aegilops biuncialis Vis., and Its Relationship With the Heading Time. FRONTIERS IN PLANT SCIENCE 2019; 10:1531. [PMID: 31824545 PMCID: PMC6882925 DOI: 10.3389/fpls.2019.01531] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Accepted: 11/01/2019] [Indexed: 06/02/2023]
Abstract
Understanding the genetic diversity of Aegilops biuncialis, a valuable source of agronomical useful genes, may significantly facilitate the introgression breeding of wheat. The genetic diversity and population structure of 86 Ae. biuncialis genotypes were investigated by 32700 DArT markers with the simultaneous application of three statistical methods- neighbor-joining clustering, Principal Coordinate Analysis, and the Bayesian approach to classification. The collection of Ae. biuncialis accessions was divided into five groups that correlated well with their eco-geographic habitat: A (North Africa), B (mainly from Balkans), C (Kosovo and Near East), D (Turkey, Crimea, and Peloponnese), and E (Azerbaijan and the Levant region). The diversity between the Ae. biuncialis accessions for a phenological trait (heading time), which is of decisive importance in the adaptation of plants to different eco-geographical environments, was studied over 3 years. A comparison of the intraspecific variation in the heading time trait by means of analysis of variance and principal component analysis revealed four phenotypic categories showing association with the genetic structure and geographic distribution, except for minor differences. The detailed exploration of genetic and phenologic divergence provides an insight into the adaptation capacity of Ae. biuncialis, identifying promising genotypes that could be utilized for wheat improvement.
Collapse
Affiliation(s)
- László Ivanizs
- Agricultural Institute, Centre for Agricultural Research, Martonvásár, Hungary
| | - István Monostori
- Agricultural Institute, Centre for Agricultural Research, Martonvásár, Hungary
| | - András Farkas
- Agricultural Institute, Centre for Agricultural Research, Martonvásár, Hungary
| | - Mária Megyeri
- Agricultural Institute, Centre for Agricultural Research, Martonvásár, Hungary
| | - Péter Mikó
- Agricultural Institute, Centre for Agricultural Research, Martonvásár, Hungary
| | - Edina Türkösi
- Agricultural Institute, Centre for Agricultural Research, Martonvásár, Hungary
| | - Eszter Gaál
- Agricultural Institute, Centre for Agricultural Research, Martonvásár, Hungary
| | | | - Kitti Szőke-Pázsi
- Agricultural Institute, Centre for Agricultural Research, Martonvásár, Hungary
| | - Éva Szakács
- Agricultural Institute, Centre for Agricultural Research, Martonvásár, Hungary
| | - Éva Darkó
- Agricultural Institute, Centre for Agricultural Research, Martonvásár, Hungary
| | - Tibor Kiss
- Agricultural Institute, Centre for Agricultural Research, Martonvásár, Hungary
| | - Andrzej Kilian
- University of Canberra, Diversity Array Technologies, Canberra, ACT, Australia
| | - István Molnár
- Agricultural Institute, Centre for Agricultural Research, Martonvásár, Hungary
- Institute of Experimental Botany, Center of the Region Haná for Biotechnological and Agricultural Research, Olomouc, Czechia
| |
Collapse
|
6
|
Danilova TV, Poland J, Friebe B. Production of a complete set of wheat-barley group-7 chromosome recombinants with increased grain β-glucan content. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2019; 132:3129-3141. [PMID: 31535163 DOI: 10.1007/s00122-019-03411-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 07/29/2019] [Indexed: 06/10/2023]
Abstract
Wheat-barley group-7 recombinant chromosomes were selected using molecular cytogenetics and SNP markers; increased grain β-glucan content was observed in wheat plants with two and four copies of HvCslF6. The soluble dietary fiber (1-3)(1-4) mixed linked β-D-glucan from cereal grains is a valuable component of a healthy diet, which reduces risks of coronary disease and diabetes. Although wheat is an important cereal crop providing a substantial portion of daily calories and protein intake in the human diet, it has a low level of β-glucan. Owing to the plasticity of the polyploid wheat genome, agronomically important traits absent in the wheat primary gene pool can be introgressed from distant relatives. Barley (Hordeum vulgare L.) has a high grain β-glucan content. Earlier, we introgressed this trait into wheat in the form of whole arm compensating Robertsonian translocations (RobT) involving group-7 chromosomes of barley and all three sub-genomes of hexaploid wheat (Triticum aestivum L). In the presented research, we shortened the barley 7HL arms in these RobTs to small pericentromeric segments, using induced wheat-barley homoeologous recombination. The recombinants were selected using SNP markers and molecular cytogenetics. Plants, comprising barley cellulose synthase-like F6 gene (HvCslF6), responsible for β-glucan synthesis, had a higher grain β-glucan content than the wheat control. Three wheat-barley group-7 recombinant chromosomes involving the A, B and D sub-genomes laid the basis for a multiple-copy gene introgression to hexaploid wheat. It is hypothesized that further increases in the β-glucan content in wheat grain can be obtained by increasing the number of HvCslF6 copies through combining several recombinant chromosomes in one line. The wheat lines with four copies of HvCslF6 exceeded the β-glucan content of the lines with two copies.
Collapse
Affiliation(s)
- Tatiana V Danilova
- Department of Plant Pathology, Wheat Genetics Resource Center, Throckmorton Plant Sciences Center, Kansas State University, Manhattan, KS, 66506-5502, USA
- Department of Plant Sciences, North Dakota State University, Fargo, ND, 58108, USA
| | - Jesse Poland
- Department of Plant Pathology, Wheat Genetics Resource Center, Throckmorton Plant Sciences Center, Kansas State University, Manhattan, KS, 66506-5502, USA
| | - Bernd Friebe
- Department of Plant Pathology, Wheat Genetics Resource Center, Throckmorton Plant Sciences Center, Kansas State University, Manhattan, KS, 66506-5502, USA.
| |
Collapse
|
7
|
Danilova TV, Poland J, Friebe B. Production of a complete set of wheat-barley group-7 chromosome recombinants with increased grain β-glucan content. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2019; 132:3129-3141. [PMID: 31535163 DOI: 10.1007/s00122-019-03411-3413] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 07/29/2019] [Indexed: 05/20/2023]
Abstract
Wheat-barley group-7 recombinant chromosomes were selected using molecular cytogenetics and SNP markers; increased grain β-glucan content was observed in wheat plants with two and four copies of HvCslF6. The soluble dietary fiber (1-3)(1-4) mixed linked β-D-glucan from cereal grains is a valuable component of a healthy diet, which reduces risks of coronary disease and diabetes. Although wheat is an important cereal crop providing a substantial portion of daily calories and protein intake in the human diet, it has a low level of β-glucan. Owing to the plasticity of the polyploid wheat genome, agronomically important traits absent in the wheat primary gene pool can be introgressed from distant relatives. Barley (Hordeum vulgare L.) has a high grain β-glucan content. Earlier, we introgressed this trait into wheat in the form of whole arm compensating Robertsonian translocations (RobT) involving group-7 chromosomes of barley and all three sub-genomes of hexaploid wheat (Triticum aestivum L). In the presented research, we shortened the barley 7HL arms in these RobTs to small pericentromeric segments, using induced wheat-barley homoeologous recombination. The recombinants were selected using SNP markers and molecular cytogenetics. Plants, comprising barley cellulose synthase-like F6 gene (HvCslF6), responsible for β-glucan synthesis, had a higher grain β-glucan content than the wheat control. Three wheat-barley group-7 recombinant chromosomes involving the A, B and D sub-genomes laid the basis for a multiple-copy gene introgression to hexaploid wheat. It is hypothesized that further increases in the β-glucan content in wheat grain can be obtained by increasing the number of HvCslF6 copies through combining several recombinant chromosomes in one line. The wheat lines with four copies of HvCslF6 exceeded the β-glucan content of the lines with two copies.
Collapse
Affiliation(s)
- Tatiana V Danilova
- Department of Plant Pathology, Wheat Genetics Resource Center, Throckmorton Plant Sciences Center, Kansas State University, Manhattan, KS, 66506-5502, USA
- Department of Plant Sciences, North Dakota State University, Fargo, ND, 58108, USA
| | - Jesse Poland
- Department of Plant Pathology, Wheat Genetics Resource Center, Throckmorton Plant Sciences Center, Kansas State University, Manhattan, KS, 66506-5502, USA
| | - Bernd Friebe
- Department of Plant Pathology, Wheat Genetics Resource Center, Throckmorton Plant Sciences Center, Kansas State University, Manhattan, KS, 66506-5502, USA.
| |
Collapse
|
8
|
Türkösi E, Darko E, Rakszegi M, Molnár I, Molnár-Láng M, Cseh A. Development of a new 7BS.7HL winter wheat-winter barley Robertsonian translocation line conferring increased salt tolerance and (1,3;1,4)-β-D-glucan content. PLoS One 2018; 13:e0206248. [PMID: 30395616 PMCID: PMC6218033 DOI: 10.1371/journal.pone.0206248] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 10/09/2018] [Indexed: 01/01/2023] Open
Abstract
Interspecific hybridization between bread wheat (Triticum aestivum, 2n = 42) and related species allows the transfer of agronomic and quality traits, whereby subsequent generations comprise an improved genetic background and can be directly applied in wheat breeding programmes. While wild relatives are frequently used as sources of agronomically favourable traits, cultivated species can also improve wheat quality and stress resistance. A salt-tolerant 'Asakaze'/'Manas' 7H disomic addition line (2n = 44) with elevated β-glucan content, but with low fertility and an unstable genetic background was developed in an earlier wheat-barley prebreeding programme. The aim of the present study was to take this hybridization programme further and transfer the favourable barley traits into a more stable genetic background. Taking advantage of the breakage-fusion mechanism of univalent chromosomes, the 'Rannaya' winter wheat 7B monosomic line was used as female partner to the 7H addition line male, leading to the development of a compensating wheat/barley Robertsonian translocation line (7BS.7HL centric fusion, 2n = 42) exhibiting higher salt tolerance and elevated grain β-glucan content. Throughout the crossing programme, comprising the F1-F4 generations, genomic in situ hybridization, fluorescence in situ hybridization and chromosome-specific molecular markers were used to trace and identify the wheat and barley chromatin. Investigations on salt tolerance during germination and on the (1,3;1,4)-β-D-glucan (mixed-linkage glucan [MLG]) content of the seeds confirmed the salt tolerance and elevated grain MLG content of the translocation line, which can be directly applied in current wheat breeding programmes.
Collapse
Affiliation(s)
- Edina Türkösi
- Department of Plant Genetic Resources, Agricultural Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, Martonvásár, Hungary
| | - Eva Darko
- Department of Plant Physiology, Agricultural Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, Martonvásár, Hungary
| | - Marianna Rakszegi
- Cereal Breeding Department, Agricultural Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, Martonvásár, Hungary
| | - István Molnár
- Maize Breeding Department, Agricultural Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, Martonvásár, Hungary
| | - Márta Molnár-Láng
- Department of Plant Genetic Resources, Agricultural Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, Martonvásár, Hungary
| | - András Cseh
- Molecular Breeding Department, Agricultural Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, Martonvásár, Hungary
| |
Collapse
|
9
|
Ivanizs L, Farkas A, Linc G, Molnár-Láng M, Molnár I. Molecular cytogenetic and morphological characterization of two wheat-barley translocation lines. PLoS One 2018; 13:e0198758. [PMID: 29889875 PMCID: PMC5995406 DOI: 10.1371/journal.pone.0198758] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Accepted: 05/24/2018] [Indexed: 11/18/2022] Open
Abstract
Barley chromosome 5H, carrying important QTLs for plant adaptation and tolerance to abiotic stresses, is extremely instable in the wheat genetic background and is eliminated in the early generations of wheat-barley crosses. A spontaneous wheat-barley 5HS-7DS.7DL translocation was previously obtained among the progenies of the Mv9kr1 x Igri hybrid. The present work reports on the transfer of the 5HS-7DS.7DL translocation into a modern wheat cultivar, Mv Bodri, in order to use it in the wheat breeding program. The comparison of the hybridization bands of DNA repeats HvT01, pTa71, (GAA)n and the barley centromere-specific (AGGGAG)n in Igri barley and the 5HS-7DS.7DL translocation, together with the visualization of the barley chromatin made it possible to determine the size of the introgressed barley segment, which was approximately 74% of the whole 5HS. Of the 29 newly developed PCR markers, whose source ESTs were selected from the Genome Zipper of barley chromosome 5H, 23 were mapped in the introgressed 1-0.26 FL 5HS bin, three were located in the missing C-0.26 FL region, while three markers were specific for 5HL. The translocation breakpoint was flanked by markers Hv7502 and Hv3949. A comparison of the parental wheat cultivars and the wheat-barley introgression lines indicated that the presence of the translocation improved tillering ability in the Mv9kr1 and Mv Bodri genetic background. The similar or better yield components under high- or low-input cultivation environments, respectively, indicated that the 5HS-7DS.7DL translocation had little or no negative effect on yield components, making it a promising genotype to improve wheat genetic diversity. These results promise to accelerate functional genomic studies on barley chromosome 5H and to support pre-breeding and breeding research on wheat.
Collapse
Affiliation(s)
- László Ivanizs
- Agricultural Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, Martonvásár, Brunszvik u. 2, Hungary
| | - András Farkas
- Agricultural Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, Martonvásár, Brunszvik u. 2, Hungary
| | - Gabriella Linc
- Agricultural Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, Martonvásár, Brunszvik u. 2, Hungary
| | - Márta Molnár-Láng
- Agricultural Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, Martonvásár, Brunszvik u. 2, Hungary
| | - István Molnár
- Agricultural Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, Martonvásár, Brunszvik u. 2, Hungary
- Institute of Experimental Botany of the Czech Academy of Sciences (IEB), Centre of the Region Haná for Biotechnological and Agricultural Research, Šlechtitelů 31, Olomouc-Holice, Czech Republic
- * E-mail:
| |
Collapse
|
10
|
Rakszegi M, Molnár I, Lovegrove A, Darkó É, Farkas A, Láng L, Bedő Z, Doležel J, Molnár-Láng M, Shewry P. Addition of Aegilops U and M Chromosomes Affects Protein and Dietary Fiber Content of Wholemeal Wheat Flour. FRONTIERS IN PLANT SCIENCE 2017; 8:1529. [PMID: 28932231 PMCID: PMC5592229 DOI: 10.3389/fpls.2017.01529] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Accepted: 08/21/2017] [Indexed: 05/22/2023]
Abstract
Cereal grain fiber is an important health-promoting component in the human diet. One option to improve dietary fiber content and composition in wheat is to introduce genes from its wild relatives Aegilops biuncialis and Aegilops geniculata. This study showed that the addition of chromosomes 2Ug, 4Ug, 5Ug, 7Ug, 2Mg, 5Mg, and 7Mg of Ae. geniculata and 3Ub, 2Mb, 3Mb, and 7Mb of Ae. biuncialis into bread wheat increased the seed protein content. Chromosomes 1Ug and 1Mg increased the proportion of polymeric glutenin proteins, while the addition of chromosomes 1Ub and 6Ub led to its decrease. Both Aegilops species had higher proportions of β-glucan compared to arabinoxylan (AX) than wheat lines, and elevated β-glucan content was also observed in wheat chromosome addition lines 5U, 7U, and 7M. The AX content in wheat was increased by the addition of chromosomes 5Ug, 7Ug, and 1Ub while water-soluble AX was increased by the addition of chromosomes 5U, 5M, and 7M, and to a lesser extent by chromosomes 3, 4, 6Ug, and 2Mb. Chromosomes 5Ug and 7Mb also affected the structure of wheat AX, as shown by the pattern of oligosaccharides released by digestion with endoxylanase. These results will help to map genomic regions responsible for edible fiber content in Aegilops and will contribute to the efficient transfer of wild alleles in introgression breeding programs to obtain wheat varieties with improved health benefits. Key Message: Addition of Aegilops U- and M-genome chromosomes 5 and 7 improves seed protein and fiber content and composition in wheat.
Collapse
Affiliation(s)
- Marianna Rakszegi
- Agricultural Institute, Centre for Agricultural Research, Hungarian Academy of SciencesMartonvásár, Hungary
| | - István Molnár
- Agricultural Institute, Centre for Agricultural Research, Hungarian Academy of SciencesMartonvásár, Hungary
| | - Alison Lovegrove
- Department of Plant Science, Rothamsted ResearchHarpenden, United Kingdom
| | - Éva Darkó
- Agricultural Institute, Centre for Agricultural Research, Hungarian Academy of SciencesMartonvásár, Hungary
| | - András Farkas
- Agricultural Institute, Centre for Agricultural Research, Hungarian Academy of SciencesMartonvásár, Hungary
| | - László Láng
- Agricultural Institute, Centre for Agricultural Research, Hungarian Academy of SciencesMartonvásár, Hungary
| | - Zoltán Bedő
- Agricultural Institute, Centre for Agricultural Research, Hungarian Academy of SciencesMartonvásár, Hungary
| | - Jaroslav Doležel
- Institute of Experimental Botany, Centre of the Region Haná for Biotechnological and Agricultural ResearchOlomouc, Czechia
| | - Márta Molnár-Láng
- Agricultural Institute, Centre for Agricultural Research, Hungarian Academy of SciencesMartonvásár, Hungary
| | - Peter Shewry
- Department of Plant Science, Rothamsted ResearchHarpenden, United Kingdom
| |
Collapse
|
11
|
Türkösi E, Cseh A, Darkó É, Molnár-Láng M. Addition of Manas barley chromosome arms to the hexaploid wheat genome. BMC Genet 2016; 17:87. [PMID: 27328706 PMCID: PMC4915093 DOI: 10.1186/s12863-016-0393-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Accepted: 06/07/2016] [Indexed: 01/04/2023] Open
Abstract
Background Cultivated barley belongs to the tertiary genepool of hexaploid wheat. Genes of interest can be transferred from barley into wheat through wide hybridization. The application of wheat-barley introgression lines could provide an excellent tool for the transfer of earliness, favourable amino acid composition, biotic stress resistance, abiotic stress tolerance, or good tillering ability into wheat. Results A set of 10 wheat-barley ditelosomic addition lines (2HS, 2HL, 3HS, 3HL, 4HS, 4HL, 6HS, 6HL, 7HS and 7HL) was developed from the progenies of an Asakaze/Manas wheat-barley hybrid produced in Martonvásár, Hungary. The addition lines were selected from self-fertilized plants of the BC2F2-BC2F4 generations using genomic in situ hybridization (GISH) and were identified by fluorescence in situ hybridization (FISH) with repetitive DNA probes [HvT01, (GAA)7 and centromere-specific (AGGGAG)4 probes]. The cytogenetic identification was confirmed using barley arm-specific SSR and STS markers. The ditelosomic additions were propagated in the phytotron and in the field, and morphological parameters (plant height, tillering, length of the main spike, number of seeds/spike and seeds/plant, and spike characteristics) were described. In addition, the salt stress response of the ditelosomic additions was determined. Conclusions The six-rowed winter barley cultivar Manas is much better adapted to Central European environmental conditions than the two-rowed spring barley Betzes previously used in wheat-barley crosses. The production of wheat-barley ditelosomic addition lines has a wide range of applications both for breeding (transfer of useful genes to the recipient species) and for basic research (mapping of barley genes, genetic and evolutionary studies and heterologous expression of barley genes in the wheat background). Electronic supplementary material The online version of this article (doi:10.1186/s12863-016-0393-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Edina Türkösi
- Agricultural Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, H-2462, Martonvásár, P.O. Box 19, Hungary
| | - András Cseh
- Agricultural Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, H-2462, Martonvásár, P.O. Box 19, Hungary
| | - Éva Darkó
- Agricultural Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, H-2462, Martonvásár, P.O. Box 19, Hungary
| | - Márta Molnár-Láng
- Agricultural Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, H-2462, Martonvásár, P.O. Box 19, Hungary.
| |
Collapse
|
12
|
Schneider A, Rakszegi M, Molnár-Láng M, Szakács É. Production and cytomolecular identification of new wheat-perennial rye (Secale cereanum) disomic addition lines with yellow rust resistance (6R) and increased arabinoxylan and protein content (1R, 4R, 6R). TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2016; 129:1045-59. [PMID: 26883040 DOI: 10.1007/s00122-016-2682-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Accepted: 01/23/2016] [Indexed: 05/23/2023]
Abstract
Wheat-Secale cereanum addition lines with yellow rust resistance (6R) and increased arabinoxylan content (1R, 4R, 6R) have been selected and identified in order to increase biodiversity of wheat. Perennial rye (Secale cereanum, 2n = 2x = 14, RR) cultivar Kriszta has a large gene pool that can be exploited in wheat breeding. It has high protein and dietary fibre content, carries several resistance genes, tolerant to frost and drought, and adapts well to disadvantageous soil and weather conditions. In order to incorporate agronomically useful features from this perennial rye into cultivated wheat, backcross progenies derived from a cross between the wheat line Mv9kr1 and perennial rye 'Kriszta' have been produced, and addition lines disomic for 1R, 4R and 6R chromosomes have been selected using GISH, FISH and SSR markers. Quality measurements showed that addition of 'Kriszta' chromosomes 4R and 6R to the wheat genome had increased the total protein content. The 4R addition line contained slightly, while 1R and 6R additions significantly higher amount of arabinoxylan than the parental wheat line. Besides this, the 6R addition line appeared to be resistant to yellow rust in highly infected nurseries, consequently it may carry a new effective gene different from that harboured in the 1RS.1BL translocation for resistance to this disease.
Collapse
Affiliation(s)
- Annamária Schneider
- Agricultural Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, Brunszvik u. 2, 2462, Martonvásár, Hungary
| | - Marianna Rakszegi
- Agricultural Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, Brunszvik u. 2, 2462, Martonvásár, Hungary
| | - Márta Molnár-Láng
- Agricultural Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, Brunszvik u. 2, 2462, Martonvásár, Hungary
| | - Éva Szakács
- Agricultural Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, Brunszvik u. 2, 2462, Martonvásár, Hungary.
| |
Collapse
|
13
|
Li K, Hegarty J, Zhang C, Wan A, Wu J, Guedira GB, Chen X, Muñoz-Amatriaín M, Fu D, Dubcovsky J. Fine mapping of barley locus Rps6 conferring resistance to wheat stripe rust. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2016; 129:845-859. [PMID: 26875072 PMCID: PMC4799263 DOI: 10.1007/s00122-015-2663-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Accepted: 12/22/2015] [Indexed: 05/22/2023]
Abstract
KEY MESSAGE Barley resistance to wheat stripe rust has remained effective for a long time and, therefore, the genes underlying this resistance can be a valuable tool to engineer durable resistance in wheat. Wheat stripe rust, caused by Puccinia striiformis f. sp. tritici (Pst), is a major disease of wheat that is causing large economic losses in many wheat-growing regions of the world. Deployment of Pst resistance genes has been an effective strategy for controlling this pathogen, but many of these genes have been defeated by new Pst races. In contrast, genes providing resistance to this wheat pathogen in other grass species (nonhost resistance) have been more durable. Barley varieties (Hordeum vulgare ssp. vulgare) are predominately immune to wheat Pst, but we identified three accessions of wild barley (Hordeum vulgare ssp. spontaneum) that are susceptible to Pst. Using these accessions, we mapped a barley locus conferring resistance to Pst on the distal region of chromosome arm 7HL and designated it as Rps6. The detection of the same locus in the cultivated barley 'Tamalpais' and in the Chinese barley 'Y12' by an allelism test suggests that Rps6 may be a frequent component of barley intermediate host resistance to Pst. Using a high-density mapping population (>10,000 gametes) we precisely mapped Rps6 within a 0.14 cM region (~500 kb contig) that is colinear to regions in Brachypodium (<94 kb) and rice (<9 kb). Since no strong candidate gene was identified in these colinear regions, a dedicated positional cloning effort in barley will be required to identify Rps6. The identification of this and other barley genes conferring resistance to Pst can contribute to our understanding of the mechanisms for durable resistance against this devastating wheat pathogen.
Collapse
Affiliation(s)
- Kun Li
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, 271018, Shandong, China
- Department of Plant Sciences, University of California, Davis, CA, 95616, USA
| | - Joshua Hegarty
- Department of Plant Sciences, University of California, Davis, CA, 95616, USA
| | - Chaozhong Zhang
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, 271018, Shandong, China
| | - Anmin Wan
- Department of Plant Pathology, Washington State University, Pullman, WA, 99164, USA
| | - Jiajie Wu
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, 271018, Shandong, China
| | - Gina Brown Guedira
- USDA-ARS, Plant Science Research Unit, Department of Crop Science, North Carolina State University, Raleigh, NC, 27695, USA
| | - Xianming Chen
- Department of Plant Pathology, Washington State University, Pullman, WA, 99164, USA
- USDA-ARS, Wheat Genetics, Quality, Physiology, and Disease Research Unit, Pullman, WA, 99164, USA
| | - María Muñoz-Amatriaín
- Department of Botany and Plant Sciences, University of California, Riverside, CA, 92521, USA
| | - Daolin Fu
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, 271018, Shandong, China.
| | - Jorge Dubcovsky
- Department of Plant Sciences, University of California, Davis, CA, 95616, USA.
- Howard Hughes Medical Institute, Chevy Chase, MD, 20815, USA.
| |
Collapse
|
14
|
Gu AX, Shen SX, Wang YH, Zhao JJ, Xuan SX, Chen XP, Li XF, Luo SX, Zhao YJ. Generation and characterization of Brassica rapa ssp. pekinensis - B. oleracea var. capitata monosomic and disomic alien addition lines. J Genet 2015; 94:435-44. [PMID: 26440082 DOI: 10.1007/s12041-015-0542-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Five monosomic alien addition lines (MAALs) of Brassica rapa ssp. pekinensis - B. oleracea var. capitata were obtained by hybridization and backcrossing between B. rapa ssp. pekinensis (female parent) and B. oleracea var. capitata. The alien linkage groups were identified using 42 B. oleracea var. capitata linkage group-specific markers as B. oleracea linkage groups C2, C3, C6, C7 and C8. Based on the chromosomal karyotype of root tip cells, these five MAALs added individual chromosomes from B. oleracea var. capitata: chr 1 (the longest), chr 2 or 3, chr 5 (small locus of 25S rDNA), chr 7 (satellite-carrying) and chr 9 (the shortest). Five disomic alien addition lines were then generated by selfing their corresponding MAALs.
Collapse
Affiliation(s)
- Ai Xia Gu
- College of Horticulture, Agricultural University of Hebei, No. 289, Lingyusi Road, Baoding 071001, People's Republic of China.
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Nguyen V, Fleury D, Timmins A, Laga H, Hayden M, Mather D, Okada T. Addition of rye chromosome 4R to wheat increases anther length and pollen grain number. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2015; 128:953-64. [PMID: 25716820 DOI: 10.1007/s00122-015-2482-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Accepted: 02/09/2015] [Indexed: 05/25/2023]
Abstract
The research identified rye chromosome 4R arms associated with good pollinator traits, and demonstrated possible use of rye genetic resources to develop elite pollinators for hybrid wheat breeding. Bread wheat (Triticum aestivum) is a predominantly self-pollinating plant which has relatively small-sized anthers and produces a low number of pollen grains. These features limit the suitability of most wheat lines as pollinators for hybrid seed production. One strategy for improving the pollination ability of wheat is to introgress cross-pollination traits from related species. One such species is rye (Secale cereale L.), which has suitable traits such as high anther extrusion, long anthers containing large amounts of pollen and long pollen viability. Therefore, introducing these traits into wheat is of great interest in hybrid wheat breeding. Here, we investigated wheat-rye chromosome addition lines for the effects of rye chromosomes on anther and pollen development in wheat. Using a single nucleotide polymorphism genotyping array, we detected 984 polymorphic markers that showed expected syntenic relationships between wheat and rye. Our results revealed that the addition of rye chromosomes 1R or 2R reduced pollen fertility, while addition of rye chromosome 4R increased anther size by 16% and pollen grain number by 33%. The effect on anther length was associated with increases in both cell size and the number of endothecium cells and was attributed to the long arm of chromosome 4R. In contrast, the effect on pollen grain number was attributed to the short arm of chromosome 4R. These results indicate that rye chromosome 4R contains at least two genetic factors associated with increased anther size and pollen grain number that can favourably affect pollination traits in wheat.
Collapse
Affiliation(s)
- Vy Nguyen
- Australian Centre for Plant Functional Genomics and School of Agriculture, Food and Wine, Waite Research Institute, The University of Adelaide, Glen Osmond, SA, 5064, Australia
| | | | | | | | | | | | | |
Collapse
|
16
|
Lafiandra D, Riccardi G, Shewry PR. Improving cereal grain carbohydrates for diet and health. J Cereal Sci 2014; 59:312-326. [PMID: 24966450 PMCID: PMC4064937 DOI: 10.1016/j.jcs.2014.01.001] [Citation(s) in RCA: 125] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Revised: 12/20/2013] [Accepted: 01/01/2014] [Indexed: 12/20/2022]
Abstract
Starch and cell wall polysaccharides (dietary fibre) of cereal grains contribute to the health benefits associated with the consumption of whole grain cereal products, including reduced risk of obesity, type 2 diabetes, cardiovascular disease and colorectal cancer. The physiological bases for these effects are reviewed in relation to the structures and physical properties of the polysaccharides and their behaviour (including digestion and fermentation) in the gastro-intestinal tract. Strategies for modifying the content and composition of grain polysaccharides to increase their health benefits are discussed, including exploiting natural variation and using mutagenesis and transgenesis to generate further variation. These studies will facilitate the development of new types of cereals and cereal products to face the major health challenges of the 21st century.
Collapse
Affiliation(s)
- Domenico Lafiandra
- Università degli Studi della Tuscia, Department of Agriculture, Forestry, Nature and Energy, Via S.C. De Lellis, Viterbo 01100, Italy
| | - Gabriele Riccardi
- Università degli Studi di Napoli Federico II, Department of Clinical Medicine and Surgery, Via Pansini 5, Napoli 80131, Italy
| | - Peter R. Shewry
- Department of Plant Biology and Crop Science, Rothamsted Research, Harpenden, Hertfordshire AL5 2JQ, UK
- School of Agriculture, Policy and Development, University of Reading, Earley Gate, Whiteknights Road, Reading RG6 6AR, UK
| |
Collapse
|
17
|
Farkas A, Molnár I, Dulai S, Rapi S, Oldal V, Cseh A, Kruppa K, Molnár-Láng M. Increased micronutrient content (Zn, Mn) in the 3M(b)(4B) wheat - Aegilops biuncialis substitution and 3M(b).4BS translocation identified by GISH and FISH. Genome 2014; 57:61-7. [PMID: 24702063 DOI: 10.1139/gen-2013-0204] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
3M(b) Triticum aestivum L. (Mv9kr1) - Aegilops biuncialis Vis. (MvGB642) addition lines were crossed with the Chinese Spring ph1b mutant genotype (CSph1b) to produce 3M(b)-wheat chromosome rearrangements. In the F3 generation, 3M(b)(4B) substitution lines and 3M(b).4BS centric fusions were identified with in situ hybridization using repetitive and genomic DNA probes, and with SSR markers. Grain micronutrient analysis showed that the investigated Ae. biuncialis accession MvGB382 and the parental line MvGB642 are suitable gene sources for improving the grain micronutrient content of wheat, as they have higher K, Zn, Fe, and Mn contents. The results suggested that the Ae. biuncialis chromosome 3M(b) carries genes determining the grain micronutrient content, as the 3M(b).4BS centric fusion had significantly higher Zn and Mn contents compared with the recipient wheat cultivar. As yield-related traits, such as the number of tillers, the length of main spike, and spikelets per main spike, were similar in the 3M(b).4BS centric fusion and the parental wheat genotype, it can be concluded that this line could be used in pre-breeding programs aimed at enriching elite wheat cultivars with essential micronutrients.
Collapse
Affiliation(s)
- András Farkas
- a Agricultural Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, Brunszvik u. 2, H-2462 Martonvásár, Hungary
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Doležel J, Vrána J, Cápal P, Kubaláková M, Burešová V, Šimková H. Advances in plant chromosome genomics. Biotechnol Adv 2014; 32:122-36. [DOI: 10.1016/j.biotechadv.2013.12.011] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2013] [Revised: 12/20/2013] [Accepted: 12/21/2013] [Indexed: 01/09/2023]
|
19
|
Next generation characterisation of cereal genomes for marker discovery. BIOLOGY 2013; 2:1357-77. [PMID: 24833229 PMCID: PMC4009793 DOI: 10.3390/biology2041357] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2013] [Revised: 10/29/2013] [Accepted: 11/08/2013] [Indexed: 12/30/2022]
Abstract
Cereal crops form the bulk of the world’s food sources, and thus their importance cannot be understated. Crop breeding programs increasingly rely on high-resolution molecular genetic markers to accelerate the breeding process. The development of these markers is hampered by the complexity of some of the major cereal crop genomes, as well as the time and cost required. In this review, we address current and future methods available for the characterisation of cereal genomes, with an emphasis on faster and more cost effective approaches for genome sequencing and the development of markers for trait association and marker assisted selection (MAS) in crop breeding programs.
Collapse
|
20
|
Molnár-Láng M, Kruppa K, Cseh A, Bucsi J, Linc G. Identification and phenotypic description of new wheat – six-rowed winter barley disomic additions. Genome 2012; 55:302-11. [DOI: 10.1139/g2012-013] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
To increase the allelic variation in wheat–barley introgressions, new wheat–barley disomic addition lines were developed containing the 2H, 3H, 4H, 6H, and 7H chromosomes of the six-rowed Ukrainian winter barley ‘Manas’. This cultivar is agronomically much better adapted to Central European environmental conditions than the two-rowed spring barley ‘Betzes’ previously used. A single ‘Asakaze’ × ‘Manas’ wheat × barley hybrid plant was multiplied in vitro and one backcross plant was obtained after pollinating 354 regenerant hybrids with wheat. The addition lines were selected from the self-fertilized seeds of the 16 BC2 plants using genomic in situ hybridization. The addition lines were identified by fluorescence in situ hybridization using repetitive DNA probes (HvT01, GAA, pTa71, and Afa family), followed by confirmation with barley SSR markers. The addition lines were grown in the phytotron and in the field, and morphological parameters (plant height, fertility, tillering, and spike characteristics) were measured. The production of the disomic additions will make it possible to incorporate the DNA of six-rowed winter barley into the wheat genome. Addition lines are useful for genetic studies on the traits of six-rowed winter barley and for producing new barley dissection lines.
Collapse
Affiliation(s)
- Márta Molnár-Láng
- Agricultural Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, H-2462, Martonvásár, POB 19, Hungary
| | - Klaudia Kruppa
- Agricultural Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, H-2462, Martonvásár, POB 19, Hungary
| | - András Cseh
- Agricultural Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, H-2462, Martonvásár, POB 19, Hungary
| | - Julianna Bucsi
- Agricultural Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, H-2462, Martonvásár, POB 19, Hungary
| | - Gabriella Linc
- Agricultural Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, H-2462, Martonvásár, POB 19, Hungary
| |
Collapse
|