1
|
Brady ST, Mesnard-Hoaglin NA, Mays S, Priego M, Dziechciowska J, Morris S, Kang M, Tsai MY, Purks JL, Klein A, Gaona A, Melloni A, Connors T, Hyman B, Song Y, Morfini GA. Toxic effects of mutant huntingtin in axons are mediated by its proline-rich domain. Brain 2024; 147:2098-2113. [PMID: 37633260 PMCID: PMC11146425 DOI: 10.1093/brain/awad280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 05/13/2023] [Accepted: 07/17/2023] [Indexed: 08/28/2023] Open
Abstract
Huntington's disease results from expansion of a polyglutamine tract (polyQ) in mutant huntingtin (mHTT) protein, but mechanisms underlying polyQ expansion-mediated toxic gain-of-mHTT function remain elusive. Here, deletion and antibody-based experiments revealed that a proline-rich domain (PRD) adjacent to the polyQ tract is necessary for mHTT to inhibit fast axonal transport and promote axonal pathology in cultured mammalian neurons. Further, polypeptides corresponding to subregions of the PRD sufficed to elicit the toxic effect on fast axonal transport, which was mediated by c-Jun N-terminal kinases (JNKs) and involved PRD binding to one or more SH3-domain containing proteins. Collectively, these data suggested a mechanism whereby polyQ tract expansion in mHTT promotes aberrant PRD exposure and interactions of this domain with SH3 domain-containing proteins including some involved in activation of JNKs. In support, biochemical and immunohistochemical experiments linked aberrant PRD exposure to increased JNK activation in striatal tissues of the zQ175 mouse model and from post-mortem Huntington's disease patients. Together, these findings support a critical role of PRD on mHTT toxicity, suggesting a novel framework for the potential development of therapies aimed to halt or reduce axonal pathology in Huntington's disease.
Collapse
Affiliation(s)
- Scott T Brady
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL 60612, USA
- Marine Biological Laboratory, Woods Hole, MA 02543, USA
| | | | - Sarah Mays
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL 60612, USA
- Marine Biological Laboratory, Woods Hole, MA 02543, USA
| | - Mercedes Priego
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Joanna Dziechciowska
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Sarah Morris
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL 60612, USA
- Marine Biological Laboratory, Woods Hole, MA 02543, USA
| | - Minsu Kang
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL 60612, USA
- Marine Biological Laboratory, Woods Hole, MA 02543, USA
| | - Ming Ying Tsai
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL 60612, USA
| | | | - Alison Klein
- Marine Biological Laboratory, Woods Hole, MA 02543, USA
| | - Angelica Gaona
- Department of Neurology, Massachusetts General Hospital, Charlestown, MA 02129, USA
| | - Alexandra Melloni
- Department of Neurology, Massachusetts General Hospital, Charlestown, MA 02129, USA
| | - Theresa Connors
- Department of Neurology, Massachusetts General Hospital, Charlestown, MA 02129, USA
| | - Bradley Hyman
- Department of Neurology, Massachusetts General Hospital, Charlestown, MA 02129, USA
- Department of Neurology, Harvard Medical School, Boston, MA 02129, USA
| | - Yuyu Song
- Marine Biological Laboratory, Woods Hole, MA 02543, USA
- Department of Neurology, Massachusetts General Hospital, Charlestown, MA 02129, USA
- Department of Neurology, Harvard Medical School, Boston, MA 02129, USA
| | - Gerardo A Morfini
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL 60612, USA
- Marine Biological Laboratory, Woods Hole, MA 02543, USA
| |
Collapse
|
2
|
Podvin S, Mosier C, Poon W, Wei E, Rossitto LA, Hook V. Dysregulation of Human Juvenile Huntington's Disease Brain Proteomes in Cortex and Putamen Involves Mitochondrial and Neuropeptide Systems. J Huntingtons Dis 2023; 12:315-333. [PMID: 38108356 DOI: 10.3233/jhd-230577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
BACKGROUND Huntington's disease (HD) is a genetic neurodegenerative disease caused by trinucleotide repeat CAG expansions in the human HTT gene. Early onset juvenile HD (JHD) in children is the most severe form of the disease caused by high CAG repeat numbers of the HTT gene. OBJECTIVE To gain understanding of human HD mechanisms hypothesized to involve dysregulated proteomes of brain regions that regulate motor and cognitive functions, this study analyzed the proteomes of human JHD cortex and putamen brain regions compared to age-matched controls. METHODS JHD and age-matched control brain tissues were assessed for CAG repeat numbers of HTT by PCR. Human brain JHD brain cortex regions of BA4 and BA6 with the putamen region (n = 5) were analyzed by global proteomics, compared to age-matched controls (n = 7). Protein interaction pathways were assessed by gene ontology (GO), STRING-db, and KEGG bioinformatics. RESULTS JHD brain tissues were heterozygous for one mutant HTT allele containing 60 to 120 CAG repeats, and one normal HTT allele with 10 to 19 CAG repeats. Proteomics data for JHD brain regions showed dysregulated mitochondrial energy pathways and changes in synaptic systems including peptide neurotransmitters. JHD compared to control proteomes of cortex and putamen displayed (a) proteins present only in JHD, (b) proteins absent in JHD, and (c) proteins that were downregulated or upregulated. CONCLUSIONS Human JHD brain cortex and putamen regions display significant dysregulation of proteomes representing deficits in mitochondrial and synaptic neurotransmission functions. These findings advance understanding of JHD brain molecular mechanisms associated with HD disabilities.
Collapse
Affiliation(s)
- Sonia Podvin
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA, USA
| | - Charles Mosier
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA, USA
| | - William Poon
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA, USA
| | - Enlin Wei
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA, USA
| | - Leigh-Ana Rossitto
- Biomedical Sciences Graduate Program, University of California, San Diego, La Jolla, CA, USA
- Department of Neuroscience and Department of Pharmacology, School of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Vivian Hook
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA, USA
- Department of Neuroscience and Department of Pharmacology, School of Medicine, University of California, San Diego, La Jolla, CA, USA
| |
Collapse
|
3
|
Beasley M, Frazee N, Groover S, Valentine SJ, Mertz B, Legleiter J. Physicochemical Properties Altered by the Tail Group of Lipid Membranes Influence Huntingtin Aggregation and Lipid Binding. J Phys Chem B 2022; 126:3067-3081. [PMID: 35439000 DOI: 10.1021/acs.jpcb.1c10254] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Huntington's disease is a neurodegenerative disorder caused by an expanded polyglutamine (polyQ) domain within the huntingtin protein (htt) that initiates toxic protein aggregation. Htt directly interacts with membranes, influencing aggregation and spurring membrane abnormalities. These interactions are facilitated by the 17 N-terminal residues (Nt17) that form an amphipathic α-helix implicated in both lipid binding and aggregation. Here, the impact of unsaturation in phospholipid tails on htt-lipid interaction and htt aggregation was determined. There was no correlation between the degree of htt-lipid complexation and the degree of htt aggregation in the presence of each lipid system, indicating that lipid systems with different properties uniquely alter the membrane-mediated aggregation mechanisms. Also, the association between Nt17 and membrane surfaces is determined by complementarity between hydrophobic residues and membrane defects and how easily the peptide can partition into the bilayer. Our results provide critical insights into how membrane physical properties influence downstream htt aggregation.
Collapse
Affiliation(s)
- Maryssa Beasley
- The C. Eugene Bennett Department of Chemistry, West Virginia University, 217 Clark Hall, Morgantown, West Virginia 26506, United States
| | - Nicolas Frazee
- The C. Eugene Bennett Department of Chemistry, West Virginia University, 217 Clark Hall, Morgantown, West Virginia 26506, United States
| | - Sharon Groover
- The C. Eugene Bennett Department of Chemistry, West Virginia University, 217 Clark Hall, Morgantown, West Virginia 26506, United States
| | - Stephen J Valentine
- The C. Eugene Bennett Department of Chemistry, West Virginia University, 217 Clark Hall, Morgantown, West Virginia 26506, United States
| | - Blake Mertz
- The C. Eugene Bennett Department of Chemistry, West Virginia University, 217 Clark Hall, Morgantown, West Virginia 26506, United States.,WVU Cancer Institute, West Virginia University, Morgantown, West Virginia 26506, United States
| | - Justin Legleiter
- The C. Eugene Bennett Department of Chemistry, West Virginia University, 217 Clark Hall, Morgantown, West Virginia 26506, United States.,Blanchette Rockefeller Neurosciences Institutes, West Virginia University, 1 Medical Center Drive, P.O. Box 9303, Morgantown, West Virginia 26505, United States.,Department of Neuroscience, West Virginia University, 1 Medical Center Drive, P.O. Box 9303, Morgantown, West Virginia 26505, United States
| |
Collapse
|
4
|
Pradhan S, Gao R, Bush K, Zhang N, Wairkar YP, Sarkar PS. Polyglutamine Expansion in Huntingtin and Mechanism of DNA Damage Repair Defects in Huntington’s Disease. Front Cell Neurosci 2022; 16:837576. [PMID: 35444517 PMCID: PMC9013776 DOI: 10.3389/fncel.2022.837576] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 02/07/2022] [Indexed: 12/27/2022] Open
Abstract
Emerging evidence suggests that DNA repair deficiency and genome instability may be the impending signs of many neurological diseases. Genome-wide association (GWAS) studies have established a strong correlation between genes that play a role in DNA damage repair and many neurodegenerative diseases, including Huntington’s disease (HD), and several other trinucleotides repeat expansion-related hereditary ataxias. Recently, many reports have documented a significant role played by the DNA repair processes in aging and in modifying many neurodegenerative diseases, early during their progression. Studies from our lab and others have now begun to understand the mechanisms that cause defective DNA repair in HD and surprisingly, many proteins that have a strong link to known neurodegenerative diseases seem to be important players in these cellular pathways. Mutations in huntingtin (HTT) gene that lead to polyglutamine repeat expansion at the N-terminal of HTT protein has been shown to disrupt transcription-coupled DNA repair process, a specialized DNA repair process associated with transcription. Due to the recent progress made in understanding the mechanisms of DNA repair in relation to HD, in this review, we will mainly focus on the mechanisms by which the wild-type huntingtin (HTT) protein helps in DNA repair during transcription, and the how polyglutamine expansions in HTT impedes this process in HD. Further studies that identify new players in DNA repair will help in our understanding of this process in neurons. Furthermore, it should help us understand how various DNA repair mechanism(s) coordinate to maintain the normal physiology of neurons, and provide insights for the development of novel drugs at prodromal stages of these neurodegenerative diseases.
Collapse
Affiliation(s)
- Subrata Pradhan
- Department of Neurology, University of Texas Medical Branch, Galveston, TX, United States
| | - Rui Gao
- Department of Neurology, University of Texas Medical Branch, Galveston, TX, United States
| | - Keegan Bush
- Department of Neuroscience, Cell Biology and Anatomy, University of Texas Medical Branch, Galveston, TX, United States
| | - Nan Zhang
- Department of Neurology, Houston Methodist Research Institute, Houston, TX, United States
| | - Yogesh P. Wairkar
- Department of Neurology, University of Texas Medical Branch, Galveston, TX, United States
- Department of Neuroscience, Cell Biology and Anatomy, University of Texas Medical Branch, Galveston, TX, United States
| | - Partha S. Sarkar
- Department of Neurology, University of Texas Medical Branch, Galveston, TX, United States
- Department of Neuroscience, Cell Biology and Anatomy, University of Texas Medical Branch, Galveston, TX, United States
- *Correspondence: Partha S. Sarkar,
| |
Collapse
|
5
|
Kumar NN, Pizzo ME, Nehra G, Wilken-Resman B, Boroumand S, Thorne RG. Passive Immunotherapies for Central Nervous System Disorders: Current Delivery Challenges and New Approaches. Bioconjug Chem 2018; 29:3937-3966. [PMID: 30265523 PMCID: PMC7234797 DOI: 10.1021/acs.bioconjchem.8b00548] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Passive immunotherapy, i.e., the administration of exogenous antibodies that recognize a specific target antigen, has gained significant momentum as a potential treatment strategy for several central nervous system (CNS) disorders, including Alzheimer's disease, Parkinson's disease, Huntington's disease, and brain cancer, among others. Advances in antibody engineering to create therapeutic antibody fragments or antibody conjugates have introduced new strategies that may also be applied to treat CNS disorders. However, drug delivery to the CNS for antibodies and other macromolecules has thus far proven challenging, due in large part to the blood-brain barrier and blood-cerebrospinal fluid barriers that greatly restrict transport of peripherally administered molecules from the systemic circulation into the CNS. Here, we summarize the various passive immunotherapy approaches under study for the treatment of CNS disorders, with a primary focus on disease-specific and target site-specific challenges to drug delivery and new, cutting edge methods.
Collapse
Affiliation(s)
- Niyanta N. Kumar
- Pharmaceutical Sciences Division, University of
Wisconsin-Madison School of Pharmacy
| | - Michelle E. Pizzo
- Pharmaceutical Sciences Division, University of
Wisconsin-Madison School of Pharmacy
- Clinical Neuroengineering Training Program, University of
Wisconsin-Madison, Madison, Wisconsin 53705, United States
| | - Geetika Nehra
- Pharmaceutical Sciences Division, University of
Wisconsin-Madison School of Pharmacy
| | - Brynna Wilken-Resman
- Pharmaceutical Sciences Division, University of
Wisconsin-Madison School of Pharmacy
| | - Sam Boroumand
- Pharmaceutical Sciences Division, University of
Wisconsin-Madison School of Pharmacy
| | - Robert G. Thorne
- Pharmaceutical Sciences Division, University of
Wisconsin-Madison School of Pharmacy
- Clinical Neuroengineering Training Program, University of
Wisconsin-Madison, Madison, Wisconsin 53705, United States
- Neuroscience Training Program & Center for
Neuroscience, University of Wisconsin-Madison, Madison, Wisconsin 53705, United
States
- Cellular and Molecular Pathology Graduate Training Program,
University of Wisconsin-Madison, Madison, Wisconsin 53705, United States
| |
Collapse
|
6
|
Proskura AL, Vechkapova SO, Zapara TA, Ratushniak AS. Protein–protein interactions of huntingtin in the hippocampus. Mol Biol 2017. [DOI: 10.1134/s002689331704015x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
7
|
Patassini S, Begley P, Xu J, Church SJ, Reid SJ, Kim EH, Curtis MA, Dragunow M, Waldvogel HJ, Snell RG, Unwin RD, Faull RLM, Cooper GJS. Metabolite mapping reveals severe widespread perturbation of multiple metabolic processes in Huntington's disease human brain. BIOCHIMICA ET BIOPHYSICA ACTA 2016; 1862:1650-62. [PMID: 27267344 DOI: 10.1016/j.bbadis.2016.06.002] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Revised: 05/31/2016] [Accepted: 06/01/2016] [Indexed: 01/01/2023]
Abstract
Huntington's disease (HD) is a genetically-mediated neurodegenerative disorder wherein the aetiological defect is a mutation in the Huntington's gene (HTT), which alters the structure of the huntingtin protein (Htt) through lengthening of its polyglutamine tract, thus initiating a cascade that ultimately leads to premature death. However, neurodegeneration typically manifests in HD only in middle age, and mechanisms linking the causative mutation to brain disease are poorly understood. Brain metabolism is severely perturbed in HD, and some studies have indicated a potential role for mutant Htt as a driver of these metabolic aberrations. Here, our objective was to determine the effects of HD on brain metabolism by measuring levels of polar metabolites in regions known to undergo varying degrees of damage. We performed gas-chromatography/mass spectrometry-based metabolomic analyses in a case-control study of eleven brain regions in short post-mortem-delay human tissue from nine well-characterized HD patients and nine matched controls. In each patient, we measured metabolite content in representative tissue-samples from eleven brain regions that display varying degrees of damage in HD, thus identifying the presence and abundance of 63 different metabolites from several molecular classes, including carbohydrates, amino acids, nucleosides, and neurotransmitters. Robust alterations in regional brain-metabolite abundances were observed in HD patients: these included changes in levels of small molecules that play important roles as intermediates in the tricarboxylic-acid and urea cycles, and amino-acid metabolism. Our findings point to widespread disruption of brain metabolism and indicate a complex phenotype beyond the gradient of neuropathologic damage observed in HD brain.
Collapse
Affiliation(s)
- Stefano Patassini
- School of Biological Sciences, Faculty of Science, University of Auckland, Auckland, New Zealand; Centre for Brain Research and Department of Anatomy with Radiology, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand; Centre for Advanced Discovery and Experimental Therapeutics (CADET), Central Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Sciences Centre, Manchester, UK; Institute of Human Development, Faculty of Medical and Human Sciences, The University of Manchester, Manchester, UK.
| | - Paul Begley
- Centre for Advanced Discovery and Experimental Therapeutics (CADET), Central Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Sciences Centre, Manchester, UK; Institute of Human Development, Faculty of Medical and Human Sciences, The University of Manchester, Manchester, UK
| | - Jingshu Xu
- School of Biological Sciences, Faculty of Science, University of Auckland, Auckland, New Zealand; Centre for Brain Research and Department of Anatomy with Radiology, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand; Centre for Advanced Discovery and Experimental Therapeutics (CADET), Central Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Sciences Centre, Manchester, UK; Institute of Human Development, Faculty of Medical and Human Sciences, The University of Manchester, Manchester, UK; Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland, New Zealand
| | - Stephanie J Church
- Centre for Advanced Discovery and Experimental Therapeutics (CADET), Central Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Sciences Centre, Manchester, UK; Institute of Human Development, Faculty of Medical and Human Sciences, The University of Manchester, Manchester, UK
| | - Suzanne J Reid
- School of Biological Sciences, Faculty of Science, University of Auckland, Auckland, New Zealand
| | - Eric H Kim
- Centre for Brain Research and Department of Anatomy with Radiology, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand; Department of Pharmaceutical Sciences, Northeastern University, Boston, MA 02115, United States
| | - Maurice A Curtis
- Centre for Brain Research and Department of Anatomy with Radiology, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Mike Dragunow
- Centre for Brain Research and Department of Anatomy with Radiology, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Henry J Waldvogel
- Centre for Brain Research and Department of Anatomy with Radiology, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Russell G Snell
- School of Biological Sciences, Faculty of Science, University of Auckland, Auckland, New Zealand; Centre for Brain Research and Department of Anatomy with Radiology, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Richard D Unwin
- Centre for Advanced Discovery and Experimental Therapeutics (CADET), Central Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Sciences Centre, Manchester, UK; Institute of Human Development, Faculty of Medical and Human Sciences, The University of Manchester, Manchester, UK
| | - Richard L M Faull
- Centre for Brain Research and Department of Anatomy with Radiology, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Garth J S Cooper
- School of Biological Sciences, Faculty of Science, University of Auckland, Auckland, New Zealand; Centre for Brain Research and Department of Anatomy with Radiology, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand; Centre for Advanced Discovery and Experimental Therapeutics (CADET), Central Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Sciences Centre, Manchester, UK; Institute of Human Development, Faculty of Medical and Human Sciences, The University of Manchester, Manchester, UK; Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland, New Zealand.
| |
Collapse
|
8
|
Nissley DA, O'Brien EP. Altered Co-Translational Processing Plays a Role in Huntington's Pathogenesis-A Hypothesis. Front Mol Neurosci 2016; 9:54. [PMID: 27458341 PMCID: PMC4933702 DOI: 10.3389/fnmol.2016.00054] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Accepted: 06/22/2016] [Indexed: 11/13/2022] Open
Abstract
Huntington's disease (HD) is an autosomal dominant neurodegenerative disorder caused by the expansion of a CAG codon repeat region in the HTT gene's first exon that results in huntingtin protein aggregation and neuronal cell death. The development of therapeutic treatments for HD is hindered by the fact that while the etiology and symptoms of HD are understood, the molecular processes connecting this genotype to its phenotype remain unclear. Here, we propose the novel hypothesis that the perturbation of a co-translational process affects mutant huntingtin due to altered translation-elongation kinetics. These altered kinetics arise from the shift of a proline-induced translational pause site away from Htt's localization sequence due to the expansion of the CAG-repeat segment between the poly-proline and localization sequences. Motivation for this hypothesis comes from recent experiments in the field of protein biogenesis that illustrate the critical role that temporal coordination of co-translational processes plays in determining the function, localization, and fate of proteins in cells. We show that our hypothesis is consistent with various experimental observations concerning HD pathology, including the dependence of the age of symptom onset on CAG repeat number. Finally, we suggest three experiments to test our hypothesis.
Collapse
Affiliation(s)
- Daniel A Nissley
- O'Brien Lab, Department of Chemistry, The Pennsylvania State University University Park, PA, USA
| | - Edward P O'Brien
- O'Brien Lab, Department of Chemistry, The Pennsylvania State University University Park, PA, USA
| |
Collapse
|
9
|
Manczak M, Reddy PH. Mitochondrial division inhibitor 1 protects against mutant huntingtin-induced abnormal mitochondrial dynamics and neuronal damage in Huntington's disease. Hum Mol Genet 2015; 24:7308-25. [PMID: 26464486 DOI: 10.1093/hmg/ddv429] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Accepted: 10/06/2015] [Indexed: 12/15/2022] Open
Abstract
The objective of this study was to determine the protective effects of the mitochondrial division inhibitor 1 (Mdivi1) in striatal neurons that stably express mutant Htt (STHDhQ111/Q111) and wild-type (WT) Htt (STHDhQ7/Q7). Using gene expression analysis, biochemical methods, transmission electron microscopy (TEM) and confocal microscopy methods, we studied (i) mitochondrial and synaptic activities by measuring mRNA and the protein levels of mitochondrial and synaptic genes, (ii) mitochondrial function and (iii) ultra-structural changes in mutant Htt neurons relative to WT Htt neurons. We also studied these parameters in Mdivil-treated and untreated WT and mutant Htt neurons. Increased expressions of mitochondrial fission genes, decreased expression of fusion genes and synaptic genes were found in the mutant Htt neurons relative to the WT Htt neurons. Electron microscopy of the mutant Htt neurons revealed a significantly increased number of mitochondria, indicating that mutant Htt fragments mitochondria. Biochemical analysis revealed defective mitochondrial functioning. In the Mdivil-treated mutant Htt neurons, fission genes were down-regulated, and fusion genes were up-regulated, suggesting that Mdivil decreases fission activity. Synaptic genes were up-regulated, and mitochondrial function was normal in the Mdivi1-treated mutant Htt neurons. Immunoblotting findings of mitochondrial and synaptic proteins agreed with mRNA findings. The TEM studies revealed that increased numbers of structurally intact mitochondria were present in Mdivi1-treated mutant Htt neurons. Increased synaptic and mitochondrial fusion genes and decreased fission genes were found in the Mdivi1-treated WT Htt neurons, indicating that Mdivi1 beneficially affects healthy neurons. Taken together, these findings suggest that Mdivi1 is protective against mutant Htt-induced mitochondrial and synaptic damage in HD neurons and that Mdivi1 may be a promising molecule for the treatment of HD patients.
Collapse
Affiliation(s)
| | - P Hemachandra Reddy
- Garrison Institute on Aging and Cell Biology and Biochemistry, Neuroscience/Pharmacology and Neurology Departments, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| |
Collapse
|
10
|
Huntingtin is required for ciliogenesis and neurogenesis during early Xenopus development. Dev Biol 2015; 408:305-15. [PMID: 26192473 DOI: 10.1016/j.ydbio.2015.07.013] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Revised: 05/09/2015] [Accepted: 07/13/2015] [Indexed: 11/21/2022]
Abstract
Huntington's Disease (HD) is a neurodegenerative disorder that results from the abnormal expansion of poly-glutamine (polyQ) repeats in the Huntingtin (HTT) gene. Although HTT has been linked to a variety of cellular events, it is still not clear what the physiological functions of the protein are. Because of its critical role during mouse embryonic mouse development, we investigated the functions of Htt during early Xenopus embryogenesis. We find that reduction of Htt levels affects cilia polarity and function and causes whole body paralysis. Moreover, Htt loss of function leads to abnormal development of trigeminal and motor neurons. Interestingly, these phenotypes are partially rescued by either wild-type or expanded HTT. These results show that the Htt activity is required for normal embryonic development, and highlight the usefulness of the Xenopus system for investigating proteins involved in human diseases.
Collapse
|
11
|
Rüb U, Hentschel M, Stratmann K, Brunt E, Heinsen H, Seidel K, Bouzrou M, Auburger G, Paulson H, Vonsattel JP, Lange H, Korf HW, den Dunnen W. Huntington's disease (HD): degeneration of select nuclei, widespread occurrence of neuronal nuclear and axonal inclusions in the brainstem. Brain Pathol 2014; 24:247-60. [PMID: 24779419 DOI: 10.1111/bpa.12115] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Accepted: 12/09/2013] [Indexed: 11/29/2022] Open
Abstract
Huntington's disease (HD) is a progressive polyglutamine disease that leads to a severe striatal and layer-specific neuronal loss in the cerebral neo-and allocortex. As some of the clinical symptoms (eg, oculomotor dysfunctions) suggested a degeneration of select brainstem nuclei, we performed a systematic investigation of the brainstem of eight clinically diagnosed and genetically confirmed HD patients. This post-mortem investigation revealed a consistent neuronal loss in the substantia nigra, pontine nuclei, reticulotegmental nucleus of the pons, superior and inferior olives, in the area of the excitatory burst neurons for horizontal saccades, raphe interpositus nucleus and vestibular nuclei. Immunoreactive intranuclear neuronal inclusions were present in all degenerated and apparently spared brainstem nuclei and immunoreactive axonal inclusions were observed in all brainstem fiber tracts of the HD patients. Degeneration of brainstem nuclei can account for a number of less well-understood clinical HD symptoms (ie, cerebellar, oculomotor and vestibular symptoms), while the formation of axonal aggregates may represent a crucial event in the cascades of pathological events leading to neurodegeneration in HD.
Collapse
Affiliation(s)
- Udo Rüb
- Dr. Senckenberg Chronomedical Institute, Goethe-University, Frankfurt/Main, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Xu Q, Huang S, Song M, Wang CE, Yan S, Liu X, Gaertig MA, Yu SP, Li H, Li S, Li XJ. Synaptic mutant huntingtin inhibits synapsin-1 phosphorylation and causes neurological symptoms. J Cell Biol 2013; 202:1123-38. [PMID: 24081492 PMCID: PMC3787372 DOI: 10.1083/jcb.201303146] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2013] [Accepted: 08/23/2013] [Indexed: 12/11/2022] Open
Abstract
Many genetic mouse models of Huntington's disease (HD) have established that mutant huntingtin (htt) accumulates in various subcellular regions to affect a variety of cellular functions, but whether and how synaptic mutant htt directly mediates HD neuropathology remains to be determined. We generated transgenic mice that selectively express mutant htt in the presynaptic terminals. Although it was not overexpressed, synaptic mutant htt caused age-dependent neurological symptoms and early death in mice as well as defects in synaptic neurotransmitter release. Mass spectrometry analysis of synaptic fractions and immunoprecipitation of synapsin-1 from HD CAG150 knockin mouse brains revealed that mutant htt binds to synapsin-1, a protein whose phosphorylation is critical for neurotransmitter release. We found that polyglutamine-expanded exon1 htt binds to the C-terminal region of synapsin-1 to reduce synapsin-1 phosphorylation. Our findings point to a critical role for synaptic htt in the neurological symptoms of HD, providing a new therapeutic target.
Collapse
Affiliation(s)
- Qiaoqiao Xu
- Department of Histology and Anatomy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430032, China
- Department of Human Genetics and Department of Anesthesiology, Emory University School of Medicine, Atlanta, GA 30322
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100864, China
| | - Shanshan Huang
- Department of Human Genetics and Department of Anesthesiology, Emory University School of Medicine, Atlanta, GA 30322
| | - Mingke Song
- Department of Human Genetics and Department of Anesthesiology, Emory University School of Medicine, Atlanta, GA 30322
| | - Chuan-En Wang
- Department of Human Genetics and Department of Anesthesiology, Emory University School of Medicine, Atlanta, GA 30322
| | - Sen Yan
- Department of Human Genetics and Department of Anesthesiology, Emory University School of Medicine, Atlanta, GA 30322
| | - Xudong Liu
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100864, China
| | - Marta A. Gaertig
- Department of Human Genetics and Department of Anesthesiology, Emory University School of Medicine, Atlanta, GA 30322
| | - Shan Ping Yu
- Department of Human Genetics and Department of Anesthesiology, Emory University School of Medicine, Atlanta, GA 30322
| | - He Li
- Department of Histology and Anatomy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430032, China
| | - Shihua Li
- Department of Human Genetics and Department of Anesthesiology, Emory University School of Medicine, Atlanta, GA 30322
| | - Xiao-Jiang Li
- Department of Human Genetics and Department of Anesthesiology, Emory University School of Medicine, Atlanta, GA 30322
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100864, China
| |
Collapse
|
13
|
Lee W, Reyes RC, Gottipati MK, Lewis K, Lesort M, Parpura V, Gray M. Enhanced Ca(2+)-dependent glutamate release from astrocytes of the BACHD Huntington's disease mouse model. Neurobiol Dis 2013; 58:192-9. [PMID: 23756199 DOI: 10.1016/j.nbd.2013.06.002] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2013] [Revised: 05/09/2013] [Accepted: 06/02/2013] [Indexed: 11/29/2022] Open
Abstract
Huntington's disease (HD) causes preferential loss of a subset of neurons in the brain although the huntingtin protein is expressed broadly in various neural cell types, including astrocytes. Glutamate-mediated excitotoxicity is thought to cause selective neuronal injury, and brain astrocytes have a central role in regulating extracellular glutamate. To determine whether full-length mutant huntingtin expression causes a cell-autonomous phenotype and perturbs astrocyte gliotransmitter release, we studied cultured cortical astrocytes from BACHD mice. Here, we report augmented glutamate release through Ca(2+)-dependent exocytosis from BACHD astrocytes. Although such release is usually dependent on cytosolic Ca(2+) levels, surprisingly, we found that BACHD astrocytes displayed Ca(2+) dynamics comparable to those in wild type astrocytes. These results point to a possible involvement of other factors in regulating Ca(2+)-dependent/vesicular release of glutamate from astrocytes. We found a biochemical footprint that would lead to increased availability of cytosolic glutamate in BACHD astrocytes: i) augmented de novo glutamate synthesis due to an increase in the level of the astrocyte specific mitochondrial enzyme pyruvate carboxylase; and ii) unaltered conversion of glutamate to glutamine, as there were no changes in the expression level of the astrocyte specific enzyme glutamine synthetase. This work identifies a new mechanism in astrocytes that could lead to increased levels of extracellular glutamate in HD and thus may contribute to excitotoxicity in this devastating disease.
Collapse
Affiliation(s)
- William Lee
- Department of Neurobiology, University of Alabama, Birmingham, AL 35294, USA
| | | | | | | | | | | | | |
Collapse
|
14
|
Sheen VL. Periventricular Heterotopia: Shuttling of Proteins through Vesicles and Actin in Cortical Development and Disease. SCIENTIFICA 2012; 2012:480129. [PMID: 24278701 PMCID: PMC3820590 DOI: 10.6064/2012/480129] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2012] [Accepted: 10/14/2012] [Indexed: 06/02/2023]
Abstract
During cortical development, proliferating neural progenitors exhibit polarized apical and basolateral membranes that are maintained by tightly controlled and membrane-specific vesicular trafficking pathways. Disruption of polarity through impaired delivery of proteins can alter cell fate decisions and consequent expansion of the progenitor pool, as well as impact the integrity of the neuroependymal lining. Loss of neuroependymal integrity disrupts radial glial scaffolding and alters initial neuronal migration from the ventricular zone. Vesicle trafficking is also required for maintenance of lipid and protein cycling within the leading and trailing edge of migratory neurons, as well as dendrites and synapses of mature neurons. Defects in this transport machinery disrupt neuronal identity, migration, and connectivity and give rise to a malformation of cortical development termed as periventricular heterotopia (PH). PH is characterized by a reduction in brain size, ectopic clusters of neurons localized along the lateral ventricle, and epilepsy and dyslexia. These anatomical anomalies correlate with developmental impairments in neural progenitor proliferation and specification, migration from loss of neuroependymal integrity and neuronal motility, and aberrant neuronal process extension. Genes causal for PH regulate vesicle-mediated endocytosis along an actin cytoskeletal network. This paper explores the role of these dynamic processes in cortical development and disease.
Collapse
Affiliation(s)
- Volney L. Sheen
- Department of Neurology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
15
|
Kachaner D, Génin P, Laplantine E, Weil R. Toward an integrative view of Optineurin functions. Cell Cycle 2012; 11:2808-18. [PMID: 22801549 DOI: 10.4161/cc.20946] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
This review highlights recent advances in our understanding of the mechanisms of Optineurin (Optn) action and its implication in diseases. Optn has emerged as a key player regulating various physiological processes, including membrane trafficking, protein secretion, cell division and host defense against pathogens. Furthermore, there is growing evidence for an association of Optn mutations with human diseases such as primary open-angle glaucoma, amyotrophic lateral sclerosis and Paget's disease of bone. Optn functions depend on its precise subcellular localization and its interaction with other proteins. Here, we review the mechanisms that allow Optn to ensure a timely and spatially coordinated integration of different physiological processes and discuss how their deregulation may lead to different pathologies.
Collapse
Affiliation(s)
- David Kachaner
- Institut Pasteur, Unité de Signalisation Moléculaire et Activation Cellulaire, CNRS URA 2582, Paris, France
| | | | | | | |
Collapse
|
16
|
Ghiglieri V, Bagetta V, Calabresi P, Picconi B. Functional interactions within striatal microcircuit in animal models of Huntington's disease. Neuroscience 2012; 211:165-84. [DOI: 10.1016/j.neuroscience.2011.06.075] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2011] [Revised: 06/25/2011] [Accepted: 06/28/2011] [Indexed: 11/17/2022]
|
17
|
Reddy PH, Shirendeb UP. Mutant huntingtin, abnormal mitochondrial dynamics, defective axonal transport of mitochondria, and selective synaptic degeneration in Huntington's disease. Biochim Biophys Acta Mol Basis Dis 2011; 1822:101-10. [PMID: 22080977 DOI: 10.1016/j.bbadis.2011.10.016] [Citation(s) in RCA: 127] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2011] [Revised: 10/25/2011] [Accepted: 10/25/2011] [Indexed: 11/19/2022]
Abstract
Huntington's disease (HD) is a progressive, fatal neurodegenerative disease caused by expanded polyglutamine repeats in the HD gene. HD is characterized by chorea, seizures, involuntary movements, dystonia, cognitive decline, intellectual impairment and emotional disturbances. Research into mutant huntingtin (Htt) and mitochondria has found that mutant Htt interacts with the mitochondrial protein dynamin-related protein 1 (Drp1), enhances GTPase Drp1 enzymatic activity, and causes excessive mitochondrial fragmentation and abnormal distribution, leading to defective axonal transport of mitochondria and selective synaptic degeneration. This article summarizes latest developments in HD research and focuses on the role of abnormal mitochondrial dynamics and defective axonal transport in HD neurons. This article also discusses the therapeutic strategies that decrease mitochondrial fragmentation and neuronal damage in HD.
Collapse
Affiliation(s)
- P Hemachandra Reddy
- Neurogenetics Laboratory, Division of Neuroscience, Oregon National Primate Research Center, Oregon Health & Science University, 505 NW 185th Avenue, Beaverton, OR 97006, USA.
| | | |
Collapse
|
18
|
Shirendeb UP, Calkins MJ, Manczak M, Anekonda V, Dufour B, McBride JL, Mao P, Reddy PH. Mutant huntingtin's interaction with mitochondrial protein Drp1 impairs mitochondrial biogenesis and causes defective axonal transport and synaptic degeneration in Huntington's disease. Hum Mol Genet 2011; 21:406-20. [PMID: 21997870 DOI: 10.1093/hmg/ddr475] [Citation(s) in RCA: 292] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The purpose of this study was to investigate the link between mutant huntingtin (Htt) and neuronal damage in relation to mitochondria in Huntington's disease (HD). In an earlier study, we determined the relationship between mutant Htt and mitochondrial dynamics/synaptic viability in HD patients. We found mitochondrial loss, abnormal mitochondrial dynamics and mutant Htt association with mitochondria in HD patients. In the current study, we sought to expand on our previous findings and further elucidate the relationship between mutant Htt and mitochondrial and synaptic deficiencies. We hypothesized that mutant Htt, in association with mitochondria, alters mitochondrial dynamics, leading to mitochondrial fragmentation and defective axonal transport of mitochondria in HD neurons. In this study, using postmortem HD brains and primary neurons from transgenic BACHD mice, we identified mutant Htt interaction with the mitochondrial protein Drp1 and factors that cause abnormal mitochondrial dynamics, including GTPase Drp1 enzymatic activity. Further, using primary neurons from BACHD mice, for the first time, we studied axonal transport of mitochondria and synaptic degeneration. We also investigated the effect of mutant Htt aggregates and oligomers in synaptic and mitochondrial deficiencies in postmortem HD brains and primary neurons from BACHD mice. We found that mutant Htt interacts with Drp1, elevates GTPase Drp1 enzymatic activity, increases abnormal mitochondrial dynamics and results in defective anterograde mitochondrial movement and synaptic deficiencies. These observations support our hypothesis and provide data that can be utilized to develop therapeutic targets that are capable of inhibiting mutant Htt interaction with Drp1, decreasing mitochondrial fragmentation, enhancing axonal transport of mitochondria and protecting synapses from toxic insults caused by mutant Htt.
Collapse
Affiliation(s)
- Ulziibat P Shirendeb
- Neurogenetics Laboratory, Division of Neuroscience, Oregon National Primate Research Center, Oregon Health & Science University, 505 NW 185th Avenue, Beaverton, OR 97006, USA
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Mason RP, Giorgini F. Modeling Huntington disease in yeast: perspectives and future directions. Prion 2011. [PMID: 22052350 DOI: 10.4161/pri.5.4.18005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Yeast have been extensively used to model aspects of protein folding diseases, yielding novel mechanistic insights and identifying promising candidate therapeutic targets. In particular, the neurodegenerative disorder Huntington disease (HD), which is caused by the abnormal expansion of a polyglutamine tract in the huntingtin (htt) protein, has been widely studied in yeast. This work has led to the identification of several promising therapeutic targets and compounds that have been validated in mammalian cells, Drosophila and rodent models of HD. Here we discuss the development of yeast models of mutant htt toxicity and misfolding, as well as the mechanistic insights gleaned from this simple model. The role of yeast prions in the toxicity/misfolding of mutant htt is also highlighted. Furthermore, we provide an overview of the application of HD yeast models in both genetic and chemical screens, and the fruitful results obtained from these approaches. Finally, we discuss the future of yeast in neurodegenerative research, in the context of HD and other diseases.
Collapse
Affiliation(s)
- Robert P Mason
- Department of Genetics, University of Leicester, Leicester, UK
| | | |
Collapse
|
20
|
Mason RP, Giorgini F. Modeling Huntington disease in yeast: perspectives and future directions. Prion 2011; 5:269-76. [PMID: 22052350 DOI: 10.4161/pri.18005] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Yeast have been extensively used to model aspects of protein folding diseases, yielding novel mechanistic insights and identifying promising candidate therapeutic targets. In particular, the neurodegenerative disorder Huntington disease (HD), which is caused by the abnormal expansion of a polyglutamine tract in the huntingtin (htt) protein, has been widely studied in yeast. This work has led to the identification of several promising therapeutic targets and compounds that have been validated in mammalian cells, Drosophila and rodent models of HD. Here we discuss the development of yeast models of mutant htt toxicity and misfolding, as well as the mechanistic insights gleaned from this simple model. The role of yeast prions in the toxicity/misfolding of mutant htt is also highlighted. Furthermore, we provide an overview of the application of HD yeast models in both genetic and chemical screens, and the fruitful results obtained from these approaches. Finally, we discuss the future of yeast in neurodegenerative research, in the context of HD and other diseases.
Collapse
Affiliation(s)
- Robert P Mason
- Department of Genetics, University of Leicester, Leicester, UK
| | | |
Collapse
|
21
|
Reed TT. Lipid peroxidation and neurodegenerative disease. Free Radic Biol Med 2011; 51:1302-19. [PMID: 21782935 DOI: 10.1016/j.freeradbiomed.2011.06.027] [Citation(s) in RCA: 452] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2011] [Revised: 06/17/2011] [Accepted: 06/22/2011] [Indexed: 11/27/2022]
Abstract
Lipid peroxidation is a complex process involving the interaction of oxygen-derived free radicals with polyunsaturated fatty acids, resulting in a variety of highly reactive electrophilic aldehydes. Since 1975, lipid peroxidation has been extensively studied in a variety of organisms. As neurodegenerative diseases became better understood, research establishing a link between this form of oxidative damage, neurodegeneration, and disease has provided a wealth of knowledge to the scientific community. With the advent of proteomics in 1995, the identification of biomarkers for neurodegenerative disorders became of paramount importance to better understand disease pathogenesis and develop potential therapeutic strategies. This review focuses on the relationship between lipid peroxidation and neurodegenerative diseases. It also demonstrates how findings in current research support the common themes of altered energy metabolism and mitochondrial dysfunction in neurodegenerative disorders.
Collapse
Affiliation(s)
- Tanea T Reed
- Department of Chemistry, Eastern Kentucky University, Richmond, KY 40475, USA.
| |
Collapse
|
22
|
Abstract
This article reviews the normal function of the huntingtin gene, mutation-induced changes in the gene product (protein), possible causes of Huntington disease, and associated symptoms. An educational tool with recommendations the practitioner can use for interventions and counseling with patients and their families is also included.
Collapse
|
23
|
Reis SA, Thompson MN, Lee JM, Fossale E, Kim HH, Liao JK, Moskowitz MA, Shaw SY, Dong L, Haggarty SJ, MacDonald ME, Seong IS. Striatal neurons expressing full-length mutant huntingtin exhibit decreased N-cadherin and altered neuritogenesis. Hum Mol Genet 2011; 20:2344-55. [PMID: 21447599 DOI: 10.1093/hmg/ddr127] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The expanded CAG repeat that causes striatal cell vulnerability in Huntington's disease (HD) encodes a polyglutamine tract in full-length huntingtin that is correlated with cellular [ATP] and [ATP/ADP]. Since striatal neurons are vulnerable to energy deficit, we have investigated, in Hdh CAG knock-in mice and striatal cells, the hypothesis that decreased energetics may affect neuronal (N)-cadherin, a candidate energy-sensitive adhesion protein that may contribute to HD striatal cell sensitivity. In vivo, N-cadherin was sensitive to ischemia and to the effects of full-length mutant huntingtin, progressively decreasing in Hdh(Q111) striatum with age. In cultured striatal cells, N-cadherin was decreased by ATP depletion and STHdh(Q111) striatal cells exhibited dramatically decreased N-cadherin, due to decreased Cdh2 mRNA and enhanced N-cadherin turnover, which was partially normalized by adenine supplementation to increase [ATP] and [ATP/ADP]. Consistent with decreased N-cadherin function, STHdh(Q111) striatal cells displayed profound deficits in calcium-dependent N-cadherin-mediated cell clustering and cell-substratum adhesion, and primary Hdh(Q111) striatal neuronal cells exhibited decreased N-cadherin and an abundance of immature neurites, featuring diffuse, rather than clustered, staining for N-cadherin and synaptic vesicle markers, which was partially rescued by adenine treatment. Thus, mutant full-length huntingtin, via energetic deficit, contributes to decreased N-cadherin levels in striatal neurons, with detrimental effects on neurite maturation, strongly suggesting that N-cadherin-mediated signaling merits investigation early in the HD pathogenic disease process.
Collapse
Affiliation(s)
- Surya A Reis
- Molecular Neurogenetics Unit, Center for Human Genetic Research, Center for Human Genetic Research, Massachusetts General Hospital, 185 Cambridge Street, Boston, MA 02114, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Lovrecic L, Slavkov I, Dzeroski S, Peterlin B. ADP-ribosylation factor guanine nucleotide-exchange factor 2 (ARFGEF2): a new potential biomarker in Huntington's disease. J Int Med Res 2011; 38:1653-62. [PMID: 21309479 DOI: 10.1177/147323001003800510] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Microarray searches have revealed potential genetic biomarkers in a wide variety of human diseases. Identification of biomarkers for disease status is particularly important in chronic neurodegenerative diseases where brain tissue cannot be sampled. A previous study identified 12 genes from microarray analysis as associated with Huntington's disease, although the relationships had not been validated. We used new machine learning approaches to reanalyse those microarray data and to rank the identified potential genetic biomarkers. We then performed quantitative reverse transcription-polymerase chain reaction analysis on a subset of the candidate genes in blood samples from an independent cohort of 23 Huntington's disease patients and 23 healthy controls. Our highest ranked genes did not overlap with the 12 previously identified, but two were significantly up-regulated in the Huntington's disease group: ARFGEF2 and GOLGA8G. Little is known about the latter, but the former warrants further analysis as it is known to be associated with intracellular vesicular trafficking, disturbances of which characterize Huntington's disease.
Collapse
Affiliation(s)
- L Lovrecic
- Institute of Medical Genetics, Division of Gynaecology, University Medical Centre Ljubljana, Ljubljana, Slovenia.
| | | | | | | |
Collapse
|
25
|
Caviston JP, Zajac AL, Tokito M, Holzbaur EL. Huntingtin coordinates the dynein-mediated dynamic positioning of endosomes and lysosomes. Mol Biol Cell 2011; 22:478-92. [PMID: 21169558 PMCID: PMC3038646 DOI: 10.1091/mbc.e10-03-0233] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2010] [Revised: 11/30/2010] [Accepted: 12/07/2010] [Indexed: 12/16/2022] Open
Abstract
Huntingtin (Htt) is a membrane-associated scaffolding protein that interacts with microtubule motors as well as actin-associated adaptor molecules. We examined a role for Htt in the dynein-mediated intracellular trafficking of endosomes and lysosomes. In HeLa cells depleted of either Htt or dynein, early, recycling, and late endosomes (LE)/lysosomes all become dispersed. Despite altered organelle localization, kinetic assays indicate only minor defects in intracellular trafficking. Expression of full-length Htt is required to restore organelle localization in Htt-depleted cells, supporting a role for Htt as a scaffold that promotes functional interactions along its length. In dynein-depleted cells, LE/lysosomes accumulate in tight patches near the cortex, apparently enmeshed by cortactin-positive actin filaments; Latrunculin B-treatment disperses these patches. Peripheral LE/lysosomes in dynein-depleted cells no longer colocalize with microtubules. Htt may be required for this off-loading, as the loss of microtubule association is not seen in Htt-depleted cells or in cells depleted of both dynein and Htt. Inhibition of kinesin-1 relocalizes peripheral LE/lysosomes induced by Htt depletion but not by dynein depletion, consistent with their detachment from microtubules upon dynein knockdown. Together, these data support a model of Htt as a facilitator of dynein-mediated trafficking that may regulate the cytoskeletal association of dynamic organelles.
Collapse
Affiliation(s)
- Juliane P. Caviston
- Department of Physiology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104
| | - Allison L. Zajac
- Department of Physiology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104
| | - Mariko Tokito
- Department of Physiology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104
| | - Erika L.F. Holzbaur
- Department of Physiology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104
| |
Collapse
|
26
|
Ratovitski T, Chighladze E, Waldron E, Hirschhorn RR, Ross CA. Cysteine proteases bleomycin hydrolase and cathepsin Z mediate N-terminal proteolysis and toxicity of mutant huntingtin. J Biol Chem 2011; 286:12578-89. [PMID: 21310951 DOI: 10.1074/jbc.m110.185348] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
N-terminal proteolysis of huntingtin is thought to be an important mediator of HD pathogenesis. The formation of short N-terminal fragments of huntingtin (cp-1/cp-2, cp-A/cp-B) has been demonstrated in cells and in vivo. We previously mapped the cp-2 cleavage site by mass spectrometry to position Arg167 of huntingtin. The proteolytic enzymes generating short N-terminal fragments of huntingtin remain unknown. To search for such proteases, we conducted a genome-wide screen using an RNA-silencing approach and an assay for huntingtin proteolysis based on the detection of cp-1 and cp-2 fragments by Western blotting. The primary screen was carried out in HEK293 cells, and the secondary screen was carried out in neuronal HT22 cells, transfected in both cases with a construct encoding the N-terminal 511 amino acids of mutant huntingtin. For additional validation of the hits, we employed a complementary assay for proteolysis of huntingtin involving overexpression of individual proteases with huntingtin in two cell lines. The screen identified 11 enzymes, with two major candidates to carry out the cp-2 cleavage, bleomycin hydrolase (BLMH) and cathepsin Z, which are both cysteine proteases of a papain-like structure. Knockdown of either protease reduced cp-2 cleavage, and ameliorated mutant huntingtin induced toxicity, whereas their overexpression increased the cp-2 cleavage. Both proteases partially co-localized with Htt in the cytoplasm and within or in association with early and late endosomes, with some nuclear co-localization observed for cathepsin Z. BLMH and cathepsin Z are expressed in the brain and have been associated previously with neurodegeneration. Our findings further validate the cysteine protease family, and BLMH and cathepsin Z in particular, as potential novel targets for HD therapeutics.
Collapse
Affiliation(s)
- Tamara Ratovitski
- Division of Neurobiology, Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA.
| | | | | | | | | |
Collapse
|
27
|
Shirendeb U, Reddy AP, Manczak M, Calkins MJ, Mao P, Tagle DA, Reddy PH. Abnormal mitochondrial dynamics, mitochondrial loss and mutant huntingtin oligomers in Huntington's disease: implications for selective neuronal damage. Hum Mol Genet 2011; 20:1438-55. [PMID: 21257639 DOI: 10.1093/hmg/ddr024] [Citation(s) in RCA: 291] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The purpose of our study was to determine the relationship between mutant huntingtin (Htt) and mitochondrial dynamics in the progression of Huntington's disease (HD). We measured the mRNA levels of electron transport chain genes, and mitochondrial structural genes, Drp1 (dynamin-related protein 1), Fis1 (fission 1), Mfn1 (mitofusin 1), Mfn2 (mitofusin 2), Opa1 (optric atrophy 1), Tomm40 (translocase of outermembrane 40) and CypD (cyclophilin D) in grade III and grade IV HD patients and controls. The mutant Htt oligomers and the mitochondrial structural proteins were quantified in the striatum and frontal cortex of HD patients. Changes in expressions of the electron transport chain genes were found in HD patients and may represent a compensatory response to mitochondrial damage caused by mutant Htt. Increased expression of Drp1 and Fis1 and decreased expression of Mfn1, Mfn2, Opa1 and Tomm40 were found in HD patients relative to the controls. CypD was upregulated in HD patients, and this upregulation increased as HD progressed. Significantly increased immunoreactivity of 8-hydroxy-guanosine was found in the cortical specimens from stage III and IV HD patients relative to controls, suggesting increased oxidative DNA damage in HD patients. In contrast, significantly decreased immunoreactivities of cytochrome oxidase 1 and cytochrome b were found in HD patients relative to controls, indicating a loss of mitochondrial function in HD patients. Immunoblotting analysis revealed 15, 25 and 50 kDa mutant Htt oligomers in the brain specimens of HD patients. All oligomeric forms of mutant Htt were significantly increased in the cortical tissues of HD patients, and mutant Htt oligomers were found in the nucleus and in mitochondria. The increase in Drp1, Fis1 and CypD and the decrease in Mfn1 and Mfn2 may be responsible for abnormal mitochondrial dynamics that we found in the cortex of HD patients, and may contribute to neuronal damage in HD patients. The presence of mutant Htt oligomers in the nucleus of HD neurons and in mitochondria may disrupt neuronal functions. Based on these findings, we propose that mutant Htt in association with mitochondria imbalance and mitochondrial dynamics impairs axonal transport of mitochondria, decreases mitochondrial function and damages neurons in affected brain regions of HD patients.
Collapse
Affiliation(s)
- Ulziibat Shirendeb
- Neurogenetics Laboratory, Division of Neuroscience, Oregon National Primate Research Center, Oregon Health & Science University, 505 NW 185th Avenue, Beaverton, OR 97006, USA
| | | | | | | | | | | | | |
Collapse
|
28
|
Wegrzyn JL, Bark SJ, Funkelstein L, Mosier C, Yap A, Kazemi-Esfarjani P, La Spada AR, Sigurdson C, O'Connor DT, Hook V. Proteomics of dense core secretory vesicles reveal distinct protein categories for secretion of neuroeffectors for cell-cell communication. J Proteome Res 2010; 9:5002-24. [PMID: 20695487 DOI: 10.1021/pr1003104] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Regulated secretion of neurotransmitters and neurohumoral factors from dense core secretory vesicles provides essential neuroeffectors for cell-cell communication in the nervous and endocrine systems. This study provides comprehensive proteomic characterization of the categories of proteins in chromaffin dense core secretory vesicles that participate in cell-cell communication from the adrenal medulla. Proteomic studies were conducted by nano-HPLC Chip MS/MS tandem mass spectrometry. Results demonstrate that these secretory vesicles contain proteins of distinct functional categories consisting of neuropeptides and neurohumoral factors, protease systems, neurotransmitter enzymes and transporters, receptors, enzymes for biochemical processes, reduction/oxidation regulation, ATPases, protein folding, lipid biochemistry, signal transduction, exocytosis, calcium regulation, as well as structural and cell adhesion proteins. The secretory vesicle proteomic data identified 371 proteins in the soluble fraction and 384 membrane proteins, for a total of 686 distinct secretory vesicle proteins. Notably, these proteomic analyses illustrate the presence of several neurological disease-related proteins in these secretory vesicles, including huntingtin interacting protein, cystatin C, ataxin 7, and prion protein. Overall, these findings demonstrate that multiple protein categories participate in dense core secretory vesicles for production, storage, and secretion of bioactive neuroeffectors for cell-cell communication in health and disease.
Collapse
Affiliation(s)
- Jill L Wegrzyn
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, California 92093, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Huntington’s disease and mitochondrial alterations: emphasis on experimental models. J Bioenerg Biomembr 2010; 42:207-15. [DOI: 10.1007/s10863-010-9289-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
30
|
D’Alessandro A, Righetti PG, Zolla L. The Red Blood Cell Proteome and Interactome: An Update. J Proteome Res 2009; 9:144-63. [DOI: 10.1021/pr900831f] [Citation(s) in RCA: 155] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Angelo D’Alessandro
- Department of Environmental Sciences, University of Tuscia, Viterbo, Italy, and Department of Chemistry, Politecnico di Milano, Via Mancinelli 7, Milano 20131, Italy
| | - Pier Giorgio Righetti
- Department of Environmental Sciences, University of Tuscia, Viterbo, Italy, and Department of Chemistry, Politecnico di Milano, Via Mancinelli 7, Milano 20131, Italy
| | - Lello Zolla
- Department of Environmental Sciences, University of Tuscia, Viterbo, Italy, and Department of Chemistry, Politecnico di Milano, Via Mancinelli 7, Milano 20131, Italy
| |
Collapse
|
31
|
Ehrnhoefer DE, Butland SL, Pouladi MA, Hayden MR. Mouse models of Huntington disease: variations on a theme. Dis Model Mech 2009; 2:123-9. [PMID: 19259385 DOI: 10.1242/dmm.002451] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
An accepted prerequisite for clinical trials of a compound in humans is the successful alleviation of the disease in animal models. For some diseases, however, successful translation of drug effects from mouse models to the bedside has been limited. One question is whether the current models accurately reproduce the human disease. Here, we examine the mouse models that are available for therapeutic testing in Huntington disease (HD), a late-onset neurodegenerative disorder for which there is no effective treatment. The current mouse models show different degrees of similarity to the human condition. Significant phenotypic differences are seen in mouse models that express either truncated or full-length human, or full-length mouse, mutant huntingtin (mHTT). These differences in phenotypic expression may be attributable to the influences of protein context, mouse strain and a difference in regulatory sequences between the mouse Htt and human HTT genes.
Collapse
Affiliation(s)
- Dagmar E Ehrnhoefer
- Centre for Molecular Medicine and Therapeutics, Department of Medical Genetics, Child and Family Research Institute, University of British Columbia, Vancouver, Canada
| | | | | | | |
Collapse
|
32
|
Gagliardi C, Bunnell BA. Large animal models of neurological disorders for gene therapy. ILAR J 2009; 50:128-43. [PMID: 19293458 DOI: 10.1093/ilar.50.2.128] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
he development of therapeutic interventions for genetic disorders and diseases that affect the central nervous system (CNS) has proven challenging. There has been significant progress in the development of gene therapy strategies in murine models of human disease, but gene therapy outcomes in these models do not always translate to the human setting. Therefore, large animal models are crucial to the development of diagnostics, treatments, and eventual cures for debilitating neurological disorders. This review focuses on the description of large animal models of neurological diseases such as lysosomal storage diseases, Parkinsons disease, Huntingtons disease, and neuroAIDS. The review also describes the contributions of these models to progress in gene therapy research.
Collapse
|
33
|
Mitochondrial structural and functional dynamics in Huntington's disease. ACTA ACUST UNITED AC 2009; 61:33-48. [PMID: 19394359 DOI: 10.1016/j.brainresrev.2009.04.001] [Citation(s) in RCA: 128] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2009] [Revised: 04/13/2009] [Accepted: 04/15/2009] [Indexed: 11/23/2022]
Abstract
Huntington's disease (HD) is an autosomal, dominantly inherited neurodegenerative disorder, characterized by chorea, involuntary movements, and cognitive impairments. Tremendous progress has been made since the discovery of HD gene in 1993, in terms of developing animal models to study the disease process, unraveling the expression and function of wild-type and mutant huntingtin (Htt) proteins in the central and peripheral nervous systems, and understanding expanded CAG repeat containing mutant Htt protein interactions with CNS proteins in the disease process. HD progression has been found to involve several pathomechanisms, including expanded CAG repeat protein interaction with other CNS proteins, transcriptional dysregulation, calcium dyshomeostasis, abnormal vesicle trafficking, and defective mitochondrial bioenergetics. Recent studies have found that mutant Htt is associated with mitochondria and causes mitochondrial structural changes, decreases mitochondrial trafficking, and impairs mitochondrial dynamics in the neurons affected by HD. This article discusses recent developments in HD research, with a particular focus on intracellular and intramitochondrial calcium influx, mitochondrial DNA defects, and mitochondrial structural and functional abnormalities in HD development and progression. Further, this article outlines the current status of mitochondrial therapeutics with a special reference to Dimebon.
Collapse
|
34
|
Abstract
The formation of axons and dendrites and maintenance of the neuron's vastly expanded surface require the continuous addition of new membrane. This is achieved by membrane synthesis through the secretory pathway followed by regulated vesicle fusion with the plasma membrane, typically in the distal neurite. However, it is far from simple: multiple distinct membrane carriers are used to target specific membrane domains, dendrites seem to operate semi-autonomously from the rest of the neuron, and exocytosis for membrane expansion is different from that for release of synaptic vesicles. Current knowledge of this process and its implications for neuronal development, function and repair are reviewed.
Collapse
|
35
|
Warby SC, Doty CN, Graham RK, Shively J, Singaraja RR, Hayden MR. Phosphorylation of huntingtin reduces the accumulation of its nuclear fragments. Mol Cell Neurosci 2009; 40:121-7. [DOI: 10.1016/j.mcn.2008.09.007] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2008] [Revised: 09/18/2008] [Accepted: 09/25/2008] [Indexed: 01/04/2023] Open
|
36
|
Xiao Z, Blonder J, Zhou M, Veenstra TD. Proteomic analysis of extracellular matrix and vesicles. J Proteomics 2009; 72:34-45. [DOI: 10.1016/j.jprot.2008.11.011] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2008] [Revised: 11/12/2008] [Accepted: 11/13/2008] [Indexed: 12/21/2022]
|
37
|
Dopaminergic and glutamatergic signaling crosstalk in Huntington's disease neurodegeneration: the role of p25/cyclin-dependent kinase 5. J Neurosci 2008; 28:10090-101. [PMID: 18829967 DOI: 10.1523/jneurosci.3237-08.2008] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Altered glutamatergic and dopaminergic signaling has been proposed as contributing to the specific striatal cell death observed in Huntington's disease (HD). However, the precise mechanisms by which mutant huntingtin sensitize striatal cells to dopamine and glutamate inputs remain unclear. Here, we demonstrate in knock-in HD striatal cells that mutant huntingtin enhances dopamine-mediated striatal cell death via dopamine D(1) receptors. Moreover, we show that NMDA receptors specifically potentiate the vulnerability of mutant huntingtin striatal cells to dopamine toxicity as pretreatment with NMDA increased D(1)R-induced cell death in mutant but not wild-type cells. As potential underlying mechanism of increased striatal vulnerability, we identified aberrant cyclin-dependent kinase 5 (Cdk5) activation. We demonstrate that enhanced Cdk5 phosphorylation and increased calpain-mediated conversion of the Cdk5 activator p35 into p25 may account for the deregulation of Cdk5 associated to dopamine and glutamate receptor activation in knock-in HD striatal cells. Moreover, supporting a detrimental role of Cdk5 in striatal cell death, neuronal loss can be widely prevented by roscovitine, a potent Cdk5 inhibitor. Significantly, reduced Cdk5 expression together with enhanced Cdk5 phosphorylation and p25 accumulation also occurs in the striatum of mutant Hdh(Q111) mice and HD human brain suggesting the relevance of deregulated Cdk5 pathway in HD pathology. These findings provide new insights into the molecular mechanisms underlying the selective vulnerability of striatal cells in HD and identify p25/Cdk5 as an important mediator of dopamine and glutamate neurotoxicity associated to HD.
Collapse
|
38
|
Spampanato J, Gu X, Yang XW, Mody I. Progressive synaptic pathology of motor cortical neurons in a BAC transgenic mouse model of Huntington's disease. Neuroscience 2008; 157:606-20. [PMID: 18854207 DOI: 10.1016/j.neuroscience.2008.09.020] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2008] [Revised: 08/27/2008] [Accepted: 09/13/2008] [Indexed: 11/19/2022]
Abstract
Huntington's disease (HD) is a neurodegenerative disorder caused by a polyglutamine repeat expansion in huntingtin. A newly developed bacterial artificial chromosome transgenic mouse model (BACHD) reproduces phenotypic features of HD including predominantly neuropil-associated protein aggregation and progressive motor dysfunction with selective neurodegenerative pathology. Motor dysfunction has been shown to precede neuropathology in BACHD mice. We therefore investigated the progression of synaptic pathology in pyramidal cells and interneurons of the superficial motor cortex of BACHD mice. Whole-cell patch clamp recordings were performed on layer 2/3 primary motor cortical pyramidal cells and parvalbumin interneurons from BACHD mice at 3 months, when the mice begin to demonstrate mild motor dysfunction, and at 6 months, when the motor dysfunction is more severe. Changes in synaptic variances were detectable at 3 months, and at 6 months BACHD mice display progressive synaptic pathology in the form of reduced cortical excitation and loss of inhibition onto pyramidal cells. These results suggest that progressive alterations of the superficial cortical circuitry may contribute to the decline of motor function in BACHD mice. The synaptic pathology occurs prior to neuronal degeneration and may therefore prove useful as a target for future therapeutic design.
Collapse
Affiliation(s)
- J Spampanato
- Department of Neurology, David Geffen School of Medicine, University of California, NRB1 Room 575D, 635 Charles E. Young Drive South, Los Angeles, CA 90095-7335, USA
| | | | | | | |
Collapse
|
39
|
Goytain A, Hines RM, Quamme GA. Huntingtin-interacting proteins, HIP14 and HIP14L, mediate dual functions, palmitoyl acyltransferase and Mg2+ transport. J Biol Chem 2008; 283:33365-74. [PMID: 18794299 DOI: 10.1074/jbc.m801469200] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Polyglutamine expansions of huntingtin protein are responsible for the Huntington neurological disorder. HIP14 protein has been shown to interact with huntingtin. HIP14 and a HIP14-like protein, HIP14L, with a 69% similarity reside in the Golgi and possess palmitoyl acyltransferase activity through innate cysteine-rich domains, DHHC. Here, we used microarray analysis to show that reduced extracellular magnesium concentration increases HIP14L mRNA suggesting a role in cellular magnesium metabolism. Because HIP14 was not on the microarray platform, we used real-time reverse transcriptase-PCR to show that HIP14 and HIP14L transcripts were up-regulated 3-fold with low magnesium. Western analysis with a specific HIP14 antibody also showed that endogenous HIP14 protein increased with diminished magnesium. Furthermore, we demonstrate that when expressed in Xenopus oocytes, HIP14 and HIP14L mediate Mg2+ uptake that is electrogenic, voltage-dependent, and saturable with Michaelis constants of 0.87 +/- 0.02 and 0.74 +/- 0.07 mm, respectively. Diminished magnesium leads to an apparent increase in HIP14-green fluorescent protein and HIP14L-green fluorescent fusion proteins in the Golgi complex and subplasma membrane post-Golgi vesicles of transfected epithelial cells. We also show that inhibition of palmitoylation with 2-bromopalmitate, or deletion of the DHHC motif HIP14DeltaDHHC, diminishes HIP14-mediated Mg2+ transport by about 50%. Coexpression of an independent protein acyltransferase, GODZ, with the deleted HIP14DeltaDHHC mutant restored Mg2+ transport to values observed with wild-type HIP14. Although we did not directly measure palmitoylation of HIP14 in these studies, the data are consistent with a regulatory role of autopalmitoylation in HIP14-mediated Mg2+ transport. We conclude that the huntingtin interacting protein genes, HIP14 and HIP14L, encode Mg2+ transport proteins that are regulated by their innate palmitoyl acyltransferases thus fulfilling the characteristics of "chanzymes."
Collapse
Affiliation(s)
- Angela Goytain
- Department of Medicine, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | | | | |
Collapse
|
40
|
Winderickx J, Delay C, De Vos A, Klinger H, Pellens K, Vanhelmont T, Van Leuven F, Zabrocki P. Protein folding diseases and neurodegeneration: Lessons learned from yeast. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2008; 1783:1381-95. [DOI: 10.1016/j.bbamcr.2008.01.020] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2007] [Revised: 01/23/2008] [Accepted: 01/24/2008] [Indexed: 12/29/2022]
|
41
|
Polyglutamine gene function and dysfunction in the ageing brain. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2008; 1779:507-21. [PMID: 18582603 DOI: 10.1016/j.bbagrm.2008.05.008] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2007] [Revised: 04/29/2008] [Accepted: 05/30/2008] [Indexed: 11/23/2022]
Abstract
The coordinated regulation of gene expression and protein interactions determines how mammalian nervous systems develop and retain function and plasticity over extended periods of time such as a human life span. By studying mutations that occur in a group of genes associated with chronic neurodegeneration, the polyglutamine (polyQ) disorders, it has emerged that CAG/glutamine stretches play important roles in transcriptional regulation and protein-protein interactions. However, it is still unclear what the many structural and functional roles of CAG and other low-complexity sequences in eukaryotic genomes are, despite being the most commonly shared peptide fragments in such proteomes. In this review we examine the function of genes responsible for at least 10 polyglutamine disorders in relation to the nervous system and how expansion mutations lead to neuronal dysfunction, by particularly focusing on Huntington's disease (HD). We argue that the molecular and cellular pathways that turn out to be dysfunctional during such diseases, as a consequence of a CAG expansion, are also involved in the ageing of the central nervous system. These are pathways that control protein degradation systems (including molecular chaperones), axonal transport, redox-homeostasis and bioenergetics. CAG expansion mutations confer novel properties on proteins that lead to a slow-progressing neuronal pathology and cell death similar to that found in other age-related conditions such as Alzheimer's and Parkinson's diseases.
Collapse
|
42
|
Yamada M, Sato T, Tsuji S, Takahashi H. CAG repeat disorder models and human neuropathology: similarities and differences. Acta Neuropathol 2008; 115:71-86. [PMID: 17786457 DOI: 10.1007/s00401-007-0287-5] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2007] [Revised: 08/15/2007] [Accepted: 08/16/2007] [Indexed: 11/24/2022]
Abstract
CAG repeat diseases are hereditary neurodegenerative disorders caused by expansion of a polyglutamine tract in each respective disease protein. They include at least nine disorders, including Huntington's disease (HD), dentatorubral pallidoluysian atrophy (DRPLA), spinal and bulbar muscular atrophy (SBMA), and the spinocerebellar ataxias SCA1, SCA2, SCA3 (also known as Machado-Joseph disease), SCA6, SCA7, and SCA17. It is thought that a gain of toxic function resulting from the protein mutation plays important and common roles in the pathogenesis of these diseases. Recent studies have disclosed that, in addition to the presence of clinical phenotypes and conventional neuropathology in each disease, human brains affected by CAG repeat diseases share several polyglutamine-related changes in their neuronal nuclei and cytoplasm including the formation of intranuclear inclusions. Although these novel pathologic changes also show a distribution pattern characteristic to each disease, they are generally present beyond the lesion distribution of neuronal loss, suggesting that neurons are affected much more widely than has been recognized previously. Various mouse models of CAG repeat diseases have revealed that CAG repeat lengths, which are responsible for polyglutamine diseases in humans, are not sufficient for creating the conditions characteristic of each disease in mice. Although high expression of mutant proteins in mice results in the successful generation of polyglutamine-related changes in the brain, there are still some differences from human pathology in the lesion distribution or cell types that are affected. In addition, no model has yet successfully reproduced the specific neuronal loss observed in humans. Although there are no models that fully represent the neuropathologic changes present in humans, the data obtained have provided evidence that clinical onset is not clearly associated with neuronal cell death, but depends on intranuclear accumulation of mutant proteins in neurons.
Collapse
Affiliation(s)
- Mitsunori Yamada
- Department of Pathology, Brain Research Institute, Niigata University, 1 Asahimachi, Niigata, 951-8585, Japan.
| | | | | | | |
Collapse
|
43
|
Branco J, Al-Ramahi I, Ukani L, Pérez AM, Fernandez-Funez P, Rincón-Limas D, Botas J. Comparative analysis of genetic modifiers in Drosophila points to common and distinct mechanisms of pathogenesis among polyglutamine diseases. Hum Mol Genet 2007; 17:376-90. [PMID: 17984172 DOI: 10.1093/hmg/ddm315] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Spinocerebellar Ataxia type 1 (SCA1) and Huntington's disease (HD) are two polyglutamine disorders caused by expansion of a CAG repeat within the coding regions of the Ataxin-1 and Huntingtin proteins, respectively. While protein folding and turnover have been implicated in polyglutamine disorders in general, many clinical and pathological differences suggest that there are also disease-specific mechanisms. Taking advantage of a collection of genetic modifiers of expanded Ataxin-1-induced neurotoxicity, we performed a comparative analysis in Drosophila models of the two diseases. We show that while some modifier genes function similarly in SCA1 and HD Drosophila models, others have model-specific effects. Surprisingly, certain modifier genes modify SCA1 and HD models in opposite directions, i.e. they behave as suppressors in one case and enhancers in the other. Furthermore, we find that modulation of toxicity does not correlate with alterations in the formation of neuronal intranuclear inclusions. Our results point to potential common therapeutic targets in novel pathways, and to genes and pathways responsible for differences between Ataxin-1 and Huntingtin-induced neurodegeneration.
Collapse
Affiliation(s)
- Joana Branco
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | | | | | | | | | | | | |
Collapse
|
44
|
Mandemakers W, Morais VA, De Strooper B. A cell biological perspective on mitochondrial dysfunction in Parkinson disease and other neurodegenerative diseases. J Cell Sci 2007; 120:1707-16. [PMID: 17502481 DOI: 10.1242/jcs.03443] [Citation(s) in RCA: 137] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Dysfunction of mitochondria is frequently proposed to be involved in neurodegenerative disease. Deficiencies in energy supply, free radical generation, Ca2+ buffering or control of apoptosis, could all theoretically contribute to progressive decline of the central nervous system. Parkinson disease illustrates how mutations in very different genes finally impinge directly or indirectly on mitochondrial function, causing subtle but finally fatal dysfunction of dopaminergic neurons. Neurons in general appear more sensitive than other cells to mutations in genes encoding mitochondrial proteins. Particularly interesting are mutations in genes such as Opa1, Mfn1 and Dnm1l, whose products are involved in the dynamic morphological alterations and subcellular trafficking of mitochondria. These indicate that mitochondrial dynamics are especially important for the long-term maintenance of the nervous system. The emerging evidence clearly demonstrates the crucial role of specific mitochondrial functions in maintaining neuronal circuit integrity.
Collapse
Affiliation(s)
- Wim Mandemakers
- Center for Human Genetics, K.U.Leuven, Department of Molecular and Developmental Genetics, VIB, Herestraat 49, 3000 Leuven, Belgium
| | | | | |
Collapse
|