1
|
Rodrigues EA, Rosa CM, Campos DHS, Damatto FC, Murata GM, Souza LM, Pagan LU, Gatto M, Brosler JY, Souza HOA, Martins MM, Bastos LM, Tanni SE, Okoshi K, Okoshi MP. The influence of dapagliflozin on cardiac remodeling, myocardial function and metabolomics in type 1 diabetes mellitus rats. Diabetol Metab Syndr 2023; 15:223. [PMID: 37908006 PMCID: PMC10617150 DOI: 10.1186/s13098-023-01196-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 10/21/2023] [Indexed: 11/02/2023] Open
Abstract
BACKGROUND Sodium-glucose cotransporter (SGLT)2 inhibitors have displayed beneficial effects on the cardiovascular system in diabetes mellitus (DM) patients. As most clinical trials were performed in Type 2 DM, their effects in Type 1 DM have not been established. OBJECTIVE To evaluate the influence of long-term treatment with SGLT2 inhibitor dapagliflozin on cardiac remodeling, myocardial function, energy metabolism, and metabolomics in rats with Type 1 DM. METHODS Male Wistar rats were divided into groups: Control (C, n = 15); DM (n = 15); and DM treated with dapagliflozin (DM + DAPA, n = 15) for 30 weeks. DM was induced by streptozotocin. Dapagliflozin 5 mg/kg/day was added to chow. STATISTICAL ANALYSIS ANOVA and Tukey or Kruskal-Wallis and Dunn. RESULTS DM + DAPA presented lower glycemia and higher body weight than DM. Echocardiogram showed DM with left atrium dilation and left ventricular (LV) hypertrophy, dilation, and systolic and diastolic dysfunction. In LV isolated papillary muscles, DM had reduced developed tension, +dT/dt and -dT/dt in basal condition and after inotropic stimulation. All functional changes were attenuated by dapagliflozin. Hexokinase (HK), phosphofructokinase (PFK) and pyruvate kinase (PK) activity was lower in DM than C, and PFK and PK activity higher in DM + DAPA than DM. Metabolomics revealed 21 and 5 metabolites positively regulated in DM vs. C and DM + DAPA vs. DM, respectively; 6 and 3 metabolites were negatively regulated in DM vs. C and DM + DAPA vs. DM, respectively. Five metabolites that participate in cell membrane ultrastructure were higher in DM than C. Metabolites levels of N-oleoyl glutamic acid, chlorocresol and N-oleoyl-L-serine were lower and phosphatidylethanolamine and ceramide higher in DM + DAPA than DM. CONCLUSION Long-term treatment with dapagliflozin attenuates cardiac remodeling, myocardial dysfunction, and contractile reserve impairment in Type 1 diabetic rats. The functional improvement is combined with restored pyruvate kinase and phosphofructokinase activity and attenuated metabolomics changes.
Collapse
Affiliation(s)
- Eder Anderson Rodrigues
- Department of Internal Medicine, Botucatu Medical School, Sao Paulo State University (UNESP), Botucatu, SP, Brazil
| | - Camila Moreno Rosa
- Department of Internal Medicine, Botucatu Medical School, Sao Paulo State University (UNESP), Botucatu, SP, Brazil
| | - Dijon Henrique Salome Campos
- Department of Internal Medicine, Botucatu Medical School, Sao Paulo State University (UNESP), Botucatu, SP, Brazil
| | - Felipe Cesar Damatto
- Department of Internal Medicine, Botucatu Medical School, Sao Paulo State University (UNESP), Botucatu, SP, Brazil
| | - Gilson Masahiro Murata
- LIM29, Division of Nephrology, Medical School, University of Sao Paulo, USP, Sao Paulo, SP, Brazil
| | - Lidiane Moreira Souza
- Department of Internal Medicine, Botucatu Medical School, Sao Paulo State University (UNESP), Botucatu, SP, Brazil
| | - Luana Urbano Pagan
- Department of Internal Medicine, Botucatu Medical School, Sao Paulo State University (UNESP), Botucatu, SP, Brazil
| | - Mariana Gatto
- Department of Internal Medicine, Botucatu Medical School, Sao Paulo State University (UNESP), Botucatu, SP, Brazil
| | - Jessica Yumi Brosler
- Department of Internal Medicine, Botucatu Medical School, Sao Paulo State University (UNESP), Botucatu, SP, Brazil
| | - Hebreia Oliveira Almeida Souza
- Laboratory of Nanobiotechnology Prof. Dr. Luiz Ricardo Goulart, Institute of Biotechnology, Federal University of Uberlândia, Uberlândia, MG, Brazil
| | - Mario Machado Martins
- Laboratory of Nanobiotechnology Prof. Dr. Luiz Ricardo Goulart, Institute of Biotechnology, Federal University of Uberlândia, Uberlândia, MG, Brazil
| | - Luciana Machado Bastos
- Laboratory of Nanobiotechnology Prof. Dr. Luiz Ricardo Goulart, Institute of Biotechnology, Federal University of Uberlândia, Uberlândia, MG, Brazil
| | - Suzana Erico Tanni
- Department of Internal Medicine, Botucatu Medical School, Sao Paulo State University (UNESP), Botucatu, SP, Brazil
| | - Katashi Okoshi
- Department of Internal Medicine, Botucatu Medical School, Sao Paulo State University (UNESP), Botucatu, SP, Brazil
| | - Marina Politi Okoshi
- Department of Internal Medicine, Botucatu Medical School, Sao Paulo State University (UNESP), Botucatu, SP, Brazil.
| |
Collapse
|
2
|
Pagan LU, Gomes MJ, Damatto RL, Lima ARR, Cezar MDM, Damatto FC, Reyes DRA, Campos DHS, Caldonazo TMM, Polegato BF, Fernandes DC, Laurindo FR, Fernandes AAH, Lloret A, Cicogna AC, Okoshi MP, Okoshi K. Aerobic Exercise During Advance Stage of Uncontrolled Arterial Hypertension. Front Physiol 2021; 12:675778. [PMID: 34149455 PMCID: PMC8209380 DOI: 10.3389/fphys.2021.675778] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 05/10/2021] [Indexed: 12/13/2022] Open
Abstract
Aim To evaluate the influence of physical training on myocardial function, oxidative stress, energy metabolism, and MAPKs and NF-κB signaling pathways in spontaneously hypertensive rats (SHR), at advanced stage of arterial hypertension, which precedes heart failure development. Methods We studied four experimental groups: normotensive Wistar rats (W, n = 27), trained W (W-EX, n = 31), SHR (n = 27), and exercised SHR (SHR-EX, n = 32). At 13 months old, the exercise groups underwent treadmill exercise 5 days a week for 4 months. In vitro myocardial function was analyzed in left ventricular (LV) papillary muscle preparations. Antioxidant enzyme activity and energy metabolism were assessed by spectrophotometry. Nicotinamide adenine dinucleotide phosphate (NADPH) oxidase activity was analyzed by lucigenin reduction and protein expression by Western blot. Statistical analyzes: ANOVA and Tukey or Kruskal–Wallis and Dunn tests. Results SHR-EX had a lower frequency of heart failure features than SHR. Myocardial function and antioxidant enzyme activity were better in SHR-EX than SHR. Lipid hydroperoxide concentration, and phosphorylated JNK and total IkB protein expression were higher in hypertensive than control groups. Malondialdehyde, NADPH oxidase activity, total JNK, phosphorylated p38, phosphorylated and total p65 NF-κB, and phosphorylated IkB did not differ between groups. Protein expression from total p38, and total and phosphorylated ERK were higher in SHR than W. Lactate dehydrogenase and phosphorylated ERK were lower and citrate synthase and β-hydroxyacyldehydrogenase were higher in SHR-EX than SHR. Conclusion Exercise improves physical capacity, myocardial function, and antioxidant enzyme activity; reduces the frequency of heart failure features and ERK phosphorylation; and normalizes energy metabolism in SHR.
Collapse
Affiliation(s)
- Luana U Pagan
- Botucatu Medical School, UNESP, Sao Paulo State University, Botucatu, Brazil
| | - Mariana J Gomes
- Botucatu Medical School, UNESP, Sao Paulo State University, Botucatu, Brazil
| | | | - Aline R R Lima
- Botucatu Medical School, UNESP, Sao Paulo State University, Botucatu, Brazil
| | | | - Felipe C Damatto
- Botucatu Medical School, UNESP, Sao Paulo State University, Botucatu, Brazil
| | - David R A Reyes
- Botucatu Medical School, UNESP, Sao Paulo State University, Botucatu, Brazil
| | - Dijon H S Campos
- Botucatu Medical School, UNESP, Sao Paulo State University, Botucatu, Brazil
| | - Tulio M M Caldonazo
- Botucatu Medical School, UNESP, Sao Paulo State University, Botucatu, Brazil
| | - Bertha F Polegato
- Botucatu Medical School, UNESP, Sao Paulo State University, Botucatu, Brazil
| | - Denise C Fernandes
- Department of Cardiopneumology, Medical School, University of Sao Paulo (USP), São Paulo, Brazil
| | - Francisco R Laurindo
- Department of Cardiopneumology, Medical School, University of Sao Paulo (USP), São Paulo, Brazil
| | - Ana A H Fernandes
- Institute of Biosciences, Sao Paulo State University (UNESP), Botucatu, Brazil
| | - Ana Lloret
- Freshage Research Group, Department of Physiology, University of Valencia, CIBERFES, INCLIVA, Valencia, Spain
| | - Antonio C Cicogna
- Botucatu Medical School, UNESP, Sao Paulo State University, Botucatu, Brazil
| | - Marina P Okoshi
- Botucatu Medical School, UNESP, Sao Paulo State University, Botucatu, Brazil
| | - Katashi Okoshi
- Botucatu Medical School, UNESP, Sao Paulo State University, Botucatu, Brazil
| |
Collapse
|
3
|
Sant’Ana PG, Maia AF, Castardeli C, Mill JG, Baker JS, Bocalini DS, Castardeli E. Physical training attenuates right ventricular dysfunction in rats exposed to cigarette smoke. MOTRIZ: REVISTA DE EDUCACAO FISICA 2021. [DOI: 10.1590/s1980-657420210000138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Affiliation(s)
| | - Adriano F. Maia
- Universidade Federal do Espírito Santo, Brazil; Universidade Federal do Espírito Santo, Brazil
| | | | | | | | | | | |
Collapse
|
4
|
Basilio PG, Oliveira APCD, Castro ACFD, Carvalho MRD, Zagatto AM, Martinez PF, Okoshi MP, Okoshi K, Ota GE, Reis FAD, Oliveira-Junior SAD. Intermittent Fasting Attenuates Exercise Training-Induced Cardiac Remodeling. Arq Bras Cardiol 2020; 115:184-193. [PMID: 32876182 PMCID: PMC8384291 DOI: 10.36660/abc.20190349] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 08/14/2019] [Indexed: 12/22/2022] Open
Abstract
Fundamento A influência de intervenções não farmacológicas como restrição calórica e exercício físico sobre a saúde e prevenção de enfermidades cardíacas tem sido documentada em estudos clínicos e experimentais. Objetivo Analisar a influência da combinação entre dieta intermitente e exercício físico sobre a capacidade funcional, metabolismo glicêmico e remodelação cardíaca. Métodos Foram utilizados 60 ratos Wistar machos distribuídos em quatro grupos: Controle (C), Exercício Físico (EF), Dieta Intermitente (DI) e Exercício Físico e Dieta Intermitente (EDI). Durante 12 semanas, enquanto C e EF foram tratados diariamente com dieta comercial padrão ad libitum, DI e EDI receberam dieta similar em dias alternados com dias de jejum. Os grupos EF e EDI foram submetidos a protocolo de corrida em esteira rolante. Posteriormente, foram analisadas capacidade funcional, comportamento nutricional e metabolismo glicêmico. Além da morfologia do coração, a expressão proteica das proteínas extracellular signal-regulated kinase (ERK) e c-Jun N-terminal kinase (JNK) no coração foi avaliada por Western-blot. A análise dos resultados foi feita por meio de Two-Way ANOVA e teste de Student-Newman-Keuls. O nível de significância considerado foi de 5%. Resultados O exercício físico aumentou a capacidade funcional nos grupos EF e EDI, e acarretou fibrose cardíaca. A combinação entre dieta intermitente e exercício físico resultou em menor área sob a curva de glicemia e menores medidas de área e interstício cardíaco no EDI em relação ao EF. A expressão de proteínas ERK e JNK foi similar entre os grupos (p>0,05). Conclusões Dieta intermitente se associa com melhor tolerância glicêmica e atenua o processo de remodelação cardíaca decorrente do exercício físico. (Arq Bras Cardiol. 2020; 115(2):184-193)
Collapse
Affiliation(s)
- Priscilla Gois Basilio
- Laboratório de Estudo do Músculo Estriado (LEME/INISA), Universidade Federal de Mato Grosso do Sul,Campo Grande, MS - Brasil
| | - Ana Priscila Cayres de Oliveira
- Laboratório de Estudo do Músculo Estriado (LEME/INISA), Universidade Federal de Mato Grosso do Sul,Campo Grande, MS - Brasil
| | - Ana Carolini Ferreira de Castro
- Laboratório de Estudo do Músculo Estriado (LEME/INISA), Universidade Federal de Mato Grosso do Sul,Campo Grande, MS - Brasil
| | - Marianna Rabelo de Carvalho
- Laboratório de Estudo do Músculo Estriado (LEME/INISA), Universidade Federal de Mato Grosso do Sul,Campo Grande, MS - Brasil
| | - Alessandro Moura Zagatto
- Departamento de Educação Física, Laboratório de Fisiologia e Desempenho Esportivo (LAFIDE), Faculdade de Ciências - Universidade Estadual Paulista (UNESP),Bauru, SP - Brasil
| | - Paula Felippe Martinez
- Laboratório de Estudo do Músculo Estriado (LEME/INISA), Universidade Federal de Mato Grosso do Sul,Campo Grande, MS - Brasil
| | - Marina Politi Okoshi
- Faculdade de Medicina de Botucatu - Departamento de Clínica Médica - Universidade Estadual Paulista (UNESP),Botucatu, SP - Brasil
| | - Katashi Okoshi
- Departamento de Educação Física, Laboratório de Fisiologia e Desempenho Esportivo (LAFIDE), Faculdade de Ciências - Universidade Estadual Paulista (UNESP),Bauru, SP - Brasil
| | - Gabriel Elias Ota
- Laboratório de Estudo do Músculo Estriado (LEME/INISA), Universidade Federal de Mato Grosso do Sul,Campo Grande, MS - Brasil
| | | | - Silvio Assis de Oliveira-Junior
- Laboratório de Estudo do Músculo Estriado (LEME/INISA), Universidade Federal de Mato Grosso do Sul,Campo Grande, MS - Brasil
| |
Collapse
|
5
|
Almeida JFQ, Shults N, de Souza AMA, Ji H, Wu X, Woods J, Sandberg K. Short-term very low caloric intake causes endothelial dysfunction and increased susceptibility to cardiac arrhythmias and pathology in male rats. Exp Physiol 2020; 105:1172-1184. [PMID: 32410300 PMCID: PMC7496402 DOI: 10.1113/ep088434] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 05/05/2020] [Indexed: 01/03/2023]
Abstract
New Findings What is the central question of this study? What are the effects of a 2 week period of severe food restriction on vascular reactivity of resistance arteries and on cardiac structure and function? What is the main finding and its importance? This study showed, for the first time, that a 2 week period of severe food restriction in adult male Fischer rats caused endothelial dysfunction in mesenteric arteries and increased the susceptibility to ischaemia–reperfusion‐induced arrhythmias and cardiac pathology. Our findings might have ramifications for cardiovascular risk in people who experience periods of inadequate caloric intake.
Abstract Severe food restriction (sFR) is a common dieting strategy for rapid weight loss. Male Fischer rats were maintained on a control (CT) or sFR (40% of CT food intake) diet for 14 days to mimic low‐calorie crash diets. The sFR diet reduced body weight by 16%. Haematocrits were elevated by 10% in the sFR rats, which was consistent with the reduced plasma volume. Mesenteric arteries from sFR rats had increased sensitivity to vasoconstrictors, including angiotensin II [maximum (%): CT, 1.30 ± 0.46 versus sFR, 11.5 ± 1.6; P < 0.0001; n = 7] and phenylephrine [maximum (%): CT, 78.5 ± 2.8 versus sFR, 94.5 ± 1.7; P < 0.001; n = 7] and reduced sensitivity to the vasodilator acetylcholine [EC50 (nm): CT, 49.2 ± 5.2 versus sFR, 71.6 ± 6.8; P < 0.05; n = 7]. Isolated hearts from sFR rats had a 1.7‐fold increase in the rate of cardiac arrhythmias in response to ischaemia–reperfusion and more cardiac pathology, including myofibrillar disarray with contractions and cardiomyocyte lysis, than hearts from CT rats. The sFR dietary regimen is similar to very low‐calorie commercial and self‐help weight‐loss programmes, which provide ∼800–1000 kcal day−1. Therefore, these findings in rats warrant the study of cardiovascular function in individuals who engage in extreme dieting or are subjected to bouts of very low caloric intake for other reasons, such as socioeconomic factors and natural disasters.
Collapse
Affiliation(s)
| | - Nataliia Shults
- Department of Pharmacology & Physiology, Georgetown University, Washington, DC, USA
| | | | - Hong Ji
- Department of Medicine, Georgetown University, Washington, DC, USA
| | - Xie Wu
- Department of Medicine, Georgetown University, Washington, DC, USA
| | - James Woods
- Department of Biostatistics, Bioinformatics and Biomathematics, Georgetown University, Washington, DC, USA
| | - Kathryn Sandberg
- Department of Medicine, Georgetown University, Washington, DC, USA
| |
Collapse
|
6
|
Deus AFD, Silva VLD, de Souza SLB, Mota GAF, Sant'Ana PG, Vileigas DF, Lima-Leopoldo AP, Leopoldo AS, Campos DHSD, de Tomasi LC, Padovani CR, Kolwicz SC, Cicogna AC. Myocardial Dysfunction after Severe Food Restriction Is Linked to Changes in the Calcium-Handling Properties in Rats. Nutrients 2019; 11:nu11091985. [PMID: 31443528 PMCID: PMC6770438 DOI: 10.3390/nu11091985] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 08/09/2019] [Accepted: 08/14/2019] [Indexed: 12/13/2022] Open
Abstract
Severe food restriction (FR) impairs cardiac performance, although the causative mechanisms remain elusive. Since proteins associated with calcium handling may contribute to cardiac dysfunction, this study aimed to evaluate whether severe FR results in alterations in the expression and activity of Ca2+-handling proteins that contribute to impaired myocardial performance. Male 60-day-old Wistar–Kyoto rats were fed a control or restricted diet (50% reduction in the food consumed by the control group) for 90 days. Body weight, body fat pads, adiposity index, as well as the weights of the soleus muscle and lung, were obtained. Cardiac remodeling was assessed by morphological measures. The myocardial contractile performance was analyzed in isolated papillary muscles during the administration of extracellular Ca2+ and in the absence or presence of a sarcoplasmic reticulum Ca2+-ATPase (SERCA2a) specific blocker. The expression of Ca2+-handling regulatory proteins was analyzed via Western Blot. Severe FR resulted in a 50% decrease in body weight and adiposity measures. Cardiac morphometry was substantially altered, as heart weights were nearly twofold lower in FR rats. Papillary muscles isolated from FR hearts displayed mechanical dysfunction, including decreased developed tension and reduced contractility and relaxation. The administration of a SERCA2a blocker led to further decrements in contractile function in FR hearts, suggesting impaired SERCA2a activity. Moreover, the FR rats presented a lower expression of L-type Ca2+ channels. Therefore, myocardial dysfunction induced by severe food restriction is associated with changes in the calcium-handling properties in rats.
Collapse
Affiliation(s)
- Adriana Fernandes de Deus
- Department of Internal Medicine, Botucatu Medical School, São Paulo State University, Botucatu 18618687, Brazil
| | - Vítor Loureiro da Silva
- Department of Internal Medicine, Botucatu Medical School, São Paulo State University, Botucatu 18618687, Brazil
| | - Sérgio Luiz Borges de Souza
- Department of Internal Medicine, Botucatu Medical School, São Paulo State University, Botucatu 18618687, Brazil
| | | | - Paula Grippa Sant'Ana
- Department of Internal Medicine, Botucatu Medical School, São Paulo State University, Botucatu 18618687, Brazil
| | - Danielle Fernandes Vileigas
- Department of Internal Medicine, Botucatu Medical School, São Paulo State University, Botucatu 18618687, Brazil
| | - Ana Paula Lima-Leopoldo
- Department of Sports, Center of Physical Education and Sports, Federal University of Espírito Santo, Vitória 29075-910, Brazil
| | - André Soares Leopoldo
- Department of Sports, Center of Physical Education and Sports, Federal University of Espírito Santo, Vitória 29075-910, Brazil
| | | | - Loreta Casquel de Tomasi
- Department of Internal Medicine, Botucatu Medical School, São Paulo State University, Botucatu 18618687, Brazil
| | - Carlos Roberto Padovani
- Department of Biostatistics, Institute of Biosciences, São Paulo State University, Botucatu 18618970, Brazil
| | - Stephen C Kolwicz
- Department of Health and Exercise Physiology, Ursinus College, Collegeville, PA 19426, USA
| | - Antonio Carlos Cicogna
- Department of Internal Medicine, Botucatu Medical School, São Paulo State University, Botucatu 18618687, Brazil.
| |
Collapse
|
7
|
Apocynin influence on oxidative stress and cardiac remodeling of spontaneously hypertensive rats with diabetes mellitus. Cardiovasc Diabetol 2016; 15:126. [PMID: 27585437 PMCID: PMC5009715 DOI: 10.1186/s12933-016-0442-1] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Accepted: 08/18/2016] [Indexed: 02/06/2023] Open
Abstract
PURPOSE Although increased oxidative stress is a major component of diabetic hypertensive cardiomyopathy, research into the effects of antioxidants on cardiac remodeling remains scarce. The actions of antioxidant apocynin include inhibiting reactive oxygen species (ROS) generation by nicotinamide adenine dinucleotide phosphate (NADPH) oxidases and ROS scavenging. We evaluated the effects of apocynin on cardiac remodeling in spontaneously hypertensive rats (SHR) with diabetes mellitus (DM). METHODS Male SHR were divided into four groups: control (SHR, n = 16); SHR treated with apocynin (SHR-APO; 16 mg/kg/day, added to drinking water; n = 16); diabetic SHR (SHR-DM, n = 13); and SHR-DM treated with apocynin (SHR-DM-APO, n = 14), for eight weeks. DM was induced by streptozotocin (40 mg/kg, single dose). Statistical analyzes: ANOVA and Tukey or Mann-Whitney. RESULTS Echocardiogram in diabetic groups showed higher left ventricular and left atrium diameters indexed for body weight, and higher isovolumetric relaxation time than normoglycemic rats; systolic function did not differ between groups. Isolated papillary muscle showed impaired contractile and relaxation function in diabetic groups. Developed tension was lower in SHR-APO than SHR. Myocardial hydroxyproline concentration was higher in SHR-DM than SHR, interstitial collagen fraction was higher in SHR-DM-APO than SHR-APO, and type III collagen protein expression was lower in SHR-DM and SHR-DM-APO than their controls. Type I collagen and lysyl oxidase expression did not differ between groups. Apocynin did not change collagen tissue. Myocardial lipid hydroperoxide concentration was higher in SHR-DM than SHR and SHR-DM-APO. Glutathione peroxidase activity was lower and catalase higher in SHR-DM than SHR. Apocynin attenuated antioxidant enzyme activity changes in SHR-DM-APO. Advanced glycation end-products and NADPH oxidase activity did not differ between groups. CONCLUSION Apocynin reduces oxidative stress independently of NADPH oxidase activity and does not change ventricular or myocardial function in spontaneously hypertensive rats with diabetes mellitus. The apocynin-induced myocardial functional impairment in SHR shows that apocynin actions need to be clarified during sustained chronic pressure overload.
Collapse
|
8
|
Melo DS, Costa-Pereira LV, Santos CS, Mendes BF, Costa KB, Santos CFF, Rocha-Vieira E, Magalhães FC, Esteves EA, Ferreira AJ, Guatimosim S, Dias-Peixoto MF. Severe Calorie Restriction Reduces Cardiometabolic Risk Factors and Protects Rat Hearts from Ischemia/Reperfusion Injury. Front Physiol 2016; 7:106. [PMID: 27092082 PMCID: PMC4824788 DOI: 10.3389/fphys.2016.00106] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Accepted: 03/04/2016] [Indexed: 11/17/2022] Open
Abstract
Background and Aims: Recent studies have proposed that if a severe caloric restriction (SCR) is initiated at the earliest period of postnatal life, it can lead to beneficial cardiac adaptations later on. We investigated the effects of SCR in Wistar rats from birth to adult age on risk factors for cardiac diseases (CD), as well as cardiac function, redox status, and HSP72 content in response to ischemia/reperfusion (I/R) injury. Methods and Results: From birth to the age of 3 months, CR50 rats were fed 50% of the food that the ad libitum group (AL) was fed. Food intake was assessed daily and body weight were assessed weekly. In the last week of the SCR protocol, systolic blood pressure and heart rate were measured and the double product index was calculated. Also, oral glucose and intraperitoneal insulin tolerance tests were performed. Thereafter, rats were decapitated, visceral fat was weighed, and blood and hearts were harvested for biochemical, functional, tissue redox status, and western blot analyzes. Compared to AL, CR50 rats had reduced the main risk factors for CD. Moreover, the FR50 rats showed increased cardiac function both at baseline conditions (45% > AL rats) and during the post-ischemic period (60% > AL rats) which may be explained by a decreased cardiac oxidative stress and increased HSP72 content. Conclusion: SCR from birth to adult age reduced risk factors for CD, increased basal cardiac function and protected hearts from the I/R, possibly by a mechanism involving ROS.
Collapse
Affiliation(s)
- Dirceu S Melo
- Programa Multicêntrico de Pós Graduação em Ciências Fisiológicas, Sociedade Brasileira de FisiologiaSão Paulo, Brasil; Faculdade de Medicina, Campus JK, Universidade Federal dos Vales do Jequitinhonha e MucuriDiamantina, Brasil
| | - Liliane V Costa-Pereira
- Programa Multicêntrico de Pós Graduação em Ciências Fisiológicas, Sociedade Brasileira de Fisiologia São Paulo, Brasil
| | - Carina S Santos
- Programa Multicêntrico de Pós Graduação em Ciências Fisiológicas, Sociedade Brasileira de Fisiologia São Paulo, Brasil
| | - Bruno F Mendes
- Programa Multicêntrico de Pós Graduação em Ciências Fisiológicas, Sociedade Brasileira de Fisiologia São Paulo, Brasil
| | - Karine B Costa
- Programa Multicêntrico de Pós Graduação em Ciências Fisiológicas, Sociedade Brasileira de Fisiologia São Paulo, Brasil
| | - Cynthia Fernandes F Santos
- Faculdade de Medicina, Campus JK, Universidade Federal dos Vales do Jequitinhonha e Mucuri Diamantina, Brasil
| | - Etel Rocha-Vieira
- Programa Multicêntrico de Pós Graduação em Ciências Fisiológicas, Sociedade Brasileira de FisiologiaSão Paulo, Brasil; Faculdade de Medicina, Campus JK, Universidade Federal dos Vales do Jequitinhonha e MucuriDiamantina, Brasil
| | - Flávio C Magalhães
- Programa Multicêntrico de Pós Graduação em Ciências Fisiológicas, Sociedade Brasileira de FisiologiaSão Paulo, Brasil; Faculdade de Ciências Biológicas e da Saúde, Universidade Federal dos Vales do Jequitinhonha e MucuriDiamantina, Brasil
| | - Elizabethe A Esteves
- Programa Multicêntrico de Pós Graduação em Ciências Fisiológicas, Sociedade Brasileira de FisiologiaSão Paulo, Brasil; Faculdade de Ciências Biológicas e da Saúde, Universidade Federal dos Vales do Jequitinhonha e MucuriDiamantina, Brasil
| | - Anderson J Ferreira
- Departamento de Morfologia, Universidade Federal de Minas Gerais Belo Horizonte, Brasil
| | - Sílvia Guatimosim
- Programa Multicêntrico de Pós Graduação em Ciências Fisiológicas, Sociedade Brasileira de FisiologiaSão Paulo, Brasil; Departamento de Fisiologia e Biofísica, Universidade Federal de Minas GeraisBelo Horizonte, Brasil
| | - Marco F Dias-Peixoto
- Programa Multicêntrico de Pós Graduação em Ciências Fisiológicas, Sociedade Brasileira de FisiologiaSão Paulo, Brasil; Faculdade de Ciências Biológicas e da Saúde, Universidade Federal dos Vales do Jequitinhonha e MucuriDiamantina, Brasil
| |
Collapse
|
9
|
Guimaraes JFC, Muzio BP, Rosa CM, Nascimento AF, Sugizaki MM, Fernandes AAH, Cicogna AC, Padovani CR, Okoshi MP, Okoshi K. Rutin administration attenuates myocardial dysfunction in diabetic rats. Cardiovasc Diabetol 2015; 14:90. [PMID: 26185015 PMCID: PMC4504040 DOI: 10.1186/s12933-015-0255-7] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Accepted: 07/03/2015] [Indexed: 01/08/2023] Open
Abstract
Background Oxidative stress plays a major role in diabetic cardiomyopathy pathogenesis. Anti-oxidant therapy has been investigated in preventing or treating several diabetic complications. However, anti-oxidant action on diabetic-induced cardiac remodeling is not completely clear. This study evaluated the effects of rutin, a flavonoid, on cardiac and myocardial function in diabetic rats. Methods Wistar rats were assigned into control (C, n = 14); control-rutin (C-R, n = 14); diabetes mellitus (DM, n = 16); and DM-rutin (DM-R, n = 16) groups. Seven days after inducing diabetes (streptozotocin, 60 mg/kg, i.p.), rutin was injected intraperitoneally once a week (50 mg/kg) for 7 weeks. Echocardiogram was performed and myocardial function assessed in left ventricular (LV) papillary muscles. Serum insulin concentration was measured by ELISA. Statistics: One-way ANOVA and Tukey’s post hoc test. Results Glycemia was higher in DM than DM-R and C and in DM-R than C-R. Insulin concentration was lower in diabetic groups than controls (C 2.45 ± 0.67; C-R 2.09 ± 0.52; DM 0.59 ± 0.18; DM-R 0.82 ± 0.21 ng/mL). Echocardiogram showed no differences between C-R and C. DM had increased LV systolic diameter compared to C, and increased left atrium diameter/body weight (BW) ratio and LV mass/BW ratio compared to C and DM-R. Septal wall thickness, LV diastolic diameter/BW ratio, and relative wall thickness were lower in DM-R than DM. Fractional shortening and posterior wall shortening velocity were lower in DM than C and DM-R. In papillary muscle preparation, DM and DM-R presented higher time to peak tension and time from peak tension to 50% relaxation than controls; time to peak tension was lower in DM-R than DM. Under 0.625 and 1.25 mM extracellular calcium concentrations, DM had higher developed tension than C. Conclusion Rutin attenuates cardiac remodeling and left ventricular and myocardial dysfunction caused by streptozotocin-induced diabetes mellitus.
Collapse
Affiliation(s)
- Julliano F C Guimaraes
- Department of Internal Medicine, Botucatu Medical School, Sao Paulo State University, UNESP, Botucatu, Brazil.
| | - Bruno P Muzio
- Department of Internal Medicine, Botucatu Medical School, Sao Paulo State University, UNESP, Botucatu, Brazil.
| | - Camila M Rosa
- Department of Internal Medicine, Botucatu Medical School, Sao Paulo State University, UNESP, Botucatu, Brazil.
| | - Andre F Nascimento
- Department of Internal Medicine, Botucatu Medical School, Sao Paulo State University, UNESP, Botucatu, Brazil.
| | - Mario M Sugizaki
- Department of Internal Medicine, Botucatu Medical School, Sao Paulo State University, UNESP, Botucatu, Brazil.
| | - Ana A H Fernandes
- Department of Chemistry and Biochemistry, Institute of Biosciences, Sao Paulo State University, UNESP, Botucatu, Brazil.
| | - Antonio C Cicogna
- Department of Internal Medicine, Botucatu Medical School, Sao Paulo State University, UNESP, Botucatu, Brazil.
| | - Carlos R Padovani
- Department of Internal Medicine, Botucatu Medical School, Sao Paulo State University, UNESP, Botucatu, Brazil.
| | - Marina P Okoshi
- Department of Internal Medicine, Botucatu Medical School, Sao Paulo State University, UNESP, Botucatu, Brazil.
| | - Katashi Okoshi
- Department of Internal Medicine, Botucatu Medical School, Sao Paulo State University, UNESP, Botucatu, Brazil. .,Departamento de Clinica Medica, Faculdade de Medicina de Botucatu, UNESP Rubiao Junior, S/N 18618-970, Botucatu, SP, Brazil.
| |
Collapse
|
10
|
Rosa CM, Xavier NP, Henrique Campos D, Fernandes AAH, Cezar MDM, Martinez PF, Cicogna AC, Gimenes C, Gimenes R, Okoshi MP, Okoshi K. Diabetes mellitus activates fetal gene program and intensifies cardiac remodeling and oxidative stress in aged spontaneously hypertensive rats. Cardiovasc Diabetol 2013; 12:152. [PMID: 24134628 PMCID: PMC4015448 DOI: 10.1186/1475-2840-12-152] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2013] [Accepted: 10/07/2013] [Indexed: 12/25/2022] Open
Abstract
Background The combination of systemic arterial hypertension and diabetes mellitus (DM) induces greater cardiac remodeling than either condition alone. However, this association has been poorly addressed in senescent rats. Therefore, this study aimed to analyze the influence of streptozotocin-induced DM on ventricular remodeling and oxidative stress in aged spontaneously hypertensive rats (SHR). Methods Fifty 18 month old male SHR were divided into two groups: control (SHR, n = 25) and diabetic (SHR-DM, n = 25). DM was induced by streptozotocin (40 mg/kg, i.p.). After nine weeks, the rats underwent echocardiography and myocardial functional study in left ventricular (LV) isolated papillary muscle preparations. LV samples were obtained to measure myocyte diameters, interstitial collagen fraction, and hydroxyproline concentration. Gene expression of atrial natriuretic peptide (ANP) and α- and β-myosin heavy chain (MyHC) isoforms was evaluated by RT-PCR. Serum oxidative stress was assessed by measuring lipid hydroperoxide concentration and superoxide dismutase and glutathione peroxidase activities. Statistics: Student’s t test or Mann-Whitney test, p < 0.05. Results SHR-DM presented higher blood glucose (487 ± 29 vs. 89.1 ± 21.1 mg/dL) and lower body weight (277 ± 26 vs. 339 ± 38 g). Systolic blood pressure did not differ between groups. Echocardiography showed LV and left atrial dilation, LV diastolic and relative wall thickness decrease, and LV systolic and diastolic function impairment in SHR-DM. Papillary muscle study showed decreased myocardial contractility and contractile reserve in SHR-DM. Myocyte diameters and myocardial interstitial collagen fraction and hydroxyproline concentration did not differ between groups. Increased serum pro-oxidant activity and gene expression of ANP and β/α-MyHC ratio were observed in DM. Conclusion Diabetes mellitus induces cardiac dilation and functional impairment, increases oxidative stress and activates fetal gene program in aged spontaneously hypertensive rats.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Katashi Okoshi
- Department of Internal Medicine, Botucatu Medical School, Sao Paulo State University, UNESP, Botucatu, Brazil.
| |
Collapse
|
11
|
Assessment of the Effects of Protein Malnutrition on Cerebellar Purkinje Cells in Adult Rats. ACTA ACUST UNITED AC 2013. [DOI: 10.5812/thrita.7272] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
12
|
Atrophic cardiac remodeling induced by taurine deficiency in Wistar rats. PLoS One 2012; 7:e41439. [PMID: 22844478 PMCID: PMC3402411 DOI: 10.1371/journal.pone.0041439] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2012] [Accepted: 06/21/2012] [Indexed: 12/01/2022] Open
Abstract
Introduction Micronutrient deficiency is observed in heart failure patients. Taurine, for example, represents 50% of total free amino acids in the heart, and in vivo studies have linked taurine deficiency with cardiomyopathy. Methods Thirty-four male Wistar rats (body weight = 100 g) were weighed and randomly assigned to one of two groups: Control (C) or taurine-deficient (T (-)). Beta-alanine at a concentration of 3% was added to the animals’ water to induce taurine deficiency in the T (-) group. On day 30, the rats were individually submitted to echocardiography; morphometrical and histopathological evaluation and metalloproteinase activity, oxidative stress and inflammation evaluation were performed. Tissue samples were collected to determine the taurine concentration in the heart. Results Taurine deficiency led to decreases in: ventricular wall thickness, left ventricle dry weight, myocyte sectional area, left ventricle posterior wall thickness and ventricular geometry. With regard to heart function, the velocity of the A wave, the ratio between the E and A wave, the ejection fraction, fractional shortening and cardiac output values were decreased in T (-) rats, suggesting abnormal diastolic and systolic function. Increased fibrosis, inflammation and increased activation of metalloproteinases were not observed. Oxidative stress was increased in deficient animals. Conclusions These data suggest that taurine deficiency promotes structural and functional cardiac alterations with unique characteristics.
Collapse
|
13
|
Pinotti MF, Leopoldo AS, Silva MDP, Sugizaki MM, do Nascimento AF, Lima-Leopoldo AP, Aragon FF, Padovani CR, Cicogna AC. A comparative study of myocardial function and morphology during fasting/refeeding and food restriction in rats. Cardiovasc Pathol 2009; 19:e175-82. [PMID: 19914094 DOI: 10.1016/j.carpath.2009.08.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2009] [Revised: 08/10/2009] [Accepted: 08/14/2009] [Indexed: 10/20/2022] Open
Abstract
BACKGROUND This study compared the influence of fasting/refeeding cycles and food restriction on rat myocardial performance and morphology. METHODS Sixty-day-old male Wistar rats were submitted to food ad libitum (C), 50% food restriction (R50), and fasting/refeeding cycles (RF) for 12 weeks. Myocardial function was evaluated under baseline conditions and after progressive increase in calcium and isoproterenol. Myocardium ultrastructure was examined in the papillary muscle. RESULTS Fasting/refeeding cycles maintained rat body weight and left ventricle weight between control and food-restricted rats. Under baseline conditions, the time to peak tension (TPT) was more prolonged in R50 than in RF and C rats. Furthermore, the maximum tension decline rate (-dT/dt) increased less in R50 than in RF with calcium elevation. While the R50 group showed focal changes in many muscle fibers, such as the disorganization or loss of myofilaments, polymorphic mitochondria with disrupted cristae, and irregular appearance or infolding of the plasma membrane, the RF rats displayed few alterations such as loss or disorganization of myofibrils. CONCLUSION Food restriction promotes myocardial dysfunction, not observed in RF rats, and higher morphological damage than with fasting/refeeding. The increase in TPT may be attributed possibly to the disorganization and loss of myofibrils; however, the mechanisms responsible for the alteration in -dT/dt in R50 needs to be further clarified.
Collapse
Affiliation(s)
- Matheus Fécchio Pinotti
- Department of Internal Medicine, School of Medicine, State University "Júlio de Mesquita Filho", UNESP, Botucatu, São Paulo, Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Gut AL, Sugizaki MM, Okoshi MP, Carvalho RF, Pai-Silva MD, Aragon FF, Padovani CR, Okoshi K, Cicogna AC. Food restriction impairs myocardial inotropic response to calcium and beta-adrenergic stimulation in spontaneously hypertensive rats. Nutr Res 2009; 28:722-7. [PMID: 19083480 DOI: 10.1016/j.nutres.2008.06.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2008] [Revised: 05/27/2008] [Accepted: 06/02/2008] [Indexed: 11/28/2022]
Abstract
Although long-term food restriction (FR) has been shown to induce cardiac remodeling and dysfunction, there are few data on the effects of FR on pressure-overloaded hearts. The aim of this study was to examine the effects of FR on cardiac muscle performance during inotropic stimulation in the myocardium of spontaneously hypertensive rats (SHRs). Male 60-day-old SHRs were subjected to FR for 90 days. Food-restricted animals received 50% of the ad libitum amount of food consumed by the control group. Myocardial function was studied in isolated left ventricular papillary muscle under isometric contraction in basal condition (1.25 mmol/L extracellular Ca(2+) concentration) and after 3 inotropic maneuvers: (1) at postrest contraction of 30 seconds, (2) at extracellular Ca(2+) concentration of 5.2 mmol/L, and (3) after beta-adrenergic stimulation with 10(-6) mol/L isoproterenol. At basal condition, time from peak tension to 50% relaxation was greater in the food-restricted group (P < .05). Inotropic stimulation with postrest contraction and isoproterenol promoted a significant lower increase of developed tension, maximum rate of tension development, and maximum rate of tension decline in the food-restricted compared to the control group. The elevation of extracellular Ca(2+) concentration induced a lower increase of developed tension, maximum rate of tension development, and time from peak tension to 50% relaxation in the food-restricted than in the control group. In conclusion, long-term FR promotes impairment of myocardial inotropic response to calcium and beta-adrenergic stimulation in SHRs.
Collapse
Affiliation(s)
- Ana Lucia Gut
- Department of Internal Medicine, School of Medicine, State University Júlio Mesquita Filho (UNESP), Botucatu, São Paulo, Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Okoshi MP, Okoshi K, Matsubara LS, Dal Pai-Silva M, Gut AL, Padovani CR, Dal Pai V, Cicogna AC. Myocardial remodeling and dysfunction are induced by chronic food restriction in spontaneously hypertensive rats. Nutr Res 2006. [DOI: 10.1016/j.nutres.2006.09.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
16
|
Sugizaki MM, Dal Pai-Silva M, Carvalho RF, Padovani CR, Bruno A, Nascimento AF, Aragon FF, Novelli ELB, Cicogna AC. Exercise training increases myocardial inotropic response in food restricted rats. Int J Cardiol 2006; 112:191-201. [PMID: 16356569 DOI: 10.1016/j.ijcard.2005.08.039] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2005] [Revised: 08/24/2005] [Accepted: 08/29/2005] [Indexed: 11/20/2022]
Abstract
This study evaluated the effects of exercise training on myocardial function and ultrastructure of rats submitted to different levels of food restriction (FR). Male Wistar-Kyoto rats, 60 days old, were submitted to free access to food, light FR (20%), severe FR (50%) and/or to swimming training (one hour per day with 5% of load, five days per week for 90 days). Myocardial function was evaluated by left ventricular papillary muscle under basal condition (calcium 1.25 mM), and after extracellular calcium elevation to 5.2 mM and isoproterenol (1 microM) addition. The ultrastructure of the myocardium was examined in the papillary muscle. The training effectiveness was verified by improvement of myocardial metabolic enzyme activities. Both 20% and 50% food restriction protocols presented minor body and ventricular weights gain. The 20%-FR, in sedentary or trained rats, did not alter myocardial function or ultrastructure. The 50%-FR, in sedentary rats, caused myocardial dysfunction under basal condition, decreased response to inotropic stimulation, and promoted myocardial ultrastructural damage. The 50%-FR, in exercised rats, increased myocardial dysfunction under basal condition but increased response to inotropic stimulation although there was myocardial ultrastructural damage. In conclusion, the exercise training in severe restriction caused marked myocardial dysfunction at basal condition but increased myocardial response to inotropic stimulation.
Collapse
Affiliation(s)
- Mario Mateus Sugizaki
- Department of Internal Medicine, School of Medicine, State University Júlio, Mesquita Filho, UNESP, Botucatu, São Paulo, Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Okoshi K, Fioretto JR, Okoshi MP, Cicogna AC, Aragon FF, Matsubara LS, Matsubara BB. Food restriction induces in vivo ventricular dysfunction in spontaneously hypertensive rats without impairment of in vitro myocardial contractility. Braz J Med Biol Res 2004; 37:607-13. [PMID: 15064825 DOI: 10.1590/s0100-879x2004000400019] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Cardiac structures, function, and myocardial contractility are affected by food restriction (FR). There are few experiments associating undernutrition with hypertension. The aim of the present study was to analyze the effects of FR on the cardiac response to hypertension in a genetic model of hypertension, the spontaneously hypertensive rat (SHR). Five-month-old SHR were fed a control or a calorie-restricted diet for 90 days. Global left ventricle (LV) systolic function was evaluated in vivo by transthoracic echocardiogram and myocardial contractility and diastolic function were assessed in vitro in an isovolumetrically beating isolated heart (Langendorff preparation). FR reduced LV systolic function (control (mean +/- SD): 58.9 +/- 8.2; FR: 50.8 +/- 4.8%, N = 14, P < 0.05). Myocardial contractility was preserved when assessed by the +dP/dt (control: 3493 +/- 379; FR: 3555 +/- 211 mmHg/s, P > 0.05), and developed pressure (in vitro) at diastolic pressure of zero (control: 152 +/- 16; FR: 149 +/- 15 mmHg, N = 9, P > 0.05) and 25 mmHg (control: 155 +/- 9; FR: 150 +/- 10 mmHg, N = 9, P > 0.05). FR also induced eccentric ventricular remodeling, and reduced myocardial elasticity (control: 10.9 +/- 1.6; FR: 9.2 +/- 0.9%, N = 9, P < 0.05) and LV compliance (control: 82.6 +/- 16.5; FR: 68.2 +/- 9.1%, N = 9, P < 0.05). We conclude that FR causes systolic ventricular dysfunction without in vitro change in myocardial contractility and diastolic dysfunction probably due to a reduction in myocardial elasticity.
Collapse
Affiliation(s)
- K Okoshi
- Departamento de Clínica Médica, Faculdade de Medicina de Botucatu, Universidade Estadual Paulista, Botucatu, SP, Brazil
| | | | | | | | | | | | | |
Collapse
|
18
|
Gut AL, Politi Okoshi M, Roberto Padovani C, Ferrari Aragon F, Carlos Cicogna A. Myocardial dysfunction induced by food restriction is related to calcium cycling and beta-adrenergic system changes. Nutr Res 2003. [DOI: 10.1016/s0271-5317(03)00071-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
19
|
Wilcoxon JS, Schwartz J, Aird F, Redei EE. Sexually dimorphic effects of maternal alcohol intake and adrenalectomy on left ventricular hypertrophy in rat offspring. Am J Physiol Endocrinol Metab 2003; 285:E31-9. [PMID: 12618362 DOI: 10.1152/ajpendo.00552.2002] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
In humans, low birth weight and increased placental weight can be associated with cardiovascular disease in adulthood. Low birth weight and increased placental size are known to occur after fetal alcohol exposure or prenatal glucocorticoid administration. Thus the effects of removing the alcohol-induced increase in maternal corticosterone by maternal adrenalectomy on predictors of cardiovascular disease in adulthood were examined in rats. Alcohol exposure of dams during the last 2 wk of gestation resulted in significantly decreased fetal weight and increased placental weight on gestational day 21. Adult female, but not male, offspring of alcohol-consuming mothers exhibited left ventricular hypertrophy. Placental 11beta-hydroxysteroid dehydrogenase-2 (11beta-HSD-2) mRNA levels, measured by Northern blot, were decreased in females but not males. Adrenalectomy of alcohol-consuming dams reversed the increase in placental weight and the decrease in female placental 11beta-HSD-2 expression and eliminated the left ventricular hypertrophy of adult female offspring. These data suggest that alcohol-induced changes in placental 11beta-HSD-2 mRNA levels and left ventricular weight are coupled in female offspring only and depend on maternal adrenal status.
Collapse
Affiliation(s)
- Jennifer Slone Wilcoxon
- Department of Psychiatry and Behavioral Sciences, Northwestern University Medical School, Chicago, Illinois 60611, USA.
| | | | | | | |
Collapse
|
20
|
Food restriction-induced myocardial dysfunction demonstrated by the combination of in vivo and in vitro studies. Nutr Res 2002. [DOI: 10.1016/s0271-5317(02)00454-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|