1
|
Yamasaki M, Iwase M, Kawano K, Sakakibara Y, Suiko M, Ikeda M, Nishiyama K. α-Lipoic acid suppresses migration and invasion via downregulation of cell surface β1-integrin expression in bladder cancer cells. J Clin Biochem Nutr 2013; 54:18-25. [PMID: 24426186 PMCID: PMC3882485 DOI: 10.3164/jcbn.13-57] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2013] [Accepted: 08/01/2013] [Indexed: 12/14/2022] Open
Abstract
Our previous study showed α-lipoic acid (LA) downregulated cell surface β1-integrin expression of v-H-ras-transformed derivative of rat fibroblast with amelioration of their malignant phenotype. Here, we evaluated the ameliorating effect of LA on the malignant characters in H-ras-transformed bladder cancer cells. H-ras mutated bladder cancer line, T24 cells were incubated with LA to evaluate the inhibitory effect on proliferation, migration, invasion and β1-integrin expression. Fluorescence staining of F-actin and western blotting analyses of the related signaling pathways were also performed. LA inhibited the proliferation of T24 cells. Cell adhesion to collagen IV and fibronectin was strikingly inhibited by LA treatment accompanied by downregulation of cell surface but not whole cell β1-integrin expression. LA clearly inhibited cell migration and invasion of T24 cells, which were mimicked by extracellular signal-regulated kinase (ERK) and Akt pathway inhibition. Actually, LA significantly downregulated the phosphorylated ERK and Akt levels. Moreover, LA downregulated phosphorylated focal adhesion kinase level with disappearance of stress fiber formation. Finally, although LA induced the internalization of cell surface β1-integrin, disruption of the raft did not affect the action of LA. Taken together, LA is a promising agent to improve malignant character of bladder cancer cells through regulation of cellular β1-integrin localization.
Collapse
Affiliation(s)
- Masao Yamasaki
- Department of Biochemistry and Applied Biosciences, Faculty of Agriculture, University of Miyazaki, 1-1 Gakuenkibanadai-nishi Miyazaki 889-2192, Japan
| | - Masahiro Iwase
- Department of Biochemistry and Applied Biosciences, Faculty of Agriculture, University of Miyazaki, 1-1 Gakuenkibanadai-nishi Miyazaki 889-2192, Japan
| | - Kazuo Kawano
- Department of Biochemistry and Applied Biosciences, Faculty of Agriculture, University of Miyazaki, 1-1 Gakuenkibanadai-nishi Miyazaki 889-2192, Japan
| | - Yoichi Sakakibara
- Department of Biochemistry and Applied Biosciences, Faculty of Agriculture, University of Miyazaki, 1-1 Gakuenkibanadai-nishi Miyazaki 889-2192, Japan
| | - Masahito Suiko
- Department of Biochemistry and Applied Biosciences, Faculty of Agriculture, University of Miyazaki, 1-1 Gakuenkibanadai-nishi Miyazaki 889-2192, Japan
| | - Masahiro Ikeda
- Department of Veterinary Science, Faculty of Agriculture, University of Miyazaki, 1-1 Gakuenkibanadai-nishi Miyazaki 889-2192, Japan
| | - Kazuo Nishiyama
- Department of Biochemistry and Applied Biosciences, Faculty of Agriculture, University of Miyazaki, 1-1 Gakuenkibanadai-nishi Miyazaki 889-2192, Japan
| |
Collapse
|
2
|
Park JH, Ryu JM, Han HJ. Involvement of caveolin-1 in fibronectin-induced mouse embryonic stem cell proliferation: role of FAK, RhoA, PI3K/Akt, and ERK 1/2 pathways. J Cell Physiol 2010; 226:267-75. [PMID: 20658539 DOI: 10.1002/jcp.22338] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Fibronectin (FN) is the foremost proliferation-associated extracellular matrix component promoting cell adhesion, migration, and survival. We examined the effect of FN on cell proliferation and the related signaling pathways in mouse embryonic stem (ES) cells. FN increased integrin β1, Src, focal adhesion kinase (FAK), and caveolin-1 phosphorylation levels in a time-dependent manner. Phosphorylation of Src, FAK, and caveolin-1 was attenuated by integrin β1 neutralizing antibody. Integrin β1, Src, and FAK coimmunoprecipitated with caveolin-1 in the presence of FN. In addition, FN increased RhoA and Rho kinase activation, which were completely blocked by PP2, FAK small interfering RNA (siRNA), caveolin-1 siRNA, or the caveolar disruptor methyl-β-cyclodextrin (MβCD). FN also increased phosphorylation of Akt and ERK 1/2, which were significantly blocked by either FAK siRNA, caveolin-1 siRNA, MβCD, GGTI-286 (RhoA inhibitor), or Y-27632 (Rho kinase inhibitor). FN-induced increase of protooncogenes (c-fos, c-myc, and c-Jun) and cell-cycle regulatory proteins (cyclin D1/CDK4 and cyclin E/CDK2) expression levels were attenuated by FAK siRNA or caveolin-1 siRNA. Furthermore, inhibition of each pathway such as integrin β1, Src, FAK, caveolin-1, RhoA, Akt, and ERK 1/2 blocked FN-induced [(3)H]-thymidine incorporation. We conclude that FN stimulates mouse ES cell proliferation via RhoA-PI3K/Akt-ERK 1/2 pathway through caveolin-1 phosphorylation.
Collapse
Affiliation(s)
- Jae Hong Park
- Department of Veterinary Physiology, Biotherapy Human Resources Center (BK 21), College of Veterinary Medicine, Chonnam National University, Gwangju, Korea
| | | | | |
Collapse
|
3
|
Adler AF, Leong KW. Emerging links between surface nanotechnology and endocytosis: impact on nonviral gene delivery. NANO TODAY 2010; 5:553-569. [PMID: 21383869 PMCID: PMC3048656 DOI: 10.1016/j.nantod.2010.10.007] [Citation(s) in RCA: 130] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Significant effort continues to be exerted toward the improvement of transfection mediated by nonviral vectors. These endeavors are often focused on the design of particulate carriers with properties that encourage efficient accumulation at the membrane surface, particle uptake, and endosomal escape. Despite its demonstrated importance in successful nonviral transfection, relatively little investigation has been done to understand the pressures driving internalized vectors into favorable nondegradative endocytic pathways. Improvements in transfection efficiency have been noted for complexes delivered with a substrate-mediated approach, but the reasons behind such enhancements remain unclear. The phenotypic changes exhibited by cells interacting with nano- and micro-featured substrates offer hints that may explain these effects. This review describes nanoscale particulate and substrate parameters that influence both the uptake of nonviral gene carriers and the endocytic phenotype of interacting cells, and explores the molecular links that may mediate these interactions. Substrate-mediated control of endocytosis represents an exciting new design parameter that will guide the creation of efficient transgene carriers.
Collapse
Affiliation(s)
- Andrew F. Adler
- Department of Biomedical Engineering, Duke University, 136 Hudson Hall, Box 90281, Durham, NC 27708, USA
| | - Kam W. Leong
- Department of Biomedical Engineering, Duke University, 136 Hudson Hall, Box 90281, Durham, NC 27708, USA
| |
Collapse
|
4
|
Vassilieva EV, Gerner-Smidt K, Ivanov AI, Nusrat A. Lipid rafts mediate internalization of beta1-integrin in migrating intestinal epithelial cells. Am J Physiol Gastrointest Liver Physiol 2008; 295:G965-76. [PMID: 18755811 PMCID: PMC2584823 DOI: 10.1152/ajpgi.00082.2008] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Intestinal mucosal inflammation is associated with epithelial wounds that rapidly reseal by migration of intestinal epithelial cells (IECs). Cell migration involves cycles of cell-matrix adhesion/deadhesion that is mediated by dynamic turnover (assembly and disassembly) of integrin-based focal adhesions. Integrin endocytosis appears to be critical for deadhesion of motile cells. However, mechanisms of integrin internalization during remodeling of focal adhesions of migrating IECs are not understood. This study was designed to define the endocytic pathway that mediates internalization of beta(1)-integrin in migrating model IECs. We observed that, in SK-CO15 and T84 colonic epithelial cells, beta(1)-integrin is internalized in a dynamin-dependent manner. Pharmacological inhibition of clathrin-mediated endocytosis or macropinocytosis and small-interfering RNA (siRNA)-mediated knock down of clathrin did not prevent beta(1)-integrin internalization. However, beta(1)-integrin internalization was inhibited following cholesterol extraction and after overexpression of lipid raft protein, caveolin-1. Furthermore, internalized beta(1)-integrin colocalized with the lipid rafts marker cholera toxin, and siRNA-mediated knockdown of caveolin-1 and flotillin-1/2 increased beta(1)-integrin endocytosis. Our data suggest that, in migrating IEC, beta(1)-integrin is internalized via a dynamin-dependent lipid raft-mediated pathway. Such endocytosis is likely to be important for disassembly of integrin-based cell-matrix adhesions and therefore in regulating IEC migration and wound closure.
Collapse
Affiliation(s)
- Elena V. Vassilieva
- Epithelial Pathobiology Research Unit, Department of Pathology and Laboratory Medicine, Emory University, Atlanta, Georgia; and Gastroenterology and Hepatology Division, Department of Medicine, The University of Rochester School of Medicine and Dentistry, Rochester, New York
| | - Kirsten Gerner-Smidt
- Epithelial Pathobiology Research Unit, Department of Pathology and Laboratory Medicine, Emory University, Atlanta, Georgia; and Gastroenterology and Hepatology Division, Department of Medicine, The University of Rochester School of Medicine and Dentistry, Rochester, New York
| | - Andrei I. Ivanov
- Epithelial Pathobiology Research Unit, Department of Pathology and Laboratory Medicine, Emory University, Atlanta, Georgia; and Gastroenterology and Hepatology Division, Department of Medicine, The University of Rochester School of Medicine and Dentistry, Rochester, New York
| | - Asma Nusrat
- Epithelial Pathobiology Research Unit, Department of Pathology and Laboratory Medicine, Emory University, Atlanta, Georgia; and Gastroenterology and Hepatology Division, Department of Medicine, The University of Rochester School of Medicine and Dentistry, Rochester, New York
| |
Collapse
|
5
|
Martin S, Cosset EC, Terrand J, Maglott A, Takeda K, Dontenwill M. Caveolin-1 regulates glioblastoma aggressiveness through the control of alpha(5)beta(1) integrin expression and modulates glioblastoma responsiveness to SJ749, an alpha(5)beta(1) integrin antagonist. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2008; 1793:354-67. [PMID: 18992284 DOI: 10.1016/j.bbamcr.2008.09.019] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2008] [Revised: 09/18/2008] [Accepted: 09/30/2008] [Indexed: 12/30/2022]
Abstract
Caveolin-1 plays a checkpoint function in the regulation of processes often altered in cancer. Although increased expression of caveolin-1 seems to be the norm in the glioma family of malignancies, populations of caveolin-1 positive and negative cells coexist among glioblastoma specimens. As no data are available to date on the contribution of such cells to the phenotype of glioblastoma, we manipulated caveolin-1 in the glioblastoma cell line U87MG. We showed that caveolin-1 plays a critical role in the aggressiveness of glioblastoma. We identified integrins as the main set of genes affected by caveolin-1. We reported here that the phenotypic changes observed after caveolin-1 modulation were mediated by alpha(5)beta(1) integrins. As a consequence of the regulation of alpha(5)beta(1) levels by caveolin-1, the sensitivity of cells to the specific alpha(5)beta(1) integrin antagonist, SJ749, was affected. Mediator of caveolin-1 effects, alpha(5)beta(1) integrin, is also a marker for glioma aggressiveness and an efficient target for the treatment of glioma especially the ones exerting the highest aggressive phenotype.
Collapse
Affiliation(s)
- Sophie Martin
- Université Strasbourg 1 Institut Gilbert Laustriat, CNRS UMR 7175, Illkirch, France.
| | | | | | | | | | | |
Collapse
|
6
|
Bengali Z, Rea JC, Shea LD. Gene expression and internalization following vector adsorption to immobilized proteins: dependence on protein identity and density. J Gene Med 2007; 9:668-78. [PMID: 17533618 PMCID: PMC2659664 DOI: 10.1002/jgm.1058] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Gene delivery by non-specific adsorption of non-viral vectors to protein-coated surfaces can reduce the amount of DNA required, and also increase transgene expression and the number of cells expressing the transgene. The protein on the surface mediates cell adhesion and vector immobilization, and functions to colocalize the two to enhance gene delivery. This report investigates the mechanism and specificity by which the protein coating enhances gene transfer, and determines if the protein coating targets the vector for internalization by a specific pathway. METHODS Proteins (FBS, BSA, fibronectin, collagen I, and laminin) were dried onto culture dishes, followed by PEI/DNA complex adsorption for surface delivery. Reporter genes were employed to characterize transfection as a function of the protein identity and density. Vector immobilization was measured using radiolabeled plasmid, and internalization was quantified in the presence and absence of the endocytosis inhibitors chlorpromazine and genistein. RESULTS Fibronectin coating yielded the greatest expression for PEI/DNA polyplexes, with maximal expression at intermediate protein densities. Expression in control studies with bolus delivery was independent of the protein identity. Substrate binding was independent of the protein identity; however, internalization was greatest on surfaces coated with fibronectin and collagen I. Inhibition of caveolae-mediated endocytosis reduced gene expression more than clathrin-mediated endocytosis. Similarly, inhibition of caveolae-mediated endocytosis significantly reduced the intracellular levels of DNA. CONCLUSIONS Fibronectin at intermediate densities mediated the highest levels of transgene expression, potentially by targeting internalization through caveolae-mediated endocytosis. Substrate modifications, such as the identity and density of proteins, provide an opportunity for modification of biomaterials for enhancing gene expression.
Collapse
Affiliation(s)
- Zain Bengali
- Department of Interdepartmental Biological Sciences, Northwestern University, 2145 Sheridan Rd E156, Evanston, IL 60208-3120, USA
- Department of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Rd E156, Evanston, IL 60208-3120, USA
| | - Jennifer C. Rea
- Department of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Rd E156, Evanston, IL 60208-3120, USA
| | - Lonnie D. Shea
- Department of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Rd E156, Evanston, IL 60208-3120, USA
- Department of Biomedical Engineering, Northwestern University, 2145 Sheridan Rd E156, Evanston, IL 60208-3120, USA
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL 60611
| |
Collapse
|
7
|
Dunphy JL, Moravec R, Ly K, Lasell TK, Melancon P, Casanova JE. The Arf6 GEF GEP100/BRAG2 regulates cell adhesion by controlling endocytosis of beta1 integrins. Curr Biol 2006; 16:315-20. [PMID: 16461286 PMCID: PMC3600433 DOI: 10.1016/j.cub.2005.12.032] [Citation(s) in RCA: 103] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2005] [Revised: 12/16/2005] [Accepted: 12/19/2005] [Indexed: 01/03/2023]
Abstract
The small GTPase Arf6 has been shown to regulate the post-endocytic trafficking of a subset of membrane proteins, including beta1 integrins, and inhibition of Arf6 function impairs both cell adhesion and motility. The activity of Arf GTPases is regulated by a large family of guanine nucleotide exchange factors (GEFs). Arf-GEP100/BRAG2 is a GEF with reported specificity for Arf6 in vitro, but it is otherwise poorly characterized. Here we report that BRAG2 exists in two ubiquitously expressed isoforms, which we call BRAG2a and BRAG2b, both of which can activate Arf6 in vivo. Depletion of endogenous BRAG2 by siRNA leads to dramatic effects in the cell periphery; one such effect is an accumulation of beta1 integrin on the cell surface and a corresponding enhancement of cell attachment and spreading on fibronectin-coated substrates. In contrast, depletion of Arf6 leads to intracellular accumulation of beta1 integrin and reduced adhesion and spreading. These findings suggest that Arf6 regulates both endocytosis and recycling of beta1 integrins and that BRAG2 functions selectively to activate Arf6 during integrin internalization.
Collapse
Affiliation(s)
- Jillian L. Dunphy
- Department of Cell Biology, University of Virginia Health Sciences Center, Box 800732, Charlottesville, Virginia 22908
| | - Radim Moravec
- Department of Cell Biology, University of Virginia Health Sciences Center, Box 800732, Charlottesville, Virginia 22908
| | - Kim Ly
- Department of Cell Biology, University of Virginia Health Sciences Center, Box 800732, Charlottesville, Virginia 22908
| | - Troy K. Lasell
- Department of Cell Biology, University of Alberta, 5-35 Medical Sciences Building, Edmonton, Alberta T6G 2H7, Canada
| | - Paul Melancon
- Department of Cell Biology, University of Alberta, 5-35 Medical Sciences Building, Edmonton, Alberta T6G 2H7, Canada
| | - James E. Casanova
- Department of Cell Biology, University of Virginia Health Sciences Center, Box 800732, Charlottesville, Virginia 22908
- Correspondence:
| |
Collapse
|
8
|
Sharma DK, Brown JC, Cheng Z, Holicky EL, Marks DL, Pagano RE. The glycosphingolipid, lactosylceramide, regulates beta1-integrin clustering and endocytosis. Cancer Res 2005; 65:8233-41. [PMID: 16166299 DOI: 10.1158/0008-5472.can-05-0803] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Glycosphingolipids are known to play roles in integrin-mediated cell adhesion and migration; however, the mechanisms by which glycosphingolipids affect integrins are unknown. Here, we show that addition of the glycosphingolipid, C8-lactosylceramide (C8-LacCer), or free cholesterol to human fibroblasts at 10 degrees C causes the formation of glycosphingolipid-enriched plasma membrane domains as shown by visualizing a fluorescent glycosphingolipid probe, BODIPY-LacCer, incorporated into the plasma membrane of living cells. Addition of C8-LacCer or cholesterol to cells initiated the clustering of beta1-integrins within these glycosphingolipid-enriched domains and the activation of the beta1-integrins as assessed using a HUTS antibody that only binds activated integrin. On warming to 37 degrees C, beta1-integrins were rapidly internalized via caveolar endocytosis in cells treated with C8-LacCer or cholesterol, whereas little beta1-integrin was endocytosed in untreated fibroblasts. Incubation of cells with C8-LacCer or cholesterol followed by warm-up caused src activation, a reorganization of the actin cytoskeleton, translocation of RhoA GTPase away from the plasma membrane as visualized using total internal reflection fluorescence microscopy, and transient cell detachment. These studies show that LacCer can regulate integrin function both by modulating integrin clustering in microdomains and by regulating integrin endocytosis via caveolae. Our findings suggest the possibility that aberrant levels of glycosphingolipids found in cancer cells may influence cell attachment events by direct effects on integrin clustering and internalization.
Collapse
Affiliation(s)
- Deepak K Sharma
- Department of Biochemistry and Molecular Biology, Thoracic Diseases Research Unit, and Mayo Clinic Cancer Center, Mayo Clinic College of Medicine, Rochester, Minnesota 55905-0001, USA
| | | | | | | | | | | |
Collapse
|
9
|
Goudenege S, Poussard S, Dulong S, Cottin P. Biologically active milli-calpain associated with caveolae is involved in a spatially compartmentalised signalling involving protein kinase C alpha and myristoylated alanine-rich C-kinase substrate (MARCKS). Int J Biochem Cell Biol 2005; 37:1900-10. [PMID: 15923133 DOI: 10.1016/j.biocel.2005.04.010] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2004] [Revised: 04/19/2005] [Accepted: 04/19/2005] [Indexed: 01/14/2023]
Abstract
We have previously shown that calpain promotes myoblast fusion by acting on protein kinase C-alpha and the cytosolic phosphorylated form of MARCKS. In other cell types, various isoforms of calpain, PKC alpha and MARCKS were found associated with caveolae. These vesicular invaginations of the plasma membrane are essential for myoblast fusion and differentiation. We have isolated caveolae from myoblasts and studied the presence of calpain isoforms and their possible effects on signalling mediated by caveolae-associated PKC. Our results show that milli-calpain co-localizes with myoblast caveolae. Futhermore we provide evidence, using a calcium ionophore and a specific inhibitor of calpains (calpastatin peptide), that milli-calpain reduces the PKC alpha and MARCKS content in these structures. Purified milli-calpain causes the appearance of the active catalytic fragment of PKC alpha (PKM), without having an effect on MARCKS. Addition of phorbol myristate acetate, an activator of PKC, induces tranlocation of PKC alpha towards caveolae and results in a significant reduction of MARCKS associated with caveolae. This phenomenon is not observed when a PKC alpha inhibitor is added at the same time. We conclude that the presence of biologically active milli-calpain within myoblast caveolae induces, in a PKC alpha-dependent manner, MARCKS translocation towards the cytosol. Such a localised signalling event may be essential for myoblast fusion and differentiation.
Collapse
Affiliation(s)
- Sébastien Goudenege
- Laboratoire Biosciences de 1'Aliment, USC-INRA 2009 Université Bordeaux I, Talence, France
| | | | | | | |
Collapse
|
10
|
del Pozo MA, Balasubramanian N, Alderson NB, Kiosses WB, Grande-García A, Anderson RGW, Schwartz MA. Phospho-caveolin-1 mediates integrin-regulated membrane domain internalization. Nat Cell Biol 2005; 7:901-8. [PMID: 16113676 PMCID: PMC1351395 DOI: 10.1038/ncb1293] [Citation(s) in RCA: 330] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2005] [Accepted: 07/26/2005] [Indexed: 01/12/2023]
Abstract
Growth of normal cells is anchorage dependent because signalling through multiple pathways including Erk, phosphatidylinositol-3-OH kinase (PI(3)K) and Rac requires integrin-mediated cell adhesion. Components of these pathways localize to low-density, cholesterol-rich domains in the plasma membrane named 'lipid rafts' or 'cholesterol-enriched membrane microdomains' (CEMM). We previously reported that integrin-mediated adhesion regulates CEMM transport such that cell detachment from the extracellular matrix triggers CEMM internalization and clearance from the plasma membrane. We now report that this internalization is mediated by dynamin-2 and caveolin-1. Internalization requires phosphorylation of caveolin-1 on Tyr 14. A shift in localization of phospho-caveolin-1 from focal adhesions to caveolae induces CEMM internalization upon cell detachment, which mediates inhibition of Erk, PI(3)K and Rac. These data define a novel molecular mechanism for growth and tumour suppression by caveolin-1.
Collapse
Affiliation(s)
- Miguel A del Pozo
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid 28029, Spain.
| | | | | | | | | | | | | |
Collapse
|