1
|
Huang C, Liu D, Li ZA, Molloy DP, Luo ZF, Su Y, Li HO, Liu Q, Wang RZ, Xiao LT. The PPR protein RARE1-mediated editing of chloroplast accD transcripts is required for fatty acid biosynthesis and heat tolerance in Arabidopsis. PLANT COMMUNICATIONS 2023; 4:100461. [PMID: 36221851 PMCID: PMC9860180 DOI: 10.1016/j.xplc.2022.100461] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 09/12/2022] [Accepted: 10/10/2022] [Indexed: 06/01/2023]
Abstract
It has been reported that Arabidopsis chloroplast accD transcripts undergo RNA editing and that loss of accD-C794 RNA editing does not affect plant growth under normal conditions. To date, the exact biological role of accD-C794 editing has remained elusive. Here, we reveal an unexpected role for accD-C794 editing in response to heat stress. Loss of accD-C794 editing results in a yellow and dwarf phenotype with decreased chloroplast gene expression under heat stress, and artificial improvement of C794-edited accD gene expression enhances heat tolerance in Arabidopsis. These data suggest that accD-C794 editing confers heat tolerance in planta. We also found that treatment with the product of acetyl coenzyme A carboxylase (ACCase) could allay mutant phenotypic characteristics and showed that a mutation in the CAC3 gene for the α-subunit of ACCase was associated with dwarfism under heat stress. These observations indicate that defective accD-C794 editing may be intrinsic to reduced ACCase activity, thereby contributing to heat sensitivity. ACCase catalyzes the committed step of de novo fatty acid (FA) biosynthesis. FA content analysis revealed that unsaturated oleic (C18:1) and linoleic acids (C18:2) were low in the accD-C794 editing-defective mutant but high in the C794-edited accD-overexpressing plants compared with the wild type. Supplying exogenous C18:1 and C18:2 could rescue the mutant phenotype, suggesting that these FAs play an essential role in tolerance to heat stress. Transmission electron microscopy observations showed that heat stress seriously affected the membrane architecture in accD editing-defective mutants but not in accD-overexpressing plants. These results provide the first evidence that accD-C794 editing regulates FA biosynthesis for maintenance of membrane structural homeostasis under heat stress.
Collapse
Affiliation(s)
- Chao Huang
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China
| | - Dan Liu
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China
| | - Zi-Ang Li
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China
| | - David P Molloy
- Department of Biochemistry and Molecular Biology, School of Basic Medical Science, Chongqing Medical University, Chongqing 400016, China
| | - Zhou-Fei Luo
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China
| | - Yi Su
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China
| | - Hai-Ou Li
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China
| | - Qing Liu
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China
| | - Ruo-Zhong Wang
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China
| | - Lang-Tao Xiao
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China.
| |
Collapse
|
2
|
Abstract
Bioethanol is the largest biotechnology product and the most dominant biofuel globally. Saccharomyces cerevisiae is the most favored microorganism employed for its industrial production. However, obtaining maximum yields from an ethanol fermentation remains a technical challenge, since cellular stresses detrimentally impact on the efficiency of yeast cell growth and metabolism. Ethanol fermentation stresses potentially include osmotic, chaotropic, oxidative, and heat stress, as well as shifts in pH. Well-developed stress responses and tolerance mechanisms make S. cerevisiae industrious, with bioprocessing techniques also being deployed at industrial scale for the optimization of fermentation parameters and the effective management of inhibition issues. Overlap exists between yeast responses to different forms of stress. This review outlines yeast fermentation stresses and known mechanisms conferring stress tolerance, with their further elucidation and improvement possessing the potential to improve fermentation efficiency.
Collapse
|
3
|
Yang J, Tavazoie S. Regulatory and evolutionary adaptation of yeast to acute lethal ethanol stress. PLoS One 2020; 15:e0239528. [PMID: 33170850 PMCID: PMC7654773 DOI: 10.1371/journal.pone.0239528] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 09/09/2020] [Indexed: 11/19/2022] Open
Abstract
The yeast Saccharomyces cerevisiae has been the subject of many studies aimed at understanding mechanisms of adaptation to environmental stresses. Most of these studies have focused on adaptation to sub-lethal stresses, upon which a stereotypic transcriptional program called the environmental stress response (ESR) is activated. However, the genetic and regulatory factors that underlie the adaptation and survival of yeast cells to stresses that cross the lethality threshold have not been systematically studied. Here, we utilized a combination of gene expression profiling, deletion-library fitness profiling, and experimental evolution to systematically explore adaptation of S. cerevisiae to acute exposure to threshold lethal ethanol concentrations—a stress with important biotechnological implications. We found that yeast cells activate a rapid transcriptional reprogramming process that is likely adaptive in terms of post-stress survival. We also utilized repeated cycles of lethal ethanol exposure to evolve yeast strains with substantially higher ethanol tolerance and survival. Importantly, these strains displayed bulk growth-rates that were indistinguishable from the parental wild-type strain. Remarkably, these hyper-ethanol tolerant strains had reprogrammed their pre-stress gene expression states to match the likely adaptive post-stress response in the wild-type strain. Our studies reveal critical determinants of yeast survival to lethal ethanol stress and highlight potentially general principles that may underlie evolutionary adaptation to lethal stresses in general.
Collapse
Affiliation(s)
- Jamie Yang
- Department of Systems Biology, Columbia University, New York City, New York, United States of America
- Department of Biochemistry and Molecular Biology, Columbia University, New York City, New York, United States of America
| | - Saeed Tavazoie
- Department of Systems Biology, Columbia University, New York City, New York, United States of America
- Department of Biochemistry and Molecular Biology, Columbia University, New York City, New York, United States of America
- Department of Biological Sciences, Columbia University, New York City, New York, United States of America
- * E-mail:
| |
Collapse
|
4
|
Membrane Fluidity of Saccharomyces cerevisiae from Huangjiu (Chinese Rice Wine) Is Variably Regulated by OLE1 To Offset the Disruptive Effect of Ethanol. Appl Environ Microbiol 2019; 85:AEM.01620-19. [PMID: 31540996 DOI: 10.1128/aem.01620-19] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Accepted: 09/19/2019] [Indexed: 11/20/2022] Open
Abstract
An evolution and resequencing strategy was used to research the genetic basis of Saccharomyces cerevisiae BR20 (with 18 vol% ethanol tolerance) and the evolved strain F23 (with 25 vol% ethanol tolerance). Whole-genome sequencing and RNA sequencing (RNA-seq) indicated that the enhanced ethanol tolerance under 10 vol% ethanol could be attributed to amino acid metabolism, whereas 18 vol% ethanol tolerance was due to fatty acid metabolism. Ultrastructural analysis indicated that F23 exhibited better membrane integrity than did BR20 under ethanol stress. At low concentrations (<5 vol%), the partition of ethanol into the membrane increased the membrane fluidity, which had little effect on cell growth. However, the toxic effects of medium and high ethanol concentrations (5 to 20 vol%) tended to decrease the membrane fluidity. Under high ethanol stress (>10 vol%), the highly tolerant strain was able to maintain a relatively constant fluidity by increasing the content of unsaturated fatty acid (UFA), whereas less-tolerant strains show a continuous decrease in fluidity and UFA content. OLE1, which was identified as the only gene with a differential single-nucleotide polymorphism (SNP) mutation site related to fatty acid metabolism, was significantly changed in response to ethanol. The role of OLE1 in membrane fluidity was positively validated in its overexpressed transformants. Therefore, OLE1 lowered the rate of decline in membrane fluidity and thus enabled the yeast to better fight the deleterious effects of ethanol.IMPORTANCE Yeasts with superior ethanol tolerance are desirable for winemakers and wine industries. In our previous work, strain F23 was evolved with superior ethanol tolerance and fermentation activity to improve the flavor profiles of Chinese rice wine. Therefore, exploring the genomic variations and ethanol tolerance mechanism of strain F23 could contribute to an understanding of its effect on the flavor characteristics in the resulting Chinese rice wine. The cellular membrane plays a vital role in the ethanol tolerance of yeasts; however, how the membrane is regulated to fight the toxic effect of ethanol remains to be elucidated. This study suggests that the membrane fluidity is variably regulated by OLE1 to offset the disruptive effect of ethanol. Current work will help develop more ethanol-tolerant yeast strains for wine industries and contribute to a deep understanding of its high flavor-producing ability.
Collapse
|
5
|
Jetti KD, GNS RR, Garlapati D, Nammi SK. Improved ethanol productivity and ethanol tolerance through genome shuffling of Saccharomyces cerevisiae and Pichia stipitis. Int Microbiol 2018; 22:247-254. [DOI: 10.1007/s10123-018-00044-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 10/03/2018] [Accepted: 11/06/2018] [Indexed: 01/26/2023]
|
6
|
Saini P, Beniwal A, Kokkiligadda A, Vij S. Response and tolerance of yeast to changing environmental stress during ethanol fermentation. Process Biochem 2018. [DOI: 10.1016/j.procbio.2018.07.001] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
7
|
Shen Q, Wang Y, Shen J, Jiang L, Wei C, Zhang H. Growth and Cell Properties of Modified Lactobacillus plantarum CICC21001 with Supplementing C 18-FFAs to Growth Medium in vitro. Curr Microbiol 2018; 75:1133-1141. [PMID: 29704124 DOI: 10.1007/s00284-018-1499-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Accepted: 04/23/2018] [Indexed: 01/18/2023]
Abstract
Fatty acids (FAs) are one of the important factors that can influence cell growth and membrane composition. The aim of this study was to investigate the influence of supplementing MLM+ growth medium with C18 free fatty acids (C18-FFAs), including stearic (C18:0), oleic (C18:1), linoleic (C18:2), and linolenic (C18:3) acid, on the growth of Lactobacillus plantarum CICC21001 by forming ion pairs with lysine to increase the solubility of FAs in liquid medium. The utilization of C18-FFAs was further confirmed by GC-FID. The investigation of cell properties, including cell surface hydrophobicity and zeta potential, was carried out for the modified L. plantarum and control group (non-supplementation). Furthermore, cell survival was measured in real time under heat (at 55 and 62 °C for 5 min), acid (pH 2.2), and bile salt stress. Our results indicated that the action of L. plantarum was modulated by assimilating C18-FFAs. This study suggested that C18-FFAs altered the life cycles and physiochemical properties of L. plantarum, which provided a guideline for probiotics production and their medical application.
Collapse
Affiliation(s)
- Qinke Shen
- College of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Yuxian Wang
- College of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Jian Shen
- College of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Ling Jiang
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing, 211816, China
| | - Ce Wei
- College of Biological and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Hongman Zhang
- College of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, 211816, China.
| |
Collapse
|
8
|
Kanauchi M, Nagata A, Kondo A. Accumulation of Hydroxyl Fatty Acid inLactobacillus sakeiY-20 Cells Cultivated under Stress Conditions and Expression of Fatty Acid Hydroxylase. JOURNAL OF THE AMERICAN SOCIETY OF BREWING CHEMISTS 2018. [DOI: 10.1080/03610470.2017.1402580] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Makoto Kanauchi
- Department of Food Management, Miyagi University, 2-2-1 Hatatate, Taihaku-ku, Sendai, Miyagi, Japan
| | - Ayaka Nagata
- Department of Food Management, Miyagi University, 2-2-1 Hatatate, Taihaku-ku, Sendai, Miyagi, Japan
| | - Ayaka Kondo
- Department of Food Management, Miyagi University, 2-2-1 Hatatate, Taihaku-ku, Sendai, Miyagi, Japan
| |
Collapse
|
9
|
Zhuang S, Smart K, Powell C. Impact of Extracellular Osmolality onSaccharomycesYeast Populations during Brewing Fermentations. JOURNAL OF THE AMERICAN SOCIETY OF BREWING CHEMISTS 2018. [DOI: 10.1094/asbcj-2017-3505-01] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Shiwen Zhuang
- Division of Food Sciences, School of Biosciences, University of Nottingham, Leicestershire, U.K
| | | | - Chris Powell
- Division of Food Sciences, School of Biosciences, University of Nottingham, Leicestershire, U.K
| |
Collapse
|
10
|
Shen HY, Moonjai N, Verstrepen KJ, Delvaux FR. Impact of Attachment Immobilization on Yeast Physiology and Fermentation Performance. JOURNAL OF THE AMERICAN SOCIETY OF BREWING CHEMISTS 2018. [DOI: 10.1094/asbcj-61-0079] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- H.-Y. Shen
- Centre for Malting and Brewing Science, Faculty of Agricultural and Applied Biological Sciences, Katholieke Universiteit Leuven, Kasteelpark Arenberg 22, 3001 Heverlee, Belgium
| | - N. Moonjai
- Centre for Malting and Brewing Science, Faculty of Agricultural and Applied Biological Sciences, Katholieke Universiteit Leuven, Kasteelpark Arenberg 22, 3001 Heverlee, Belgium
| | - K. J. Verstrepen
- Centre for Malting and Brewing Science, Faculty of Agricultural and Applied Biological Sciences, Katholieke Universiteit Leuven, Kasteelpark Arenberg 22, 3001 Heverlee, Belgium
| | - F. R. Delvaux
- Centre for Malting and Brewing Science, Faculty of Agricultural and Applied Biological Sciences, Katholieke Universiteit Leuven, Kasteelpark Arenberg 22, 3001 Heverlee, Belgium
| |
Collapse
|
11
|
MATSUMOTO IZUMI, ARAI TAKAHIRO, NISHIMOTO YUI, LEELAVATCHARAMAS VICHAI, FURUTA MASAKAZU, KISHIDA MASAO. Thermotolerant Yeast Kluyveromyces marxianus Reveals More Tolerance to Heat Shock than the Brewery Yeast Saccharomyces cerevisiae. Biocontrol Sci 2018; 23:133-138. [DOI: 10.4265/bio.23.133] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Affiliation(s)
- IZUMI MATSUMOTO
- Division of Applied Life Science, Graduate School of Applied and Environmental Sciences, Osaka Prefecture University
| | - TAKAHIRO ARAI
- Division of Quantum and Radiation Engineering, Graduate School of Engineering, Osaka Prefecture University
| | - YUI NISHIMOTO
- Division of Applied Life Science, Graduate School of Applied and Environmental Sciences, Osaka Prefecture University
| | - VICHAI LEELAVATCHARAMAS
- Division of Applied Life Science, Graduate School of Applied and Environmental Sciences, Osaka Prefecture University
- Department of Biotechnology, Faculty of Technology, Khon Kaen University
| | - MASAKAZU FURUTA
- Division of Quantum and Radiation Engineering, Graduate School of Engineering, Osaka Prefecture University
| | - MASAO KISHIDA
- Division of Applied Life Science, Graduate School of Applied and Environmental Sciences, Osaka Prefecture University
| |
Collapse
|
12
|
Further investigation of relationships between membrane fluidity and ethanol tolerance in Saccharomyces cerevisiae. World J Microbiol Biotechnol 2017; 33:218. [PMID: 29181637 DOI: 10.1007/s11274-017-2380-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 11/20/2017] [Indexed: 10/18/2022]
Abstract
Membrane lipid unsaturation index and membrane fluidity have been related to yeast ethanol stress tolerance in published studies, however findings have been inconsistent. In this study, viability reduction on exposure to 18% (v/v) ethanol was compared to membrane fluidity determined by laurdan generalized polarization. Furthermore, in the determination of viability reduction, we examined the effectiveness of two methods, namely total plate count and methylene violet staining. We found a strong negative correlation between ethanol tolerance and membrane fluidity, indicated by negative Pearson correlation coefficients of - 0.79, - 0.65 and - 0.69 for Saccharomyces cerevisiae strains A12, PDM and K7, respectively. We found that lower membrane fluidity leads to higher ethanol tolerance, as indicated by decreased viability reduction and higher laurdan generalized polarization in respiratory phase compared to respiro-fermentative phase cells. Total plate count better differentiated ethanol tolerance of yeast cells in different growth phases, while methylene violet staining was better to differentiate ethanol tolerance of the different yeast strains at a particular culture phase. Hence, both viability assessment methods have their own advantages and limitations, which should be considered when comparing stress tolerance in different situations.
Collapse
|
13
|
Wang Y, Zhang S, Liu H, Zhang L, Yi C, Li H. Changes and roles of membrane compositions in the adaptation of Saccharomyces cerevisiae to ethanol. J Basic Microbiol 2015; 55:1417-26. [PMID: 26265555 DOI: 10.1002/jobm.201500300] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Accepted: 07/09/2015] [Indexed: 11/11/2022]
Abstract
Bioethanol fermentation by Saccharomyces cerevisiae is often stressed by the accumulation of ethanol. Cell membrane is the first assaulting target of ethanol. Ethanol-adapted S. cerevisiae strains provide opportunity to shed light on membrane functions in the ethanol tolerance. This study aimed at clarifying the roles of cell membrane in the ethanol tolerance of S. cerevisiae through comparing membrane components between S. cerevisiae parental strain and ethanol-adapted strains. A directed evolutionary engineering was performed to obtain the ethanol-adapted S. cerevisiae strains. The parental, ethanol-adapted M5 and M10 strains were selected to be compared the percentage of viable cells after exposing to ethanol stress and cell membrane compositions (i.e., ergosterol, trehalose, and fatty acids). Compared with the parental strain, M5 or M10 strain had higher survival rate in the presence of 10% v/v ethanol. Compared with that in the parental strain, contents of trehalose, ergosterol, and fatty acids increased about 15.7, 12.1, and 29.3%, respectively, in M5 strain, and about 47.5, 107.8, and 61.5%, respectively, in M10 strain. Moreover, expression differences of genes involved in fatty acids metabolisms among the parental, M5 and M10 strains were analyzed by quantitative real-time polymerase chain reaction (qRT-PCR), and results demonstrated that M5 or M10 strain had higher expression of ACC1 and OLE1 than the parental strain. These results indicated that although being exposed to step-wise increased ethanol, S. cerevisiae cells might remodel membrane components or structure to adapt to the ethanol stress.
Collapse
Affiliation(s)
- Yanfeng Wang
- Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, P.R. China
| | - Shuxian Zhang
- Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, P.R. China
| | - Huaqing Liu
- Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, P.R. China
| | - Lei Zhang
- Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, P.R. China
| | - Chenfeng Yi
- Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, P.R. China
| | - Hao Li
- Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, P.R. China
| |
Collapse
|
14
|
Lockwood BL, Connor KM, Gracey AY. The environmentally tuned transcriptomes of Mytilus mussels. J Exp Biol 2015; 218:1822-33. [DOI: 10.1242/jeb.118190] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
ABSTRACT
Transcriptomics is a powerful tool for elucidating the molecular mechanisms that underlie the ability of organisms to survive and thrive in dynamic and changing environments. Here, we review the major contributions in this field, and we focus on studies of mussels in the genus Mytilus, which are well-established models for the study of ecological physiology in fluctuating environments. Our review is organized into four main sections. First, we illustrate how the abiotic forces of the intertidal environment drive the rhythmic coupling of gene expression to diel and tidal cycles in Mytilus californianus. Second, we discuss the challenges and pitfalls of conducting transcriptomic studies in field-acclimatized animals. Third, we examine the link between transcriptomic responses to environmental stress and biogeographic distributions in blue mussels, Mytilus trossulus and Mytilus galloprovincialis. Fourth, we present a comparison of transcriptomic datasets and identify 175 genes that share common responses to heat stress across Mytilus species. Taken together, these studies demonstrate that transcriptomics can provide an informative snapshot of the physiological state of an organism within an environmental context. In a comparative framework, transcriptomics can reveal how natural selection has shaped patterns of transcriptional regulation that may ultimately influence biogeography.
Collapse
Affiliation(s)
- Brent L. Lockwood
- Department of Biology, University of Vermont, 120 Marsh Life Science, 109 Carrigan Drive, Burlington, VT 05405, USA
| | - Kwasi M. Connor
- Marine Environmental Biology, University of Southern California, 3616 Trousdale Pkwy, Los Angeles, CA 90089, USA
| | - Andrew Y. Gracey
- Marine Environmental Biology, University of Southern California, 3616 Trousdale Pkwy, Los Angeles, CA 90089, USA
| |
Collapse
|
15
|
Engineering lipid overproduction in the oleaginous yeast Yarrowia lipolytica. Metab Eng 2015; 29:56-65. [DOI: 10.1016/j.ymben.2015.02.005] [Citation(s) in RCA: 241] [Impact Index Per Article: 24.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Accepted: 02/16/2015] [Indexed: 12/20/2022]
|
16
|
Elucidating butanol tolerance mediated by a response regulator Sll0039 in Synechocystis sp. PCC 6803 using a metabolomic approach. Appl Microbiol Biotechnol 2015; 99:1845-57. [DOI: 10.1007/s00253-015-6374-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Revised: 12/27/2014] [Accepted: 12/30/2014] [Indexed: 10/24/2022]
|
17
|
Wang J, Chen L, Tian X, Gao L, Niu X, Shi M, Zhang W. Global metabolomic and network analysis of Escherichia coli responses to exogenous biofuels. J Proteome Res 2013; 12:5302-12. [PMID: 24016299 DOI: 10.1021/pr400640u] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Although synthetic biology progress has made it possible to produce various biofuels in more user-friendly hosts, such as Escherichia coli, the large-scale biofuel production in these non-native systems is still challenging, mostly due to the very low tolerance of these non-native hosts to the biofuel toxicity. To address the issues, in this study we determined the metabolic responses of E. coli induced by three major biofuel products, ethanol, butanol, and isobutanol, using a gas chromatography-mass spectrometry (GC-MS) approach. A metabolomic data set of 65 metabolites identified in all samples was then subjected to principal component analysis (PCA) to compare their effects and a weighted correlation network analysis (WGCNA) to identify the metabolic modules specifically responsive to each of the biofuel stresses, respectively. The PCA analysis showed that cellular responses caused by the biofuel stress were in general similar to aging cells at stationary phase, inconsistent with early studies showing a high degree of dissimilarity between metabolite responses during growth cessation as induced through stationary phases or through various environmental stress applications. The WGCNA analysis allowed identification of 2, 4, and 2 metabolic modules specifically associated with ethanol, butanol, and isobutanol treatments, respectively. The biofuel-associated modules included amino acids and osmoprotectants, such as isoleucine, valine, glycine, glutamate, and trehalose, suggesting amino acid metabolism and osmoregulation are among the key protection mechanisms against biofuel stresses in E. coli. Interestingly, no module was found associated with all three biofuel products, suggesting differential effects of each biofuel on E. coli. The findings enhanced our understanding of E. coli responses to exogenous biofuels and also demonstrated the effectiveness of the metabolomic and network analysis in identifying key targets for biofuel tolerance.
Collapse
Affiliation(s)
- Jiangxin Wang
- Laboratory of Synthetic Microbiology, School of Chemical Engineering & Technology, and Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin University , Tianjin 300072, P. R. China
| | | | | | | | | | | | | |
Collapse
|
18
|
Csoboz B, Balogh GE, Kusz E, Gombos I, Peter M, Crul T, Gungor B, Haracska L, Bogdanovics G, Torok Z, Horvath I, Vigh L. Membrane fluidity matters: Hyperthermia from the aspects of lipids and membranes. Int J Hyperthermia 2013; 29:491-9. [DOI: 10.3109/02656736.2013.808765] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
19
|
Chu-Ky S, Vaysse L, Liengprayoon S, Sriroth K, Le TM. Acid adaptation for improvement of viability ofSaccharomyces cerevisiaeduring freeze-drying. Int J Food Sci Technol 2013. [DOI: 10.1111/ijfs.12114] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Son Chu-Ky
- Department of Food Technology; School of Biotechnology and Food Technology; Hanoi University of Science and Technology; 1 Dai Co Viet road; Hai Ba Trung district; Hanoi; 10000; Vietnam
| | | | - Siriluck Liengprayoon
- Cassava and Starch Technology Research Unit (CSTRU); Kasetsart Agricultural and Agro - Industrial Product Improvement Institute; Kasetsart University; Bangkok; 10900; Thailand
| | - Klanarong Sriroth
- Cassava and Starch Technology Research Unit (CSTRU); Kasetsart Agricultural and Agro - Industrial Product Improvement Institute; Kasetsart University; Bangkok; 10900; Thailand
| | - Thanh-Mai Le
- Department of Food Technology; School of Biotechnology and Food Technology; Hanoi University of Science and Technology; 1 Dai Co Viet road; Hai Ba Trung district; Hanoi; 10000; Vietnam
| |
Collapse
|
20
|
Chen Q, Fang Y, Zhao H, Zhang G, Jin Y. Transcriptional analysis of Saccharomyces cerevisiae during high-temperature fermentation. ANN MICROBIOL 2013. [DOI: 10.1007/s13213-013-0606-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
|
21
|
Abstract
Cellular memory of past experiences has been observed in several organisms and across a variety of experiences, including bacteria "remembering" prior nutritional status and amoeba "learning" to anticipate future environmental conditions. Here, we show that Saccharomyces cerevisiae maintains a multifaceted memory of prior stress exposure. We previously demonstrated that yeast cells exposed to a mild dose of salt acquire subsequent tolerance to severe doses of H(2)O(2). We set out to characterize the retention of acquired tolerance and in the process uncovered two distinct aspects of cellular memory. First, we found that H(2)O(2) resistance persisted for four to five generations after cells were removed from the prior salt treatment and was transmitted to daughter cells that never directly experienced the pretreatment. Maintenance of this memory did not require nascent protein synthesis after the initial salt pretreatment, but rather required long-lived cytosolic catalase Ctt1p that was synthesized during salt exposure and then distributed to daughter cells during subsequent cell divisions. In addition to and separable from the memory of H(2)O(2) resistance, these cells also displayed a faster gene-expression response to subsequent stress at >1000 genes, representing transcriptional memory. The faster gene-expression response requires the nuclear pore component Nup42p and serves an important function by facilitating faster reacquisition of H(2)O(2) tolerance after a second cycle of salt exposure. Memory of prior stress exposure likely provides a significant advantage to microbial populations living in ever-changing environments.
Collapse
|
22
|
Modification of the technical properties of Lactobacillus johnsonii NCC 533 by supplementing the growth medium with unsaturated fatty acids. Appl Environ Microbiol 2011; 77:6889-98. [PMID: 21821758 DOI: 10.1128/aem.05213-11] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The aim of this study was to investigate the influence of supplementing growth medium with unsaturated fatty acids on the technical properties of the probiotic strain Lactobacillus johnsonii NCC 533, such as heat and acid tolerance, and inhibition of Salmonella enterica serovar Typhimurium infection. Our results showed that the membrane composition and morphology of L. johnsonii NCC 533 were significantly changed by supplementing a minimal Lactobacillus medium with oleic, linoleic, and linolenic acids. The ratio of saturated to unsaturated plus cyclic fatty acids in the bacterial membrane decreased by almost 2-fold when minimal medium was supplemented with unsaturated fatty acids (10 μg/ml). The subsequent acid and heat tolerance of L. johnsonii decreased by 6- and 20-fold when the strain was grown in the presence of linoleic and linolenic acids, respectively, compared with growth in oleic acid (all at 10 μg/ml). Following acid exposure, significantly higher (P < 0.05) oleic acid content was detected in the membrane when growth medium was supplemented with linoleic or linolenic acid, indicating that saturation of the membrane fatty acids occurred during acid stress. Cell integrity was determined in real time during stressed conditions using a fluorescent viability kit in combination with flow cytometric analysis. Following heat shock (at 62.5°C for 5 min), L. johnsonii was unable to form colonies; however, 60% of the bacteria showed no cell integrity loss, which could indicate that the elevated heat inactivated vital processes within the cell, rendering it incapable of replication. Furthermore, L. johnsonii grown in fatty acid-enriched minimal medium had different adhesion properties and caused a 2-fold decrease in S. enterica serovar Typhimurium UK1-lux invasion of HT-29 epithelial cells compared with bacteria grown in minimal medium alone. This could be related to changes in the hydrophobicity and fluidity of the membrane. Our study shows that technical properties underlying probiotic survivability can be affected by nutrient composition of the growth medium.
Collapse
|
23
|
Unravelling evolutionary strategies of yeast for improving galactose utilization through integrated systems level analysis. Proc Natl Acad Sci U S A 2011; 108:12179-84. [PMID: 21715660 DOI: 10.1073/pnas.1103219108] [Citation(s) in RCA: 110] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Identification of the underlying molecular mechanisms for a derived phenotype by adaptive evolution is difficult. Here, we performed a systems-level inquiry into the metabolic changes occurring in the yeast Saccharomyces cerevisiae as a result of its adaptive evolution to increase its specific growth rate on galactose and related these changes to the acquired phenotypic properties. Three evolved mutants (62A, 62B, and 62C) with higher specific growth rates and faster specific galactose uptake were isolated. The evolved mutants were compared with a reference strain and two engineered strains, SO16 and PGM2, which also showed higher galactose uptake rate in previous studies. The profile of intermediates in galactose metabolism was similar in evolved and engineered mutants, whereas reserve carbohydrates metabolism was specifically elevated in the evolved mutants and one evolved strain showed changes in ergosterol biosynthesis. Mutations were identified in proteins involved in the global carbon sensing Ras/PKA pathway, which is known to regulate the reserve carbohydrates metabolism. We evaluated one of the identified mutations, RAS2(Tyr112), and this mutation resulted in an increased specific growth rate on galactose. These results show that adaptive evolution results in the utilization of unpredicted routes to accommodate increased galactose flux in contrast to rationally engineered strains. Our study demonstrates that adaptive evolution represents a valuable alternative to rational design in bioengineering of improved strains and, that through systems biology, it is possible to identify mutations in evolved strain that can serve as unforeseen metabolic engineering targets for improving microbial strains for production of biofuels and chemicals.
Collapse
|
24
|
Lockwood BL, Sanders JG, Somero GN. Transcriptomic responses to heat stress in invasive and native blue mussels (genus Mytilus): molecular correlates of invasive success. ACTA ACUST UNITED AC 2011; 213:3548-58. [PMID: 20889835 DOI: 10.1242/jeb.046094] [Citation(s) in RCA: 169] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Invasive species are increasingly prevalent in marine ecosystems worldwide. Although many studies have examined the ecological effects of invasives, little is known about the physiological mechanisms that might contribute to invasive success. The mussel Mytilus galloprovincialis, a native of the Mediterranean Sea, is a successful invader on the central and southern coasts of California, where it has largely displaced the native congener, Mytilus trossulus. It has been previously shown that thermal responses of several physiological traits may underlie the capacity of M. galloprovincialis to out-compete M. trossulus in warm habitats. To elucidate possible differences in stress-induced gene expression between these congeners, we developed an oligonucleotide microarray with 8874 probes representing 4488 different genes that recognized mRNAs of both species. In acute heat-stress experiments, 1531 of these genes showed temperature-dependent changes in expression that were highly similar in the two congeners. By contrast, 96 genes showed species-specific responses to heat stress, functionally characterized by their involvement in oxidative stress, proteolysis, energy metabolism, ion transport, cell signaling and cytoskeletal reorganization. The gene that showed the biggest difference between the species was the gene for the molecular chaperone small heat shock protein 24, which was highly induced in M. galloprovincialis and showed only a small change in M. trossulus. These different responses to acute heat stress may help to explain--and predict--the invasive success of M. galloprovincialis in a warming world.
Collapse
Affiliation(s)
- Brent L Lockwood
- Hopkins Marine Station, Stanford University, Oceanview Blvd, Pacific Grove, CA 93950, USA.
| | | | | |
Collapse
|
25
|
Baumann K, Carnicer M, Dragosits M, Graf AB, Stadlmann J, Jouhten P, Maaheimo H, Gasser B, Albiol J, Mattanovich D, Ferrer P. A multi-level study of recombinant Pichia pastoris in different oxygen conditions. BMC SYSTEMS BIOLOGY 2010; 4:141. [PMID: 20969759 PMCID: PMC2987880 DOI: 10.1186/1752-0509-4-141] [Citation(s) in RCA: 123] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2010] [Accepted: 10/22/2010] [Indexed: 12/24/2022]
Abstract
Background Yeasts are attractive expression platforms for many recombinant proteins, and there is evidence for an important interrelation between the protein secretion machinery and environmental stresses. While adaptive responses to such stresses are extensively studied in Saccharomyces cerevisiae, little is known about their impact on the physiology of Pichia pastoris. We have recently reported a beneficial effect of hypoxia on recombinant Fab secretion in P. pastoris chemostat cultivations. As a consequence, a systems biology approach was used to comprehensively identify cellular adaptations to low oxygen availability and the additional burden of protein production. Gene expression profiling was combined with proteomic analyses and the 13C isotope labelling based experimental determination of metabolic fluxes in the central carbon metabolism. Results The physiological adaptation of P. pastoris to hypoxia showed distinct traits in relation to the model yeast S. cerevisiae. There was a positive correlation between the transcriptomic, proteomic and metabolic fluxes adaptation of P. pastoris core metabolism to hypoxia, yielding clear evidence of a strong transcriptional regulation component of key pathways such as glycolysis, pentose phosphate pathway and TCA cycle. In addition, the adaptation to reduced oxygen revealed important changes in lipid metabolism, stress responses, as well as protein folding and trafficking. Conclusions This systems level study helped to understand the physiological adaptations of cellular mechanisms to low oxygen availability in a recombinant P. pastoris strain. Remarkably, the integration of data from three different levels allowed for the identification of differences in the regulation of the core metabolism between P. pastoris and S. cerevisiae. Detailed comparative analysis of the transcriptomic data also led to new insights into the gene expression profiles of several cellular processes that are not only susceptible to low oxygen concentrations, but might also contribute to enhanced protein secretion.
Collapse
Affiliation(s)
- Kristin Baumann
- Department of Chemical Engineering, Autonomous University of Barcelona, Spain
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Stress induced cross-protection against environmental challenges on prokaryotic and eukaryotic microbes. World J Microbiol Biotechnol 2010; 27:1281-96. [PMID: 25187127 DOI: 10.1007/s11274-010-0584-3] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2009] [Accepted: 09/20/2010] [Indexed: 02/07/2023]
Abstract
Prokaryotic and eukaryotic microbes thrive successfully in stressful environments such as high osmolarity, acidic or alkali, solar heat and u.v. radiation, nutrient starvation, oxidative stress, and several others. To live under these continuous stress conditions, these microbes must have mechanisms to protect their proteins, membranes, and nucleic acids, as well as other mechanisms that repair nucleic acids. The stress responses in bacteria are controlled by master regulators, which include alternative sigma factors, such as RpoS and RpoH. The sigma factor RpoS integrates multiple signals, such as the general stress response regulators and the sigma factor RpoH regulates the heat shock proteins. These response pathways extensively overlap and are induced to various extents by the same environmental stresses. In eukaryotes, two major pathways regulate the stress responses: stress proteins, termed heat shock proteins (HSP), which appear to be required only for growth during moderate stress, and stress response elements (STRE), which are induced by different stress conditions and these elements result in the acquisition of a tolerant state towards any stress condition. In this review, the mechanisms of stress resistance between prokaryotic and eukaryotic microbes will be described and compared.
Collapse
|
27
|
New insights into the effect of medium-chain-length lactones on yeast membranes. Importance of the culture medium. Appl Microbiol Biotechnol 2010; 87:1089-99. [DOI: 10.1007/s00253-010-2560-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2010] [Revised: 03/09/2010] [Accepted: 03/12/2010] [Indexed: 10/19/2022]
|
28
|
Lu C, Brauer MJ, Botstein D. Slow growth induces heat-shock resistance in normal and respiratory-deficient yeast. Mol Biol Cell 2008; 20:891-903. [PMID: 19056679 DOI: 10.1091/mbc.e08-08-0852] [Citation(s) in RCA: 122] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Yeast cells respond to a variety of environmental stresses, including heat shock and growth limitation. There is considerable overlap in these responses both from the point of view of gene expression patterns and cross-protection for survival. We performed experiments in which cells growing at different steady-state growth rates in chemostats were subjected to a short heat pulse. Gene expression patterns allowed us to partition genes whose expression responds to heat shock into subsets of genes that also respond to slow growth rate and those that do not. We found also that the degree of induction and repression of genes that respond to stress is generally weaker in respiratory deficient mutants, suggesting a role for increased respiratory activity in the apparent stress response to slow growth. Consistent with our gene expression results in wild-type cells, we found that cells growing more slowly are cross-protected for heat shock, i.e., better able to survive a lethal heat challenge. Surprisingly, however, we found no difference in cross-protection between respiratory-deficient and wild-type cells, suggesting induction of heat resistance at low growth rates is independent of respiratory activity, even though many of the changes in gene expression are not.
Collapse
Affiliation(s)
- Charles Lu
- Carl Icahn Laboratory, Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA
| | | | | |
Collapse
|
29
|
Taylor M, Tuffin M, Burton S, Eley K, Cowan D. Microbial responses to solvent and alcohol stress. Biotechnol J 2008; 3:1388-97. [PMID: 18956369 DOI: 10.1002/biot.200800158] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Mark Taylor
- Institute for Microbial Biotechnology and Metagenomics (IMBM), University of the Western Cape, Cape Town, South Africa
| | | | | | | | | |
Collapse
|
30
|
Rangel DE, Anderson AJ, Roberts DW. Evaluating physical and nutritional stress during mycelial growth as inducers of tolerance to heat and UV-B radiation in Metarhizium anisopliae conidia. ACTA ACUST UNITED AC 2008; 112:1362-72. [DOI: 10.1016/j.mycres.2008.04.013] [Citation(s) in RCA: 110] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2007] [Revised: 04/04/2008] [Accepted: 04/24/2008] [Indexed: 11/29/2022]
|
31
|
Berry DB, Gasch AP. Stress-activated genomic expression changes serve a preparative role for impending stress in yeast. Mol Biol Cell 2008; 19:4580-7. [PMID: 18753408 DOI: 10.1091/mbc.e07-07-0680] [Citation(s) in RCA: 234] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Yeast cells respond to stress by mediating condition-specific gene expression changes and by mounting a common response to many stresses, called the environmental stress response (ESR). Giaever et al. previously revealed poor correlation between genes whose expression changes in response to acute stress and genes required to survive that stress, raising question about the role of stress-activated gene expression. Here we show that gene expression changes triggered by a single dose of stress are not required to survive that stimulus but rather serve a protective role against future stress. We characterized the increased resistance to severe stress in yeast preexposed to mild stress. This acquired stress resistance is dependent on protein synthesis during mild-stress treatment and requires the "general-stress" transcription factors Msn2p and/or Msn4p that regulate induction of many ESR genes. However, neither protein synthesis nor Msn2/4p is required for basal tolerance of a single dose of stress, despite the substantial expression changes triggered by each condition. Using microarrays, we show that Msn2p and Msn4p play nonredundant and condition-specific roles in gene-expression regulation, arguing against a generic general-stress function. This work highlights the importance of condition-specific responses in acquired stress resistance and provides new insights into the role of the ESR.
Collapse
Affiliation(s)
- David B Berry
- Laboratory of Genetics and Genome Center of Wisconsin, University of Wisconsin, Madison, WI 53706, USA
| | | |
Collapse
|
32
|
Laoteng K, Jitsue S, Dandusitapunth Y, Cheevadhanarak S. Ethanol-induced changes in expression profiles of cell growth, fatty acid and desaturase genes of Mucor rouxii. Fungal Genet Biol 2008; 45:61-7. [PMID: 17532653 DOI: 10.1016/j.fgb.2007.04.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2007] [Revised: 04/19/2007] [Accepted: 04/19/2007] [Indexed: 11/26/2022]
Abstract
We investigated the response of Mucor rouxii to ethanolic stress conditions. A differential response was found that was dependent on growth phase and ethanol concentration. 5% (v/v) ethanol showed an inhibitory effect on the mycelial growth of all stages. However, the ethanol sensitivity was specifically observed in active growing phases (12 and 21 h-grown cultures), in which the biomass and ratio of unsaturated/saturated fatty acids (UFA/SFA) decreased greatly after ethanol exposure compared to non-ethanol adding culture. With respect to different ethanol concentrations, M. rouxii was tolerant to low ethanol concentrations (about 1-3%, v/v) such that there was not much change in biomass and UFA/SFA ratio, in contrast to the 5% ethanol-added culture. We also showed the molecular basis of this response mechanism, demonstrating that expression of Delta(9)-, Delta(12)- and Delta(6)-desaturase genes, responsible for fatty acid desaturation in M. rouxii, were coordinately down-regulated upon exposure to ethanol stress.
Collapse
Affiliation(s)
- Kobkul Laoteng
- Biochemical Engineering and Pilot Plant Research and Development Unit, National Center for Genetic Engineering and Biotechnology (BIOTEC) at King Mongkut's University of Technology Thonburi, Bangkhuntien, Bangkok 10150, Thailand
| | | | | | | |
Collapse
|
33
|
Smart KA. Brewing yeast genomes and genome-wide expression and proteome profiling during fermentation. Yeast 2007; 24:993-1013. [PMID: 17879324 DOI: 10.1002/yea.1553] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
The genome structure, ancestry and instability of the brewing yeast strains have received considerable attention. The hybrid nature of brewing lager yeast strains provides adaptive potential but yields genome instability which can adversely affect fermentation performance. The requirement to differentiate between production strains and assess master cultures for genomic instability has led to significant adoption of specialized molecular tool kits by the industry. Furthermore, the development of genome-wide transcriptional and protein expression technologies has generated significant interest from brewers. The opportunity presented to explore, and the concurrent requirement to understand both, the constraints and potential of their strains to generate existing and new products during fermentation is discussed.
Collapse
Affiliation(s)
- Katherine A Smart
- Division of Food Sciences, School of Biosciences, Sutton Bonington Campus, University of Nottingham, Loughborough LE12 5RD, UK.
| |
Collapse
|
34
|
Montooth KL, Siebenthall KT, Clark AG. Membrane lipid physiology and toxin catabolism underlie ethanol and acetic acid tolerance in Drosophila melanogaster. ACTA ACUST UNITED AC 2006; 209:3837-50. [PMID: 16985200 DOI: 10.1242/jeb.02448] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Drosophila melanogaster has evolved the ability to tolerate and utilize high levels of ethanol and acetic acid encountered in its rotting-fruit niche. Investigation of this phenomenon has focused on ethanol catabolism, particularly by the enzyme alcohol dehydrogenase. Here we report that survival under ethanol and acetic acid stress in D. melanogaster from high- and low-latitude populations is an integrated consequence of toxin catabolism and alteration of physical properties of cellular membranes by ethanol. Metabolic detoxification contributed to differences in ethanol tolerance between populations and acclimation temperatures via changes in both alcohol dehydrogenase and acetyl-CoA synthetase mRNA expression and enzyme activity. Independent of changes in ethanol catabolism, rapid thermal shifts that change membrane fluidity had dramatic effects on ethanol tolerance. Cold temperature treatments upregulated phospholipid metabolism genes and enhanced acetic acid tolerance, consistent with the predicted effects of restoring membrane fluidity. Phospholipase D was expressed at high levels in all treatments that conferred enhanced ethanol tolerance, suggesting that this lipid-mediated signaling enzyme may enhance tolerance by sequestering ethanol in membranes as phophatidylethanol. These results reveal new candidate genes underlying toxin tolerance and membrane adaptation to temperature in Drosophila and provide insight into how interactions between these phenotypes may underlie the maintenance of latitudinal clines in ethanol tolerance.
Collapse
Affiliation(s)
- Kristi L Montooth
- Department of Ecology and Evolutionary Biology, Brown University, Providence, RI 02912, USA.
| | | | | |
Collapse
|
35
|
Rangel DEN, Butler MJ, Torabinejad J, Anderson AJ, Braga GUL, Day AW, Roberts DW. Mutants and isolates of Metarhizium anisopliae are diverse in their relationships between conidial pigmentation and stress tolerance. J Invertebr Pathol 2006; 93:170-82. [PMID: 16934287 DOI: 10.1016/j.jip.2006.06.008] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2006] [Revised: 06/21/2006] [Accepted: 06/24/2006] [Indexed: 11/27/2022]
Abstract
Conidial pigmentation is involved in protection against heat and UV radiation in several fungal species. In this study, we compare the tolerance of 17 color mutants of wild-type ARSEF 23 plus 13 color mutants of wild-type ARSEF 2575 of Metarhizium anisopliae var. anisopliae to wet-heat and UV-B or simulated-solar radiation. The stress tolerance of each mutant was compared with that of its wild-type parent, and with the most thermo- and UV-tolerant wild-type Metarhizium we have tested to date, M. anisopliae var. acridum (ARSEF 324). The color of each isolate or mutant was identified with the PANTONE Color Standard book [Eiseman, L., Herbert, L., 1990. The PANTONE((R)) Book of Color: over 1000 color standards: color basics and guidelines for design, fashion, furnishing... and more. Harry N. Abrams, Inc., Publishers, New York]. In addition, the pigments of each mutant or wild-type were extracted and the UV absorbances of the extracts compared to the stress tolerance of those isolates; but no relationships were detected. Color mutants of ARSEF 23, in general, were less UV tolerant than their parent wild-type. With ARSEF 23 and its mutants, conidial pigmentation was important to conidial tolerance to UV-B and simulated-solar radiation; but color had less impact on ARSEF 2575 and its mutants. The ARSEF 2575 color mutants were less variable in UV tolerance than those of ARSEF 23, even though very similar colors occurred in the two groups of mutants. When color mutants of ARSEF 23 reverted to wild-type color they recovered wild-type levels of UV tolerance. Results of UV-B and UV-A exposures of wild-types ARSEF 23 and ARSEF 2575 conidia indicated that they are equally tolerant of UV-A, but differ in UV-B-response. For thermotolerance, several mutants were more heat tolerant than their wild-type parents. Accordingly, darker pigmentation of wild-type isolates was not important to protection against heat.
Collapse
|
36
|
van Voorst F, Houghton-Larsen J, Jønson L, Kielland-Brandt MC, Brandt A. Genome-wide identification of genes required for growth ofSaccharomyces cerevisiae under ethanol stress. Yeast 2006; 23:351-9. [PMID: 16598687 DOI: 10.1002/yea.1359] [Citation(s) in RCA: 119] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
The Saccharomyces cerevisiae deletion collection was screened for impaired growth on glucose-based complex medium containing 6% ethanol. Forty-six mutants were found. Genes encoding proteins involved in vacuolar function, the cell integrity pathway, mitochondrial function, subunits of the co-chaperone complex GimC and components of the SAGA transcription factor complex were in this way found to be important for the growth of wild-type Saccharomyces yeast in the presence of ethanol. Several mutants were also sensitive to Calcofluor white (14 mutants), sorbic acid (9), increased temperature (5) and NaCl (3). The transcription factors Msn2p and Ars1p, tagged with green fluorescent protein, were translocated to the nucleus upon ethanol stress. Only one of the genes that contain STRE elements in the promoter was important under ethanol stress; this was TPS1, encoding trehalose 6-phosphate synthase. The map kinase of the cell integrity pathway, Slt2p, was phosphorylated when cells were treated with 6% ethanol. Two out of three mutants tested fermented 20% glucose more slowly than the wild-type.
Collapse
Affiliation(s)
- Frank van Voorst
- Carlsberg Laboratory, Gamle Carlsberg Vej 10, DK-2500 Copenhagen Valby, Denmark
| | | | | | | | | |
Collapse
|
37
|
Gorsich SW, Dien BS, Nichols NN, Slininger PJ, Liu ZL, Skory CD. Tolerance to furfural-induced stress is associated with pentose phosphate pathway genes ZWF1, GND1, RPE1, and TKL1 in Saccharomyces cerevisiae. Appl Microbiol Biotechnol 2005; 71:339-49. [PMID: 16222531 DOI: 10.1007/s00253-005-0142-3] [Citation(s) in RCA: 201] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2005] [Revised: 08/05/2005] [Accepted: 08/12/2005] [Indexed: 10/25/2022]
Abstract
Engineering yeast to be more tolerant to fermentation inhibitors, furfural and 5-hydroxymethylfurfural (HMF), will lead to more efficient lignocellulose to ethanol bioconversion. To identify target genes involved in furfural tolerance, a Saccharomyces cerevisiae gene disruption library was screened for mutants with growth deficiencies in the presence of furfural. It was hypothesized that overexpression of these genes would provide a growth benefit in the presence of furfural. Sixty two mutants were identified whose corresponding genes function in a wide spectrum of physiological pathways, suggesting that furfural tolerance is a complex process. We focused on four mutants, zwf1, gnd1, rpe1, and tkl1, which represent genes encoding pentose phosphate pathway (PPP) enzymes. At various concentrations of furfural and HMF, a clear association with higher sensitivity to these inhibitors was demonstrated in these mutants. PPP mutants were inefficient at reducing furfural to the less toxic furfuryl alcohol, which we propose is a result of an overall decreased abundance of reducing equivalents or to NADPH's role in stress tolerance. Overexpression of ZWF1 in S. cerevisiae allowed growth at furfural concentrations that are normally toxic. These results demonstrate a strong relationship between PPP genes and furfural tolerance and provide additional putative target genes involved in furfural tolerance.
Collapse
Affiliation(s)
- S W Gorsich
- National Center for Agriculture Utilization Research, Agriculture Research Service, USDA, Peoria, IL, USA.
| | | | | | | | | | | |
Collapse
|
38
|
Kraus PR, Boily MJ, Giles SS, Stajich JE, Allen A, Cox GM, Dietrich FS, Perfect JR, Heitman J. Identification of Cryptococcus neoformans temperature-regulated genes with a genomic-DNA microarray. EUKARYOTIC CELL 2005; 3:1249-60. [PMID: 15470254 PMCID: PMC522612 DOI: 10.1128/ec.3.5.1249-1260.2004] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The ability to survive and proliferate at 37 degrees C is an essential virulence attribute of pathogenic microorganisms. A partial-genome microarray was used to profile gene expression in the human-pathogenic fungus Cryptococcus neoformans during growth at 37 degrees C. Genes with orthologs involved in stress responses were induced during growth at 37 degrees C, suggesting that a conserved transcriptional program is used by C. neoformans to alter gene expression during stressful conditions. A gene encoding the transcription factor homolog Mga2 was induced at 37 degrees C and found to be important for high-temperature growth. Genes encoding fatty acid biosynthetic enzymes were identified as potential targets of Mga2, suggesting that membrane remodeling is an important component of adaptation to high growth temperatures. mga2Delta mutants were extremely sensitive to the ergosterol synthesis inhibitor fluconazole, indicating a coordination of the synthesis of membrane component precursors. Unexpectedly, genes involved in amino acid and pyrimidine biosynthesis were repressed at 37 degrees C, but components of these pathways were found to be required for high-temperature growth. Our findings demonstrate the utility of even partial-genome microarrays for delineating regulatory cascades that contribute to microbial pathogenesis.
Collapse
Affiliation(s)
- Peter R Kraus
- Department of Molecular Genetics and Microbiology, 322 CARL Building, Box 3546, Research Dr., Duke University Medical Center, Durham, NC 27710, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Takemura R, Inoue Y, Izawa S. Stress response in yeast mRNA export factor: reversible changes in Rat8p localization are caused by ethanol stress but not heat shock. J Cell Sci 2004; 117:4189-97. [PMID: 15280434 DOI: 10.1242/jcs.01296] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Ethanol stress (10% v/v) causes selective mRNA export in Saccharomyces cerevisiae in a similar manner to heat shock (42 degrees C). Bulk poly(A)(+) mRNA accumulates in the nucleus, whereas heat shock protein mRNA is exported under such conditions. Here we investigated the effects of stress on mRNA export factors. In cells treated with ethanol stress, the DEAD box protein Rat8p showed a rapid and reversible change in its localization, accumulating in the nucleus. This change correlated closely with the blocking of bulk poly(A)(+) mRNA export caused by ethanol stress. We also found that the nuclear accumulation of Rat8p is caused by a defect in the Xpo1p/Crm1p exportin. Intriguingly, the localization of Rat8p did not change in heat shocked cells, suggesting that the mechanisms blocking bulk poly(A)(+) mRNA export differ for heat shock and ethanol stress. These results suggest that changes in the localization of Rat8p contribute to the selective export of mRNA in ethanol stressed cells, and also indicate differences in mRNA export between the heat shock response and ethanol stress response.
Collapse
Affiliation(s)
- Reiko Takemura
- Laboratory of Molecular Microbiology, Graduate School of Agriculture, Kyoto University, Uji, Kyoto 611-0011, Japan
| | | | | |
Collapse
|
40
|
Izawa S, Takemura R, Inoue Y. Gle2p is essential to induce adaptation of the export of bulk poly(A)+ mRNA to heat shock in Saccharomyces cerevisiae. J Biol Chem 2004; 279:35469-78. [PMID: 15210706 DOI: 10.1074/jbc.m403692200] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The export of bulk poly(A)(+) mRNA is blocked under heat-shocked (42 degrees C) conditions in Saccharomyces cerevisiae. We found that an mRNA export factor Gle2p rapidly dissociated from the nuclear envelope and diffused into the cytoplasm at 42 degrees C. However, in exponential phase cells pretreated with mild heat stress (37 degrees C for 1 h), Gle2p did not dissociate at 42 degrees C, and the export of bulk poly(A)(+) mRNA continued. Cells in stationary phase also continued with the export of bulk poly(A)(+) mRNA at 42 degrees C without the dissociation of Gle2p from the nuclear envelope. The dissociation of Gle2p was caused by increased membrane fluidity and correlated closely with blocking of the export of bulk poly(A)(+) mRNA. Furthermore, the mutants gle2Delta and rip1Delta could not induce such an adaptation of the export of bulk poly(A)(+) mRNA to heat shock. Our findings indicate that Gle2p plays a crucial role in mRNA export especially under heat-shocked conditions. Our findings also indicate that the nuclear pore complexes that Gle2p constitutes need to be stabilized for the adaptation and that the increased membrane integrity caused by treatment with mild heat stress or by survival in stationary phase is likely to contribute to the stabilization of the association between Gle2p and the nuclear pore complexes.
Collapse
Affiliation(s)
- Shingo Izawa
- Laboratory of Molecular Microbiology, Graduate School of Agriculture, Kyoto University, Uji, Kyoto 611-0011, Japan.
| | | | | |
Collapse
|
41
|
Tanghe A, Van Dijck P, Thevelein JM. Determinants of freeze tolerance in microorganisms, physiological importance, and biotechnological applications. ADVANCES IN APPLIED MICROBIOLOGY 2004; 53:129-76. [PMID: 14696318 DOI: 10.1016/s0065-2164(03)53004-0] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
- An Tanghe
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, Katholieke Universiteit Leuven, Belgium
| | | | | |
Collapse
|
42
|
Da Silveira MG, Golovina EA, Hoekstra FA, Rombouts FM, Abee T. Membrane fluidity adjustments in ethanol-stressed Oenococcus oeni cells. Appl Environ Microbiol 2003; 69:5826-32. [PMID: 14532031 PMCID: PMC201238 DOI: 10.1128/aem.69.10.5826-5832.2003] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2003] [Accepted: 07/28/2003] [Indexed: 11/20/2022] Open
Abstract
The effect of ethanol on the cytoplasmic membrane of Oenococcus oeni cells and the role of membrane changes in the acquired tolerance to ethanol were investigated. Membrane tolerance to ethanol was defined as the resistance to ethanol-induced leakage of preloaded carboxyfluorescein (cF) from cells. To probe the fluidity of the cytoplasmic membrane, intact cells were labeled with doxyl-stearic acids and analyzed by electron spin resonance spectroscopy. Although the effect of ethanol was noticeable across the width of the membrane, we focused on fluidity changes at the lipid-water interface. Fluidity increased with increasing concentrations of ethanol. Cells responded to growth in the presence of 8% (vol/vol) ethanol by decreasing fluidity. Upon exposure to a range of ethanol concentrations, these adapted cells had reduced fluidity and cF leakage compared with cells grown in the absence of ethanol. Analysis of the membrane composition revealed an increase in the degree of fatty acid unsaturation and a decrease in the total amount of lipids in the cells grown in the presence of 8% (vol/vol) ethanol. Preexposure for 2 h to 12% (vol/vol) ethanol also reduced membrane fluidity and cF leakage. This short-term adaptation was not prevented in the presence of chloramphenicol, suggesting that de novo protein synthesis was not involved. We found a strong correlation between fluidity and cF leakage for all treatments and alcohol concentrations tested. We propose that the protective effect of growth in the presence of ethanol is, to a large extent, based on modification of the physicochemical state of the membrane, i.e., cells adjust their membrane permeability by decreasing fluidity at the lipid-water interface.
Collapse
Affiliation(s)
- M Graça Da Silveira
- Wageningen University and Research Center, 6700 EV Wageningen, The Netherlands
| | | | | | | | | |
Collapse
|
43
|
Abstract
Yeast cells were used as a model system to study the inter-relationship among free radicals, antioxidants and UV-induced cell damage. In particular, the effects of UV-radiation in newly isolated yeasts from the Antarctic have been studied.
Collapse
Affiliation(s)
- Masego Tsimako
- School of Biological, Biomedical and Molecular Sciences, Human Biology, University of New England, Armidale, New South Wales, Australia
| | | | | | | |
Collapse
|
44
|
Jeffries TW, Jin YS. Ethanol and thermotolerance in the bioconversion of xylose by yeasts. ADVANCES IN APPLIED MICROBIOLOGY 2003; 47:221-68. [PMID: 12876799 DOI: 10.1016/s0065-2164(00)47006-1] [Citation(s) in RCA: 126] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The mechanisms underlying ethanol and heat tolerance are complex. Many different genes are involved, and the exact basis is not fully understood. The integrity of cytoplasmic and mitochondrial membranes is critical to maintain proton gradients for metabolic energy and nutrient uptake. Heat and ethanol stress adversely affect membrane integrity. These factors are particularly detrimental to xylose-fermenting yeasts because they require oxygen for biosynthesis of essential cell membrane and nucleic acid constituents, and they depend on respiration for the generation of ATP. Physiological responses to ethanol and heat shock have been studied most extensively in S. cerevisiae. However, comparative biochemical studies with other organisms suggest that similar mechanisms will be important in xylose-fermenting yeasts. The composition of a cell's membrane lipids shifts with temperature, ethanol concentration, and stage of cultivation. Levels of unsaturated fatty acids and ergosterol increase in response to temperature and ethanol stress. Inositol is involved in phospholipid biosynthesis, and it can increase ethanol tolerance when provided as a supplement. Membrane integrity determines the cell's ability to maintain proton gradients for nutrient uptake. Plasma membrane ATPase generates the proton gradient, and the biochemical characteristics of this enzyme contribute to ethanol tolerance. Organisms with higher ethanol tolerance have ATPase activities with low pH optima and high affinity for ATP. Likewise, organisms with ATPase activities that resist ethanol inhibition also function better at high ethanol concentrations. ATPase consumes a significant fraction of the total cellular ATP, and under stress conditions when membrane gradients are compromised the activity of ATPase is regulated. In xylose-fermenting yeasts, the carbon source used for growth affects both ATPase activity and ethanol tolerance. Cells can adapt to heat and ethanol stress by synthesizing trehalose and heat-shock proteins, which stabilize and repair denatured proteins. The capacity of cells to produce trehalose and induce HSPs correlate with their thermotolerance. Both heat and ethanol increase the frequency of petite mutations and kill cells. This might be attributable to membrane effects, but it could also arise from oxidative damage. Cytoplasmic and mitochondrial superoxide dismutases can destroy oxidative radicals and thereby maintain cell viability. Improved knowledge of the mechanisms underlying ethanol and thermotolerance in S. cerevisiae should enable the genetic engineering of these traits in xylose-fermenting yeasts.
Collapse
Affiliation(s)
- T W Jeffries
- Institute for Microbial and Biochemical Technology, Forest Service, Forest Products Laboratory, United States Department of Agriculture, Department of Bacteriology, University of Wisconsin, Madison, Madison, Wisconsin, USA
| | | |
Collapse
|
45
|
You KM, Rosenfield CL, Knipple DC. Ethanol tolerance in the yeast Saccharomyces cerevisiae is dependent on cellular oleic acid content. Appl Environ Microbiol 2003; 69:1499-503. [PMID: 12620835 PMCID: PMC150070 DOI: 10.1128/aem.69.3.1499-1503.2003] [Citation(s) in RCA: 242] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In this investigation, we examined the effects of different unsaturated fatty acid compositions of Saccharomyces cerevisiae on the growth-inhibiting effects of ethanol. The unsaturated fatty acid (UFA) composition of S. cerevisiae is relatively simple, consisting almost exclusively of the mono-UFAs palmitoleic acid (Delta(9)Z-C(16:1)) and oleic acid (Delta(9)Z-C(18:1)), with the former predominating. Both UFAs are formed in S. cerevisiae by the oxygen- and NADH-dependent desaturation of palmitic acid (C(16:0)) and stearic acid (C(18:0)), respectively, catalyzed by a single integral membrane desaturase encoded by the OLE1 gene. We systematically altered the UFA composition of yeast cells in a uniform genetic background (i) by genetic complementation of a desaturase-deficient ole1 knockout strain with cDNA expression constructs encoding insect desaturases with distinct regioselectivities (i.e., Delta(9) and Delta(11)) and substrate chain-length preferences (i.e., C(16:0) and C(18:0)); and, (ii) by supplementation of the same strain with synthetic mono-UFAs. Both experimental approaches demonstrated that oleic acid is the most efficacious UFA in overcoming the toxic effects of ethanol in growing yeast cells. Furthermore, the only other UFA tested that conferred a nominal degree of ethanol tolerance is cis-vaccenic acid (Delta(11)Z-C(18:1)), whereas neither Delta(11)Z-C(16:1) nor palmitoleic acid (Delta(9)Z-C(16:1)) conferred any ethanol tolerance. We also showed that the most ethanol-tolerant transformant, which expresses the insect desaturase TniNPVE, produces twice as much oleic acid as palmitoleic acid in the absence of ethanol and undergoes a fourfold increase in the ratio of oleic acid to palmitoleic acid in response to exposure to 5% ethanol. These findings are consistent with the hypothesis that ethanol tolerance in yeast results from incorporation of oleic acid into lipid membranes, effecting a compensatory decrease in membrane fluidity that counteracts the fluidizing effects of ethanol.
Collapse
Affiliation(s)
- Kyung Man You
- Department of Entomology, Cornell University, New York State Agricultural Experiment Station, Geneva, NY 14456, USA
| | | | | |
Collapse
|
46
|
Niinemets Ü. Controls on the emission of plant volatiles through stomata: Differential sensitivity of emission rates to stomatal closure explained. ACTA ACUST UNITED AC 2003. [DOI: 10.1029/2002jd002620] [Citation(s) in RCA: 130] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
47
|
Marza E, Camougrand N, Manon S. Bax expression protects yeast plasma membrane against ethanol-induced permeabilization. FEBS Lett 2002; 521:47-52. [PMID: 12067724 DOI: 10.1016/s0014-5793(02)02819-3] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The mechanism by which the expression of pro-apoptotic protein Bax is able to kill yeast was investigated. Ethanol stress induces a permeabilization of the plasma membrane revealed by propidium iodide accumulation. Bax expression, although killing yeast cells, prevents this permeabilization. These effects are modulated by aeration, by manipulation of the unsaturation index of fatty acids and by addition of resveratrol, a known inhibitor of lipid oxidation. These data suggest that lipid oxidation is involved in Bax effects. Taken together, these data show for the first time a direct effect of Bax on plasma membrane permeability properties and suggest that yeast is a powerful tool for investigating the molecular mechanisms underlying this process.
Collapse
Affiliation(s)
- Esther Marza
- UMR5095 C.N.R.S./Université de Bordeaux 2, France
| | | | | |
Collapse
|
48
|
Nozawa M, Takahashi T, Hara S, Mizoguchi H. A role of Saccharomyces cerevisiae fatty Acid activation protein 4 in palmitoyl-CoA pool for growth in the presence of ethanol. J Biosci Bioeng 2002. [DOI: 10.1016/s1389-1723(02)80030-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
49
|
Peyou-Ndi MM, Watts JL, Browse J. Identification and characterization of an animal delta(12) fatty acid desaturase gene by heterologous expression in Saccharomyces cerevisiae. Arch Biochem Biophys 2000; 376:399-408. [PMID: 10775428 DOI: 10.1006/abbi.2000.1733] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We have cloned a Caenorhabditis elegans cDNA encoding a Delta12 fatty acid desaturase and demonstrated its activity by heterologous expression in Saccharomyces cerevisiae. The predicted protein is highly homologous both to the cloned plant genes with similar function and to the published sequence of the C. elegans omega-3 fatty acid desaturase. In addition, it conforms to the structural constraints expected of a membrane-bound fatty acid desaturase including the canonical histidine-rich regions. This is the first report of a cloned animal Delta(12) desaturase gene. Expression of this cDNA in yeast resulted in the accumulation of 16:2 and 18:2 (linoleic) acids. The increase of membrane fluidity brought about by this change in unsaturation was measured. The production of polyunsaturated fatty acids in yeast cells and the concomitant increase in membrane fluidity was correlated with a modest increase in growth rate at low temperature and with increased resistance to ethanol and oxidative stress.
Collapse
Affiliation(s)
- M M Peyou-Ndi
- Institute of Biological Chemistry, Washington State University, Pullman, Washington 99164-6340, USA
| | | | | |
Collapse
|
50
|
Current awareness on yeast. Yeast 2000. [DOI: 10.1002/1097-0061(20000115)16:1<89::aid-yea563>3.0.co;2-h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|