1
|
Lu N. Revisiting decade-old questions in proanthocyanidin biosynthesis: current understanding and new challenges. FRONTIERS IN PLANT SCIENCE 2024; 15:1373975. [PMID: 38595764 PMCID: PMC11002137 DOI: 10.3389/fpls.2024.1373975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Accepted: 03/18/2024] [Indexed: 04/11/2024]
Abstract
Proanthocyanidins (PAs), one of the most abundant natural polymers found in plants, are gaining increasing attention because of their beneficial effects for agriculture and human health. The study of PA biosynthesis has been active for decades, and progress has been drastically accelerated since the discovery of key enzymes such as Anthocyanidin Reductase (ANR), Leucoanthocyanidin Reductase (LAR), and key transcription factors such as Transparent Testa 2 (TT2) and Transparent Testa 8 (TT8) in the early 2000s. Scientists raised some compelling questions regarding PA biosynthesis about two decades ago in the hope that addressing these questions would lead to an enhanced understanding of PA biosynthesis in plants. These questions focus on the nature of starter and extension units for PA biosynthesis, the stereochemistry of PA monomers and intermediates, and how and where the polymerization or condensation steps work subcellularly. Here, I revisit these long-standing questions and provide an update on progress made toward answering them. Because of advanced technologies in genomics, bioinformatics and metabolomics, we now have a much-improved understanding of functionalities of key enzymes and identities of key intermediates in the PA biosynthesis and polymerization pathway. Still, several questions, particularly the ones related to intracellular PA transportation and deposition, as well as enzyme subcellular localization, largely remain to be explored. Our increasing understanding of PA biosynthesis in various plant species has led to a new set of compelling open questions, suggesting future research directions to gain a more comprehensive understanding of PA biosynthesis.
Collapse
Affiliation(s)
- Nan Lu
- BioDiscovery Institute and Department of Biological Sciences, University of North Texas, Denton, TX, United States
| |
Collapse
|
2
|
Long L, Zhao XT, Feng YM, Fan ZH, Zhao JR, Wu JF, Xu FC, Yuan M, Gao W. Profile of cotton flavonoids: Their composition and important roles in development and adaptation to adverse environments. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 201:107866. [PMID: 37392667 DOI: 10.1016/j.plaphy.2023.107866] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 06/02/2023] [Accepted: 06/26/2023] [Indexed: 07/03/2023]
Abstract
Cotton is a commercial crop that is cultivated in more than 50 countries. The production of cotton has severely diminished in recent years owing to adverse environments. Thus, it is a high priority of the cotton industry to produce resistant cultivars to prevent diminished cotton yields and quality. Flavonoids comprise one of the most important groups of phenolic metabolites in plants. However, the advantage and biological roles of flavonoids in cotton have yet not been studied in depth. In this study, we performed a widely targeted metabolic study and identified 190 flavonoids in cotton leaves that span seven different classes with flavones and flavonols as the dominant groups. Furthermore, flavanone-3-hydroxylase was cloned and silenced to knock down flavonoid production. The results show that the inhibition of flavonoid biosynthesis affects the growth and development of cotton and causes semi-dwarfing in cotton seedlings. We also revealed that the flavonoids contribute to cotton defense against ultraviolet radiation and Verticillium dahliae. Moreover, we discuss the promising role of flavonoids in cotton development and defense against biotic and abiotic stresses. This study provides valuable information to study the variety and biological functions of flavonoids in cotton and will help to profile the advantages of flavonoids in cotton breeding.
Collapse
Affiliation(s)
- Lu Long
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization (Henan University), Henan, 475004, PR China; School of Life Science, Henan University, Henan, 4750004, PR China; State Key Laboratory of Crop Stress Adaptation and Improvement, Henan University, Henan, 475004, PR China
| | - Xiao-Tong Zhao
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization (Henan University), Henan, 475004, PR China
| | - Ya-Mei Feng
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization (Henan University), Henan, 475004, PR China
| | - Zhi-Hao Fan
- School of Life Science, Henan University, Henan, 4750004, PR China
| | - Jing-Ruo Zhao
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization (Henan University), Henan, 475004, PR China
| | - Jian-Feng Wu
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization (Henan University), Henan, 475004, PR China; School of Life Science, Henan University, Henan, 4750004, PR China
| | - Fu-Chun Xu
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization (Henan University), Henan, 475004, PR China; Changzhi Medical College, Shanxi, 046000, PR China
| | - Man Yuan
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization (Henan University), Henan, 475004, PR China
| | - Wei Gao
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization (Henan University), Henan, 475004, PR China; School of Life Science, Henan University, Henan, 4750004, PR China; State Key Laboratory of Crop Stress Adaptation and Improvement, Henan University, Henan, 475004, PR China.
| |
Collapse
|
3
|
Li S, Zhang Y, Shi L, Cao S, Chen W, Yang Z. Involvement of a MYB Transcription Factor in Anthocyanin Biosynthesis during Chinese Bayberry ( Morella rubra) Fruit Ripening. BIOLOGY 2023; 12:894. [PMID: 37508327 PMCID: PMC10376099 DOI: 10.3390/biology12070894] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 06/17/2023] [Accepted: 06/19/2023] [Indexed: 07/30/2023]
Abstract
Anthocyanin is a class of water-soluble flavonoids found in Chinese bayberry (Morella rubra) that is not only responsible for the variety of colors visible in nature but also has numerous health-promoting benefits in humans. Through comparative transcriptomics, we isolated and identified a transcription factor (TF) of the R2R3-MYB type, MrMYB9, in order to explore the anthocyanin biosynthesis pathway in red and white Chinese bayberries. MrMYB9 transcript was positively correlated with anthocyanin level and anthocyanin biosynthetic gene expression during Chinese bayberry fruit maturation (R-values in the range 0.54-0.84, p < 0.05). Sequence analysis revealed that MrMYB9 shared a similar R2R3 domain with MYB activators of anthocyanin biosynthesis in other plants. MrMYB9 substantially transactivated promoters of anthocyanin biosynthesis-related EBGs (MrCHI, MrF3'H, and MrANS) and LBGs (MrUFGT) upon co-expression of the AtEGL3 gene. Our findings indicated that MrMYB9 may positively modulate anthocyanin accumulation in Chinese bayberry.
Collapse
Affiliation(s)
- Saisai Li
- College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo 315100, China
| | - Yijuan Zhang
- College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo 315100, China
| | - Liyu Shi
- College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo 315100, China
| | - Shifeng Cao
- College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo 315100, China
| | - Wei Chen
- College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo 315100, China
| | - Zhenfeng Yang
- College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo 315100, China
| |
Collapse
|
4
|
Shoeva OY, Mukhanova MA, Zakhrabekova S, Hansson M. Ant13 Encodes Regulatory Factor WD40 Controlling Anthocyanin and Proanthocyanidin Synthesis in Barley ( Hordeum vulgare L.). JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:6967-6977. [PMID: 37104658 DOI: 10.1021/acs.jafc.2c09051] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Flavonoid compounds like anthocyanins and proanthocyanidins are important plant secondary metabolites having wide biological activities for humans. In this study, the molecular function of the Ant13 locus, which is one of the key loci governing flavonoid synthesis in barley, was determined. It was found that Ant13 encodes a WD40-type regulatory protein, which is required for transcriptional activation of a set of structural genes encoding enzymes of flavonoid biosynthesis at the leaf sheath base (colored by anthocyanins) and in grains (which accumulate proanthocyanidins). Besides its role in flavonoid biosynthesis, pleiotropic effects of this gene in plant growth were revealed. The mutants deficient in the Ant13 locus showed similar germination rates but a decreased rate of root and shoot growth and yield-related parameters in comparison to the parental cultivars. This is the seventh Ant locus (among 30) for which molecular functions in flavonoid biosynthesis regulation have been determined.
Collapse
Affiliation(s)
- Olesya Yu Shoeva
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Lavrentjeva ave. 10, 630090 Novosibirsk, Russia
- Kurchatov Center for Genome Research of the Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Lavrentjeva ave. 10, 630090 Novosibirsk, Russia
- Faculty of Natural Sciences, Novosibirsk State University, Pirogova str. 1, 630090 Novosibirsk, Russia
| | - Marina A Mukhanova
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Lavrentjeva ave. 10, 630090 Novosibirsk, Russia
- Faculty of Natural Sciences, Novosibirsk State University, Pirogova str. 1, 630090 Novosibirsk, Russia
| | | | - Mats Hansson
- Department of Biology, Lund University, Sölvegatan 35B, 22362 Lund, Sweden
| |
Collapse
|
5
|
Li S, Li X, Wang X, Chang T, Peng Z, Guan C, Guan M. Flavonoid Synthesis-Related Genes Determine the Color of Flower Petals in Brassica napus L. Int J Mol Sci 2023; 24:ijms24076472. [PMID: 37047446 PMCID: PMC10094890 DOI: 10.3390/ijms24076472] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 03/14/2023] [Accepted: 03/24/2023] [Indexed: 03/31/2023] Open
Abstract
The color of rapeseed (Brassica napus L.) petal is usually yellow but can be milky-white to orange or pink. Thus, the petal color is a popular target in rapeseed breeding programs. In his study, metabolites and RNA were extracted from the yellow (Y), yellow/purple (YP), light purple (LP), and purple (P) rapeseed petals. Ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS), RNA-Seq, and quantitative real-time (qRT-PCR) analyses were performed to analyze the expression correlation of differential metabolites and differential genes. A total of 223 metabolites were identified in the petals of the three purple and yellow rapeseed varieties by UPLC-MS/MS. A total of 20511 differentially expressed genes (DEGs) between P, LP, YP, versus Y plant petals were detected. This study focused on the co-regulation of 4898 differential genes in the three comparison groups. Kyoto Encyclopedia of Genes and Genomes (KEGG) functional annotation and quantitative RT-PCR analysis showed that the expression of BnaA10g23330D (BnF3H) affects the synthesis of downstream peonidin and delphinidin and is a key gene regulating the purple color of petals in B. napus. L. The gene may play a key role in regulating rapeseed flower color; however, further studies are needed to verify this. These results deepen our understanding of the molecular mechanisms underlying petal color and provide the theoretical and practical basis for flower breeding targeting petal color.
Collapse
|
6
|
Vaughan SP, Baker JM, Primavesi LF, Patil A, King R, Hassani‐Pak K, Kulasekaran S, Coghill J, Ward JL, Huttly AK, Phillips AL. Proanthocyanidin biosynthesis in the developing wheat seed coat investigated by chemical and RNA-Seq analysis. PLANT DIRECT 2022; 6:e453. [PMID: 36254336 PMCID: PMC9554643 DOI: 10.1002/pld3.453] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 09/08/2022] [Accepted: 09/13/2022] [Indexed: 06/16/2023]
Abstract
The composition of proanthocyanidins in the testa (seed coat) of bread wheat was analyzed by thiolysis of PA oligomers from developing grain and found to consist of (+)-catechin monomers, with a small amount of (+)-gallocatechin. The average chain length of soluble PA stayed relatively constant between 10 and 20 days post-anthesis, whereas that of unextractable PA increased over the same period, suggesting that increases in chain length might account for the insolubility of PAs from mature wheat grain. We carried out RNA-Seq followed by differential expression analysis from dissected tissues of developing grain from red- and white-grained near-isogenic lines differing in the presence of an active R gene that encodes a MYB transcription factor involved in control of PA biosynthesis. In addition to genes already identified encoding chalcone synthase, chalcone isomerase, flavanone 3-hydroxylase, and dihydroxyflavonoid 4-reductase, we showed that wheat genes encoding phenylalanine ammonia lyase, flavonoid 3',5'-hydroxylase, leucoanthocyanidin reductase, and a glutathione S-transferase (the orthologue of maize Bronze-2) were more highly expressed in the red NIL. We also identified candidate orthologues of other catalytic and regulatory components of flavonoid biosynthesis in wheat.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Jane Coghill
- School of Biological SciencesUniversity of BristolBristolUK
| | | | | | | |
Collapse
|
7
|
Du W, Ding J, Lu S, Wen X, Hu J, Ruan C. Identification of the key flavonoid and lipid synthesis proteins in the pulp of two sea buckthorn cultivars at different developmental stages. BMC PLANT BIOLOGY 2022; 22:299. [PMID: 35710338 PMCID: PMC9205118 DOI: 10.1186/s12870-022-03688-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 06/10/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Sea buckthorn is an economically important woody plant for desertification control and water soil conservation. Its berry pulp is rich in flavonoids and unsaturated fatty acids. Cultivars containing high oil and flavonoid contents have higher economic value and will increase in the planting area. However, the cause of the differences in oil and flavonoid contents among cultivars is still unclear. The influence of key enzymes in the lipid and flavonoid synthesis pathways on their content needs to be explored and clarified. RESULTS The flavonoid content in XE (Xin'e 3) was 54% higher than that in SJ (Suiji 1). Rutin was the main flavonoid in sea buckthorn pulp, and the differences in the rutin content could cause flavonoid differences between the two cultivars. The oil content of XE was 31.58% higher than that of SJ, and the difference in oil content was highest at 50-70 DAF. High-throughput proteomics was used to quantify key enzymes of flavonoid and lipid synthesis pathways in two cultivars at three developmental stages. By functional annotation and KEGG analysis, 41 key enzymes related to phenylpropanoid biosynthesis, flavonoid biosynthesis, flavone and flavonol biosynthesis, fatty acid biosynthesis and TAG biosynthesis were quantified. CHS, F3H, ANS, fabD, FATA, FAB2, LPIN and plcC showed significant differences between the two cultivars. In addition, we quantified 6 oleosins. With the exception of a 16 kDa oleosin, the other oleosins in the two cultivars were positively correlated with oil content. CONCLUSIONS In the flavonoid synthesis pathway, CHS and F3H were the main enzymes responsible for the difference in flavonoid content between the two cultivars. In the lipid synthesis pathway, LPIN, plcC and MGD were the main enzymes with different contents in the middle to late stages. Higher contents of LPIN and plcC in XE than in SJ could cause DAG to generate TAG from PC, since the difference in DGAT between the two cultivars was not significant. Investigating the causes of flavonoid and oil content differences among different cultivars from the perspective of proteomics, could provide a basis for understanding the regulatory mechanism of flavonoids and lipid synthesis in sea buckthorn pulp.
Collapse
Affiliation(s)
- Wei Du
- Institute of Plant Resources, Key Laboratory of Biotechnology and Bioresources Utilization, Ministry of Education, Dalian Minzu University, Dalian, China
| | - Jian Ding
- Institute of Plant Resources, Key Laboratory of Biotechnology and Bioresources Utilization, Ministry of Education, Dalian Minzu University, Dalian, China
| | - Shunguang Lu
- Management Center of Seabuckthorn Development, Ministry of Water Resources, Beijing, China
| | - Xiufeng Wen
- Management Center of Seabuckthorn Development, Ministry of Water Resources, Beijing, China
| | - Jianzhong Hu
- Management Center of Seabuckthorn Development, Ministry of Water Resources, Beijing, China
| | - Chengjiang Ruan
- Institute of Plant Resources, Key Laboratory of Biotechnology and Bioresources Utilization, Ministry of Education, Dalian Minzu University, Dalian, China.
| |
Collapse
|
8
|
Flavonoid Biosynthesis Genes in Triticum aestivum L.: Methylation Patterns in Cis-Regulatory Regions of the Duplicated CHI and F3H Genes. Biomolecules 2022; 12:biom12050689. [PMID: 35625617 PMCID: PMC9138379 DOI: 10.3390/biom12050689] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 04/27/2022] [Accepted: 04/28/2022] [Indexed: 02/04/2023] Open
Abstract
Flavonoids are a diverse group of secondary plant metabolites that play an important role in the regulation of plant development and protection against stressors. The biosynthesis of flavonoids occurs through the activity of several enzymes, including chalcone isomerase (CHI) and flavanone 3-hydroxylase (F3H). A functional divergence between some copies of the structural TaCHI and TaF3H genes was previously shown in the allohexaploid bread wheat Triticum aestivum L. (BBAADD genome). We hypothesized that the specific nature of TaCHI and TaF3H expression may be induced by the methylation of the promoter. It was found that the predicted position of CpG islands in the promoter regions of the analyzed genes and the actual location of methylation sites did not match. We found for the first time that differences in the methylation status could affect the expression of TaCHI copies, but not the expression of TaF3Hs. At the same time, we revealed significant differences in the structure of the promoters of only the TaF3H genes, while the TaCHI promoters were highly homologous. We assume that the promoter structure in TaF3Hs primarily affects the change in the nature of gene expression. The data obtained are important for understanding the mechanisms that regulate the synthesis of flavonoids in allopolyploid wheat and show that differences in the structure of promoters have a key effect on gene expression.
Collapse
|
9
|
Cui Q, Huang J, Wu F, Li DZ, Zheng L, Hu G, Hu S, Zhang L. Biochemical and transcriptomic analyses reveal that critical genes involved in pigment biosynthesis influence leaf color changes in a new sweet osmanthus cultivar 'Qiannan Guifei'. PeerJ 2021; 9:e12265. [PMID: 34707941 PMCID: PMC8504463 DOI: 10.7717/peerj.12265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 09/16/2021] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND Osmanthus fragrans (Oleaceae) is one of the most important ornamental plant species in China. Many cultivars with different leaf color phenotypes and good ornamental value have recently been developed. For example, a new cultivar 'Qiannan Guifei', presents a rich variety of leaf colors, which change from red to yellow-green and ultimately to green as leaves develop, making this cultivar valuable for landscaping. However, the biochemical characteristics and molecular mechanisms underlying leaf color changes of these phenotypes have not been elucidated. It has been hypothesized that the biosynthesis of different pigments in O. fragrans might change during leaf coloration. Here, we analyzed transcriptional changes in genes involved in chlorophyll (Chl), flavonoid, and carotenoid metabolic pathways and identified candidate genes responsible for leaf coloration in the new cultivar 'Qiannan Guifei'. METHODS Leaf samples were collected from 'Qiannan Guifei' plants at the red (R), yellow-green (YG) and green (G) leaf stages. We compared the different-colored leaves via leaf pigment concentrations, chloroplast ultrastructure, and transcriptomic data. We further analyzed differentially expressed genes (DEGs) involved in the Chl, flavonoid, and carotenoid metabolic pathways. In addition, we used qRT-PCR to validate expression patterns of the DEGs at the three stages. RESULTS We found that, compared with those at the G stage, chloroplasts at the R and YG stages were less abundant and presented abnormal morphologies. Pigment analyses revealed that the leaves had higher flavonoid and anthocyanin levels at the R stage but lower Chl and carotenoid concentrations. Similarly, Chl and carotenoid concentrations were lower at the YG stage than at the G stage. By using transcriptomic sequencing, we further identified 61 DEGs involved in the three pigment metabolic pathways. Among these DEGs, seven structural genes (OfCHS, OfCHI, OfF3H, OfDFR, OfANS, OfUGT andOf3AT) involved in the flavonoid biosynthesis pathway were expressed at the highest level at the R stage, thereby increasing the biosynthesis of flavonoids, especially anthocyanins. Six putativeOfMYB genes, including three flavonoid-related activators and three repressors, were also highly expressed at the R stage, suggesting that they might coordinately regulate the accumulation of flavonoids, including anthocyanins. Additionally, expressions of the Chl biosynthesis-related genes OfHEMA, OfCHLG and OfCAO and the carotenoid biosynthesis-related genes OfHYB and OfZEP were upregulated from the R stage to the G stage, which increased the accumulation of Chl and carotenoids throughout leaf development. In summary, we screened the candidate genes responsible for the leaf color changes of 'Qiannan Guifei', improved current understanding of the regulatory mechanisms underlying leaf coloration and provided potential targets for future leaf color improvement in O. fragrans.
Collapse
Affiliation(s)
- Qi Cui
- School of Civil Engineering and Architecture, Zhejiang Sci-Tech University, Hangzhou, Zhejiang, China
| | - Junhua Huang
- School of Civil Engineering and Architecture, Zhejiang Sci-Tech University, Hangzhou, Zhejiang, China
| | - Fan Wu
- School of Civil Engineering and Architecture, Zhejiang Sci-Tech University, Hangzhou, Zhejiang, China
| | - Dong-ze Li
- School of Civil Engineering and Architecture, Zhejiang Sci-Tech University, Hangzhou, Zhejiang, China
| | - Liqun Zheng
- School of Civil Engineering and Architecture, Zhejiang Sci-Tech University, Hangzhou, Zhejiang, China
| | - Guang Hu
- School of Civil Engineering and Architecture, Zhejiang Sci-Tech University, Hangzhou, Zhejiang, China
| | - Shaoqing Hu
- School of Civil Engineering and Architecture, Zhejiang Sci-Tech University, Hangzhou, Zhejiang, China
| | - Lu Zhang
- School of Civil Engineering and Architecture, Zhejiang Sci-Tech University, Hangzhou, Zhejiang, China
| |
Collapse
|
10
|
Lap B, Rai M, Tyagi W. Playing with colours: genetics and regulatory mechanisms for anthocyanin pathway in cereals. Biotechnol Genet Eng Rev 2021; 37:1-29. [PMID: 34470563 DOI: 10.1080/02648725.2021.1928991] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Cereals form the most important source of energy in our food. Currently, demand for coloured food grains is significantly increasing globally because of their antioxidant properties and enhanced nutritional value. Coloured grains of major and minor cereals are due to accumulation of secondary metabolites like carotenoids and flavonoids such as anthocyanin, proanthocyanin, phlobaphenes in pericarp, aleurone, lemma, testa or seed coat of grains. Differential accumulation of colour in grains is regulated by several regulatory proteins and enzymes involved in flavonoid and caroteniod biosynthesis. MYB and bHLH gene family members are the major regulators of these pathways. Genes for colour across various cereals have been extensively studied; however, only a few functional and allele-specific markers to be utilized directly in breeding programmes are reported so far. In this review, while briefly discussing the well studied and explored carotenoid pathway, we focus on a much more complex anthocyanin pathway that is found across cereals. The genes and their orthologs that are responsible for encoding key regulators of anthocyanin biosynthesis are discussed. This review also focuses on the genetic factors that influence colour change in different cereal crops, and the available/reported markers that can be used in breeding programs for utilizing this pathway for enhancing food and nutritional security.
Collapse
Affiliation(s)
- Bharati Lap
- School of Crop Improvement, CPGS-AS, CAU (I), Umiam, India
| | - Mayank Rai
- School of Crop Improvement, College of Post Graduate Studies in Agricultural Sciences, Central Agricultural University (Imphal) College of Post-Graduate Studies, Umiam, Meghalaya, India
| | - Wricha Tyagi
- New Zealand Institute for Plant and Food Research Ltd, Umiam, India
| |
Collapse
|
11
|
Liu D, Wei X, Sun D, Yang S, Su H, Wang Z, Zhao Y, Li L, Liang J, Yang L, Zhang X, Yuan Y. An SNP Mutation of Gene RsPP Converts Petal Color From Purple to White in Radish ( Raphanus sativus L.). FRONTIERS IN PLANT SCIENCE 2021; 12:643579. [PMID: 34149748 PMCID: PMC8210830 DOI: 10.3389/fpls.2021.643579] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 04/12/2021] [Indexed: 06/12/2023]
Abstract
Along with being important pigments that determining the flower color in many plants, anthocyanins also perform crucial functions that attract pollinators and reduce abiotic stresses. Purple and white are two different colors of radish petals. In this study, two cDNA libraries constructed with purple and white petal plants were sequenced for transcriptome profiling. Transcriptome results implied that the expression level of the genes participating in the anthocyanin biosynthetic pathway was commonly higher in the purple petals than that in the white petals. In particular, two genes, F3'H and DFR, had a significantly higher expression pattern in the purple petals, suggesting the important roles these genes playing in radish petal coloration. BSA-seq aided-Next Generation Sequencing of two DNA pools revealed that the radish purple petal gene (RsPP) was located on chromosome 7. With additional genotyping of 617 F2 population plants, the RsPP was further confined within a region of 93.23 kb. Transcriptome and Sanger sequencing analysis further helped identify the target gene, Rs392880. Rs392880 is a homologous gene to F3'H, a key gene in the anthocyanin biosynthetic pathway. These results will aid in elucidating the molecular mechanism of plant petal coloration and developing strategies to modify flower color through genetic transformation.
Collapse
Affiliation(s)
- Dongming Liu
- Institute of Horticulture, Henan Academy of Agricultural Sciences, Zhengzhou, China
- College of Horticulture, Henan Agricultural University, Zhengzhou, China
| | - Xiaochun Wei
- Institute of Horticulture, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Dongling Sun
- College of Horticulture, Henan Agricultural University, Zhengzhou, China
| | - Shuangjuan Yang
- Institute of Horticulture, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Henan Su
- Institute of Horticulture, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Zhiyong Wang
- Institute of Horticulture, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Yanyan Zhao
- Institute of Horticulture, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Lin Li
- Institute of Horticulture, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Jinfang Liang
- College of Horticulture, Henan Agricultural University, Zhengzhou, China
| | - Luming Yang
- College of Horticulture, Henan Agricultural University, Zhengzhou, China
| | - Xiaowei Zhang
- Institute of Horticulture, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Yuxiang Yuan
- Institute of Horticulture, Henan Academy of Agricultural Sciences, Zhengzhou, China
| |
Collapse
|
12
|
Strygina KV. Synthesis of Flavonoid Pigments in Grain of Representatives of Poaceae: General Patterns and Exceptions in N.I. Vavilov’s Homologous Series. RUSS J GENET+ 2020. [DOI: 10.1134/s1022795420110095] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
13
|
Molecular Mechanism of Functional Ingredients in Barley to Combat Human Chronic Diseases. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:3836172. [PMID: 32318238 PMCID: PMC7149453 DOI: 10.1155/2020/3836172] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Accepted: 03/10/2020] [Indexed: 12/18/2022]
Abstract
Barley plays an important role in health and civilization of human migration from Africa to Asia, later to Eurasia. We demonstrated the systematic mechanism of functional ingredients in barley to combat chronic diseases, based on PubMed, CNKI, and ISI Web of Science databases from 2004 to 2020. Barley and its extracts are rich in 30 ingredients to combat more than 20 chronic diseases, which include the 14 similar and 9 different chronic diseases between grains and grass, due to the major molecular mechanism of six functional ingredients of barley grass (GABA, flavonoids, SOD, K-Ca, vitamins, and tryptophan) and grains (β-glucans, polyphenols, arabinoxylan, phytosterols, tocols, and resistant starch). The antioxidant activity of barley grass and grain has the same and different functional components. These results support findings that barley grain and its grass are the best functional food, promoting ancient Babylonian and Egyptian civilizations, and further show the depending functional ingredients for diet from Pliocene hominids in Africa and Neanderthals in Europe to modern humans in the world. This review paper not only reveals the formation and action mechanism of barley diet overcoming human chronic diseases, but also provides scientific basis for the development of health products and drugs for the prevention and treatment of human chronic diseases.
Collapse
|
14
|
Identification and differential expression analysis of anthocyanin biosynthetic genes in root-skin color variants of radish (Raphanus sativus L.). Genes Genomics 2020; 42:413-424. [PMID: 31997158 DOI: 10.1007/s13258-020-00915-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Accepted: 01/14/2020] [Indexed: 12/26/2022]
Abstract
BACKGROUND Taproot skin color is a major trait for assessing the commercial and nutritional quality of radish, and red-skinned radish is confirmed to improve consumer's interest and health. However, little is known about the molecular mechanisms responsible for controlling the formation of red-skinned radish. OBJECTIVE This study aimed to identify the differentially expressed anthocyanin biosynthetic genes between red- and white-skinned radishes and understand the molecular regulatory mechanism underlying red-skinned radish formation. METHODS Based on the published complete genome sequence of radish, the digital gene expression profiles of Yangzhouyuanbai (YB, white-skinned) and Sading (SD, red-skinned) were analyzed using Illumina sequencing. RESULTS A total of 3666 DEGs were identified in SD compared with YB. Interestingly, 46 genes encoded enzymes related to anthocyanin biosynthesis and 241 genes encoded transcription factors were identified. KEGG pathway analysis showed that the formation of red-skinned radish was mainly controlled by pelargonidin-derived anthocyanin biosynthetic pathway genes. This process included the upregulation of PAL, C4H, 4CL, CHS, CHI, F3H, DFR, LDOX, and UGT enzymes in SD. CHS genes were specifically expressed in SD, and it might be the key point for red pigment accumulation in red-skinned radish. Furthermore, MYB1/2/75, bHLH (TT8), and WD 40 showed higher expression in SD than in YB. Meanwhile, the corresponding low-abundance anthocyanin biosynthesis enzymes and upregulation of MYB4 might be the factors influencing the formation of white-skinned radish. CONCLUSION These findings provide new insights into the molecular mechanisms and regulatory network of anthocyanin biosynthesis in red-skinned radish.
Collapse
|
15
|
Yao X, Wu K, Yao Y, Bai Y, Ye J, Chi D. Construction of a high-density genetic map: genotyping by sequencing (GBS) to map purple seed coat color ( Psc) in hulless barley. Hereditas 2018; 155:37. [PMID: 30473656 PMCID: PMC6240233 DOI: 10.1186/s41065-018-0072-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 10/18/2018] [Indexed: 01/24/2023] Open
Abstract
Background Colored hulless barley are more suitable in food processing compared to normal (yellow) varieties because it is rich in bioactive compounds and produces higher extraction pearling fractions. Therefore, seed coat color is an important agronomic trait for the breeding and study of hulless barley. Results Genotyping-by-sequencing single-nucleotide polymorphism (GBS-SNP) analysis of a doubled haploid (DH) mapping population (Nierumuzha × Kunlun10) was conducted to map the purple seed coat color genes (Psc). A high-density genetic map of hulless barley was constructed, which contains 3662 efficient SNP markers with 1129 bin markers. Seven linkage groups were resolved, which had a total length of 645.56 cM. Chromosome length ranged from 60.21 cM to 127.21 cM, with average marker density of 0.57 cM. A total of five loci accounting for 3.79% to 23.86% of the observed phenotypic variation for Psc were detected using this high-density map. Five structural candidate genes (F3’M, HID, UF3GT, UFGT and 5MAT) and one regulatory factor (Ant1) related to flavonoid or anthocyanin biosynthesis were identified.. Conclusions Five structural candidate genes and one regulatory factor related to flavonoid or anthocyanin biosynthesis have been identified using a high-density genetic map of hulless barley. This study lays the foundation for map-based cloning of Psc but provides a valuable tool for studying marker-trait associations and its application to marker-assisted breeding of hulless barley. Electronic supplementary material The online version of this article (10.1186/s41065-018-0072-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Xiaohua Yao
- 1State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, 810016 China.,2Academy of Agricultural and Forestry Sciences, Qinghai University, Xining, 810016 China.,Qinghai Key Laboratory of Hulless Barley Genetics and Breeding, Xining, 810016 China.,Qinghai Subcenter of National Hulless Barley Improvement, Xining, 810016 China
| | - Kunlun Wu
- 1State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, 810016 China.,2Academy of Agricultural and Forestry Sciences, Qinghai University, Xining, 810016 China.,Qinghai Key Laboratory of Hulless Barley Genetics and Breeding, Xining, 810016 China.,Qinghai Subcenter of National Hulless Barley Improvement, Xining, 810016 China
| | - Youhua Yao
- 1State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, 810016 China.,2Academy of Agricultural and Forestry Sciences, Qinghai University, Xining, 810016 China.,Qinghai Key Laboratory of Hulless Barley Genetics and Breeding, Xining, 810016 China.,Qinghai Subcenter of National Hulless Barley Improvement, Xining, 810016 China
| | - Yixiong Bai
- 1State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, 810016 China.,2Academy of Agricultural and Forestry Sciences, Qinghai University, Xining, 810016 China.,Qinghai Key Laboratory of Hulless Barley Genetics and Breeding, Xining, 810016 China.,Qinghai Subcenter of National Hulless Barley Improvement, Xining, 810016 China
| | - Jingxiu Ye
- 1State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, 810016 China.,2Academy of Agricultural and Forestry Sciences, Qinghai University, Xining, 810016 China
| | - Dezhao Chi
- 1State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, 810016 China.,2Academy of Agricultural and Forestry Sciences, Qinghai University, Xining, 810016 China.,Qinghai Key Laboratory of Hulless Barley Genetics and Breeding, Xining, 810016 China.,Qinghai Subcenter of National Hulless Barley Improvement, Xining, 810016 China
| |
Collapse
|
16
|
Sheshadri SA, Nishanth MJ, Simon B. Stress-Mediated cis-Element Transcription Factor Interactions Interconnecting Primary and Specialized Metabolism in planta. FRONTIERS IN PLANT SCIENCE 2016; 7:1725. [PMID: 27933071 PMCID: PMC5122738 DOI: 10.3389/fpls.2016.01725] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Accepted: 11/02/2016] [Indexed: 05/07/2023]
Abstract
Plant specialized metabolites are being used worldwide as therapeutic agents against several diseases. Since the precursors for specialized metabolites come through primary metabolism, extensive investigations have been carried out to understand the detailed connection between primary and specialized metabolism at various levels. Stress regulates the expression of primary and specialized metabolism genes at the transcriptional level via transcription factors binding to specific cis-elements. The presence of varied cis-element signatures upstream to different stress-responsive genes and their transcription factor binding patterns provide a prospective molecular link among diverse metabolic pathways. The pattern of occurrence of these cis-elements (overrepresentation/common) decipher the mechanism of stress-responsive upregulation of downstream genes, simultaneously forming a molecular bridge between primary and specialized metabolisms. Though many studies have been conducted on the transcriptional regulation of stress-mediated primary or specialized metabolism genes, but not much data is available with regard to cis-element signatures and transcription factors that simultaneously modulate both pathway genes. Hence, our major focus would be to present a comprehensive analysis of the stress-mediated interconnection between primary and specialized metabolism genes via the interaction between different transcription factors and their corresponding cis-elements. In future, this study could be further utilized for the overexpression of the specific transcription factors that upregulate both primary and specialized metabolism, thereby simultaneously improving the yield and therapeutic content of plants.
Collapse
Affiliation(s)
| | | | - Bindu Simon
- School of Chemical and Biotechnology, SASTRA UniversityThanjavur, India
| |
Collapse
|