1
|
de Moura JB, Ramos MLG, de Freitas Konrad ML, Saggin Júnior OJ, Dos Santos Lucas L, Ribeiro Junior WQ. Effects of direct and conventional planting systems on mycorrhizal activity in wheat grown in the Cerrado. Sci Rep 2024; 14:24793. [PMID: 39433806 PMCID: PMC11493960 DOI: 10.1038/s41598-024-74498-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 09/26/2024] [Indexed: 10/23/2024] Open
Abstract
Direct planting systems offer several benefits to the soil and plants, as reflected in soil organisms. The Arbuscular mycorrhizal fungi are extremely sensitive to environmental changes and can be used as indicators of soil quality. This study focused on the native diversity of mycorrhizae in the region. Thus, the objective of this work was to evaluate mycorrhizal colonization, spore density, soil glomalin content and species diversity in five wheat genotypes under direct and conventional planting systems. This work was carried out in the experimental area of Embrapa Cerrados, Planaltina, DF, Brazil. The rates of mycorrhizal colonization, spore density and easily extractable glomalin were evaluated, and species of arbuscular mycorrhizal fungi were identified in five wheat genotypes under direct and conventional planting. For all the genotypes under conventional planting, there was a decrease in mycorrhizal colonization, the number of spores in the rhizosphere and the amount of easily extractable glomalin. The composition of the arbuscular mycorrhizal fungal community differed among the wheat genotypes and management systems. The richness of morphospecies of AMF in the direct planting system was similar to that in the conventional system, with twelve species each, but the conventional system reduced root colonization and spore density. The most common species were A. scrobiculata, Si. tortuosum and G. macrocarpum, which were found in all the genotypes in both cultivation systems.
Collapse
Affiliation(s)
- Jadson Belem de Moura
- Graduate Studies in Social, Technological and Environment Science, Evangelical University of Goiás, Anápolis, Goiás, Brazil.
- Sedmo - Soil Research Group, Ecology and Dynamics of Organic Matter, Evangelical College of Goianésia, Goianésia, Brazil.
- Graduate Program in Environmental Sciences (PPGCIAMB), Federal University of Goiás, Goiânia, Brazil.
| | | | | | | | - Leidiane Dos Santos Lucas
- Graduate Studies in Social, Technological and Environment Science, Evangelical University of Goiás, Anápolis, Goiás, Brazil
- University of Brasilia, Federal District, Brazil
| | | |
Collapse
|
2
|
Carkner MK, Gao X, Entz MH. Ideotype breeding for crop adaptation to low phosphorus availability on extensive organic farms. FRONTIERS IN PLANT SCIENCE 2023; 14:1225174. [PMID: 37534288 PMCID: PMC10390776 DOI: 10.3389/fpls.2023.1225174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 07/03/2023] [Indexed: 08/04/2023]
Abstract
Organic farming in extensive production regions, such as the Canadian prairies have a particularly difficult challenge of replenishing soil reserves of phosphorus (P). Organic grains are exported off the farm while resupply of lost P is difficult due to limited availability of animal manures and low solubility of rock organic fertilizers. As a result, many organic farms on the prairies are deficient in plant-available P, leading to productivity breakdown. A portion of the solution may involve crop genetic improvement. A hypothetical 'catch and release' wheat ideotype for organic production systems is proposed to (i) enhance P uptake and use efficiency but (ii) translocate less P from the vegetative biomass into the grain. Root traits that would improve P uptake efficiency from less-available P pools under organic production are explored. The need to understand and classify 'phosphorus use efficiency' using appropriate indices for organic production is considered, as well as the appropriate efficiency indices for use if genetically selecting for the proposed ideotype. The implications for low seed P and high vegetative P are considered from a crop physiology, environmental, and human nutrition standpoint; considerations that are imperative for future feasibility of the ideotype.
Collapse
Affiliation(s)
| | - Xiaopeng Gao
- Department of Soil Science, University of Manitoba, Winnipeg, MB, Canada
| | - Martin H. Entz
- Department of Plant Science, University of Manitoba, Winnipeg, MB, Canada
| |
Collapse
|
3
|
Deja-Sikora E, Werner K, Hrynkiewicz K. AMF species do matter: Rhizophagus irregularis and Funneliformis mosseae affect healthy and PVY-infected Solanum tuberosum L. in a different way. Front Microbiol 2023; 14:1127278. [PMID: 37138600 PMCID: PMC10150075 DOI: 10.3389/fmicb.2023.1127278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 03/14/2023] [Indexed: 05/05/2023] Open
Abstract
Arbuscular mycorrhizal fungi (AMF) were documented to positively influence plant growth and yield, which is extremely important for the production of many crops including potato. However, the nature of the interaction between arbuscular mycorrhiza and plant virus that share the same host is not well characterized. In this study, we examined the effect of different AMF, Rhizophagus irregularis and Funneliformis mosseae, on healthy and potato virus Y (PVY)-infected Solanum tuberosum L. The analyses conducted included the measurement of potato growth parameters, oxidative stress indicators, and photosynthetic capacity. Additionally, we evaluated both the development of AMF in plant roots and the virus level in mycorrhizal plants. We found that two AMF species colonized plant roots to varying degrees (ca. 38% for R. irregularis vs. 20% for F. mosseae). Rhizophagus irregularis had a more positive effect on potato growth parameters, causing a significant increase in the total fresh and dry weight of tubers, along with virus-challenged plants. Furthermore, this species lowered hydrogen peroxide levels in PVY-infected leaves and positively modulated the levels of nonenzymatic antioxidants, i.e., ascorbate and glutathione in leaves and roots. Finally, both fungal species contributed to reduced lipid peroxidation and alleviation of virus-induced oxidative damage in plant organs. We also confirmed an indirect interaction between AMF and PVY inhabiting the same host. The two AMF species seemed to have different abilities to colonize the roots of virus-infected hosts, as R. irregularis showed a stronger drop in mycorrhizal development in the presence of PVY. At the same time, arbuscular mycorrhiza exerted an effect on virus multiplication, causing increased PVY accumulation in plant leaves and a decreased concentration of virus in roots. In conclusion, the effect of AMF-plant interactions may differ depending on the genotypes of both symbiotic partners. Additionally, indirect AMF-PVY interactions occur in host plants, diminishing the establishment of arbuscular mycorrhiza while changing the distribution of viral particles in plants.
Collapse
|
4
|
Ganugi P, Pathan SI, Zhang L, Arfaioli P, Benedettelli S, Masoni A, Pietramellara G, Lucini L. The pivotal role of cultivar affinity to arbuscular mycorrhizal fungi in determining mycorrhizal responsiveness to water deficit. PHYTOCHEMISTRY 2022; 203:113381. [PMID: 36030905 DOI: 10.1016/j.phytochem.2022.113381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 08/10/2022] [Accepted: 08/14/2022] [Indexed: 06/15/2023]
Abstract
Arbuscular mycorrhizal fungi (AMF) have gained remarkable importance, having been proved to alleviate drought stress-induced damage in wheat due to their ability to ameliorate plant water use efficiency and antioxidant enzyme activity. However, despite the current relevance of the topic, the molecular and physiological processes at the base of this symbiosis never consider the single cultivar affinity to mycorrhization as an influencing factor for the metabolic response in the AMF-colonized plant. In the present study, the mycorrhizal affinity of two durum wheat species (T. turgidum subsp. durum (Desf.)) varieties, Iride and Ramirez, were investigated. Successively, an untargeted metabolomics approach has been used to study the fungal contribution to mitigating water deficit in both varieties. Iride and Ramirez exhibited a high and low level of mycorrhizal symbiosis, respectively; resulting in a more remarkable alteration of metabolic pathways in the most colonised variety under water deficit conditions. However, the analysis highlighted the contribution of AMF to mitigating water deficiency in both varieties, resulting in the up- and down-regulation of many amino acids, alkaloids, phenylpropanoids, lipids, and hormones.
Collapse
Affiliation(s)
- Paola Ganugi
- Department for Sustainable Food Process, Research Centre for Nutrigenomics and Proteomics, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Shamina Imran Pathan
- Department of Agriculture, Food, Environment and Forestry, University of Florence, P.le delle Cascine 28, Firenze, 50144, Italy.
| | - Leilei Zhang
- Department for Sustainable Food Process, Research Centre for Nutrigenomics and Proteomics, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Paola Arfaioli
- Department of Agriculture, Food, Environment and Forestry, University of Florence, P.le delle Cascine 28, Firenze, 50144, Italy
| | - Stefano Benedettelli
- Department of Agriculture, Food, Environment and Forestry, University of Florence, P.le delle Cascine 28, Firenze, 50144, Italy
| | - Alberto Masoni
- Department of Biology, University of Florence, Sesto Fiorentino, 50019, Italy
| | - Giacomo Pietramellara
- Department of Agriculture, Food, Environment and Forestry, University of Florence, P.le delle Cascine 28, Firenze, 50144, Italy
| | - Luigi Lucini
- Department for Sustainable Food Process, Research Centre for Nutrigenomics and Proteomics, Università Cattolica del Sacro Cuore, Piacenza, Italy
| |
Collapse
|
5
|
Pellegrino E, Nuti M, Ercoli L. Multiple Arbuscular Mycorrhizal Fungal Consortia Enhance Yield and Fatty Acids of Medicago sativa: A Two-Year Field Study on Agronomic Traits and Tracing of Fungal Persistence. FRONTIERS IN PLANT SCIENCE 2022; 13:814401. [PMID: 35237288 PMCID: PMC8882620 DOI: 10.3389/fpls.2022.814401] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Accepted: 01/12/2022] [Indexed: 06/14/2023]
Abstract
Arbuscular mycorrhizal fungi are promoted as biofertilizers due to potential benefits in crop productivity, and macro- and microelement uptake. However, crop response to arbuscular mycorrhizal fungi (AMF) inoculation is context-dependent, and AMF diversity and field establishment and persistence of inoculants can greatly contribute to variation in outcomes. This study was designed to test the hypotheses that multiple and local AMF inoculants could enhance alfalfa yield and fatty acids (FA) compared to exotic isolates either single or in the mixture. We aimed also to verify the persistence of inoculated AMF, and which component of the AMF communities was the major driver of plant traits. Therefore, a field experiment of AMF inoculation of alfalfa (Medicago sativa L.) with three single foreign isolates, a mixture of the foreign isolates (FMix), and a highly diverse mixture of local AMF (LMix) was set up. We showed that AMF improved alfalfa yield (+ 68%), nutrient (+ 147% N content and + 182% P content in forage), and FA content (+ 105%). These positive effects persisted for at least 2 years post-inoculation and were associated with enhanced AMF abundance in roots. Consortia of AMF strains acted in synergy, and the mixture of foreign AMF isolates provided greater benefits compared to local consortia (+ 20% forage yield, + 36% forage N content, + 18% forage P content, + 20% total FA in forage). Foreign strains of Funneliformis mosseae and Rhizophagus irregularis persisted in the roots of alfalfa 2 years following inoculation, either as single inoculum or as a component of the mixture. Among inoculants, F. mosseae BEG12 and AZ225C and the FMix exerted a higher impact on the local AMF community compared with LMix and R. irregularis BEG141. Finally, the stimulation of the proliferation of a single-taxa (R. irregularis cluster1) induced by all inoculants was the main determinant of the host benefits. Crop productivity and quality as well as field persistence of inoculated AMF support the use of mixtures of foreign AMF. On the other hand, local mixtures showed a lower impact on native AMF. These results pave the way for extending the study on the effect of AMF mixtures for the production of high-quality forage for the animal diet.
Collapse
Affiliation(s)
- Elisa Pellegrino
- Institute of Life Sciences, Scuola Superiore Sant’Anna, Pisa, Italy
| | - Marco Nuti
- Institute of Life Sciences, Scuola Superiore Sant’Anna, Pisa, Italy
- University of Pisa, Pisa, Italy
| | - Laura Ercoli
- Institute of Life Sciences, Scuola Superiore Sant’Anna, Pisa, Italy
| |
Collapse
|
6
|
Thirkell TJ, Grimmer M, James L, Pastok D, Allary T, Elliott A, Paveley N, Daniell T, Field KJ. Variation in mycorrhizal growth response among a spring wheat mapping population shows potential to breed for symbiotic benefit. Food Energy Secur 2022; 11:e370. [PMID: 35865673 PMCID: PMC9286679 DOI: 10.1002/fes3.370] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 11/09/2021] [Accepted: 12/15/2021] [Indexed: 12/12/2022] Open
Affiliation(s)
- Tom J. Thirkell
- Plants, Photosynthesis and Soil School of Biosciences University of Sheffield Sheffield UK
| | | | | | - Daria Pastok
- School of Biology Centre for Plant Sciences University of Leeds Leeds UK
| | - Théa Allary
- Plants, Photosynthesis and Soil School of Biosciences University of Sheffield Sheffield UK
| | - Ashleigh Elliott
- School of Biology Centre for Plant Sciences University of Leeds Leeds UK
| | | | - Tim Daniell
- Plants, Photosynthesis and Soil School of Biosciences University of Sheffield Sheffield UK
| | - Katie J. Field
- Plants, Photosynthesis and Soil School of Biosciences University of Sheffield Sheffield UK
| |
Collapse
|
7
|
Stahlhut KN, Dowell JA, Temme AA, Burke JM, Goolsby EW, Mason CM. Genetic control of arbuscular mycorrhizal colonization by Rhizophagus intraradices in Helianthus annuus (L.). MYCORRHIZA 2021; 31:723-734. [PMID: 34480215 DOI: 10.1007/s00572-021-01050-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 08/19/2021] [Indexed: 06/13/2023]
Abstract
Plant symbiosis with arbuscular mycorrhizal (AM) fungi provides many benefits, including increased nutrient uptake, drought tolerance, and belowground pathogen resistance. To develop a better understanding of the genetic architecture of mycorrhizal symbiosis, we conducted a genome-wide association study (GWAS) of this plant-fungal interaction in cultivated sunflower. A diversity panel of cultivated sunflower (Helianthus annuus L.) was phenotyped for root colonization under inoculation with the AM fungus Rhizophagus intraradices. Using a mixed linear model approach with a high-density genetic map, we identified genomic regions that are likely associated with R. intraradices colonization in sunflower. Additionally, we used a set of twelve diverse lines to assess the effect that inoculation with R. intraradices has on dried shoot biomass and macronutrient uptake. Colonization among lines in the mapping panel ranged from 0-70% and was not correlated with mycorrhizal growth response, shoot phosphorus response, or shoot potassium response among the Core 12 lines. Association mapping yielded three single-nucleotide polymorphisms (SNPs) that were significantly associated with R. intraradices colonization. This is the first study to use GWAS to identify genomic regions associated with AM colonization in an Asterid eudicot species. Three genes of interest identified from the regions containing these SNPs are likely related to plant defense.
Collapse
Affiliation(s)
| | - Jordan A Dowell
- Department of Biology, University of Central Florida, Orlando, FL, 32816, USA
| | - Andries A Temme
- Department of Plant Biology, University of Georgia, Athens, GA, 30602, USA
| | - John M Burke
- Department of Plant Biology, University of Georgia, Athens, GA, 30602, USA
| | - Eric W Goolsby
- Department of Biology, University of Central Florida, Orlando, FL, 32816, USA
| | - Chase M Mason
- Department of Biology, University of Central Florida, Orlando, FL, 32816, USA.
| |
Collapse
|
8
|
Genetic variability assessment of 127 Triticum turgidum L. accessions for mycorrhizal susceptibility-related traits detection. Sci Rep 2021; 11:13426. [PMID: 34183734 PMCID: PMC8239029 DOI: 10.1038/s41598-021-92837-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 06/02/2021] [Indexed: 02/06/2023] Open
Abstract
Positive effects of arbuscular mycorrhizal fungi (AMF)-wheat plant symbiosis have been well discussed by research, while the actual role of the single wheat genotype in establishing this type of association is still poorly investigated. In this work, the genetic diversity of Triticum turgidum wheats was exploited to detect roots susceptibility to AMF and to identify genetic markers in linkage with chromosome regions involved in this symbiosis. A tetraploid wheat collection of 127 accessions was genotyped using 35K single-nucleotide polymorphism (SNP) array and inoculated with the AMF species Funneliformis mosseae (F. mosseae) and Rhizoglomus irregulare (R. irregulare), and a genome-wide association study (GWAS) was conducted. Six clusters of genetically related accessions were identified, showing a different mycorrhizal colonization among them. GWAS revealed four significant quantitative trait nucleotides (QTNs) involved in mycorrhizal symbiosis, located on chromosomes 1A, 2A, 2B and 6A. The results of this work enrich future breeding activities aimed at developing new grains on the basis of genetic diversity on low or high susceptibility to mycorrhization, and, possibly, maximizing the symbiotic effects.
Collapse
|
9
|
Stefani F, Dupont S, Laterrière M, Knox R, Ruan Y, Hamel C, Hijri M. Similar Arbuscular Mycorrhizal Fungal Communities in 31 Durum Wheat Cultivars ( Triticum turgidum L. var. durum) Under Field Conditions in Eastern Canada. FRONTIERS IN PLANT SCIENCE 2020; 11:1206. [PMID: 32849748 PMCID: PMC7431883 DOI: 10.3389/fpls.2020.01206] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 07/24/2020] [Indexed: 06/11/2023]
Abstract
Wheat is among the important crops harnessed by humans whose breeding efforts resulted in a diversity of genotypes with contrasting traits. The goal of this study was to determine whether different old and new cultivars of durum wheat (Triticum turgidum L. var. durum) recruit specific arbuscular mycorrhizal (AM) fungal communities from indigenous AM fungal populations of soil under field conditions. A historical set of five landraces and 26 durum wheat cultivars were field cultivated in a humid climate in Eastern Canada, under phosphorus-limiting conditions. To characterize the community of AMF inhabiting bulk soil, rhizosphere, and roots, MiSeq amplicon sequencing targeting the 18S rRNA gene (SSU) was performed on total DNAs using a nested PCR approach. Mycorrhizal colonization was estimated using root staining and microscope observations. A total of 317 amplicon sequence variants (ASVs) were identified as belonging to Glomeromycota. The core AM fungal community (i.e., ASVs present in > 50% of the samples) in the soil, rhizosphere, and root included 29, 30, and 29 ASVs, respectively. ASVs from the genera Funneliformis, Claroideoglomus, and Rhizophagus represented 37%, 18.6%, and 14.7% of the sequences recovered in the rarefied dataset, respectively. The two most abundant ASVs had sequence homology with the 18S sequences from well-identified herbarium cultures of Funneliformis mosseae BEG12 and Rhizophagus irregularis DAOM 197198, while the third most abundant ASV was assigned to the genus Paraglomus. Cultivars showed no significant difference of the percentage of root colonization ranging from 57.8% in Arnautka to 84.0% in AC Navigator. Cultivars were generally associated with similar soil, rhizosphere, and root communities, but the abundance of F. mosseae, R. irregularis, and Claroideoglomus sp. sequences varied in Eurostar, Golden Ball, and Wakooma. Although these results were obtained in one field trial using a non-restricted pool of durum wheat and at the time of sampling, that may have filtered the community in biotopes. The low genetic variation between durum wheat cultivars for the diversity of AM symbiosis at the species level suggests breeding resources need not be committed to leveraging plant selective influence through the use of traditional methods for genotype development.
Collapse
Affiliation(s)
- Franck Stefani
- Ottawa Research and Development Centre of Agriculture and Agri-Food Canada, Ottawa, ON, Canada
| | - Sarah Dupont
- Département de Sciences Biologiques, Institut de Recherche en Biologie Végétale, Université de Montréal, Montréal, QC, Canada
| | - Mario Laterrière
- Quebec Research and Development Centre of Agriculture and Agri-Food Canada, Quebec, QC, Canada
| | - Ron Knox
- Swift Current Research and Development Centre of Agriculture and Agri-Food Canada, Swift Current, SK, Canada
| | - Yuefeng Ruan
- Swift Current Research and Development Centre of Agriculture and Agri-Food Canada, Swift Current, SK, Canada
| | - Chantal Hamel
- Quebec Research and Development Centre of Agriculture and Agri-Food Canada, Quebec, QC, Canada
| | - Mohamed Hijri
- Département de Sciences Biologiques, Institut de Recherche en Biologie Végétale, Université de Montréal, Montréal, QC, Canada
- AgroBioSciences, Mohammed VI Polytechnic University, Ben Guerir, Morocco
| |
Collapse
|
10
|
Field Inoculation of Bread Wheat with Rhizophagus irregularis under Organic Farming: Variability in Growth Response and Nutritional Uptake of Eleven Old Genotypes and A Modern Variety. AGRONOMY-BASEL 2020. [DOI: 10.3390/agronomy10030333] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Arbuscular mycorrhizal fungi (AMF) promote crop growth and yield by increasing N and P uptake and disease resistance, but the role of field AMF inoculation on the uptake of micronutrients, such as Fe and Zn, and accumulation in plant edible portions is still not clarified. Therefore, we studied the effect of field inoculation with Rhizophagus irregularis in an organic system on 11 old genotypes and a modern variety of bread wheat. Inoculation increased root colonization, root biomass and shoot Zn concentration at early stage and grain Fe concentration at harvest, while it did not modify yield. Genotypes widely varied for shoot Zn concentration at early stage, and for plant height, grain yield, Zn and protein concentration at harvest. Inoculation differentially modified root AMF community of the genotypes Autonomia B, Frassineto and Bologna. A higher abundance of Rhizophagus sp., putatively corresponding to the inoculated isolate, was only proved in Frassineto. The increase of plant growth and grain Zn content in Frassineto is likely linked to the higher R. irregularis abundance. The AMF role in increasing micronutrient uptake in grain was proved. This supports the introduction of inoculation in cereal farming, if the variable response of wheat genotypes to inoculation is considered.
Collapse
|
11
|
Falk KG, Jubery TZ, Mirnezami SV, Parmley KA, Sarkar S, Singh A, Ganapathysubramanian B, Singh AK. Computer vision and machine learning enabled soybean root phenotyping pipeline. PLANT METHODS 2020; 16:5. [PMID: 31993072 PMCID: PMC6977263 DOI: 10.1186/s13007-019-0550-5] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Accepted: 12/27/2019] [Indexed: 05/20/2023]
Abstract
BACKGROUND Root system architecture (RSA) traits are of interest for breeding selection; however, measurement of these traits is difficult, resource intensive, and results in large variability. The advent of computer vision and machine learning (ML) enabled trait extraction and measurement has renewed interest in utilizing RSA traits for genetic enhancement to develop more robust and resilient crop cultivars. We developed a mobile, low-cost, and high-resolution root phenotyping system composed of an imaging platform with computer vision and ML based segmentation approach to establish a seamless end-to-end pipeline - from obtaining large quantities of root samples through image based trait processing and analysis. RESULTS This high throughput phenotyping system, which has the capacity to handle hundreds to thousands of plants, integrates time series image capture coupled with automated image processing that uses optical character recognition (OCR) to identify seedlings via barcode, followed by robust segmentation integrating convolutional auto-encoder (CAE) method prior to feature extraction. The pipeline includes an updated and customized version of the Automatic Root Imaging Analysis (ARIA) root phenotyping software. Using this system, we studied diverse soybean accessions from a wide geographical distribution and report genetic variability for RSA traits, including root shape, length, number, mass, and angle. CONCLUSIONS This system provides a high-throughput, cost effective, non-destructive methodology that delivers biologically relevant time-series data on root growth and development for phenomics, genomics, and plant breeding applications. This phenotyping platform is designed to quantify root traits and rank genotypes in a common environment thereby serving as a selection tool for use in plant breeding. Root phenotyping platforms and image based phenotyping are essential to mirror the current focus on shoot phenotyping in breeding efforts.
Collapse
Affiliation(s)
- Kevin G. Falk
- Department of Agronomy, Iowa State University, Ames, USA
| | | | | | | | - Soumik Sarkar
- Department of Mechanical Engineering, Iowa State University, Ames, USA
| | - Arti Singh
- Department of Agronomy, Iowa State University, Ames, USA
| | | | | |
Collapse
|
12
|
Falk KG, Jubery TZ, Mirnezami SV, Parmley KA, Sarkar S, Singh A, Ganapathysubramanian B, Singh AK. Computer vision and machine learning enabled soybean root phenotyping pipeline. PLANT METHODS 2020; 16:5. [PMID: 31993072 DOI: 10.1186/s,13007-019-0550-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Accepted: 12/27/2019] [Indexed: 05/29/2023]
Abstract
BACKGROUND Root system architecture (RSA) traits are of interest for breeding selection; however, measurement of these traits is difficult, resource intensive, and results in large variability. The advent of computer vision and machine learning (ML) enabled trait extraction and measurement has renewed interest in utilizing RSA traits for genetic enhancement to develop more robust and resilient crop cultivars. We developed a mobile, low-cost, and high-resolution root phenotyping system composed of an imaging platform with computer vision and ML based segmentation approach to establish a seamless end-to-end pipeline - from obtaining large quantities of root samples through image based trait processing and analysis. RESULTS This high throughput phenotyping system, which has the capacity to handle hundreds to thousands of plants, integrates time series image capture coupled with automated image processing that uses optical character recognition (OCR) to identify seedlings via barcode, followed by robust segmentation integrating convolutional auto-encoder (CAE) method prior to feature extraction. The pipeline includes an updated and customized version of the Automatic Root Imaging Analysis (ARIA) root phenotyping software. Using this system, we studied diverse soybean accessions from a wide geographical distribution and report genetic variability for RSA traits, including root shape, length, number, mass, and angle. CONCLUSIONS This system provides a high-throughput, cost effective, non-destructive methodology that delivers biologically relevant time-series data on root growth and development for phenomics, genomics, and plant breeding applications. This phenotyping platform is designed to quantify root traits and rank genotypes in a common environment thereby serving as a selection tool for use in plant breeding. Root phenotyping platforms and image based phenotyping are essential to mirror the current focus on shoot phenotyping in breeding efforts.
Collapse
Affiliation(s)
- Kevin G Falk
- 1Department of Agronomy, Iowa State University, Ames, USA
| | - Talukder Z Jubery
- 2Department of Mechanical Engineering, Iowa State University, Ames, USA
| | - Seyed V Mirnezami
- 2Department of Mechanical Engineering, Iowa State University, Ames, USA
| | - Kyle A Parmley
- 1Department of Agronomy, Iowa State University, Ames, USA
| | - Soumik Sarkar
- 2Department of Mechanical Engineering, Iowa State University, Ames, USA
| | - Arti Singh
- 1Department of Agronomy, Iowa State University, Ames, USA
| | | | | |
Collapse
|
13
|
Garg N, Saroy K. Interactive effects of polyamines and arbuscular mycorrhiza in modulating plant biomass, N 2 fixation, ureide, and trehalose metabolism in Cajanus cajan (L.) Millsp. genotypes under nickel stress. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:3043-3064. [PMID: 31838702 DOI: 10.1007/s11356-019-07300-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Accepted: 12/04/2019] [Indexed: 05/27/2023]
Abstract
Nickel (Ni) is an essential micronutrient but considered toxic for plant growth when present in excess in the soil. Polyamines (PAs) and arbuscular mycorrhiza (AM) play key roles in alleviating metal toxicity in plants. Present study compared the roles of AM and PAs in improving rhizobial symbiosis, ureide, and trehalose (Tre) metabolism under Ni stress in Cajanus cajan (pigeon pea) genotypes (Pusa 2001, AL 201). The results documented significant negative impacts of Ni on plant biomass, especially roots, more in AL 201 than Pusa 2001. Symbiotic efficiency with Rhizobium and AM declined under Ni stress, resulting in reduced AM colonization, N2 fixation, and ureide biosynthesis. This decline was proportionate to increased Ni uptake in roots and nodules. Put-reduced Ni uptake improved plant growth and functional efficiency of nodules and ureides synthesis, with higher positive effects than other PAs. However, AM inoculations were most effective in enhancing nodulation, nitrogen fixing potential, and Tre synthesis under Ni toxicity. Combined applications of AM with respective PAs, especially +Put+AM, were highly beneficial in alleviating Ni-induced nodule senescence by arresting leghemoglobin degradation and improving functional efficiency of nodules by boosting Tre metabolism, especially in Pusa 2001. The study suggested use of Put along with AM as a promising approach in imparting Ni tolerance to pigeon pea plants.
Collapse
Affiliation(s)
- Neera Garg
- Department of Botany, Panjab University, Chandigarh, 160014, India.
| | - Kiran Saroy
- Department of Botany, Panjab University, Chandigarh, 160014, India
| |
Collapse
|
14
|
Baghaie AH, Jabari AG. Effect of Nano Fe-oxide and Endophytic Fungus ( P. indica) on Petroleum Hydrocarbons Degradation in an Arsenic Contaminated Soil under Barley Cultivation. JOURNAL OF ENVIRONMENTAL HEALTH SCIENCE & ENGINEERING 2019; 17:853-861. [PMID: 32047637 PMCID: PMC6985438 DOI: 10.1007/s40201-019-00402-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 09/20/2019] [Indexed: 05/08/2023]
Abstract
BACKGROUND Heavy metals and petroleum hydrocarbon pollution are important environmental problems. This research was conducted to evaluate the effect of nano Fe-oxide and endophytic fungus (P. indica) on petroleum hydrocarbons degradation in an arsenic and petroleum hydrocarbons contaminated soil using barley plant. METHODS Treatments consisted of the presence (E+) and the absence (E-) of P.indica fungi, soil contaminated with As in the rates of 0 (AS0), 12 (AS12) and 24 (As24) mg As /kg of soil, and application of 0 (Fe0) and 1% (Fe1) (W/W) nano Fe-oxide. The plant used in this study was the barley plant. After 7 weeks, the root and shoot As concentration was measured using atomic absorption spectroscopy. The concentration of total soil petroleum hydrocarbon (TPHS) was measured using GC-mass. RESULTS Application of nano Fe-oxide in soil treated with 12 and 24 mg As/kg soil decreased root As concentration by 30 and 20.6%, respectively. The presence of P.indica caused a significant reduction in the shoot As concentration. With increasing shoot Fe concentration the shoot As concentration was decreased. The highest TPHS degradation was observed in non As-polluted soil that containing 1% (W/W) nano Fe-oxide in the presence of P.indica, while the lowest that was in As polluted soil (24 mg As/kg soil) without applying nano Fe-oxide and in the absence of P.indica. CONCLUSION Increasing soil sorption properties due to nano Fe-oxide application had significant effect on TPHS degradation in the presence of P.indica. However the role of soil condition on the amount of TPHS degradation cannot be ignored.
Collapse
Affiliation(s)
| | - Amir Ghafar Jabari
- Department of Microbiology, Arak Branch, Islamic Azad University, Arak, Iran
| |
Collapse
|
15
|
Hansen JC, Schillinger WF, Sullivan TS, Paulitz TC. Soil Microbial Biomass and Fungi Reduced With Canola Introduced Into Long-Term Monoculture Wheat Rotations. Front Microbiol 2019; 10:1488. [PMID: 31354643 PMCID: PMC6637790 DOI: 10.3389/fmicb.2019.01488] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 06/14/2019] [Indexed: 01/29/2023] Open
Abstract
With increasing canola (Brassica napus L.) acreage in the Inland Pacific Northwest of the USA, we investigated the effect of this relatively new rotational crop on soil microbial communities and the performance of subsequent wheat (Triticum aestivum L.) crops. In a 6-year on-farm canola-wheat rotation study conducted near Davenport, WA, grain yields of spring wheat (SW) following winter canola (WC) were reduced an average of 17% compared to SW yields following winter wheat (WW). Using soil samples collected and analyzed every year from that study, the objective of this research was to determine the differences and similarities in the soil microbial communities associated with WC and WW, and if those differences were associated with SW yield response. Microbial biomass and community composition were determined using phospholipid fatty acid analysis (PLFA). The WC-associated microbial community contained significantly less fungi, mycorrhizae, and total microbial biomass than WW. Additionally, reduced fungal and mycorrhizal abundance in SW following WC suggests that the canola rotation effect can persist. A biocidal secondary metabolite of canola, isothiocyanate, may be a potential mechanism mediating the decline in soil microbial biomass. These results demonstrate the relationship between soil microbial community composition and crop productivity. Our data suggest that WC can have significant effects on soil microbial communities that ultimately drive microbially mediated soil processes.
Collapse
Affiliation(s)
- Jeremy C Hansen
- Northwest Sustainable Agroecosystems Research Unit, USDA-Agricultural Research Service, Washington State University, Pullman, WA, United States
| | - William F Schillinger
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA, United States
| | - Tarah S Sullivan
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA, United States
| | - Timothy C Paulitz
- Wheat Health, Genetics, and Quality Research Unit, USDA-Agricultural Research Service, Washington State University, Pullman, WA, United States
| |
Collapse
|
16
|
Davidson H, Shrestha R, Cornulier T, Douglas A, Travis T, Johnson D, Price AH. Spatial Effects and GWA Mapping of Root Colonization Assessed in the Interaction Between the Rice Diversity Panel 1 and an Arbuscular Mycorrhizal Fungus. FRONTIERS IN PLANT SCIENCE 2019; 10:633. [PMID: 31156686 PMCID: PMC6533530 DOI: 10.3389/fpls.2019.00633] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 04/26/2019] [Indexed: 05/09/2023]
Abstract
If water saving methods of rice management are to be adopted, the interaction between rice plants and arbuscular mycorrhizal (AM) fungi will grow in agronomic significance. As yet there are very few studies on the interaction between rice and AM fungi and none on host genetics. A subset 334 cultivars from the Rice Diversity Panel 1 were grown in 250 L boxes filled with phosphorus (P) deficient aerobic soil without addition, with added rock phosphate and with rock phosphate and the AM fungus Rhizophagus irregularis. Statistical analysis of position of plants revealed a positive effect of their neighbors on their dry weight which was stronger in the presence of rock phosphate and even stronger with rock phosphate and AM fungi. A weak but significant difference in the response of cultivars to AM fungus treatment in terms of shoot dry weight (SDW) was revealed. Neighbor hyphal colonization was positively related to a plant's hyphal colonization, providing insights into the way a network of AM fungi interact with multiple hosts. Hyphal colonization ranged from 21 to 89%, and 42% of the variation was explained by rice genotype. Colonization was slightly lower in aus cultivars than other rice subgroups and high in cultivars from the Philippines. Genome wide association (GWA) mapping for hyphal colonization revealed 23 putative quantitative trait loci (QTLs) indicating there is an opportunity to investigate the impact of allelic variation in rice on AM fungal colonization. Using published transcriptomics data for AM response in rice, some promising candidate genes are revealed under these QTLs being a calcium/calmodulin serine/threonine protein kinase at 4.9 Mbp on chromosome 1, two ammonium transporters genes at 24.6 Mbp on chromosome 2 and a cluster of subtilisin genes at 1.2 Mbp on chromosome 4. Future studies should concentrate on the biological significance of genetic variation in rice for AM colonization.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Adam H. Price
- Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen, United Kingdom
| |
Collapse
|
17
|
Watts-Williams SJ, Emmett BD, Levesque-Tremblay V, MacLean AM, Sun X, Satterlee JW, Fei Z, Harrison MJ. Diverse Sorghum bicolor accessions show marked variation in growth and transcriptional responses to arbuscular mycorrhizal fungi. PLANT, CELL & ENVIRONMENT 2019; 42:1758-1774. [PMID: 30578745 DOI: 10.1111/pce.13509] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 12/13/2018] [Accepted: 12/17/2018] [Indexed: 06/09/2023]
Abstract
Sorghum is an important crop grown worldwide for feed and fibre. Like most plants, it has the capacity to benefit from symbioses with arbuscular mycorrhizal (AM) fungi, and its diverse genotypes likely vary in their responses. Currently, the genetic basis of mycorrhiza-responsiveness is largely unknown. Here, we investigated transcriptional and physiological responses of sorghum accessions, founders of a bioenergy nested association mapping panel, for their responses to four species of AM fungi. Transcriptome comparisons across four accessions identified mycorrhiza-inducible genes; stringent filtering criteria revealed 278 genes that show mycorrhiza-inducible expression independent of genotype and 55 genes whose expression varies with genotype. The latter suggests variation in phosphate transport and defence across these accessions. The mycorrhiza growth and nutrient responses of 18 sorghum accessions varied tremendously, ranging from mycorrhiza-dependent to negatively mycorrhiza-responsive. Additionally, accessions varied in the number of AM fungi to which they showed positive responses, from one to several fungal species. Mycorrhiza growth and phosphorus responses were positively correlated, whereas expression of two mycorrhiza-inducible phosphate transporters, SbPT8 and SbPT9, correlated negatively with mycorrhizal growth responses. AM fungi improve growth and mineral nutrition of sorghum, and the substantial variation between lines provides the potential to map loci influencing mycorrhiza responses.
Collapse
Affiliation(s)
| | - Bryan D Emmett
- Boyce Thompson Institute, 533 Tower Rd, Ithaca, 14853, New York, USA
| | | | - Allyson M MacLean
- Boyce Thompson Institute, 533 Tower Rd, Ithaca, 14853, New York, USA
| | - Xuepeng Sun
- Boyce Thompson Institute, 533 Tower Rd, Ithaca, 14853, New York, USA
| | - James W Satterlee
- Boyce Thompson Institute, 533 Tower Rd, Ithaca, 14853, New York, USA
- Plant Biology Section, SIPs, Cornell University, Ithaca, 14853, NY, USA
| | - Zhangjun Fei
- Boyce Thompson Institute, 533 Tower Rd, Ithaca, 14853, New York, USA
| | - Maria J Harrison
- Boyce Thompson Institute, 533 Tower Rd, Ithaca, 14853, New York, USA
| |
Collapse
|
18
|
Wheat landraces with low mycorrhizing ability at field respond differently to inoculation with artificial or indigenous arbuscular mycorrhizal fungal communities. Symbiosis 2019. [DOI: 10.1007/s13199-019-00612-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
19
|
Deja-Sikora E, Mercy L, Baum C, Hrynkiewicz K. The Contribution of Endomycorrhiza to the Performance of Potato Virus Y-Infected Solanaceous Plants: Disease Alleviation or Exacerbation? Front Microbiol 2019; 10:516. [PMID: 30984121 PMCID: PMC6449694 DOI: 10.3389/fmicb.2019.00516] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Accepted: 02/28/2019] [Indexed: 11/13/2022] Open
Abstract
Solanaceae, comprising meaningful crops (as potato, tomato, pepper, eggplant, and tobacco), can benefit from a symbiosis with arbuscular mycorrhizal fungi (AMF), which improve plant fitness and support plant defense against pathogens. Currently, those crops are likely the most impacted by Potato virus Y (PVY). Unfortunately, the effects of AM symbiosis on the severity of disease induced by PVY in solanaceous crops remain uncertain, partly because the interplay between AMF and PVY is poorly characterized. To shed some light on this issue, available studies on interactions in tripartite association between the host plant, its fungal colonizer, and viral pathogen were analyzed and discussed. Although the best-documented PVY transmission pathway is aphid-dependent, PVY infections are also observed in the absence of insect vector. We hypothesize the existence of an additional pathway for virus transmission involving AMF, in which the common mycorrhizal network (CMN) may act as a potential bridge. Therefore, we reviewed (1) the significance of AM colonization for the course of disease, (2) the potential of AMF networks to act as vectors for PVY, and (3) the consequences for crop breeding and production of AM biofertilizers.
Collapse
Affiliation(s)
- Edyta Deja-Sikora
- Department of Microbiology, Faculty of Biology and Environmental Protection, Nicolaus Copernicus University, Torun, Poland
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University, Torun, Poland
| | | | - Christel Baum
- Faculty of Agricultural and Environmental Sciences, University of Rostock, Rostock, Germany
| | - Katarzyna Hrynkiewicz
- Department of Microbiology, Faculty of Biology and Environmental Protection, Nicolaus Copernicus University, Torun, Poland
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University, Torun, Poland
| |
Collapse
|
20
|
De Vita P, Avio L, Sbrana C, Laidò G, Marone D, Mastrangelo AM, Cattivelli L, Giovannetti M. Genetic markers associated to arbuscular mycorrhizal colonization in durum wheat. Sci Rep 2018; 8:10612. [PMID: 30006562 PMCID: PMC6045686 DOI: 10.1038/s41598-018-29020-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 07/04/2018] [Indexed: 11/09/2022] Open
Abstract
In this work we investigated the variability and the genetic basis of susceptibility to arbuscular mycorrhizal (AM) colonization of wheat roots. The mycorrhizal status of wild, domesticated and cultivated tetraploid wheat accessions, inoculated with the AM species Funneliformis mosseae, was evaluated. In addition, to detect genetic markers in linkage with chromosome regions involved in AM root colonization, a genome wide association analysis was carried out on 108 durum wheat varieties and two AM fungal species (F. mosseae and Rhizoglomus irregulare). Our findings showed that a century of breeding on durum wheat and the introgression of Reduced height (Rht) genes associated with increased grain yields did not select against AM symbiosis in durum wheat. Seven putative Quantitative Trait Loci (QTLs) linked with durum wheat mycorrhizal susceptibility in both experiments, located on chromosomes 1A, 2B, 5A, 6A, 7A and 7B, were detected. The individual QTL effects (r2) ranged from 7 to 16%, suggesting a genetic basis for this trait. Marker functional analysis identified predicted proteins with potential roles in host-parasite interactions, degradation of cellular proteins, homeostasis regulation, plant growth and disease/defence. The results of this work emphasize the potential for further enhancement of root colonization exploiting the genetic variability present in wheat.
Collapse
Affiliation(s)
- Pasquale De Vita
- Consiglio per la ricerca in agricoltura e l'analisi dell'economia agraria, Centro di Ricerca Cerealicoltura e Colture Industriali, S.S. 673 km 25 + 200, 71121, Foggia, Italy.
| | - Luciano Avio
- Dipartimento di Scienze Agrarie, Alimentari e Agro-Ambientali, Università di Pisa, Via del Borghetto 80, 56124, Pisa, Italy
| | | | - Giovanni Laidò
- Consiglio per la ricerca in agricoltura e l'analisi dell'economia agraria, Centro di Ricerca Cerealicoltura e Colture Industriali, S.S. 673 km 25 + 200, 71121, Foggia, Italy
| | - Daniela Marone
- Consiglio per la ricerca in agricoltura e l'analisi dell'economia agraria, Centro di Ricerca Cerealicoltura e Colture Industriali, S.S. 673 km 25 + 200, 71121, Foggia, Italy
| | - Anna M Mastrangelo
- Consiglio per la ricerca in agricoltura e l'analisi dell'economia agraria, Centro di Ricerca Cerealicoltura e Colture Industriali, S.S. 673 km 25 + 200, 71121, Foggia, Italy
- Consiglio per la ricerca in agricoltura e l'analisi dell'economia agraria, Centro di Ricerca Cerealicoltura e Colture Industriali, Via Stezzano 24, 24126, Bergamo, Italy
| | - Luigi Cattivelli
- Consiglio per la ricerca in agricoltura e l'analisi dell'economia agraria, Centro di Ricerca Genomica e Bioinformatica, Via San Protaso 302, 29017, Fiorenzuola d'Arda, (PC), Italy
| | - Manuela Giovannetti
- Dipartimento di Scienze Agrarie, Alimentari e Agro-Ambientali, Università di Pisa, Via del Borghetto 80, 56124, Pisa, Italy
| |
Collapse
|
21
|
Ellouze W, Hamel C, Singh AK, Mishra V, DePauw RM, Knox RE. Abundance of the arbuscular mycorrhizal fungal taxa associated with the roots and rhizosphere soil of different durum wheat cultivars in the Canadian prairies. Can J Microbiol 2018; 64:527-536. [PMID: 29633625 DOI: 10.1139/cjm-2017-0637] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Understanding the variation in how wheat genotypes shape their arbuscular mycorrhizal (AM) fungal communities in a prairie environment is foundational to breeding for enhanced AM fungi-wheat interactions. The AM fungal communities associated with 32 durum wheat genotypes were described by pyrosequencing of amplicons. The experiment was set up at two locations in the Canadian prairies. The intensively managed site was highly dominated by Funneliformis. Genotype influenced the AM fungal community in the rhizosphere soil, but there was no evidence of a differential genotype effect on the AM fungal community of durum wheat roots. The influence of durum wheat genotype on the AM fungal community of the soil was less important at the intensively managed site. Certain durum wheat genotypes, such as Strongfield, Plenty, and CDC Verona, were associated with high abundance of Paraglomus, and Dominikia was undetected in the rhizosphere of the recent cultivars Enterprise, Eurostar, Commander, and Brigade. Genetic variation in the association of durum wheat with AM fungi suggests the possibility of increasing the sustainability of cropping systems through the use of durum wheat genotypes that select highly effective AM fungal taxa residing in the agricultural soils of the Canadian prairies.
Collapse
Affiliation(s)
- Walid Ellouze
- a Swift Current Research and Development Centre, Agriculture and Agri-Food Canada, P.O. Box 1030, 1 Airport Road, Swift Current, SK S9H 3X2, Canada.,b Crop Diversification Centre South, Alberta Agriculture and Forestry, 301 Horticultural Station Road East, Brooks, AB T1R 1E6, Canada
| | - Chantal Hamel
- a Swift Current Research and Development Centre, Agriculture and Agri-Food Canada, P.O. Box 1030, 1 Airport Road, Swift Current, SK S9H 3X2, Canada
| | - Asheesh K Singh
- c Department of Agronomy, Iowa State University, 1501 Agronomy Hall, Ames, IA 50011-1010, USA
| | - Vachaspati Mishra
- b Crop Diversification Centre South, Alberta Agriculture and Forestry, 301 Horticultural Station Road East, Brooks, AB T1R 1E6, Canada
| | - Ron M DePauw
- a Swift Current Research and Development Centre, Agriculture and Agri-Food Canada, P.O. Box 1030, 1 Airport Road, Swift Current, SK S9H 3X2, Canada.,d Advancing Wheat Technology, 870 Field Drive, Swift Current, SK S9H 4N5, Canada
| | - Ron E Knox
- a Swift Current Research and Development Centre, Agriculture and Agri-Food Canada, P.O. Box 1030, 1 Airport Road, Swift Current, SK S9H 3X2, Canada
| |
Collapse
|
22
|
Bazghaleh N, Hamel C, Gan Y, Tar'an B, Knight JD. Genotypic variation in the response of chickpea to arbuscular mycorrhizal fungi and non-mycorrhizal fungal endophytes. Can J Microbiol 2018; 64:265-275. [PMID: 29390194 DOI: 10.1139/cjm-2017-0521] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Plant roots host symbiotic arbuscular mycorrhizal (AM) fungi and other fungal endophytes that can impact plant growth and health. The impact of microbial interactions in roots may depend on the genetic properties of the host plant and its interactions with root-associated fungi. We conducted a controlled condition experiment to investigate the effect of several chickpea (Cicer arietinum L.) genotypes on the efficiency of the symbiosis with AM fungi and non-AM fungal endophytes. Whereas the AM symbiosis increased the biomass of most of the chickpea cultivars, inoculation with non-AM fungal endophytes had a neutral effect. The chickpea cultivars responded differently to co-inoculation with AM fungi and non-AM fungal endophytes. Co-inoculation had additive effects on the biomass of some cultivars (CDC Corrine, CDC Anna, and CDC Cory), but non-AM fungal endophytes reduced the positive effect of AM fungi on Amit and CDC Vanguard. This study demonstrated that the response of plant genotypes to an AM symbiosis can be modified by the simultaneous colonization of the roots by non-AM fungal endophytes. Intraspecific variations in the response of chickpea to AM fungi and non-AM fungal endophytes indicate that the selection of suitable genotypes may improve the ability of crop plants to take advantage of soil ecosystem services.
Collapse
Affiliation(s)
- Navid Bazghaleh
- a Swift Current Research and Development Centre, Agriculture and Agri-Food Canada, Swift Current, SK, S9H 3X2 Canada.,b Department of Soil Science, University of Saskatchewan, Saskatoon, SK, S7N 5A8 Canada.,c Department of Plant Sciences, University of Saskatchewan, Saskatoon, SK, S7N 5A8 Canada
| | - Chantal Hamel
- b Department of Soil Science, University of Saskatchewan, Saskatoon, SK, S7N 5A8 Canada.,d Quebec Research and Development Centre, Agriculture and Agri-Food Canada, Québec, QC, G1V 2J3 Canada
| | - Yantai Gan
- a Swift Current Research and Development Centre, Agriculture and Agri-Food Canada, Swift Current, SK, S9H 3X2 Canada.,c Department of Plant Sciences, University of Saskatchewan, Saskatoon, SK, S7N 5A8 Canada
| | - Bunyamin Tar'an
- c Department of Plant Sciences, University of Saskatchewan, Saskatoon, SK, S7N 5A8 Canada
| | - Joan Diane Knight
- b Department of Soil Science, University of Saskatchewan, Saskatoon, SK, S7N 5A8 Canada
| |
Collapse
|
23
|
Dreher D, Yadav H, Zander S, Hause B. Is there genetic variation in mycorrhization of Medicago truncatula? PeerJ 2017; 5:e3713. [PMID: 28894638 PMCID: PMC5592082 DOI: 10.7717/peerj.3713] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Accepted: 07/28/2017] [Indexed: 12/30/2022] Open
Abstract
Differences in the plant's response among ecotypes or accessions are often used to identify molecular markers for the respective process. In order to analyze genetic diversity of Medicago truncatula in respect to interaction with the arbuscular mycorrhizal (AM) fungus Rhizophagus irregularis, mycorrhizal colonization was evaluated in 32 lines of the nested core collection representing the genetic diversity of the SARDI collection. All studied lines and the reference line Jemalong A17 were inoculated with R. irregularis and the mycorrhization rate was determined at three time points after inoculation. There were, however, no reliable and consistent differences in mycorrhization rates among all lines. To circumvent possible overlay of potential differences by use of the highly effective inoculum, native sandy soil was used in an independent experiment. Here, significant differences in mycorrhization rates among few of the lines were detectable, but the overall high variability in the mycorrhization rate hindered clear conclusions. To narrow down the number of lines to be tested in more detail, root system architecture (RSA) of in vitro-grown seedlings of all lines under two different phosphate (Pi) supply condition was determined in terms of primary root length and number of lateral roots. Under high Pi supply (100 µM), only minor differences were observed, whereas in response to Pi-limitation (3 µM) several lines exhibited a drastically changed number of lateral roots. Five lines showing the highest alterations or deviations in RSA were selected and inoculated with R. irregularis using two different Pi-fertilization regimes with either 13 mM or 3 mM Pi. Mycorrhization rate of these lines was checked in detail by molecular markers, such as transcript levels of RiTubulin and MtPT4. Under high phosphate supply, the ecotypes L000368 and L000555 exhibited slightly increased fungal colonization and more functional arbuscules, respectively. To address the question, whether capability for mycorrhizal colonization might be correlated to general invasion by microorganisms, selected lines were checked for infection by the root rot causing pathogen, Aphanoymces euteiches. The mycorrhizal colonization phenotype, however, did not correlate with the resistance phenotype upon infection with two strains of A. euteiches as L000368 showed partial resistance and L000555 exhibited high susceptibility as determined by quantification of A. euteiches rRNA within infected roots. Although there is genetic diversity in respect to pathogen infection, genetic diversity in mycorrhizal colonization of M. truncatula is rather low and it will be rather difficult to use it as a trait to access genetic markers.
Collapse
Affiliation(s)
- Dorothée Dreher
- Department of Cell and Metabolic Biology, Leibniz Institute of Plant Biochemistry, Halle, Germany
| | - Heena Yadav
- Department of Cell and Metabolic Biology, Leibniz Institute of Plant Biochemistry, Halle, Germany
| | - Sindy Zander
- Department of Cell and Metabolic Biology, Leibniz Institute of Plant Biochemistry, Halle, Germany
| | - Bettina Hause
- Department of Cell and Metabolic Biology, Leibniz Institute of Plant Biochemistry, Halle, Germany
| |
Collapse
|
24
|
Lehnert H, Serfling A, Enders M, Friedt W, Ordon F. Genetics of mycorrhizal symbiosis in winter wheat (Triticum aestivum). THE NEW PHYTOLOGIST 2017; 215:779-791. [PMID: 28517039 DOI: 10.1111/nph.14595] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Accepted: 03/30/2017] [Indexed: 05/23/2023]
Abstract
Bread wheat (Triticum aestivum) is a major staple food and therefore of prime importance for feeding the Earth's growing population. Mycorrhiza is known to improve plant growth, but although extensive knowledge concerning the interaction between mycorrhizal fungi and plants is available, genotypic differences concerning the ability of wheat to form mycorrhizal symbiosis and quantitative trait loci (QTLs) involved in mycorrhization are largely unknown. Therefore, a diverse set of 94 bread wheat genotypes was evaluated with regard to root colonization by arbuscular mycorrhizal fungi. In order to identify genomic regions involved in mycorrhization, these genotypes were analyzed using the wheat 90k iSelect chip, resulting in 17 823 polymorphic mapped markers, which were used in a genome-wide association study. Significant genotypic differences (P < 0.0001) were detected in the ability to form symbiosis and 30 significant markers associated with root colonization, representing six QTL regions, were detected on chromosomes 3A, 4A and 7A, and candidate genes located in these QTL regions were proposed. The results reported here provide key insights into the genetics of root colonization by mycorrhizal fungi in wheat.
Collapse
Affiliation(s)
- Heike Lehnert
- Julius Kühn-Institute (JKI), Federal Research Centre for Cultivated Plants, Institute for Resistance Research and Stress Tolerance, Erwin-Baur-Str. 27, 06484, Quedlinburg, Germany
| | - Albrecht Serfling
- Julius Kühn-Institute (JKI), Federal Research Centre for Cultivated Plants, Institute for Resistance Research and Stress Tolerance, Erwin-Baur-Str. 27, 06484, Quedlinburg, Germany
| | - Matthias Enders
- Julius Kühn-Institute (JKI), Federal Research Centre for Cultivated Plants, Institute for Resistance Research and Stress Tolerance, Erwin-Baur-Str. 27, 06484, Quedlinburg, Germany
| | - Wolfgang Friedt
- Plant Breeding Department, IFZ Research Centre for Biosystems, Land Use and Nutrition, Justus Liebig University, Heinrich-Buff-Ring 26-32, 35392, Gießen, Germany
| | - Frank Ordon
- Julius Kühn-Institute (JKI), Federal Research Centre for Cultivated Plants, Institute for Resistance Research and Stress Tolerance, Erwin-Baur-Str. 27, 06484, Quedlinburg, Germany
| |
Collapse
|
25
|
Loján P, Demortier M, Velivelli SLS, Pfeiffer S, Suárez JP, de Vos P, Prestwich BD, Sessitsch A, Declerck S. Impact of plant growth-promoting rhizobacteria on root colonization potential and life cycle of Rhizophagus irregularis following co-entrapment into alginate beads. J Appl Microbiol 2016; 122:429-440. [PMID: 27864849 DOI: 10.1111/jam.13355] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Revised: 11/03/2016] [Accepted: 11/14/2016] [Indexed: 12/14/2022]
Abstract
AIMS This study aimed at evaluating the impact of seven plant growth-promoting rhizobacteria (PGPR) on root colonization and life cycle of Rhizophagus irregularis MUCL 41833 when co-entrapped in alginate beads. METHODS AND RESULTS Two in vitro experiments were conducted. The first consisted of the immobilization of R. irregularis and seven PGPR isolates into alginate beads to assess the effect of the bacteria on the pre-symbiotic growth of the fungus. In the second experiment, the best performing PGPR from experiment 1 was tested for its ability to promote the symbiotic development of the AMF in potato plantlets from three cultivars. Results showed that only one isolate identified as Pseudomonas plecoglossicida (R-67094) promoted germ tube elongation and hyphal branching of germinated spores during the pre-symbiotic phase of the fungus. This PGPR further promoted the symbiotic development of the AMF in potato plants. CONCLUSIONS The co-entrapment of Ps. plecoglossicida R-67094 and R. irregularis MUCL 41833 in alginate beads improved root colonization by the AMF and its further life cycle under the experimental conditions. SIGNIFICANCE AND IMPACT OF THE STUDY Co-entrapment of suitable AMF-PGPR combinations within alginate beads may represent an innovative technology that can be fine-tuned for the development of efficient consortia-based bioformulations.
Collapse
Affiliation(s)
- P Loján
- Earth and Life Institute, Applied Microbiology, Mycology, Université catholique de Louvain Croix du Sud, Louvain-la-Neuve, Belgium.,Departamento de Ciencias Naturales, Universidad Técnica Particular de Loja, Loja, Ecuador
| | - M Demortier
- Earth and Life Institute, Applied Microbiology, Mycology, Université catholique de Louvain Croix du Sud, Louvain-la-Neuve, Belgium
| | - S L S Velivelli
- School of Biological, Earth and Environmental Sciences, University College Cork, Cork, Ireland
| | - S Pfeiffer
- Bioresources Unit, Department of Health and Environment, AIT Austrian Institute of Technology GmbH, Tulln, Austria
| | - J P Suárez
- Departamento de Ciencias Naturales, Universidad Técnica Particular de Loja, Loja, Ecuador
| | - P de Vos
- Laboratory for Microbiology, University of Gent, Gent, Belgium
| | - B D Prestwich
- School of Biological, Earth and Environmental Sciences, University College Cork, Cork, Ireland
| | - A Sessitsch
- Bioresources Unit, Department of Health and Environment, AIT Austrian Institute of Technology GmbH, Tulln, Austria
| | - S Declerck
- Earth and Life Institute, Applied Microbiology, Mycology, Université catholique de Louvain Croix du Sud, Louvain-la-Neuve, Belgium
| |
Collapse
|
26
|
Salloum MS, Guzzo MC, Velazquez MS, Sagadin MB, Luna CM. Variability in colonization of arbuscular mycorrhizal fungi and its effect on mycorrhizal dependency of improved and unimproved soybean cultivars. Can J Microbiol 2016; 62:1034-1040. [PMID: 27784163 DOI: 10.1139/cjm-2016-0383] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2023]
Abstract
Breeding selection of germplasm under fertilized conditions may reduce the frequency of genes that promote mycorrhizal associations. This study was developed to compare variability in mycorrhizal colonization and its effect on mycorrhizal dependency (MD) in improved soybean genotypes (I-1 and I-2) with differential tolerance to drought stress, and in unimproved soybean genotypes (UI-3 and UI-4). As inoculum, a mixed native arbuscular mycorrhizal fungi (AMF) was isolated from soybean roots, showing spores mostly of the species Funneliformis mosseae. At 20 days, unimproved genotypes followed by I-2, showed an increase in arbuscule formation, but not in I-1. At 40 days, mycorrhizal plants showed an increase in nodulation, this effect being more evident in unimproved genotypes. Mycorrhizal dependency, evaluated as growth and biochemical parameters from oxidative stress was increased in unimproved and I-2 since 20 days, whereas in I-1, MD increased at 40 days. We cannot distinguish significant differences in AMF colonization and MD between unimproved and I-2. However, variability among improved genotypes was observed. Our results suggest that selection for improved soybean genotypes with good and rapid AMF colonization, particularly high arbuscule/hyphae ratio could be a useful strategy for the development of genotypes that optimize AMF contribution to cropping systems.
Collapse
Affiliation(s)
- M S Salloum
- a Instituto Nacional de Tecnología Agropecuaria (INTA) Centro de Investigación Agropecuaria (CIAP), Instituto de Fisiología y Recursos Genéticos Vegetales (IFRGV) Camino 60 Cuadras km, 51/2 Córdoba C.P. 5119, Argentina
| | - M C Guzzo
- a Instituto Nacional de Tecnología Agropecuaria (INTA) Centro de Investigación Agropecuaria (CIAP), Instituto de Fisiología y Recursos Genéticos Vegetales (IFRGV) Camino 60 Cuadras km, 51/2 Córdoba C.P. 5119, Argentina
| | - M S Velazquez
- b Instituto Spegazzini, La Plata C.P. B1900AVJ, Argentina
| | - M B Sagadin
- a Instituto Nacional de Tecnología Agropecuaria (INTA) Centro de Investigación Agropecuaria (CIAP), Instituto de Fisiología y Recursos Genéticos Vegetales (IFRGV) Camino 60 Cuadras km, 51/2 Córdoba C.P. 5119, Argentina
| | - C M Luna
- a Instituto Nacional de Tecnología Agropecuaria (INTA) Centro de Investigación Agropecuaria (CIAP), Instituto de Fisiología y Recursos Genéticos Vegetales (IFRGV) Camino 60 Cuadras km, 51/2 Córdoba C.P. 5119, Argentina
| |
Collapse
|
27
|
Ellouze W, Hamel C, DePauw RM, Knox RE, Cuthbert RD, Singh AK. Potential to breed for mycorrhizal association in durum wheat. Can J Microbiol 2015; 62:263-71. [PMID: 26825726 DOI: 10.1139/cjm-2014-0598] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The selection of genotypes under high soil fertility may alter the effectiveness of mycorrhizal symbioses naturally forming between crop plants and the mycorrhizal fungi residing in cultivated fields. We tested the hypothesis that the mycorrhizal symbiosis of 5 landraces functions better than the mycorrhizal symbiosis of 27 cultivars of durum wheat that were bred after the development of the fertilizer industry. We examined the development of mycorrhiza and the response of these genotypes to mycorrhiza formation after 4 weeks of growth under high and low soil fertility levels in the greenhouse. The durum wheat genotypes were seeded in an established extraradical hyphal network of Rhizophagus irregularis and in a control soil free of mycorrhizal fungi. The percentage of root length colonized by mycorrhizal fungi was lower in landraces (21%) than in cultivars (27%; P = 0.04) and in the most recent releases (29%; P = 0.02), which were selected under high soil fertility levels. Plant growth response to mycorrhiza varied from -36% to +19%. Overall, durum wheat plant breeding in Canada has increased the mycorrhizal development in wheat grown at a low soil fertility level. However, breeding had inconsistent effects on mycorrhizal development and has led to the production of cultivars with patterns of regulation ranging from unimproved to inefficient.
Collapse
Affiliation(s)
- Walid Ellouze
- a Semiarid Prairie Agricultural Research Centre, Agriculture and Agri-Food Canada, Swift Current, SK S9H 3X2, Canada.,b Crop Diversification Centre South, Alberta Agriculture and Forestry, Brooks, AB T1R 1E6, Canada
| | - Chantal Hamel
- a Semiarid Prairie Agricultural Research Centre, Agriculture and Agri-Food Canada, Swift Current, SK S9H 3X2, Canada
| | - R M DePauw
- a Semiarid Prairie Agricultural Research Centre, Agriculture and Agri-Food Canada, Swift Current, SK S9H 3X2, Canada
| | - R E Knox
- a Semiarid Prairie Agricultural Research Centre, Agriculture and Agri-Food Canada, Swift Current, SK S9H 3X2, Canada
| | - Richard D Cuthbert
- a Semiarid Prairie Agricultural Research Centre, Agriculture and Agri-Food Canada, Swift Current, SK S9H 3X2, Canada
| | - Asheesh K Singh
- a Semiarid Prairie Agricultural Research Centre, Agriculture and Agri-Food Canada, Swift Current, SK S9H 3X2, Canada.,c Department of Agronomy, Iowa State University, Ames, IA 50011, USA
| |
Collapse
|
28
|
Gupta R, Tiwari S, Saikia SK, Shukla V, Singh R, Singh SP, Kumar PVA, Pandey R. Exploitation of microbes for enhancing bacoside content and reduction of Meloidogyne incognita infestation in Bacopa monnieri L. PROTOPLASMA 2015; 252:53-61. [PMID: 24841892 DOI: 10.1007/s00709-014-0657-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2014] [Accepted: 05/07/2014] [Indexed: 06/03/2023]
Abstract
Despite the vast exploration of rhizospheric microbial wealth for crop yield enhancement, knowledge about the efficacy of microbial agents as biocontrol weapons against root-knot disease is scarce, especially in medicinal plants, viz., Bacopa monnieri. In the present investigation, rhizospheric microbes, viz., Bacillus megaterium, Glomus intraradices, Trichoderma harzianum ThU, and their combinations were evaluated for the management of Meloidogyne incognita (Kofoid and White) Chitwood and bacoside content enhancement in B. monnieri var CIM-Jagriti. A novel validated method Fourier transform near infrared was used for rapid estimation of total bacoside content. A significant reduction (2.75-fold) in root-knot indices was observed in the combined treatment of B. megaterium and T. harzianum ThU in comparison to untreated control plants. The same treatment also showed significant enhancement (1.40-fold) in total bacoside contents (plant active molecule) content using Fourier transform near-infrared (FT-NIR) method that analyses samples rapidly in an hour without solvent usage and provides ample scope for natural product studies.
Collapse
Affiliation(s)
- Rupali Gupta
- Department of Microbial Technology and Nematology, CSIR-Central Institute of Medicinal and Aromatic Plants (CIMAP), P.O. CIMAP, Lucknow, 226015, India
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Ellouze W, Esmaeili Taheri A, Bainard LD, Yang C, Bazghaleh N, Navarro-Borrell A, Hanson K, Hamel C. Soil fungal resources in annual cropping systems and their potential for management. BIOMED RESEARCH INTERNATIONAL 2014; 2014:531824. [PMID: 25247177 PMCID: PMC4163387 DOI: 10.1155/2014/531824] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2014] [Accepted: 07/08/2014] [Indexed: 12/11/2022]
Abstract
Soil fungi are a critical component of agroecosystems and provide ecological services that impact the production of food and bioproducts. Effective management of fungal resources is essential to optimize the productivity and sustainability of agricultural ecosystems. In this review, we (i) highlight the functional groups of fungi that play key roles in agricultural ecosystems, (ii) examine the influence of agronomic practices on these fungi, and (iii) propose ways to improve the management and contribution of soil fungi to annual cropping systems. Many of these key soil fungal organisms (i.e., arbuscular mycorrhizal fungi and fungal root endophytes) interact directly with plants and are determinants of the efficiency of agroecosystems. In turn, plants largely control rhizosphere fungi through the production of carbon and energy rich compounds and of bioactive phytochemicals, making them a powerful tool for the management of soil fungal diversity in agriculture. The use of crop rotations and selection of optimal plant genotypes can be used to improve soil biodiversity and promote beneficial soil fungi. In addition, other agronomic practices (e.g., no-till, microbial inoculants, and biochemical amendments) can be used to enhance the effect of beneficial fungi and increase the health and productivity of cultivated soils.
Collapse
Affiliation(s)
- Walid Ellouze
- Semiarid Prairie Agricultural Research Centre, Agriculture and Agri-Food Canada, P.O. Box 1030, 1 Airport Road, Swift Current, SK, Canada S9H 3X2
| | - Ahmad Esmaeili Taheri
- Semiarid Prairie Agricultural Research Centre, Agriculture and Agri-Food Canada, P.O. Box 1030, 1 Airport Road, Swift Current, SK, Canada S9H 3X2
- Department Food and Bioproduct Sciences, College of Agriculture and Bioresources, University of Saskatchewan, 51 Campus Drive, Saskatoon, SK, Canada S7N 5A8
| | - Luke D. Bainard
- Semiarid Prairie Agricultural Research Centre, Agriculture and Agri-Food Canada, P.O. Box 1030, 1 Airport Road, Swift Current, SK, Canada S9H 3X2
| | - Chao Yang
- Semiarid Prairie Agricultural Research Centre, Agriculture and Agri-Food Canada, P.O. Box 1030, 1 Airport Road, Swift Current, SK, Canada S9H 3X2
- Department Food and Bioproduct Sciences, College of Agriculture and Bioresources, University of Saskatchewan, 51 Campus Drive, Saskatoon, SK, Canada S7N 5A8
| | - Navid Bazghaleh
- Semiarid Prairie Agricultural Research Centre, Agriculture and Agri-Food Canada, P.O. Box 1030, 1 Airport Road, Swift Current, SK, Canada S9H 3X2
- Department of Soil Science, College of Agriculture and Bioresources, University of Saskatchewan, 51 Campus Drive, Saskatoon, SK, Canada S7N 5A8
| | - Adriana Navarro-Borrell
- Semiarid Prairie Agricultural Research Centre, Agriculture and Agri-Food Canada, P.O. Box 1030, 1 Airport Road, Swift Current, SK, Canada S9H 3X2
- Department of Soil Science, College of Agriculture and Bioresources, University of Saskatchewan, 51 Campus Drive, Saskatoon, SK, Canada S7N 5A8
| | - Keith Hanson
- Semiarid Prairie Agricultural Research Centre, Agriculture and Agri-Food Canada, P.O. Box 1030, 1 Airport Road, Swift Current, SK, Canada S9H 3X2
| | - Chantal Hamel
- Semiarid Prairie Agricultural Research Centre, Agriculture and Agri-Food Canada, P.O. Box 1030, 1 Airport Road, Swift Current, SK, Canada S9H 3X2
| |
Collapse
|
30
|
Lankau RA, Nodurft RN. An exotic invader drives the evolution of plant traits that determine mycorrhizal fungal diversity in a native competitor. Mol Ecol 2013; 22:5472-85. [DOI: 10.1111/mec.12484] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2013] [Revised: 07/16/2013] [Accepted: 07/29/2013] [Indexed: 11/30/2022]
Affiliation(s)
- Richard A. Lankau
- Department of Plant Biology; 2502 Miller Plant Sciences; University of Georgia; Athens GA 30602 USA
| | - Rachel N. Nodurft
- Department of Plant Biology; 2502 Miller Plant Sciences; University of Georgia; Athens GA 30602 USA
| |
Collapse
|