1
|
Barth MA, Soll J, Akbaş Ş. Prokaryotic and eukaryotic traits support the biological role of the chloroplast outer envelope. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2022; 1869:119224. [PMID: 35120999 DOI: 10.1016/j.bbamcr.2022.119224] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 01/22/2022] [Accepted: 01/26/2022] [Indexed: 06/14/2023]
Abstract
The plastid outer envelope (OE) is a mixture of components inherited from their prokaryotic ancestor like galactolipids, carotenoids and porin type ion channels supplemented with eukaryotic inventions to make the endosymbiotic process successful as well as to control plastid biogenesis and differentiation. In this review we wanted to highlight the importance of the OE proteins and its evolutionary origin. For a long time, the OE was thought to be a diffusion barrier only, but with the recent discoveries of all kinds of different proteins in the OE it has been shown that the OE can modulate various functions within the cell. The phenotypic changes show that channels like the outer envelope proteins OEP40, OEP16 or JASSY have a pronounced ion selectivity that cannot be replaced by other ion channels present in the OE. Eukaryotic additions, like the GTPase receptors Toc33 and Toc159 or the ubiquitin proteasome system for chloroplast protein quality control, round up the profile of the OE.
Collapse
Affiliation(s)
- Melanie Anette Barth
- Department Biologie 1, Botanik, Ludwig-Maximilians-Universität München, Großhaderner Str. 2-4, 82152 Planegg-Martinsried, Germany
| | - Jürgen Soll
- Department Biologie 1, Botanik, Ludwig-Maximilians-Universität München, Großhaderner Str. 2-4, 82152 Planegg-Martinsried, Germany.
| | - Şebnem Akbaş
- Department Biologie 1, Botanik, Ludwig-Maximilians-Universität München, Großhaderner Str. 2-4, 82152 Planegg-Martinsried, Germany
| |
Collapse
|
2
|
Bölter B. En route into chloroplasts: preproteins' way home. PHOTOSYNTHESIS RESEARCH 2018; 138:263-275. [PMID: 29943212 DOI: 10.1007/s11120-018-0542-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Accepted: 06/20/2018] [Indexed: 06/08/2023]
Abstract
Chloroplasts are the characteristic endosymbiotic organelles of plant cells which during the course of evolution lost most of their genetic information to the nucleus. Thus, they critically depend on the host cell for allocation of nearly their complete protein supply. This includes gene expression, translation, protein targeting, and transport-all of which need to be tightly regulated and perfectly coordinated to accommodate the cells' needs. To this end, multiple signaling pathways have been implemented that interchange information between the different cellular compartments. One of the most complex and energy consuming processes is the translocation of chloroplast-destined proteins into their target organelle. It is a concerted effort from chaperones, receptor proteins, channels, and regulatory elements to ensure correct targeting, efficient transport, and subsequent folding. Although we have discovered and learned a lot about protein import into chloroplasts in the last decades, there are still many open questions and debates about the roles of individual proteins as well as the mechanistic details. In this review, I will summarize and discuss the published data with a focus on the translocation complex in the chloroplast inner envelope membrane.
Collapse
Affiliation(s)
- Bettina Bölter
- Department Biologie I, Botanik, Ludwig-Maximilians-Universität, Planegg-Martinsried, Germany.
| |
Collapse
|
3
|
Zufferey M, Montandon C, Douet V, Demarsy E, Agne B, Baginsky S, Kessler F. The novel chloroplast outer membrane kinase KOC1 is a required component of the plastid protein import machinery. J Biol Chem 2017; 292:6952-6964. [PMID: 28283569 DOI: 10.1074/jbc.m117.776468] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Revised: 02/28/2017] [Indexed: 11/06/2022] Open
Abstract
The biogenesis and maintenance of cell organelles such as mitochondria and chloroplasts require the import of many proteins from the cytosol, a process that is controlled by phosphorylation. In the case of chloroplasts, the import of hundreds of different proteins depends on translocons at the outer and inner chloroplast membrane (TOC and TIC, respectively) complexes. The essential protein TOC159 functions thereby as an import receptor. It has an N-terminal acidic (A-) domain that extends into the cytosol, controls receptor specificity, and is highly phosphorylated in vivo However, kinases that phosphorylate the TOC159 A-domain to enable protein import have remained elusive. Here, using co-purification with TOC159 from Arabidopsis, we discovered a novel component of the chloroplast import machinery, the regulatory kinase at the outer chloroplast membrane 1 (KOC1). We found that KOC1 is an integral membrane protein facing the cytosol and stably associates with TOC. Moreover, KOC1 phosphorylated the A-domain of TOC159 in vitro, and in mutant koc1 chloroplasts, preprotein import efficiency was diminished. koc1 Arabidopsis seedlings had reduced survival rates after transfer from the dark to the light in which protein import into plastids is required to rapidly complete chloroplast biogenesis. In summary, our data indicate that KOC1 is a functional component of the TOC machinery that phosphorylates import receptors, supports preprotein import, and contributes to efficient chloroplast biogenesis.
Collapse
Affiliation(s)
- Mónica Zufferey
- From the Laboratory of Plant Physiology, University of Neuchâtel, 2000 Neuchâtel, Switzerland
| | - Cyrille Montandon
- the College of Agriculture and Life Sciences, Cornell University, Ithaca, New York 14853
| | - Véronique Douet
- From the Laboratory of Plant Physiology, University of Neuchâtel, 2000 Neuchâtel, Switzerland
| | - Emilie Demarsy
- the Department of Botany and Plant Biology, University of Geneva, 1211 Geneva, Switzerland, and
| | - Birgit Agne
- Institut für Biochemie und Biotechnologie, Martin-Luther-Universität Halle-Wittenberg, 06099 Halle (Saale), Germany
| | - Sacha Baginsky
- Institut für Biochemie und Biotechnologie, Martin-Luther-Universität Halle-Wittenberg, 06099 Halle (Saale), Germany
| | - Felix Kessler
- From the Laboratory of Plant Physiology, University of Neuchâtel, 2000 Neuchâtel, Switzerland,
| |
Collapse
|
4
|
Köhler D, Montandon C, Hause G, Majovsky P, Kessler F, Baginsky S, Agne B. Characterization of chloroplast protein import without Tic56, a component of the 1-megadalton translocon at the inner envelope membrane of chloroplasts. PLANT PHYSIOLOGY 2015; 167:972-90. [PMID: 25588737 PMCID: PMC4348784 DOI: 10.1104/pp.114.255562] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2014] [Accepted: 01/14/2015] [Indexed: 05/17/2023]
Abstract
We report on the characterization of Tic56, a unique component of the recently identified 1-MD translocon at the inner envelope membrane of chloroplasts (TIC) in Arabidopsis (Arabidopsis thaliana) comprising Tic20, Tic100, and Tic214. We isolated Tic56 by copurification with Tandem Affinity Purification-tagged Toc159 in the absence of precursor protein, indicating spontaneous and translocation-independent formation of the translocon at the outer envelope membrane of chloroplasts (TOC) and TIC supercomplexes. Tic56 mutant plants have an albino phenotype and are unable to grow without an external carbon source. Using specific enrichment of protein amino termini, we analyzed the tic56-1 and plastid protein import2 (toc159) mutants to assess the in vivo import capacity of plastids in mutants of an outer and inner envelope component of the anticipated TOC-TIC supercomplex. Inboth mutants, we observed processing of several import substrates belonging to various pathways. Our results suggest that despite the severe developmental defects, protein import into Tic56-deficient plastids is functional to a considerable degree, indicating the existence of alternative translocases at the inner envelope membrane.
Collapse
|
5
|
Molecular characterization and expression analysis of chloroplast protein import components in tomato (Solanum lycopersicum). PLoS One 2014; 9:e95088. [PMID: 24751891 PMCID: PMC3994019 DOI: 10.1371/journal.pone.0095088] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2013] [Accepted: 03/22/2014] [Indexed: 01/13/2023] Open
Abstract
The translocon at the outer envelope membrane of chloroplasts (Toc) mediates the recognition and initial import into the organelle of thousands of nucleus-encoded proteins. These proteins are translated in the cytosol as precursor proteins with cleavable amino-terminal targeting sequences called transit peptides. The majority of the known Toc components that mediate chloroplast protein import were originally identified in pea, and more recently have been studied most extensively in Arabidopsis. With the completion of the tomato genome sequencing project, it is now possible to identify putative homologues of the chloroplast import components in tomato. In the work reported here, the Toc GTPase cDNAs from tomato were identified, cloned and analyzed. The analysis revealed that there are four Toc159 homologues (slToc159-1, -2, -3 and -4) and two Toc34 homologues (slToc34-1 and -2) in tomato, and it was shown that tomato Toc159 and Toc34 homologues share high sequence similarity with the comparable import apparatus components from Arabidopsis and pea. Thus, tomato is a valid model for further study of this system. The expression level of Toc complex components was also investigated in different tissues during tomato development. The two tomato Toc34 homologues are expressed at higher levels in non-photosynthetic tissues, whereas, the expression of two tomato Toc159 homologues, slToc159-1 and slToc159-4, were higher in photosynthetic tissues, and the expression patterns of slToc159-2 was not significantly different in photosynthetic and non-photosynthetic tissues, and slToc159-3 expression was limited to a few select tissues.
Collapse
|
6
|
Agne B, Andrès C, Montandon C, Christ B, Ertan A, Jung F, Infanger S, Bischof S, Baginsky S, Kessler F. The acidic A-domain of Arabidopsis TOC159 occurs as a hyperphosphorylated protein. PLANT PHYSIOLOGY 2010; 153:1016-30. [PMID: 20457805 PMCID: PMC2899928 DOI: 10.1104/pp.110.158048] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2010] [Accepted: 05/06/2010] [Indexed: 05/17/2023]
Abstract
The translocon at the outer membrane of the chloroplast assists the import of a large class of preproteins with amino-terminal transit sequences. The preprotein receptors Toc159 and Toc33 in Arabidopsis (Arabidopsis thaliana) are specific for the accumulation of abundant photosynthetic proteins. The receptors are homologous GTPases known to be regulated by phosphorylation within their GTP-binding domains. In addition to the central GTP-binding domain, Toc159 has an acidic N-terminal domain (A-domain) and a C-terminal membrane-anchoring domain (M-domain). The A-domain of Toc159 is dispensable for its in vivo activity in Arabidopsis and prone to degradation in pea (Pisum sativum). Therefore, it has been suggested to have a regulatory function. Here, we show that in Arabidopsis, the A-domain is not simply degraded but that it accumulates as a soluble, phosphorylated protein separated from Toc159. However, the physiological relevance of this process is unclear. The data show that the A-domain of Toc159 as well as those of its homologs Toc132 and Toc120 are targets of a casein kinase 2-like activity.
Collapse
|
7
|
Agne B, Infanger S, Wang F, Hofstetter V, Rahim G, Martin M, Lee DW, Hwang I, Schnell D, Kessler F. A toc159 import receptor mutant, defective in hydrolysis of GTP, supports preprotein import into chloroplasts. J Biol Chem 2009; 284:8670-9. [PMID: 19188370 DOI: 10.1074/jbc.m804235200] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The heterotrimeric Toc core complex of the chloroplast protein import apparatus contains two GTPases, Toc159 and Toc34, together with the protein-conducting channel Toc75. Toc159 and Toc34 are exposed at the chloroplast surface and function in preprotein recognition. Together, they have been shown to facilitate the import of photosynthetic proteins into chloroplasts in Arabidopsis. Consequently, the ppi2 mutant lacking atToc159 has a non-photosynthetic albino phenotype. Previous mutations in the conserved G1 and G3 GTPase motifs abolished the function of Toc159 in vivo by disrupting targeting of the receptor to chloroplasts. Here, we demonstrate that a mutant in a conserved G1 lysine (atToc159 K868R) defective in GTP binding and hydrolysis can target and assemble into Toc complexes. We show that atToc159 K868R can support protein import into isolated chloroplasts, albeit at lower preprotein binding and import efficiencies compared with the wild-type receptor. Considering the absence of measurable GTPase activity in the K868R mutant, we conclude that GTP hydrolysis at atToc159 is not strictly required for preprotein translocation. The data also indicate that preprotein import requires at least one additional GTPase other than Toc159.
Collapse
Affiliation(s)
- Birgit Agne
- Laboratoire de Physiologie Végétale, Université de Neuchâtel, Rue Emile-Argand 11, 2007 Neuchâtel, Switzerland
| | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Aronsson H, Jarvis P. The Chloroplast Protein Import Apparatus, Its Components, and Their Roles. PLANT CELL MONOGRAPHS 2008. [DOI: 10.1007/978-3-540-68696-5_3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
9
|
The Chloroplast Protein Import Apparatus, Its Components, and Their Roles. PLANT CELL MONOGRAPHS 2008. [DOI: 10.1007/7089_2008_40] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
10
|
Bédard J, Jarvis P. Recognition and envelope translocation of chloroplast preproteins. JOURNAL OF EXPERIMENTAL BOTANY 2005; 56:2287-320. [PMID: 16087701 DOI: 10.1093/jxb/eri243] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Plastids are a diverse group of plant organelles that perform essential functions including important steps in many biosynthetic pathways. Chloroplasts are the best characterized type of plastid, and constitute the site of oxygenic photosynthesis in plants, a process essential to all higher life forms. It is well established that the majority (>90%) of chloroplast proteins are nucleus-encoded and must be post-translationally imported into these envelope-bound compartments. Most nucleus-encoded chloroplast proteins are translated in precursor form on cytosolic ribosomes, targeted to the chloroplast surface, and then imported across the double-membrane envelope by translocons in the outer and inner envelope membranes of the chloroplast, termed TOC and TIC, respectively. Recently, significant progress has been made in our understanding of how proteins are targeted to the chloroplast surface and translocated across the chloroplast envelope into the stroma. Evidence suggesting the existence of multiple import pathways at the outer envelope membrane for different classes of precursor proteins has been presented. These pathways appear to utilize similar TOC complexes equipped with different combinations of homologous GTPase receptors, providing preprotein recognition specificity.
Collapse
Affiliation(s)
- Jocelyn Bédard
- Department of Biology, University of Leicester, University Road, Leicester LE1 7RH, UK
| | | |
Collapse
|
11
|
Baldwin A, Wardle A, Patel R, Dudley P, Park SK, Twell D, Inoue K, Jarvis P. A molecular-genetic study of the Arabidopsis Toc75 gene family. PLANT PHYSIOLOGY 2005; 138:715-33. [PMID: 15908591 PMCID: PMC1150391 DOI: 10.1104/pp.105.063289] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Toc75 (translocon at the outer envelope membrane of chloroplasts, 75 kD) is the protein translocation channel at the outer envelope membrane of plastids and was first identified in pea (Pisum sativum) using biochemical approaches. The Arabidopsis (Arabidopsis thaliana) genome contains three Toc75-related sequences, termed atTOC75-I, atTOC75-III, and atTOC75-IV, which we studied using a range of molecular, genetic, and biochemical techniques. Expression of atTOC75-III is strongly regulated and at its highest level in young, rapidly expanding tissues. By contrast, atTOC75-IV is expressed uniformly throughout development and at a much lower level than atTOC75-III. The third sequence, atTOC75-I, is a pseudogene that is not expressed due to a gypsy/Ty3 transposon insertion in exon 1, and numerous nonsense, frame-shift, and splice-junction mutations. The expressed genes, atTOC75-III and atTOC75-IV, both encode integral envelope membrane proteins. Unlike atToc75-III, the smaller atToc75-IV protein is not processed upon targeting to the envelope, and its insertion does not require ATP at high concentrations. The atTOC75-III gene is essential for viability, since homozygous atToc75-III knockout mutants (termed toc75-III) could not be identified, and aborted seeds were observed at a frequency of approximately 25% in the siliques of self-pollinated toc75-III heterozygotes. Homozygous toc75-III embryos were found to abort at the two-cell stage. Homozygous atToc75-IV knockout plants (termed toc75-IV) displayed no obvious visible phenotypes. However, structural abnormalities were observed in the etioplasts of toc75-IV seedlings and atTOC75-IV overexpressing lines, and toc75-IV plants were less efficient at deetiolation than wild type. These results suggest some role for atToc75-IV during growth in the dark.
Collapse
Affiliation(s)
- Amy Baldwin
- Department of Biology, University of Leicester, Leicester LE1 7RH, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Kim C, Ham H, Apel K. Multiplicity of different cell- and organ-specific import routes for the NADPH-protochlorophyllide oxidoreductases A and B in plastids of Arabidopsis seedlings. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2005; 42:329-40. [PMID: 15842619 DOI: 10.1111/j.1365-313x.2005.02374.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
The NADPH-dependent protochlorophyllide (Pchlide) oxidoreductase (POR) is a photoenzyme that requires light for its catalytic activity and uses Pchlide itself as a photoreceptor. In Arabidopsis there are three PORs denoted PORA, PORB and PORC. The PORA and PORB genes are strongly expressed early in seedling development. In contrast to PORB the import of PORA into plastids of cotyledons is substrate-dependent and organ-specific. These differences in the import reactions between PORA and PORB most likely are due to different import mechanisms that are responsible for the uptake of these proteins. The two major core constituents of the translocon of the outer plastid envelope, Toc159 and Toc34, have been implicated in the binding and recognition of precursors of nuclear-encoded plastid proteins. Their involvement in conferring substrate dependency and organ specificity of PORA import was analyzed in intact Arabidopsis seedlings of wild type and the three mutants ppi3, ppi1 and ppi2 that are deficient in atToc34, atToc33, a closely related isoform of atToc34, and atToc159. Whereas none of these three Toc constituents is required for maintaining the organ specificity and substrate dependency of PORA import, atToc33 is indispensable for the import of PORB in cotyledons and true leaves suggesting that in these parts of the plant translocation of PORA and PORB occurs via two distinct import pathways. The analysis of PORA and PORB import into plastids of intact seedlings revealed an unexpected multiplicity of import routes that differed by their substrate, cell, tissue and organ specificities. This versatility of pathways for protein targeting to plastids suggests that in intact seedlings not only the constituents of the core complex of import channels but also other factors are involved in mediating the import of nuclear-encoded plastid proteins.
Collapse
Affiliation(s)
- Chanhong Kim
- Institute of Plant Sciences, Plant Genetics, Swiss Federal Institute of Technology (ETH), CH-8092, Zurich, Switzerland
| | | | | |
Collapse
|
13
|
Voigt A, Jakob M, Klösgen RB, Gutensohn M. At least two Toc34 protein import receptors with different specificities are also present in spinach chloroplasts. FEBS Lett 2005; 579:1343-9. [PMID: 15733839 DOI: 10.1016/j.febslet.2004.12.096] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2004] [Revised: 12/17/2004] [Accepted: 12/27/2004] [Indexed: 11/28/2022]
Abstract
The receptor components of the chloroplast protein import machinery, Toc34 and Toc159, are both encoded by small gene families in Arabidopsis thaliana. Recent results suggest that each member of these families preferentially interacts with different groups of precursor proteins. Here we address the question, whether multiple homologous Toc receptors are unique to Arabidopsis or whether they are a general phenomenon in plants. Indeed, in spinach we could identify at least two Toc34 proteins with different substrate specificities as demonstrated by competition and antibody inhibition experiments. In addition, an analysis of the available genomic data revealed the presence of at least two Toc34 homologs in six other plant species.
Collapse
Affiliation(s)
- Andrea Voigt
- Institut für Pflanzenphysiologie, Martin-Luther-Universität Halle-Wittenberg, Weinbergweg 10, D-06120 Halle, Germany
| | | | | | | |
Collapse
|
14
|
Ko K, Taylor D, Argenton P, Innes J, Pedram B, Seibert F, Granell A, Ko Z. Evidence That the Plastid Translocon Tic40 Components Possess Modulating Capabilities. J Biol Chem 2005; 280:215-24. [PMID: 15513916 DOI: 10.1074/jbc.m410088200] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The transport of proteins into the plastid is a process that faces changing cellular needs such as the situation found in different plant organs or developing tissues. The plastid translocon must therefore be responsive to the changing cell environment to deliver efficiently different arrays of structurally diverse proteins. Although the Tic40-related envelope proteins appear to be translocon components designed to address the varying needs of protein translocation, details of their involvement remain elusive. This study was thus designed to combine plant-based experiments and yeast mitochondrion-based approaches for unveiling clues related to how the Tic40 components may behave during the protein translocation process. The main findings related to how Tic40 proteins may work are: 1) natural fluctuations are apparent in developing tissues, in different organs of the same plant, and in different species; 2) transgenic Arabidopsis seedlings can tolerate functionally a wide range of variations in Tic40 levels, from partial suppression to excessive production; 3) the Tic40 proteins themselves exhibit configurational changes in their association with yeast mitochondria in response to different carbon sources; 4) the presence of Tic40 proteins in yeast mitochondria influences regulatory aspects of the mitochondrial translocon; and 5) the Tic40 proteins associate with mitochondrial translocon components involved in regulatory-like events. The combined data provide evidence that Tic40 proteins possess modulating capabilities.
Collapse
Affiliation(s)
- Kenton Ko
- Department of Biology, Queen's University, Kingston, Ontario K7L 3N6, Canada.
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Baginsky S, Siddique A, Gruissem W. Proteome analysis of tobacco bright yellow-2 (BY-2) cell culture plastids as a model for undifferentiated heterotrophic plastids. J Proteome Res 2004; 3:1128-37. [PMID: 15595721 DOI: 10.1021/pr0499186] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We analyzed the proteome of undifferentiated plastids from a tobacco BY-2 cell culture by shotgun proteomics following multidimensional protein fractionation. The fractionation strategy initiated with the serial extraction of proteins from membranes which allowed us to distinguish soluble, peripheral, and integral membrane proteins. The majority of the identified proteins have a function in the cellular metabolism and most of them are active in amino acid synthesis pathways. A significant number of the identified proteins was not identified in chloroplast proteome analyses before. This suggests BY-2 plastid specific functions that differ from the major activities of chloroplasts. We have used the BY-2 plastid proteins reported here to assess the metabolic activities of undifferentiated heterotrophic plastids and compared the functional profile with that of differentiated heterotrophic amyloplasts. Comparative shotgun proteome analyses as reported here provide information about prevalent metabolic activities of different plastid types.
Collapse
Affiliation(s)
- Sacha Baginsky
- Institute of Plant Science and Functional Genomics Center Zurich, Swiss Federal Institute of Technology, ETH Zurich, 8092 Zurich, Switzerland
| | | | | |
Collapse
|
16
|
Gutensohn M, Pahnke S, Kolukisaoglu U, Schulz B, Schierhorn A, Voigt A, Hust B, Rollwitz I, Stöckel J, Geimer S, Albrecht V, Flügge UI, Klösgen RB. Characterization of a T-DNA insertion mutant for the protein import receptor atToc33 from chloroplasts. Mol Genet Genomics 2004; 272:379-96. [PMID: 15517392 DOI: 10.1007/s00438-004-1068-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2004] [Accepted: 09/11/2004] [Indexed: 11/26/2022]
Abstract
In Arabidopsis thaliana, the Toc34 receptor component of the chloroplast import machinery is encoded by two independent but highly homologous genes, atToc33 and atToc34. We have isolated a T-DNA insertion mutant of atToc33 which is characterized by a pale phenotype, due to reductions in the levels of photosynthetic pigments, and alterations in protein composition. The latter involve not only chloroplast proteins but also some cytosolic polypeptides, including 14-3-3 proteins which, among other functions, have been proposed to be cytosolic targeting factors for nucleus-encoded chloroplast proteins. Within the chloroplast, many, though not all, proteins of the photosynthetic apparatus, as well as proteins not directly involved in photosynthesis, are found in significantly reduced amounts in the mutant. However, the accumulation of other chloroplast proteins is unaffected. This suggests that the atToc33 receptor is responsible for the import of a specific subset of nucleus-encoded chloroplast proteins. Supporting evidence for this conclusion was obtained by antisense repression of the atToc34 gene in the atToc33 mutant, which results in an exacerbation of the phenotype.
Collapse
Affiliation(s)
- M Gutensohn
- Institut für Pflanzenphysiologie, Martin-Luther-Universität Halle-Wittenberg, Weinbergweg 10, 06120 Halle, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Hörmann F, Küchler M, Sveshnikov D, Oppermann U, Li Y, Soll J. Tic32, an essential component in chloroplast biogenesis. J Biol Chem 2004; 279:34756-62. [PMID: 15180984 DOI: 10.1074/jbc.m402817200] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Chloroplast protein import across the inner envelope is facilitated by the translocon of the inner envelope of chloroplasts (Tic). Here we have identified Tic32 as a novel subunit of the Tic complex. Tic32 can be purified from solubilized inner envelope membranes by chromatography on Tic110 containing affinity matrix. Co-immunoprecipitation experiments using either Tic32 or Tic110 antisera indicated a tight association between these polypeptides as well as with other Tic subunits, e.g. Tic40, Tic22, or Tic62, whereas the outer envelope protein Toc75 was not found in this complex. Chemical cross-linking suggests that Tic32 is involved late in the overall translocation process, because both the precursor form as well as the mature form of Rubisco small subunit can be detected. We were unable to isolate Arabidopsis null mutants of the attic32 gene, indicating that Tic32 is essential for viability. Deletion of the attic32 gene resulted in early seed abortion because the embryo was unable to differentiate from the heart stage to the torpedo stage. The homology of Tic32 to short-chain dehydrogenases suggests a dual role of Tic32 in import, one as a regulatory component and one as an important subunit in the assembly of the entire complex.
Collapse
Affiliation(s)
- Friederike Hörmann
- Department of Biology and Plant Biochemistry, University of Munich, Menzinger Strasse 67, 80638 Munich, Germany
| | | | | | | | | | | |
Collapse
|
18
|
Kubis S, Patel R, Combe J, Bédard J, Kovacheva S, Lilley K, Biehl A, Leister D, Ríos G, Koncz C, Jarvis P. Functional specialization amongst the Arabidopsis Toc159 family of chloroplast protein import receptors. THE PLANT CELL 2004; 16:2059-77. [PMID: 15273297 PMCID: PMC519198 DOI: 10.1105/tpc.104.023309] [Citation(s) in RCA: 113] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2004] [Accepted: 06/06/2004] [Indexed: 05/18/2023]
Abstract
The initial stages of preprotein import into chloroplasts are mediated by the receptor GTPase Toc159. In Arabidopsis thaliana, Toc159 is encoded by a small gene family: atTOC159, atTOC132, atTOC120, and atTOC90. Phylogenetic analysis suggested that at least two distinct Toc159 subtypes, characterized by atToc159 and atToc132/atToc120, exist in plants. atTOC159 was strongly expressed in young, photosynthetic tissues, whereas atTOC132 and atTOC120 were expressed at a uniformly low level and so were relatively prominent in nonphotosynthetic tissues. Based on the albino phenotype of its knockout mutant, atToc159 was previously proposed to be a receptor with specificity for photosynthetic preproteins. To elucidate the roles of the other isoforms, we characterized Arabidopsis knockout mutants for each one. None of the single mutants had strong visible phenotypes, but toc132 toc120 double homozygotes appeared similar to toc159, indicating redundancy between atToc132 and atToc120. Transgenic complementation studies confirmed this redundancy but revealed little functional overlap between atToc132/atToc120 and atToc159 or atToc90. Unlike toc159, toc132 toc120 caused structural abnormalities in root plastids. Furthermore, when proteomics and transcriptomics were used to compare toc132 with ppi1 (a receptor mutant that is specifically defective in the expression, import, and accumulation of photosynthetic proteins), major differences were observed, suggesting that atToc132 (and atToc120) has specificity for nonphotosynthetic proteins. When both atToc159 and the major isoform of the other subtype, atToc132, were absent, an embryo-lethal phenotype resulted, demonstrating the essential role of Toc159 in the import mechanism.
Collapse
Affiliation(s)
- Sybille Kubis
- Department of Biology, University of Leicester, Leicester LE1 7RH, United Kindom
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Ivanova Y, Smith MD, Chen K, Schnell DJ. Members of the Toc159 import receptor family represent distinct pathways for protein targeting to plastids. Mol Biol Cell 2004; 15:3379-92. [PMID: 15090618 PMCID: PMC452591 DOI: 10.1091/mbc.e03-12-0923] [Citation(s) in RCA: 160] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2003] [Revised: 03/18/2004] [Accepted: 03/31/2004] [Indexed: 11/11/2022] Open
Abstract
Plastids represent a diverse group of organelles that perform essential metabolic and signaling functions within all plant cells. The differentiation of specific plastid types relies on the import of selective sets of proteins from among the approximately 2500 nucleus-encoded plastid proteins. The Toc159 family of GTPases mediates the initial targeting of proteins to plastids. In Arabidopsis thaliana, the Toc159 family consists of four genes: atTOC159, atTOC132, atTOC120, and atTOC90. In vivo analysis of atToc159 function indicates that it is required specifically for the import of proteins necessary for chloroplast biogenesis. In this report, we demonstrate that atToc120 and atToc132 represent a structurally and functionally unique subclass of protein import receptors. Unlike atToc159, mutants lacking both atToc120 and atToc132 are inviable. Furthermore, atToc120 and atToc132 exhibit preprotein binding properties that are distinct from atToc159. These data indicate that the different members of the Toc159 family represent distinct pathways for protein targeting to plastids and are consistent with the hypothesis that separate pathways have evolved to ensure balanced import of essential proteins during plastid development.
Collapse
Affiliation(s)
- Yordanka Ivanova
- Department of Biochemistry and Molecular Biology, University of Massachusetts, Amherst, Massachusetts 01003, USA
| | | | | | | |
Collapse
|
20
|
Smith MD, Rounds CM, Wang F, Chen K, Afitlhile M, Schnell DJ. atToc159 is a selective transit peptide receptor for the import of nucleus-encoded chloroplast proteins. J Cell Biol 2004; 165:323-34. [PMID: 15138290 PMCID: PMC2172197 DOI: 10.1083/jcb.200311074] [Citation(s) in RCA: 125] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2003] [Accepted: 03/26/2004] [Indexed: 11/24/2022] Open
Abstract
The members of the Toc159 family of GTPases act as the primary receptors for the import of nucleus-encoded preproteins into plastids. Toc159, the most abundant member of this family in chloroplasts, is required for chloroplast biogenesis (Bauer, J., K. Chen, A. Hiltbunner, E. Wehrli, M. Eugster, D. Schnell, and F. Kessler. 2000. Nature. 403:203-207) and has been shown to covalently cross-link to bound preproteins at the chloroplast surface (Ma, Y., A. Kouranov, S. LaSala, and D.J. Schnell. 1996. J. Cell Biol. 134:1-13; Perry, S.E., and K. Keegstra. 1994. Plant Cell. 6:93-105). These reports led to the hypothesis that Toc159 functions as a selective import receptor for preproteins that are required for chloroplast development. In this report, we provide evidence that Toc159 is required for the import of several highly expressed photosynthetic preproteins in vivo. Furthermore, we demonstrate that the cytoplasmic and recombinant forms of soluble Toc159 bind directly and selectively to the transit peptides of these representative photosynthetic preproteins, but not representative constitutively expressed plastid preproteins. These data support the function of Toc159 as a selective import receptor for the targeting of a set of preproteins required for chloroplast biogenesis.
Collapse
Affiliation(s)
- Matthew D Smith
- Department of Biochemistry and Molecular Biology and Program in Plant Biology, 820 LGRC, University of Massachusetts, Amherst, MA 01003, USA
| | | | | | | | | | | |
Collapse
|
21
|
Constan D, Patel R, Keegstra K, Jarvis P. An outer envelope membrane component of the plastid protein import apparatus plays an essential role in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2004; 38:93-106. [PMID: 15053763 DOI: 10.1111/j.1365-313x.2004.02024.x] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Translocon at the outer envelope membrane of chloroplasts, 34 kDa (Toc34) is a GTP-binding component of the protein import apparatus within the outer envelope membrane of plastids. The Arabidopsis genome encodes two homologues of Toc34, designated atToc33 and atToc34. In this report, we describe the identification and characterization of two atToc34 knockout mutants, plastid protein import 3-1 (ppi3-1) and ppi3-2. Aerial tissues of the ppi3 mutants appeared similar to the wild type throughout development, and contained structurally normal chloroplasts that were able to efficiently import the Rubisco small subunit precursor (prSS) in vitro. The absence of an obvious ppi3 phenotype in green tissues presumably reflects the ability of atToc33 to substitute for atToc34 in the mutant, and the relatively high level of expression of the atTOC33 gene in these tissues. In the roots, where atTOC33 is expressed at a much lower level, significant growth defects were observed in both mutants: ppi3 roots were approximately 20-30% shorter than wild-type roots. Attempts to identify a double homozygote lacking atToc34 and atToc33 (by crossing the ppi3 mutants with ppi1, an atToc33 knockout mutant) were unsuccessful, indicating that the function provided by atToc33/atToc34 is essential during early development. Plants that were homozygous for ppi1 and heterozygous for ppi3 displayed a chlorotic phenotype much more severe than that of the ppi1 single mutant. Furthermore, the siliques of these plants contained approximately 25% aborted seeds, indicating that the double homozygous mutation is embryo lethal. The data demonstrate that atToc33/atToc34 performs a central and essential role during plastid protein import, and indicate that the atToc34 isoform is relatively more important for plastid biogenesis in roots.
Collapse
Affiliation(s)
- Diane Constan
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI 48824, USA
| | | | | | | |
Collapse
|
22
|
Vojta A, Alavi M, Becker T, Hörmann F, Küchler M, Soll J, Thomson R, Schleiff E. The protein translocon of the plastid envelopes. J Biol Chem 2004; 279:21401-5. [PMID: 15033972 DOI: 10.1074/jbc.m401968200] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Toc and Tic translocon facilitate import of preproteins into chloroplasts. In the past, it was speculated that several translocon subunits act specifically for different types of precursor proteins or in different tissues. To generate a comprehensive picture of the expression and tissue-specific localization of the translocon subunits, their transcript levels were analyzed in roots and leaves. Certain Tocs and Tics were found to be tissue-specific. The protein composition of the transloci in the envelope membranes of chloroplasts was analyzed to describe the function and possible stoichiometry. In contrast to Tic subunits, several Toc subunits seem to have a high turnover.
Collapse
Affiliation(s)
- Aleksandar Vojta
- Botanik, LMU München, Menzinger Strasse 67, 80638 Münich, Germany
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Affiliation(s)
- Jürgen Soll
- Department für Biologie I, Botanik, Ludwig-Maximilians-Universität München, Menzingerstrasse 67, D-80638 Munich, Germany.
| | | |
Collapse
|
24
|
Becker T, Jelic M, Vojta A, Radunz A, Soll J, Schleiff E. Preprotein recognition by the Toc complex. EMBO J 2004; 23:520-30. [PMID: 14765117 PMCID: PMC1271815 DOI: 10.1038/sj.emboj.7600089] [Citation(s) in RCA: 111] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2003] [Accepted: 01/02/2004] [Indexed: 11/08/2022] Open
Abstract
The Toc core complex consists of the pore-forming Toc75 and the GTPases Toc159 and Toc34. We confirm that the receptor form of Toc159 is integrated into the membrane. The association of Toc34 to Toc75/Toc159 is GTP dependent and enhanced by preprotein interaction. The N-terminal half of the pSSU transit peptide interacts with high affinity with Toc159, whereas the C-terminal part stimulates its GTP hydrolysis. The phosphorylated C-terminal peptide of pSSU interacts strongly with Toc34 and therefore inhibits binding and translocation of pSSU into Toc proteoliposomes. In contrast, Toc159 recognises only the dephosphorylated forms. The N-terminal part of the pSSU presequence does not influence binding to the Toc complex, but is able to block import into proteoliposomes through its interaction with Toc159. We developed a model of differential presequence recognition by Toc34 and Toc159.
Collapse
Affiliation(s)
- Thomas Becker
- Botanik, LMU München, Menzinger Str. 67, München, Germany
| | - Marko Jelic
- Botanik, LMU München, Menzinger Str. 67, München, Germany
| | | | - Alfons Radunz
- Department of Biology, University of Bielefeld, Bielefeld, Germany
| | - Jürgen Soll
- Botanik, LMU München, Menzinger Str. 67, München, Germany
| | - Enrico Schleiff
- Botanik, LMU München, Menzinger Str. 67, München, Germany
- Botanik, LMU München, Menzinger Str. 67, Room 223, D-80368 München, Germany. Tel.: +49 89 17861 182; Fax: +49 89 17861 185; E-mail:
| |
Collapse
|
25
|
Weibel P, Hiltbrunner A, Brand L, Kessler F. Dimerization of Toc-GTPases at the chloroplast protein import machinery. J Biol Chem 2003; 278:37321-9. [PMID: 12869544 DOI: 10.1074/jbc.m305946200] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Import of chloroplast precursor proteins is controlled by the coordinate action of two homologous GTPases, Toc159 and Toc33, located at the cytosol-outer membrane interface. Recent studies in Arabidopsis showed that the cytosolic form of the precursor binding protein Toc159 is targeted to its receptor at the import machinery, Toc33, via heterodimerization of their GTP-binding domains. Toc33 may also form GDP-bound homodimers, as suggested by the crystal structure of its pea ortholog. Moreover, the structural data suggested that arginine 130 (Arg130) of Arabidopsis Toc33 may function as a GTPase-activating "arginine-finger" at the other monomer in the Toc33 dimer. Here, we demonstrate that Arg130 of Toc33 does not function as an Arginine-finger. A mutant, Toc33-R130A, binds and hydrolyzes GTP like the wild type. However, we demonstrate that Arg130 is involved in both homodimerization of Toc33 and in heterodimerization with the GTP-binding domain of Toc159. The dependence of Toc33 homodimerization on Arg130 is mutual, requiring the presence of Arg130 at both monomers. As the GTPase is not activated by dimerization, it may be activated independently at either monomer, possibly even before dimerization. Independent regulation of GTPase activity may serve to coordinate the interactions of the GTPases during the import of proteins into the chloroplast.
Collapse
Affiliation(s)
- Petra Weibel
- Laboratoire de Physiologie Végétale, Institut de Botanique, Université de Neuchâtel, Rue Emile-Argand 11, 2007 Neuchâtel, Switzerland
| | | | | | | |
Collapse
|
26
|
Kubis S, Baldwin A, Patel R, Razzaq A, Dupree P, Lilley K, Kurth J, Leister D, Jarvis P. The Arabidopsis ppi1 mutant is specifically defective in the expression, chloroplast import, and accumulation of photosynthetic proteins. THE PLANT CELL 2003; 15:1859-71. [PMID: 12897258 PMCID: PMC167175 DOI: 10.1105/tpc.012955] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2003] [Accepted: 06/08/2003] [Indexed: 05/17/2023]
Abstract
The import of nucleus-encoded proteins into chloroplasts is mediated by translocon complexes in the envelope membranes. A component of the translocon in the outer envelope membrane, Toc34, is encoded in Arabidopsis by two homologous genes, atTOC33 and atTOC34. Whereas atTOC34 displays relatively uniform expression throughout development, atTOC33 is strongly upregulated in rapidly growing, photosynthetic tissues. To understand the reason for the existence of these two related genes, we characterized the atTOC33 knockout mutant ppi1. Immunoblotting and proteomics revealed that components of the photosynthetic apparatus are deficient in ppi1 chloroplasts and that nonphotosynthetic chloroplast proteins are unchanged or enriched slightly. Furthermore, DNA array analysis of 3292 transcripts revealed that photosynthetic genes are moderately, but specifically, downregulated in ppi1. Proteome differences in ppi1 could be correlated with protein import rates: ppi1 chloroplasts imported the ribulose-1,5-bisphosphate carboxylase/oxygenase small subunit and 33-kD oxygen-evolving complex precursors at significantly reduced rates, but the import of a 50S ribosomal subunit precursor was largely unaffected. The ppi1 import defect occurred at the level of preprotein binding, which is consistent with a role for atToc33 during preprotein recognition. The data suggest that atToc33 is involved preferentially in the import of photosynthetic proteins and, by extension, that atToc34 is involved in the import of nonphotosynthetic chloroplast proteins.
Collapse
Affiliation(s)
- Sybille Kubis
- Department of Biology, University of Leicester, Leicester LE1 7RH, United Kingdom
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Ferro M, Salvi D, Brugière S, Miras S, Kowalski S, Louwagie M, Garin J, Joyard J, Rolland N. Proteomics of the chloroplast envelope membranes from Arabidopsis thaliana. Mol Cell Proteomics 2003; 2:325-45. [PMID: 12766230 DOI: 10.1074/mcp.m300030-mcp200] [Citation(s) in RCA: 294] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The development of chloroplasts and the integration of their function within a plant cell rely on the presence of a complex biochemical machinery located within their limiting envelope membranes. To provide the most exhaustive view of the protein repertoire of chloroplast envelope membranes, we analyzed this membrane system using proteomics. To this purpose, we first developed a procedure to prepare highly purified envelope membranes from Arabidopsis chloroplasts. We then extracted envelope proteins using different methods, i.e. chloroform/methanol extraction and alkaline or saline treatments, in order to retrieve as many proteins as possible, from the most to least hydrophobic ones. Liquid chromatography tandem mass spectrometry analyses were then performed on each envelope membrane subfraction, leading to the identification of more than 100 proteins. About 80% of the identified proteins are known to be, or are very likely, located in the chloroplast envelope. The validation of localization in the envelope of two phosphate transporters exemplifies the need for a combination of strategies to perform the most exhaustive identification of genuine chloroplast envelope proteins. Interestingly, some of the identified proteins are found to be Nalpha-acetylated, which indicates the accurate location of the N terminus of the corresponding mature protein. With regard to function, more than 50% of the identified proteins have functions known or very likely to be associated with the chloroplast envelope. These proteins are a) involved in ion and metabolite transport, b) components of the protein import machinery, and c) involved in chloroplast lipid metabolism. Some soluble proteins, like proteases, proteins involved in carbon metabolism, or proteins involved in responses to oxidative stress, were associated with envelope membranes. Almost one-third of the proteins we identified have no known function. The present work helps understanding chloroplast envelope metabolism at the molecular level and provides a new overview of the biochemical machinery of the chloroplast envelope membranes.
Collapse
Affiliation(s)
- Myriam Ferro
- Laboratoire de Chimie des Protéines, ERM-0201 INSERM/CEA, Grenoble, France
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Schleiff E, Soll J, Küchler M, Kühlbrandt W, Harrer R. Characterization of the translocon of the outer envelope of chloroplasts. J Cell Biol 2003; 160:541-51. [PMID: 12591914 PMCID: PMC2173740 DOI: 10.1083/jcb.200210060] [Citation(s) in RCA: 176] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The protein translocon of the outer envelope of chloroplasts (Toc) consists of the core subunits Toc159, Toc75, and Toc34. To investigate the molecular structure, the core complex was purified. This core complex has an apparent molecular mass of approximately 500 kD and a molecular stoichiometry of 1:4:4-5 between Toc159, Toc75, and Toc34. The isolated translocon recognizes both transit sequences and precursor proteins in a GTP-dependent manner, suggesting its functional integrity. The complex is embedded by the lipids phosphatidylcholine and digalactosyldiacylglyceride. Two-dimensional structural analysis by EM revealed roughly circular particles consistent with the formation of a stable core complex. The particles show a diameter of approximately 130 A with a solid ring and a less dense interior structure. A three-dimensional map obtained by random conical tilt reconstruction of electron micrographs suggests that a "finger"-like central region separates four curved translocation channels within one complex.
Collapse
Affiliation(s)
- Enrico Schleiff
- Botanisches Institut, Ludwig Maximilian Universität München, 80638 München, Germany.
| | | | | | | | | |
Collapse
|
29
|
Bauer J, Hiltbrunner A, Weibel P, Vidi PA, Alvarez-Huerta M, Smith MD, Schnell DJ, Kessler F. Essential role of the G-domain in targeting of the protein import receptor atToc159 to the chloroplast outer membrane. J Cell Biol 2002; 159:845-54. [PMID: 12460988 PMCID: PMC2173394 DOI: 10.1083/jcb.200208018] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Two homologous GTP-binding proteins, atToc33 and atToc159, control access of cytosolic precursor proteins to the chloroplast. atToc33 is a constitutive outer chloroplast membrane protein, whereas the precursor receptor atToc159 also exists in a soluble, cytosolic form. This suggests that atToc159 may be able to switch between a soluble and an integral membrane form. By transient expression of GFP fusion proteins, mutant analysis, and biochemical experimentation, we demonstrate that the GTP-binding domain regulates the targeting of cytosolic atToc159 to the chloroplast and mediates the switch between cytosolic and integral membrane forms. Mutant atToc159, unable to bind GTP, does not reinstate a green phenotype in an albino mutant (ppi2) lacking endogenous atToc159, remaining trapped in the cytosol. Thus, the function of atToc159 in chloroplast biogenesis is dependent on an intrinsic GTP-regulated switch that controls localization of the receptor to the chloroplast envelope.
Collapse
Affiliation(s)
- Jörg Bauer
- Plant Physiology and Biochemistry Group, Institute of Plant Sciences, ETH Zürich, CH-8092 Zürich, Switzerland
| | | | | | | | | | | | | | | |
Collapse
|