1
|
Zhang H, He Q, Xing L, Wang R, Wang Y, Liu Y, Zhou Q, Li X, Jia Z, Liu Z, Miao Y, Lin T, Li W, Du H. The haplotype-resolved genome assembly of autotetraploid rhubarb Rheum officinale provides insights into its genome evolution and massive accumulation of anthraquinones. PLANT COMMUNICATIONS 2024; 5:100677. [PMID: 37634079 PMCID: PMC10811376 DOI: 10.1016/j.xplc.2023.100677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 06/05/2023] [Accepted: 08/24/2023] [Indexed: 08/28/2023]
Abstract
Rheum officinale, a member of the Polygonaceae family, is an important medicinal plant that is widely used in traditional Chinese medicine. Here, we report a 7.68-Gb chromosome-scale assembly of R. officinale with a contig N50 of 3.47 Mb, which was clustered into 44 chromosomes across four homologous groups. Comparative genomics analysis revealed that transposable elements have made a significant contribution to its genome evolution, gene copy number variation, and gene regulation and expression, particularly of genes involved in metabolite biosynthesis, stress resistance, and root development. We placed the recent autotetraploidization of R. officinale at ∼0.58 mya and analyzed the genomic features of its homologous chromosomes. Although no dominant monoploid genomes were observed at the overall expression level, numerous allele-differentially-expressed genes were identified, mainly with different transposable element insertions in their regulatory regions, suggesting that they functionally diverged after polyploidization. Combining genomics, transcriptomics, and metabolomics, we explored the contributions of gene family amplification and tetraploidization to the abundant anthraquinone production of R. officinale, as well as gene expression patterns and differences in anthraquinone content among tissues. Our report offers unprecedented genomic resources for fundamental research on the autopolyploid herb R. officinale and guidance for polyploid breeding of herbs.
Collapse
Affiliation(s)
- Hongyu Zhang
- School of Life Sciences, Institute of Life Sciences and Green Development, Basic Science Center for Biotic Interaction in Hebei, Hebei University, Baoding 071000, China
| | - Qiang He
- School of Life Sciences, Institute of Life Sciences and Green Development, Basic Science Center for Biotic Interaction in Hebei, Hebei University, Baoding 071000, China
| | - Longsheng Xing
- School of Life Sciences, Institute of Life Sciences and Green Development, Basic Science Center for Biotic Interaction in Hebei, Hebei University, Baoding 071000, China
| | - Ruyu Wang
- School of Life Sciences, Institute of Life Sciences and Green Development, Basic Science Center for Biotic Interaction in Hebei, Hebei University, Baoding 071000, China
| | - Yu Wang
- School of Life Sciences, Institute of Life Sciences and Green Development, Basic Science Center for Biotic Interaction in Hebei, Hebei University, Baoding 071000, China
| | - Yu Liu
- School of Life Sciences, Institute of Life Sciences and Green Development, Basic Science Center for Biotic Interaction in Hebei, Hebei University, Baoding 071000, China
| | - Qinghong Zhou
- School of Life Sciences, Institute of Life Sciences and Green Development, Basic Science Center for Biotic Interaction in Hebei, Hebei University, Baoding 071000, China
| | - Xuanzhao Li
- School of Life Sciences, Institute of Life Sciences and Green Development, Basic Science Center for Biotic Interaction in Hebei, Hebei University, Baoding 071000, China
| | - Zheng Jia
- School of Life Sciences, Institute of Life Sciences and Green Development, Basic Science Center for Biotic Interaction in Hebei, Hebei University, Baoding 071000, China
| | - Ze Liu
- School of Life Sciences, Institute of Life Sciences and Green Development, Basic Science Center for Biotic Interaction in Hebei, Hebei University, Baoding 071000, China
| | - Yuqing Miao
- School of Life Sciences, Institute of Life Sciences and Green Development, Basic Science Center for Biotic Interaction in Hebei, Hebei University, Baoding 071000, China
| | - Tao Lin
- College of Horticulture, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian District, Beijing 100193, China
| | - Wei Li
- School of Life Sciences, Institute of Life Sciences and Green Development, Basic Science Center for Biotic Interaction in Hebei, Hebei University, Baoding 071000, China
| | - Huilong Du
- School of Life Sciences, Institute of Life Sciences and Green Development, Basic Science Center for Biotic Interaction in Hebei, Hebei University, Baoding 071000, China.
| |
Collapse
|
2
|
Zhang W, Tang Z, Luo J, Li G, Yang Z, Yang M, Yang E, Fu S. Location of Tandem Repeats on Wheat Chromosome 5B and the Breakpoint on the 5BS Arm in Wheat Translocation T7BS.7BL-5BS Using Single-Copy FISH Analysis. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11182394. [PMID: 36145797 PMCID: PMC9502598 DOI: 10.3390/plants11182394] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 09/05/2022] [Accepted: 09/12/2022] [Indexed: 06/13/2023]
Abstract
Wheat (Triticum aestivum L.) is rich in tandem repeats, and this is helpful in studying its karyotypic evolution. Some tandem repeats have not been assembled into the wheat genome sequence. Alignment using the blastn tool in the B2DSC web server indicated that the genomic sequence of 5B chromosome (IWGSC RefSeq v2.1) does not contain the tandem repeat pTa-275, and the tandem repeat (GA)26 distributed throughout the whole 5B chromosome. The nondenaturing fluorescence in situ hybridization (ND-FISH) using the oligonucleotide (oligo) probes derived from pTa-275 and (GA)26 indicated that one signal band of pTa-275 and two signal bands of (GA)26 appeared on the 5B chromosome of Chinese Spring wheat, indicating the aggregative distribution patterns of the two kinds of tandem repeats. Single-copy FISH indicated that the clustering region of pTa-275 and the two clustering regions of (GA)26 were located in ~160-201 Mb, ~153-157 Mb, and ~201-234 Mb intervals, respectively. Using ND-FISH and single-copy FISH technologies, the translocation breakpoint on the 5BS portion of the translocation T7BS.7BL-5BS, which exists widely in north-western European wheat cultivars, was located in the region from 157,749,421 bp to 158,555,080 bp (~0.8 Mb), and this region mainly contains retrotransposons, and no gene was found. The clustering regions of two kinds of tandem repeats on wheat chromosome 5B were determined and this will be helpful to improve the future sequence assembly of this chromosome. The sequence characteristics of the translocation breakpoint on the translocation T7BS.7BL-5BS obtained in this study are helpful to understand the mechanism of wheat chromosome translocation.
Collapse
Affiliation(s)
- Wei Zhang
- College of Agronomy, Sichuan Agricultural University, Chengdu 611130, China
| | - Zongxiang Tang
- College of Agronomy, Sichuan Agricultural University, Chengdu 611130, China
| | - Jie Luo
- College of Agronomy, Sichuan Agricultural University, Chengdu 611130, China
| | - Guangrong Li
- Center for Informational Biology, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Zujun Yang
- Center for Informational Biology, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Manyu Yang
- Crop Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu 610066, China
| | - Ennian Yang
- Crop Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu 610066, China
| | - Shulan Fu
- College of Agronomy, Sichuan Agricultural University, Chengdu 611130, China
| |
Collapse
|
3
|
Genome-wide identification and expression analysis of the GSK gene family in wheat (Triticum aestivum L.). Mol Biol Rep 2022; 49:2899-2913. [PMID: 35083611 DOI: 10.1007/s11033-021-07105-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 12/17/2021] [Indexed: 10/19/2022]
Abstract
BACKGROUND Plant glycogen synthase kinase 3/shaggy kinase (GSK3) proteins contain the conserved kinase domain and play a pivotal role in the regulation of plant growth and abiotic stress responses. Nonetheless, genome-wide analysis of the GSK gene family in wheat (Triticum aestivum L.) has not been reported. METHODS AND RESULTS Using high-quality wheat genome sequences, a comprehensive genome-wide characterization of the GSK gene family in wheat was conducted. Their phylogenetics, chromosome location, gene structure, conserved domains, promoter cis-elements, gene duplications, and network interactions were systematically analyzed. In this study, we identified 22 GSK genes in wheat genome that were unevenly distributed on nine wheat chromosomes. Based on phylogenetic analysis, the GSK genes from Arabidopsis, rice, barley, and wheat were clustered into four subfamilies. Gene structure and conserved protein motif analysis revealed that GSK proteins in the same subfamily share similar motif structures and exon/intron organization. Results from gene duplication analysis indicate that four segmental duplications events contribute to the expansion of the wheat GSK gene family. Promoter analysis indicated the participation of TaSK genes in response to the hormone, light and abiotic stress, and plant growth and development. Furthermore, gene network analysis found that five TaSKs were involved in the regulatory network and 130 gene pairs of network interactions were identified. The heat map generated from the available transcriptomic data revealed that the TaSKs exhibited preferential expression in specific tissues and different expression patterns under abiotic stress conditions. Moreover, results from qRT-PCR analysis revealed that the randomly selected TaSK genes were abundantly expressed in spikes and grains at one specific developmental stage, as well as in responding to drought and salt stress. CONCLUSIONS These findings clearly depicted the evolutionary processes and the characteristics, and expression profiles of the GSK gene family in wheat, revealed their role in wheat development and response to abiotic stress responses.
Collapse
|