1
|
Oyanagi K, Tsubaki A. Effects of increased respiratory rate on cortical oxygenated hemoglobin during low-intensity exercise. Respir Physiol Neurobiol 2021; 291:103691. [PMID: 33992799 DOI: 10.1016/j.resp.2021.103691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 04/29/2021] [Accepted: 05/10/2021] [Indexed: 11/18/2022]
Abstract
This study aimed to examine whether the end-tidal partial pressure of CO2 (PEtCO2) affects the concentration of oxygenated hemoglobin (O2Hb) measured by near-infrared spectroscopy (NIRS). Participants were examined under the conditions of normal and increased ventilation. We measured O2Hb, mean blood pressure, skin blood flow, PEtCO2, respiratory rate, and minute volume at 30 % of the maximum oxygen uptake during exercise. ΔO2Hb and PEtCO2 during exercise were lower in the increased ventilation than in the normal ventilation condition. Pearson's product-moment correlation analysis showed a significant positive correlation between ΔO2Hb and ΔMAP, ΔSBF, and PEtCO2. Correlation coefficients were 0.249 (p < 0.001) for ΔMAP, 0.343 (p < 0.001) for ΔSBF, and 0.315 (p < 0.001) for PEtCO2. In conclusion, we identified increased ventilation during bicycle ergometer exercise as a significant factor associated with significantly low PEtCO2 and ΔO2Hb.
Collapse
Affiliation(s)
- Keiichi Oyanagi
- Department of Rehabilitation, Kobe City Medical Center General Hospital, Kobe, Japan.
| | - Atsuhiro Tsubaki
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata, Japan
| |
Collapse
|
2
|
Kojima S, Morishita S, Hotta K, Qin W, Kato T, Oyama K, Tsubaki A. Relationship Between Decrease of Oxygenation During Incremental Exercise and Partial Pressure End-Tidal Carbon Dioxide: Near-Infrared Spectroscopy Vector Analysis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1269:119-124. [PMID: 33966205 DOI: 10.1007/978-3-030-48238-1_19] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
A previous study considered that a decrease in cerebral oxyhemoglobin (O2Hb) immediately before maximal exercise during incremental exercise is related to cerebral blood flow (CBF) and partial pressure end-tidal carbon dioxide (PETCO2). This study aimed to investigate the relationship between O2Hb, PETCO2, and the estimated value of cerebral blood volume (CBV) with cerebral oxygen exchange (COE) by using vector analysis. Twenty-four healthy young men participated in this study. They performed the incremental exercise (20 W/min) after a 4-min rest and warm-up. The O2Hb and deoxyhemoglobin (HHb) in the prefrontal cortex (PFC) were measured using near-infrared spectroscopy (NIRS). The PETCO2 was measured using a gas analyzer. The O2Hb, HHb, and PETCO2 were calculated as the amount of change (ΔO2Hb, ΔHHb, and ΔPETCO2) from an average 4-min rest. Changes in the CBV (ΔCBV) and COE (ΔCOE) were estimated using NIRS vector analysis. Moreover, the respiratory compensation point (RCP), which relates to the O2Hb decline, was detected. The Pearson correlation coefficient was used to establish the relationships among ΔO2Hb, ΔPETCO2, ΔCBV, and ΔCOE from the RCP to maximal exercise. The ΔPETCO2 did not significantly correlate with the ΔO2Hb (r = 0.03, p = 0.88), ΔCOE (r = -0.19, p = 0.36), and ΔCBV (r = -0.21, p = 0.31). These results showed that changes in the ΔPETCO2 from the RCP to maximal exercise were not related to changes in the ΔO2Hb, ΔCOE, and ΔCBV. Therefore, we suggested that the decrease of O2Hb immediately before maximal exercise during incremental exercise may be related to cerebral oxygen metabolism by neural activity increase, not decrease of CBF by the PETCO2.
Collapse
Affiliation(s)
- Sho Kojima
- Graduate School of Health and Welfare, Niigata University of Health and Welfare, Niigata, Japan.
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata, Japan.
| | - Shinichiro Morishita
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata, Japan
| | - Kazuki Hotta
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata, Japan
| | - Weixiang Qin
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata, Japan
| | - Toshinori Kato
- Department of Brain Environmental Research, KatoBrain Co., Ltd., Tokyo, Japan
| | - Katsunori Oyama
- Department of Computer Science, College of Engineering, Nihon University, Tokyo, Japan
| | - Atsuhiro Tsubaki
- Graduate School of Health and Welfare, Niigata University of Health and Welfare, Niigata, Japan
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata, Japan
| |
Collapse
|
3
|
Wolf MS, Rakkar J, Horvat CM, Simon DW, Kochanek PM, Clermont G, Clark RSB. Assessment of Dynamic Intracranial Compliance in Children with Severe Traumatic Brain Injury: Proof-of-Concept. Neurocrit Care 2020; 34:209-217. [PMID: 32556856 PMCID: PMC7299131 DOI: 10.1007/s12028-020-01004-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Background and Aims Intracranial compliance refers to the relationship between a change in intracranial volume and the resultant change in intracranial pressure (ICP). Measurement of compliance is useful in managing cardiovascular and respiratory failure; however, there are no contemporary means to assess intracranial compliance. Knowledge of intracranial compliance could complement ICP and cerebral perfusion pressure (CPP) monitoring in patients with severe traumatic brain injury (TBI) and may enable a proactive approach to ICP management. In this proof-of-concept study, we aimed to capitalize on the physiologic principles of intracranial compliance and vascular reactivity to CO2, and standard-of-care neurocritical care monitoring, to develop a method to assess dynamic intracranial compliance. Methods Continuous ICP and end-tidal CO2 (ETCO2) data from children with severe TBI were collected after obtaining informed consent in this Institutional Review Board-approved study. An intracranial pressure-PCO2 Compliance Index (PCI) was derived by calculating the moment-to-moment correlation between change in ICP and change in ETCO2. As such, “good” compliance may be reflected by a lack of correlation between time-synched changes in ICP in response to changes in ETCO2, and “poor” compliance may be reflected by a positive correlation between changes in ICP in response to changes in ETCO2. Results A total of 978 h of ICP and ETCO2 data were collected and analyzed from eight patients with severe TBI. Demographic and clinical characteristics included patient age 7.1 ± 5.8 years (mean ± SD); 6/8 male; initial Glasgow Coma Scale score 3 [3–7] (median [IQR]); 6/8 had decompressive surgery; 7.1 ± 1.4 ICP monitor days; ICU length of stay (LOS) 16.1 ± 6.8 days; hospital LOS 25.9 ± 8.4 days; and survival 100%. The mean PCI for all patients throughout the monitoring period was 0.18 ± 0.04, where mean ICP was 13.7 ± 2.1 mmHg. In this cohort, PCI was observed to be consistently above 0.18 by 12 h after monitor placement. Percent time spent with PCI thresholds > 0.1, 0.2, and 0.3 were 62% [24], 38% [14], and 23% [15], respectively. The percentage of time spent with an ICP threshold > 20 mmHg was 5.1% [14.6]. Conclusions Indirect assessment of dynamic intracranial compliance in TBI patients using standard-of-care monitoring appears feasible and suggests a prolonged period of derangement out to 5 days post-injury. Further study is ongoing to determine if the PCI—a new physiologic index, complements utility of ICP and/or CPP in guiding management of patients with severe TBI. Electronic supplementary material The online version of this article (10.1007/s12028-020-01004-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Michael S Wolf
- Safar Center for Resuscitation Research, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.,Department of Pediatrics, Division of Critical Care Medicine, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Jaskaran Rakkar
- Department of Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Christopher M Horvat
- Safar Center for Resuscitation Research, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.,Department of Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.,Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.,Faculty Pavilion, Suite 2000, Brain Care Institute, UPMC Children's Hospital of Pittsburgh, 4401 Penn Avenue, Pittsburgh, PA, 15224, USA
| | - Dennis W Simon
- Safar Center for Resuscitation Research, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.,Department of Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.,Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.,Faculty Pavilion, Suite 2000, Brain Care Institute, UPMC Children's Hospital of Pittsburgh, 4401 Penn Avenue, Pittsburgh, PA, 15224, USA
| | - Patrick M Kochanek
- Safar Center for Resuscitation Research, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.,Department of Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.,Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.,Faculty Pavilion, Suite 2000, Brain Care Institute, UPMC Children's Hospital of Pittsburgh, 4401 Penn Avenue, Pittsburgh, PA, 15224, USA
| | - Gilles Clermont
- Department of Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.,The Clinical Research, Investigation, and Systems Modeling of Acute Illness (CRISMA) Center, Pittsburgh, PA, USA
| | - Robert S B Clark
- Safar Center for Resuscitation Research, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA. .,Department of Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA. .,Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA. .,Faculty Pavilion, Suite 2000, Brain Care Institute, UPMC Children's Hospital of Pittsburgh, 4401 Penn Avenue, Pittsburgh, PA, 15224, USA.
| |
Collapse
|
4
|
The effect of severe and moderate hypoxia on exercise at a fixed level of perceived exertion. Eur J Appl Physiol 2019; 119:1213-1224. [PMID: 30820661 PMCID: PMC6469630 DOI: 10.1007/s00421-019-04111-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2018] [Accepted: 02/21/2019] [Indexed: 02/08/2023]
Abstract
Purpose The purpose of this study was to determine the primary cues regulating perceived effort and exercise performance using a fixed-RPE protocol in severe and moderate hypoxia. Methods Eight male participants (26 ± 6 years, 76.3 ± 8.6 kg, 178.5 ± 3.6 cm, 51.4 ± 8.0 mL kg− 1 min− 1\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\dot {V}$$\end{document}V˙O2max) completed three exercise trials in environmental conditions of severe hypoxia (FIO2 0.114), moderate hypoxia (FIO2 0.152), and normoxia (FIO2 0.202). They were instructed to continually adjust their power output to maintain a perceived effort (RPE) of 16, exercising until power output declined to 80% of the peak 30-s power output achieved. Results Exercise time was reduced (severe hypoxia 428 ± 210 s; moderate hypoxia 1044 ± 384 s; normoxia 1550 ± 590 s) according to a reduction in FIO2 (P < 0.05). The rate of oxygen desaturation during the first 3 min of exercise was accelerated in severe hypoxia (− 5.3 ± 2.8% min− 1) relative to moderate hypoxia (− 2.5 ± 1.0% min− 1) and normoxia (− 0.7 ± 0.3% min− 1). Muscle tissue oxygenation did not differ between conditions (P > 0.05). Minute ventilation increased at a faster rate according to a decrease in FIO2 (severe hypoxia 27.6 ± 6.6; moderate hypoxia 21.8 ± 3.9; normoxia 17.3 ± 3.9 L min− 1). Moderate-to-strong correlations were identified between breathing frequency (r = − 0.718, P < 0.001), blood oxygen saturation (r = 0.611, P = 0.002), and exercise performance. Conclusions The primary cues for determining perceived effort relate to progressive arterial hypoxemia and increases in ventilation.
Collapse
|
5
|
Boulet LM, Tymko MM, Jamieson AN, Ainslie PN, Skow RJ, Day TA. Influence of prior hyperventilation duration on respiratory chemosensitivity and cerebrovascular reactivity during modified hyperoxic rebreathing. Exp Physiol 2016; 101:821-35. [DOI: 10.1113/ep085706] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Accepted: 03/16/2016] [Indexed: 12/30/2022]
Affiliation(s)
- Lindsey M. Boulet
- Department of Biology, Faculty of Science and Technology; Mount Royal University; Calgary Alberta Canada
- School of Health and Exercise Sciences, Faculty of Health and Social Development; University of British Columbia Okanagan; Kelowna British Columbia Canada
| | - Michael M. Tymko
- Department of Biology, Faculty of Science and Technology; Mount Royal University; Calgary Alberta Canada
- School of Health and Exercise Sciences, Faculty of Health and Social Development; University of British Columbia Okanagan; Kelowna British Columbia Canada
| | - Alenna N. Jamieson
- Department of Biology, Faculty of Science and Technology; Mount Royal University; Calgary Alberta Canada
| | - Philip N. Ainslie
- School of Health and Exercise Sciences, Faculty of Health and Social Development; University of British Columbia Okanagan; Kelowna British Columbia Canada
| | - Rachel J. Skow
- Department of Biology, Faculty of Science and Technology; Mount Royal University; Calgary Alberta Canada
- Faculty of Physical Education and Recreation; University of Alberta; Edmonton Alberta Canada
| | - Trevor A. Day
- Department of Biology, Faculty of Science and Technology; Mount Royal University; Calgary Alberta Canada
| |
Collapse
|
6
|
Regan RE, Fisher JA, Duffin J. Factors affecting the determination of cerebrovascular reactivity. Brain Behav 2014; 4:775-88. [PMID: 25328852 PMCID: PMC4188369 DOI: 10.1002/brb3.275] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Revised: 07/14/2014] [Accepted: 07/27/2014] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND AND PURPOSE Cerebrovascular reactivity (CVR), measures the ability of the cerebrovasculature to respond to vasoactive stimuli such as CO2. CVR is often expressed as the ratio of cerebral blood flow change to CO2 change. We examine several factors affecting this measurement: blood pressure, stimulus pattern, response analysis and subject position. METHODS Step and ramp increases in CO2 were implemented in nine subjects, seated and supine. Middle cerebral artery blood flow velocity (MCAv), and mean arterial pressure (MAP) were determined breath-by-breath. Cerebrovascular conductance (MCAc) was estimated as MCAv/MAP. CVR was calculated from both the relative and absolute measures of MCAc and MCAv responses. RESULTS MAP increased with CO2 in some subjects so that relative CVR calculated from conductance responses were less than those calculated from CVR calculated from velocity responses. CVR measured from step responses were affected by the response dynamics, and were less than those calculated from CVR measured from ramp responses. Subject position did not affect CVR. CONCLUSIONS (1) MAP increases with CO2 and acts as a confounding factor for CVR measurement; (2) CVR depends on the stimulus pattern used; (3) CVR did not differ from the sitting versus supine in these experiments; (4) CVR calculated from absolute changes of MCAv was less than that calculated from relative changes.
Collapse
Affiliation(s)
- Rosemary E Regan
- Department of Physiology, University of Toronto Toronto, ON, M5S 1A8, Canada
| | - Joseph A Fisher
- Department of Physiology, University of Toronto Toronto, ON, M5S 1A8, Canada ; Department of Anaesthesiology, University of Toronto Toronto, ON, Canada ; University Health Network Toronto, ON, Canada
| | - James Duffin
- Department of Physiology, University of Toronto Toronto, ON, M5S 1A8, Canada ; Department of Anaesthesiology, University of Toronto Toronto, ON, Canada ; University Health Network Toronto, ON, Canada
| |
Collapse
|
7
|
Abstract
Nearly all animals are capable of sensing changes in environmental oxygen (O2) and carbon dioxide (CO2) levels, which can signal the presence of food, pathogens, conspecifics, predators, or hosts. The free-living nematode Caenorhabditis elegans is a powerful model system for the study of gas sensing. C. elegans detects changes in O2 and CO2 levels and integrates information about ambient gas levels with other internal and external cues to generate context-appropriate behavioral responses. Due to its small nervous system and amenability to genetic and genomic analyses, the functional properties of its gas-sensing microcircuits can be dissected with single-cell resolution, and signaling molecules and natural genetic variations that modulate gas responses can be identified. Here, we discuss the neural basis of gas sensing in C. elegans, and highlight changes in gas-evoked behaviors in the context of other sensory cues and natural genetic variations. We also discuss gas sensing in other free-living nematodes and parasitic nematodes, focusing on how gas-sensing behavior has evolved to mediate species-specific behavioral requirements.
Collapse
|
8
|
Skow RJ, MacKay CM, Tymko MM, Willie CK, Smith KJ, Ainslie PN, Day TA. Differential cerebrovascular CO2 reactivity in anterior and posterior cerebral circulations. Respir Physiol Neurobiol 2013; 189:76-86. [DOI: 10.1016/j.resp.2013.05.036] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2012] [Revised: 05/30/2013] [Accepted: 05/31/2013] [Indexed: 01/08/2023]
|
9
|
Impact of COPD exacerbation on cerebral blood flow. Clin Imaging 2012; 36:185-90. [PMID: 22542376 DOI: 10.1016/j.clinimag.2011.08.021] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2011] [Revised: 07/12/2011] [Accepted: 08/26/2011] [Indexed: 11/24/2022]
Abstract
We aimed to investigate the impact of chronic obstructive pulmonary disease (COPD) exacerbation on cerebral blood flow (CBF). In 21 COPD patients - in both exacerbation and stable phases -Doppler ultrasonographies of internal carotid artery (ICA) and vertebral artery (VA) were performed. There were significant differences in total, anterior and posterior CBF, ICA and VA flow volumes in exacerbated COPD compared to stable COPD. Total CBF was correlated with cross-sectional areas of left and right ICA, whereas independent predictor of total CBF was cross-sectional area of right ICA. Increased CBF might indicate cerebral autoregulation-mediated vasodilatation to overcome COPD exacerbation induced hypoxia.
Collapse
|
10
|
Guillermin ML, Castelletto ML, Hallem EA. Differentiation of carbon dioxide-sensing neurons in Caenorhabditis elegans requires the ETS-5 transcription factor. Genetics 2011; 189:1327-39. [PMID: 21954162 PMCID: PMC3241437 DOI: 10.1534/genetics.111.133835] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2011] [Accepted: 09/21/2011] [Indexed: 01/09/2023] Open
Abstract
Many animals sense environmental gases such as carbon dioxide and oxygen using specialized populations of gas-sensing neurons. The proper development and function of these neurons is critical for survival, as the inability to respond to changes in ambient carbon dioxide and oxygen levels can result in reduced neural activity and ultimately death. Despite the importance of gas-sensing neurons for survival, little is known about the developmental programs that underlie their formation. Here we identify the ETS-family transcription factor ETS-5 as critical for the normal differentiation of the carbon dioxide-sensing BAG neurons in Caenorhabditis elegans. Whereas wild-type animals show acute behavioral avoidance of carbon dioxide, ets-5 mutant animals do not respond to carbon dioxide. The ets-5 gene is expressed in BAG neurons and is required for the normal expression of the BAG neuron gene battery. ets-5 may also autoregulate its expression in BAG neurons. ets-5 is not required for BAG neuron formation, indicating that it is specifically involved in BAG neuron differentiation and the maintenance of BAG neuron cell fate. Our results demonstrate a novel role for ETS genes in the development and function of gas-detecting sensory neurons.
Collapse
Affiliation(s)
- Manon L. Guillermin
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, California 90095
| | - Michelle L. Castelletto
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, California 90095
| | - Elissa A. Hallem
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, California 90095
| |
Collapse
|
11
|
Hayashi K, Honda Y, Miyakawa N, Fujii N, Ichinose M, Koga S, Kondo N, Nishiyasu T. Effect of CO2 on the ventilatory sensitivity to rising body temperature during exercise. J Appl Physiol (1985) 2011; 110:1334-41. [DOI: 10.1152/japplphysiol.00010.2010] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We examined the degree to which ventilatory sensitivity to rising body temperature (the slope of the regression line relating ventilation and body temperature) is altered by restoration of arterial Pco2 to the eucapnic level during prolonged exercise in the heat. Thirteen subjects exercised for ∼60 min on a cycle ergometer at 50% of peak O2 uptake with and without inhalation of CO2-enriched air. Subjects began breathing CO2-enriched air at the point that end-tidal Pco2 started to decline. Esophageal temperature (Tes), minute ventilation (V̇e), tidal volume (VT), respiratory frequency ( fR), respiratory gases, middle cerebral artery blood velocity, and arterial blood pressure were recorded continuously. When V̇e, VT, fR, and ventilatory equivalents for O2 uptake (V̇e/V̇o2) and CO2 output (V̇e/V̇co2) were plotted against changes in Tes from the start of the CO2-enriched air inhalation (ΔTes), the slopes of the regression lines relating V̇e, VT, V̇e/V̇o2, and V̇e/V̇co2 to ΔTes (ventilatory sensitivity to rising body temperature) were significantly greater when subjects breathed CO2-enriched air than when they breathed room air (V̇e: 19.8 ± 10.3 vs. 8.9 ± 6.7 l·min−1·°C−1, VT: 18 ± 120 vs. −81 ± 92 ml/°C; V̇e/V̇o2: 7.4 ± 5.5 vs. 2.6 ± 2.3 units/°C, and V̇e/V̇co2: 7.6 ± 6.6 vs. 3.4 ± 2.8 units/°C). The increase in V̇e was accompanied by increases in VT and fR. These results suggest that restoration of arterial Pco2 to nearly eucapnic levels increases ventilatory sensitivity to rising body temperature by around threefold.
Collapse
Affiliation(s)
- Keiji Hayashi
- Institute of Health and Sports Science, University of Tsukuba, Tsukuba
- Junior College, University of Shizuoka, Shizuoka
| | - Yasushi Honda
- Institute of Health and Sports Science, University of Tsukuba, Tsukuba
| | - Natsuki Miyakawa
- Institute of Health and Sports Science, University of Tsukuba, Tsukuba
| | - Naoto Fujii
- Institute of Health and Sports Science, University of Tsukuba, Tsukuba
| | - Masashi Ichinose
- Human Integrative Physiology Laboratory, School of Business Administration, Meiji University, Tokyo
| | | | - Narihiko Kondo
- Faculty of Human Development, Kobe University, Kobe, Japan
| | - Takeshi Nishiyasu
- Institute of Health and Sports Science, University of Tsukuba, Tsukuba
| |
Collapse
|
12
|
Battisti-Charbonney A, Fisher J, Duffin J. The cerebrovascular response to carbon dioxide in humans. J Physiol 2011; 589:3039-48. [PMID: 21521758 DOI: 10.1113/jphysiol.2011.206052] [Citation(s) in RCA: 197] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Carbon dioxide (CO2) increases cerebral blood flow and arterial blood pressure. Cerebral blood flow increases not only due to the vasodilating effect of CO2 but also because of the increased perfusion pressure after autoregulation is exhausted. Our objective was to measure the responses of both middle cerebral artery velocity (MCAv) and mean arterial blood pressure (MAP) to CO2 in human subjects using Duffin-type isoxic rebreathing tests. Comparisons of isoxic hyperoxic with isoxic hypoxic tests enabled the effect of oxygen tension to be determined. During rebreathing the MCAv response to CO2 was sigmoidal below a discernible threshold CO2 tension, increasing from a hypocapnic minimum to a hypercapnic maximum. In most subjects this threshold corresponded with the CO2 tension at which MAP began to increase. Above this threshold both MCAv and MAP increased linearly with CO2 tension. The sigmoidal MCAv response was centred at a CO2 tension close to normal resting values (overall mean 36 mmHg). While hypoxia increased the hypercapnic maximum percentage increase in MCAv with CO2 (overall means from76.5 to 108%) it did not affect other sigmoid parameters. Hypoxia also did not alter the supra-threshold MCAv and MAP responses to CO2 (overall mean slopes 5.5% mmHg⁻¹ and 2.1 mmHg mmHg⁻¹, respectively), but did reduce the threshold (overall means from 51.5 to 46.8 mmHg). We concluded that in the MCAv response range below the threshold for the increase of MAP with CO2, the MCAv measurement reflects vascular reactivity to CO2 alone at a constant MAP.
Collapse
Affiliation(s)
- A Battisti-Charbonney
- Department of Physiology, Medical Sciences Building, 1 King's College Circle, University of Toronto, Toronto, Ontario, Canada M5S 1A8
| | | | | |
Collapse
|
13
|
Fan JL, Burgess KR, Basnyat R, Thomas KN, Peebles KC, Lucas SJE, Lucas RAI, Donnelly J, Cotter JD, Ainslie PN. Influence of high altitude on cerebrovascular and ventilatory responsiveness to CO2. J Physiol 2009; 588:539-49. [PMID: 20026618 DOI: 10.1113/jphysiol.2009.184051] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
An altered acid-base balance following ascent to high altitude has been well established. Such changes in pH buffering could potentially account for the observed increase in ventilatory CO(2) sensitivity at high altitude. Likewise, if [H(+)] is the main determinant of cerebrovascular tone, then an alteration in pH buffering may also enhance the cerebral blood flow (CBF) responsiveness to CO(2) (termed cerebrovascular CO(2) reactivity). However, the effect altered acid-base balance associated with high altitude ascent on cerebrovascular and ventilatory responsiveness to CO(2) remains unclear. We measured ventilation , middle cerebral artery velocity (MCAv; index of CBF) and arterial blood gases at sea level and following ascent to 5050 m in 17 healthy participants during modified hyperoxic rebreathing. At 5050 m, resting , MCAv and pH were higher (P < 0.01), while bicarbonate concentration and partial pressures of arterial O(2) and CO(2) were lower (P < 0.01) compared to sea level. Ascent to 5050 m also increased the hypercapnic MCAv CO(2) reactivity (2.9 +/- 1.1 vs. 4.8 +/- 1.4% mmHg(1); P < 0.01) and CO(2) sensitivity (3.6 +/- 2.3 vs. 5.1 +/- 1.7 l min(1) mmHg(1); P < 0.01). Likewise, the hypocapnic MCAv CO(2) reactivity was increased at 5050 m (4.2 +/- 1.0 vs. 2.0 +/- 0.6% mmHg(1); P < 0.01). The hypercapnic MCAv CO(2) reactivity correlated with resting pH at high altitude (R(2) = 0.4; P < 0.01) while the central chemoreflex threshold correlated with bicarbonate concentration (R(2) = 0.7; P < 0.01). These findings indicate that (1) ascent to high altitude increases the ventilatory CO(2) sensitivity and elevates the cerebrovascular responsiveness to hypercapnia and hypocapnia, and (2) alterations in cerebrovascular CO(2) reactivity and central chemoreflex may be partly attributed to an acid-base balance associated with high altitude ascent. Collectively, our findings provide new insights into the influence of high altitude on cerebrovascular function and highlight the potential role of alterations in acid-base balance in the regulation in CBF and ventilatory control.
Collapse
Affiliation(s)
- Jui-Lin Fan
- Department of Physiology, Otago School of Medical Science, University of Otago, Dunedin, New Zealand
| | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Lu J, Dai G, Egi Y, Huang S, Kwon SJ, Lo EH, Kim YR. Characterization of cerebrovascular responses to hyperoxia and hypercapnia using MRI in rat. Neuroimage 2009; 45:1126-34. [DOI: 10.1016/j.neuroimage.2008.11.037] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2008] [Revised: 11/04/2008] [Accepted: 11/25/2008] [Indexed: 01/08/2023] Open
|
15
|
Pollock JM, Deibler AR, Whitlow CT, Tan H, Kraft RA, Burdette JH, Maldjian JA. Hypercapnia-induced cerebral hyperperfusion: an underrecognized clinical entity. AJNR Am J Neuroradiol 2008; 30:378-85. [PMID: 18854443 DOI: 10.3174/ajnr.a1316] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
BACKGROUND AND PURPOSE The incidence of cerebral hyperperfusion and hypoperfusion, respectively, resulting from hypercapnia and hypocapnia in hospitalized patients is unknown but is likely underrecognized by radiologists and clinicians without routine performance of quantitative perfusion imaging. Our purpose was to report the clinical and perfusion imaging findings in a series of patients confirmed to have hypercapnic cerebral hyperperfusion and hypocapnic hypoperfusion. MATERIALS AND METHODS Conventional cerebral MR imaging examination was supplemented with arterial spin-labeled (ASL) MR perfusion imaging in 45 patients during a 16-month period at a single institution. Patients presented with an indication of altered mental status, metastasis, or suspected stroke. Images were reviewed and correlated with arterial blood gas (ABG) analysis and clinical history. RESULTS Patients ranged in age from 1.5 to 85 years. No significant acute findings were identified on conventional MR imaging. Patients with hypercapnia showed global hyperperfusion on ASL cerebral blood flow (CBF) maps, respiratory acidosis on ABG, and diffuse air-space abnormalities on same-day chest radiographs. Regression analysis revealed a significant positive linear relationship between cerebral perfusion and the partial pressure of carbon dioxide (pCO(2); beta, 4.02; t, 11.03; P < .0005), such that rates of cerebral perfusion changed by 4.0 mL/100 g/min for each 1-mm Hg change in pCO(2). CONCLUSIONS With the inception of ASL as a routine perfusion imaging technique, hypercapnic-associated cerebral hyperperfusion will be recognized more frequently and may provide an alternative cause of unexplained neuropsychiatric symptoms in hospitalized patients. In a similar fashion, hypocapnia may account for a subset of patients with normal MR imaging examinations with poor ASL perfusion signal.
Collapse
Affiliation(s)
- J M Pollock
- Department of Radiology, Wake Forest University School of Medicine, Winston-Salem, NC, USA.
| | | | | | | | | | | | | |
Collapse
|
16
|
Pollock JM, Whitlow CT, Deibler AR, Tan H, Burdette JH, Kraft RA, Maldjian JA. Anoxic injury-associated cerebral hyperperfusion identified with arterial spin-labeled MR imaging. AJNR Am J Neuroradiol 2008; 29:1302-7. [PMID: 18451089 PMCID: PMC8119152 DOI: 10.3174/ajnr.a1095] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2007] [Accepted: 02/06/2008] [Indexed: 01/09/2023]
Abstract
BACKGROUND AND PURPOSE Anoxic brain injury is a devastating result of prolonged hypoxia. The goal of this study was to use arterial spin-labeling (ASL) to characterize the perfusion patterns encountered after anoxic injury to the brain. MATERIALS AND METHODS Sixteen patients with a history of anoxic or hypoxic-ischemic injury ranging in age from 1.5 to 78.0 years (mean, 50.3 years) were analyzed with conventional MR imaging and pulsed ASL 1.0-13.0 days (mean, 4.6 days) after anoxic insult. The cerebral perfusion in each case was quantified by using pulsed ASL as part of the standard stroke protocol. Correlation was made among perfusion imaging, conventional imaging, clinical history, laboratory values, and outcome. RESULTS Fifteen of the 16 patients showed marked global hyperperfusion, and 1 patient showed unilateral marked hyperperfusion. Mean gray matter (GM) cerebral blood flow (CBF) in these patients was 142.6 mL/100 g of tissue per minute (ranging from 79.9 to 204.4 mL/100 g of tissue per minute). Global GM CBF was significantly higher in anoxic injury subjects, compared with age-matched control groups with and without infarction (F(2,39) = 63.11; P < .001). Three patients had global hyperperfusion sparing areas of acute infarction. Conventional imaging showed characteristic restricted diffusion in the basal ganglia (n = 10) and cortex (n = 13). Most patients examined died (n = 12), with only 4 patients surviving at the 4-month follow-up. CONCLUSION Pulsed ASL can dramatically demonstrate and quantify the severity of the cerebral hyperperfusion after a global anoxic injury. The global hyperperfusion probably results from loss of autoregulation of cerebral vascular resistance.
Collapse
Affiliation(s)
- J M Pollock
- Department of Radiology, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA.
| | | | | | | | | | | | | |
Collapse
|
17
|
Ainslie PN, Burgess KR. Cardiorespiratory and cerebrovascular responses to hyperoxic and hypoxic rebreathing: Effects of acclimatization to high altitude. Respir Physiol Neurobiol 2008; 161:201-9. [DOI: 10.1016/j.resp.2008.02.003] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2007] [Revised: 01/23/2008] [Accepted: 02/13/2008] [Indexed: 11/29/2022]
|
18
|
Binks AP, Cunningham VJ, Adams L, Banzett RB. Gray matter blood flow change is unevenly distributed during moderate isocapnic hypoxia in humans. J Appl Physiol (1985) 2007; 104:212-7. [PMID: 17991793 DOI: 10.1152/japplphysiol.00069.2007] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Hypoxia increases cerebral blood flow (CBF), but it is unknown whether this increase is uniform across all brain regions. We used H(2)(15)O positron emission tomography imaging to measure absolute blood flow in 50 regions of interest across the human brain (n = 5) during normoxia and moderate hypoxia. Pco(2) was kept constant ( approximately 44 Torr) throughout the study to avoid decreases in CBF associated with the hypocapnia that normally occurs with hypoxia. Breathing was controlled by mechanical ventilation. During hypoxia (inspired Po(2) = 70 Torr), mean end-tidal Po(2) fell to 45 +/- 6.3 Torr (means +/- SD). Mean global CBF increased from normoxic levels of 0.39 +/- 0.13 to 0.45 +/- 0.13 ml/g during hypoxia. Increases in regional CBF were not uniform and ranged from 9.9 +/- 8.6% in the occipital lobe to 28.9 +/- 10.3% in the nucleus accumbens. Regions of interest that were better perfused during normoxia generally showed a greater regional CBF response. Phylogenetically older regions of the brain tended to show larger vascular responses to hypoxia than evolutionary younger regions, e.g., the putamen, brain stem, thalamus, caudate nucleus, nucleus accumbens, and pallidum received greater than average increases in blood flow, while cortical regions generally received below average increases. The heterogeneous blood flow distribution during hypoxia may serve to protect regions of the brain with essential homeostatic roles. This may be relevant to conditions such as altitude, breath-hold diving, and obstructive sleep apnea, and may have implications for functional brain imaging studies that involve hypoxia.
Collapse
|
19
|
Pandit JJ, Mohan RM, Paterson ND, Poulin MJ. Cerebral blood flow sensitivities to CO2 measured with steady-state and modified rebreathing methods. Respir Physiol Neurobiol 2007; 159:34-44. [PMID: 17586103 DOI: 10.1016/j.resp.2007.05.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2007] [Revised: 05/07/2007] [Accepted: 05/09/2007] [Indexed: 10/23/2022]
Abstract
It is well established that the ventilatory response to carbon dioxide (CO(2)) measured by modified rebreathing (Sr(VE)) is closer to that measured by the steady-state method (Ss(VE)) than is the response measured by Read's rebreathing method. It is also known that the value estimated by the steady-state method depends upon the combination of data points used to measure it. The aim of this study was to investigate if these observations were also true for cerebral blood flow (CBF), as measured by steady-state (Ss(CBF)) and modified rebreathing (Sr(CBF)) tests. Six subjects undertook two protocols: (a) steady state: PET(CO2) was held at 1.5 mm Hg above normal (isocapnia) for 10 min, then raised to three levels of hypercapnia, (8 min each; 6.5, 11.5 and 16.5 mm Hg above normal, separated by 4 min isocapnia). End-tidal PO2 was held at 300 mm Hg; (b) modified rebreathing: subjects underwent 6 min of voluntary hyperventilation to PET(CO2) approximately 20 mm Hg, and then rebreathed via a 6l bag filled with 6.5% CO(2) in O(2). We confirmed that the value for Ss(VE) depended upon the combination of data points used to calculate it, and also confirmed that Ss(VE) and Sr(VE) were similar. However, this was not the case with CBF. Estimates of Ss(CBF) were the same, regardless of the data points used in calculation, and Ss(CBF) was 89% greater than Sr(CBF) (P<0.05). We interpret these findings as consistent with the notion that the specific CO(2) stimulus differs for CBF and ventilatory control. The data also indicate that prior hypocapnia in the modified rebreathing protocol may have a persistent effect on both cerebral vessels and central ventilatory control.
Collapse
Affiliation(s)
- Jaideep J Pandit
- Nuffield Department of Anaesthetics, John Radcliffe Hospital, Oxford OX3 9DU, UK.
| | | | | | | |
Collapse
|
20
|
Rupp T, Thomas R, Perrey S, Stephane P. Prefrontal cortex oxygenation and neuromuscular responses to exhaustive exercise. Eur J Appl Physiol 2007; 102:153-63. [PMID: 17882449 DOI: 10.1007/s00421-007-0568-7] [Citation(s) in RCA: 108] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/03/2007] [Indexed: 10/22/2022]
Abstract
Near-infrared spectroscopy (NIRS) allows non-invasive monitoring of central and peripheral changes in oxygenation during exercise and may provide valuable insight into the factors affecting fatigue. This study aimed to explore the changes in oxygenation of prefrontal cortex and active muscle tissue as limiting factors of incremental exercise performance in trained cyclists. Thirteen trained healthy subjects (mean +/- SE: age 24.9 +/- 1.5 years, body mass 70.1 +/- 1.2 kg, training 6.1 +/- 0.9 h week(-1)) performed a progressive maximal exercise to exhaustion on a cycling ergometer. Prefrontal cortex (Cox) and vastus lateralis muscle (Mox) oxygenation were measured simultaneously by NIRS throughout the exercise. Maximal voluntary isometric knee torques and quadriceps neuromuscular fatigue (M-wave properties and voluntary activation ratio) were evaluated before and after exercise. Maximal power output and oxygen consumption were 380.8 +/- 7.9 W and 75.0 +/- 2.2 ml min(-1) kg(-1), respectively. Mox decreased significantly throughout exercise while Cox increased in the first minutes of exercise but decreased markedly from the workload corresponding to the second ventilatory threshold up to exhaustion (P < 0.05). No significant difference was noted 6 min after maximal exercise in either the voluntary activation ratio or the M-wave properties. These findings are compatible with the notion that supraspinal modulation of motor output precedes exhaustion.
Collapse
Affiliation(s)
- Thomas Rupp
- Faculty of Sport Sciences, EA 2991 Motor Efficiency and Deficiency Laboratory, UFR STAPS, 700 Avenue du Pic Saint Loup, 34090, Montpellier, France
| | | | | | | |
Collapse
|
21
|
Abstract
After defining the current approach to measuring the hypoxic ventilatory response this paper explains why this method is not appropriate for comparisons between individuals or conditions, and does not adequately measure the parameters of the peripheral chemoreflex. A measurement regime is therefore proposed that incorporates three procedures. The first procedure measures the peripheral chemoreflex responsiveness to both hypoxia and CO(2) in terms of hypoxia's effects on the sensitivity and ventilatory recruitment threshold of the peripheral chemoreflex response to CO(2). The second and third procedures employ current methods for measuring the isocapnic and poikilocapnic ventilatory responses to hypoxia, respectively, over a period of 20 min. The isocapnic measure is used to determine the time course characteristics of hypoxic ventilatory decline and the poikilocapnic measure shows the ventilatory response to a hypoxic environment. A measurement regime incorporating these three procedures will permit a detailed assessment of the peripheral chemoreflex response to hypoxia that allows comparisons to be made between individuals and different physiological and environmental conditions.
Collapse
Affiliation(s)
- James Duffin
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
22
|
Bhambhani Y, Malik R, Mookerjee S. Cerebral oxygenation declines at exercise intensities above the respiratory compensation threshold. Respir Physiol Neurobiol 2007; 156:196-202. [PMID: 17045853 DOI: 10.1016/j.resp.2006.08.009] [Citation(s) in RCA: 135] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2006] [Revised: 08/21/2006] [Accepted: 08/22/2006] [Indexed: 12/27/2022]
Abstract
During incremental exercise PaCO2 and PETCO2 begin to decline at the respiratory compensation threshold (RCT-GEX). Since PaCO2 alters cerebral blood flow it was hypothesized that there would be a systematic decline in cerebral oxygenation (Cox) measured by near infrared spectroscopy above the RCT (RCT-NIRS). Cardiorespiratory and NIRS responses were simultaneously monitored from the left frontal lobe during incremental exercise in 17 men. All subjects showed a decline in Cox above the RCT-GEX with a 20-40 s delay. Significant differences (P<0.01) were observed between the RCT-GEX and RCT-NIRS for time (9.83 versus 10.39 min), power (198 versus 212 W) and oxygen uptake (2.31 versus 2.43 L min-1). Intra-class correlations for power and absolute VO2 were 0.97 and 0.98, respectively. Bland-Altman analysis revealed no outliers for any of the variables. The results suggested that the decrease in Cox observed above the RCT was most likely due to a reduction in cerebral blood flow mediated by a decline in PaCO2. This decline in Cox could reduce neuronal activation thereby limiting maximal exercise capacity in healthy subjects.
Collapse
Affiliation(s)
- Yagesh Bhambhani
- Faculty of Rehabilitation Medicine, University of Alberta, Edmonton, Canada.
| | | | | |
Collapse
|
23
|
Claassen JAHR, Zhang R, Fu Q, Witkowski S, Levine BD. Transcranial Doppler estimation of cerebral blood flow and cerebrovascular conductance during modified rebreathing. J Appl Physiol (1985) 2006; 102:870-7. [PMID: 17110510 DOI: 10.1152/japplphysiol.00906.2006] [Citation(s) in RCA: 116] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Clinical transcranial Doppler assessment of cerebral vasomotor reactivity (CVMR) uses linear regression of cerebral blood flow velocity (CBFV) vs. end-tidal CO(2) (Pet(CO(2))) under steady-state conditions. However, the cerebral blood flow (CBF)-Pet(CO(2)) relationship is nonlinear, even for moderate changes in CO(2). Moreover, CBF is increased by increases in arterial blood pressure (ABP) during hypercapnia. We used a modified rebreathing protocol to estimate CVMR during transient breath-by-breath changes in CBFV and Pet(CO(2)). Ten healthy subjects (6 men) performed 15 s of hyperventilation followed by 5 min of rebreathing, with supplemental O(2) to maintain arterial oxygen saturation constant. To minimize effects of changes in ABP on CVMR estimation, cerebrovascular conductance index (CVCi) was calculated. CBFV-Pet(CO(2)) and CVCi-Pet(CO(2)) relationships were quantified by both linear and nonlinear logistic regression. In three subjects, muscle sympathetic nerve activity was recorded. From hyperventilation to rebreathing, robust changes occurred in Pet(CO(2)) (20-61 Torr), CBFV (-44 to +104% of baseline), CVCi (-39 to +64%), and ABP (-19 to +23%) (all P < 0.01). Muscle sympathetic nerve activity increased by 446% during hypercapnia. The linear regression slope of CVCi vs. Pet(CO(2)) was less steep than that of CBFV (3 vs. 5%/Torr; P = 0.01). Logistic regression of CBF-Pet(CO(2)) (r(2) = 0.97) and CVCi-Pet(CO(2)) (r(2) = 0.93) was superior to linear regression (r(2) = 0.91, r(2) = 0.85; P = 0.01). CVMR was maximal (6-8%/Torr) for Pet(CO(2)) of 40-50 Torr. In conclusion, CBFV and CVCi responses to transient changes in Pet(CO(2)) can be described by a nonlinear logistic function, indicating that CVMR estimation varies within the range from hypocapnia to hypercapnia. Furthermore, quantification of the CVCi-Pet(CO(2)) relationship may minimize the effects of changes in ABP on the estimation of CVMR. The method developed provides insight into CVMR under transient breath-by-breath changes in CO(2).
Collapse
Affiliation(s)
- Jurgen A H R Claassen
- Department of Geriatric Medicine, Radbound University Nijmegen Medical Center, The Netherlands
| | | | | | | | | |
Collapse
|
24
|
Albayrak R, Fidan F, Unlu M, Sezer M, Degirmenci B, Acar M, Haktanir A, Yaman M. Extracranial carotid Doppler ultrasound evaluation of cerebral blood flow volume in COPD patients. Respir Med 2006; 100:1826-33. [PMID: 16516456 DOI: 10.1016/j.rmed.2006.01.015] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2005] [Revised: 01/16/2006] [Accepted: 01/22/2006] [Indexed: 11/17/2022]
Abstract
OBJECTIVE Doppler ultrasound of extracranial internal carotid artery (ICA) and vertebral artery (VA) were performed and total cerebral blood flow volume (tCBFV) was evaluated in chronic obstructive pulmonary disease (COPD) patients. CBFV changes due to blood gas changes were also evaluated. METHODS Bilateral ICA and VA have been examined with 7.5 MHz linear array transducer in COPD patients. Angle-corrected time averaged flow velocity and cross-sectional areas of vessels have been measured. Flow volumes and tCBFV have been calculated. Flow velocities and waveform parameters have been measured. RESULTS tCBFV, anterior-posterior CBFVs, left-right ICA flow volumes, bilateral ICA and VA cross-sectional areas and left ICA peak-systolic velocity were significantly higher in COPD patients than control group. Among COPD patients tCBFVs were highest in hypoxemic-hypercapnic ones, and lowest in normocapnic ones. Bilateral VA flow volumes, bilateral ICA (except left ICA V(ps)) and VA flow velocities and waveform parameters were not different in COPD patients compared with control group. When compared among the subgroups of COPD patients, there were no significant differences for all parameters. CONCLUSION tCBFVs were found to be significantly higher in COPD patients. This increment which is probably due to balancing the oxygen deficit is low with hypoxemia and high with hypercapnia and hypoxemia. Particularly, bilateral ICA and VA cross-sectional area changes and increased left ICA V(ps) were considered as the main reason for increased tCBFV in COPD patients.
Collapse
Affiliation(s)
- Ramazan Albayrak
- Department of Radiology, Faculty of Medicine, Afyon Kocatepe University, 03100, Afyon, Turkey.
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Peltonen JE, Kowalchuk JM, Paterson DH, DeLorey DS, duManoir GR, Petrella RJ, Shoemaker JK. Cerebral and muscle tissue oxygenation in acute hypoxic ventilatory response test. Respir Physiol Neurobiol 2006; 155:71-81. [PMID: 16697712 DOI: 10.1016/j.resp.2006.03.008] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2005] [Revised: 03/10/2006] [Accepted: 03/28/2006] [Indexed: 11/26/2022]
Abstract
Eight men were exposed to progressive isocapnic hypoxia for 10 min to test the hypothesis that (i) cerebral and muscle tissue would follow similar deoxygenation profiles during an acute hypoxic ventilatory response (AHVR) test; and (ii) strong cerebrovascular responsiveness to hypoxia would be related to attenuated cerebral deoxygenation. End-tidal O(2) concentration was reduced from normoxia (approximately 102 mmHg) to approximately 45 mmHg while arterial oxygen saturation (SpO2 %) declined from 98+/-1% to 77+/-7% (P<0.001). Near-infrared spectroscopy (NIRS)-derived local cerebral tissue (frontal lobe) deoxyhemoglobin increased 5.55+/-2.22 microM, while oxyhemoglobin and tissue oxygenation index decreased 2.57+/-1.99 microM and 6.2+/-3.4%, respectively (all P<0.001). In muscle (m. vastus lateralis) the NIRS changes from the initial normoxic level were non-significant. Cerebral blood velocity (V(mean), transcranial Doppler) in the middle cerebral artery increased from 53.4+/-10.4 to 60.6+/-11.6 cms(-1) (P<0.001). In relation to the decline in SpO2 % the mean rate of increase of V(mean) and AHVR were 0.33+/-0.19 cms(-1)%(-1) and 0.52+/-0.20l min(-1)%(-1), respectively. We conclude that cerebral, but not muscle, tissue shows changes reflecting a greater deoxygenation during acute hypoxia. However, the changes in NIRS parameters were not related to cerebrovascular responsiveness or ventilatory chemosensitivity during graded hypoxia.
Collapse
Affiliation(s)
- Juha E Peltonen
- Unit for Sports and Exercise Medicine, Institute of Clinical Medicine, University of Helsinki, Helsinki, Finland.
| | | | | | | | | | | | | |
Collapse
|
26
|
Eidlitz-Markus T, Stiebel-Kalish H, Rubin Y, Shuper A. CSF pressure measurement during anesthesia: an unreliable technique. Paediatr Anaesth 2005; 15:1078-82. [PMID: 16324027 DOI: 10.1111/j.1460-9592.2005.01675.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
BACKGROUND The measurement of cerebrospinal fluid (CSF) pressure is necessary for many clinical indications. Its accuracy may be compromised in frightened or uncooperative children who find it difficult to relax sufficiently. The aim of the present study was to evaluate possible effects of general anesthesia on CSF pressure values. METHODS Lumbar puncture was performed under general anesthesia in 15 patients aged 4.5-20 years for the evaluation of headaches associated with a swollen optic nerve. Cerebrospinal fluid pressure was measured with a manometer when the patient was fully anesthetized (opening pressure) and then continuously recorded until the patient regained consciousness. The opening pressure was compared with the lowest pressure measured at the termination of the procedure (end-measurement pressure). RESULTS Seventeen pressure measurements were performed in 15 patients. In all but two measurements, differences were noted between the opening and end pressure, ranging from 5 to 13 cmH(2)O. The opening pressure was abnormally high in 16 measurements, and the end pressure was abnormally high in seven. The difference between the two measurements was highly significant (P < 0.001). CONCLUSIONS Lumbar puncture performed under general anesthesia may yield two pressure measurements. Many factors, such as hypercarbia and the anesthetic agent used, may influence the results. Owing to the dynamic changes in CSF pressure, measurements made under anesthesia may be unreliable.
Collapse
Affiliation(s)
- Tal Eidlitz-Markus
- Department of Pediatrics E-Ambulatory Day Care Center, Schneider Children's Medical Center of Israel, Petah Tiqva, Israel.
| | | | | | | |
Collapse
|
27
|
Foster GE, McKenzie DC, Milsom WK, Sheel AW. Effects of two protocols of intermittent hypoxia on human ventilatory, cardiovascular and cerebral responses to hypoxia. J Physiol 2005; 567:689-99. [PMID: 15975977 PMCID: PMC1474187 DOI: 10.1113/jphysiol.2005.091462] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
We determined the ventilatory, cardiovascular and cerebral tissue oxygen response to two protocols of normobaric, isocapnic, intermittent hypoxia. Subjects (n = 18, male) were randomly assigned to short-duration intermittent hypoxia (SDIH, 12% O2 separated by 5 min of normoxia for 1 h) or long-duration intermittent hypoxia (LDIH, 30 min of 12% O2). Both groups had 10 exposures over a 12 day period. The hypoxic ventilatory response (HVR) was measured before each daily intermittent hypoxia exposure on days 1, 3, 5, 8, 10 and 12. The HVR was measured again 3 and 5 days after the end of intermittent hypoxia. During all procedures, ventilation, blood pressure, heart rate, arterial oxyhaemoglobin saturation and cerebral tissue oxygen saturation were measured. The HVR increased throughout intermittent hypoxia exposure regardless of protocol, and returned to baseline by day 17 (day 1, 0.84 +/- 0.50; day 12, 1.20 +/- 1.01; day 17, 0.95 +/- 0.58 l min(-1) %S(aO2)(-1); P < 0.01). The change in systolic blood pressure sensitivity (r = +0.68; P < 0.05) and the change in diastolic blood pressure sensitivity (r = +0.73; P < 0.05) were related to the change in HVR, while the change in heart rate sensitivity was not (r = +0.32; NS). The change in cerebral tissue oxygen saturation sensitivity to hypoxia was less on day 12, and returned to baseline by day 17 (day 1, -0.51 +/- 0.13; day 12, -0.64 +/- 0.18; day 17, -0.51 +/- 0.13; P < 0.001). Acute exposure to SDIH increased mean arterial pressure (+5 mmHg; P < 0.01), but LDIH did not (P > 0.05). SDIH and LDIH had similar effects on the ventilatory and cardiovascular response to acute progressive hypoxia and hindered cerebral oxygenation. Our findings indicate that the vascular processes required to control blood flow and oxygen supply to cerebral tissue in a healthy human are hindered following exposure to 12 days of isocapnic intermittent hypoxia.
Collapse
Affiliation(s)
- Glen E Foster
- School of Human Kinetics, University of British Columbia, Vancouver, BC, Canada
| | | | | | | |
Collapse
|
28
|
Shibuya KI, Tanaka J, Kuboyama N, Ogaki T. Cerebral oxygenation during intermittent supramaximal exercise. Respir Physiol Neurobiol 2004; 140:165-72. [PMID: 15134664 DOI: 10.1016/j.resp.2003.11.004] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/10/2003] [Indexed: 11/18/2022]
Abstract
This study examined cerebral deoxygenation during intermittent supramaximal exercise in six healthy male subjects (age: 27.2 +/- 0.6 years (mean +/- S.E.). The subjects performed seven times exercise at an intensity corresponding to 150% of maximal oxygen uptake (VO2max) on cycle ergometer (30 s exercise/15 s rest). Cerebral oxygenation was measured by near-infrared spectroscopy (NIRS). The peak blood lactate concentration after exercise was 15.3 +/- 0.2 mmol/l. Cerebral oxygenation increased in first repetition compared with at rest (+ 5.7 +/- 0.6 microM; P < 0.05), but then decreased with time. Thus, in the last repetition cerebral oxygenation was - 8.5 +/- 0.4 microM (P < 0.05). There was no significant change in arterial oxygen saturation (99.6 +/- at rest, 98.4 +/- 0.2 at the final set of intermittent exercise), and there was no correlated change in end-tidal CO2 concentration with cerebral oxygenation (P > 0.05). These findings suggest that the fatigue resulting from dynamic severe exercise related to a decrease in the cerebral oxygenation level.
Collapse
Affiliation(s)
- Ken-Ichi Shibuya
- Graduate School of Human-Environment Studies, Kyushu University, 6-1 Kasuga-koen, Kasuga City, Fukuoka 816-8580, Japan.
| | | | | | | |
Collapse
|
29
|
Mateika JH, Ellythy M. Chemoreflex control of ventilation is altered during wakefulness in humans with OSA. Respir Physiol Neurobiol 2003; 138:45-57. [PMID: 14519377 DOI: 10.1016/s1569-9048(03)00174-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
We hypothesized that patients with obstructive sleep apnea (OSA) have a different awake ventilatory response to carbon dioxide above and below eupnea compared with normal. Eight male subjects with OSA and control subjects matched for gender, race, age, height and weight voluntarily hyperventilated during wakefulness to reduce the partial pressure of carbon dioxide (PET(CO2)) below 25 mmHg. Subjects were then switched into a rebreathing bag containing a normocapnic (42 mmHg) hypoxic [partial pressure of end tidal oxygen (PET(O2))=50 mmHg (H50)] or hyperoxic [PET(O2)=140 mmHg (H140)] gas mixture. During the trial PET(CO2) increased while PET(O2) was maintained at a constant level. The point at which ventilation and PET(CO2) increased linearly was considered to be the carbon dioxide ventilatory recruitment threshold (VRT(CO2)). Measurements of ventilation and its components (i.e. tidal volume and breathing frequency) were made below this threshold and the slope of the minute ventilation; tidal volume or breathing frequency response above the threshold was determined. Four trials for a given oxygen level were completed. The PET(CO2) that demarcated the VRT(CO2) was increased (H(50)=43.43+/-0.92 vs. 41.05+/-0.67; H(140)=47.65+/-0.80 vs. 45.28+/-0.75), as were measures of ventilation below the threshold (H(50)=18.50+/-2.11 vs. 13.44+/-1.43; H(140)=19.66+/-2.71 vs. 10.83+/-1.24) in the OSA subjects compared with control. In contrast the OSA and control subjects did not respond differently to changes in PET(CO2) above the threshold. We conclude that the PET(CO2) that delineates the VRT(CO2) and ventilation below this threshold is elevated in subjects with OSA.
Collapse
Affiliation(s)
- Jason H Mateika
- Departments of Internal Medicine and Physiology, Wayne State University School of Medicine, Detroit, MI 48201, USA.
| | | |
Collapse
|
30
|
Pandit JJ, Mohan RM, Paterson ND, Poulin MJ. Cerebral blood flow sensitivity to CO2 measured with steady-state and Read's rebreathing methods. Respir Physiol Neurobiol 2003; 137:1-10. [PMID: 12871672 DOI: 10.1016/s1569-9048(03)00089-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The ventilatory response to carbon dioxide (CO2) measured by the steady-state method is lower than that measured by Read's rebreathing method. A change in end-tidal P CO2 (PET CO2) results in a lower increment change in brain tissue P CO2 (Pt CO2) in the steady-state than with rebreathing: since Pt(CO2) determines the ventilatory response to CO2, the response is lower in the steady-state. If cerebral blood flow (CBF) responds to Pt CO2, the CBF-CO2 response should be lower in the steady-state than with rebreathing. Six subjects undertook two protocols, (a) steady-state: PET CO2 was held at 1.5 mmHg above normal (isocapnia) for 10 min, then raised to three levels of hypercapnia, (8 min each; 6.5, 11.5 and 16.5 mmHg above normal, separated by 4 min isocapnia). End-tidal P O2 was held at 300 mmHg; (b) rebreathing: subjects rebreathed via a 6 L bag filled with 6.5% CO2 in O2. Transcranial Doppler-derived CBF yielded a higher CBF-CO2 sensitivity in the steady-state than with rebreathing, suggesting that CBF does not respond to Pt CO2.
Collapse
Affiliation(s)
- Jaideep J Pandit
- Nuffield Department of Anaesthetics, John Radcliffe Hospital, Oxford OX3 9DU, UK
| | | | | | | |
Collapse
|