1
|
Radman BA, Alhameed AMM, Shu G, Yin G, Wang M. Cellular elasticity in cancer: a review of altered biomechanical features. J Mater Chem B 2024; 12:5299-5324. [PMID: 38742281 DOI: 10.1039/d4tb00328d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
A large number of studies have shown that changes in biomechanical characteristics are an important indicator of tumor transformation in normal cells. Elastic deformation is one of the more studied biomechanical features of tumor cells, which plays an important role in tumourigenesis and development. Altered cell elasticity often brings many indications. This manuscript reviews the effects of altered cellular elasticity on cell characteristics, including adhesion viscosity, migration, proliferation, and differentiation elasticity and stiffness. Also, the physical factors that may affect cell elasticity, such as temperature, cell height, cell-viscosity, and aging, are summarized. Then, the effects of cell-matrix, cytoskeleton, in vitro culture medium, and cell-substrate with different three-dimensional structures on cell elasticity during cell tumorigenesis are outlined. Importantly, we summarize the current signaling pathways that may affect cellular elasticity, as well as tests for cellular elastic deformation. Finally, we summarize current hybrid materials: polymer-polymer, protein-protein, and protein-polymer hybrids, also, nano-delivery strategies that target cellular resilience and cases that are at least in clinical phase 1 trials. Overall, the behavior of cancer cell elasticity is modulated by biological, chemical, and physical changes, which in turn have the potential to alter cellular elasticity, and this may be an encouraging prediction for the future discovery of cancer therapies.
Collapse
Affiliation(s)
- Bakeel A Radman
- Department of Pathology, Xiangya Hospital, School of Basic Medical Sciences, Central South University, Changsha, China.
- Department of Biology, College of Science and Education, Albaydha University, Yemen
| | | | - Guang Shu
- Department of Histology and Embryology, School of Basic Medical Sciences, Central South University, Changsha, 410013, China
- China-Africa Research Center of Infectious Diseases, School of Basic Medical Sciences, Central South University, Changsha, 410013, China
| | - Gang Yin
- Department of Pathology, Xiangya Hospital, School of Basic Medical Sciences, Central South University, Changsha, China.
| | - Maonan Wang
- Department of Pathology, Xiangya Hospital, School of Basic Medical Sciences, Central South University, Changsha, China.
| |
Collapse
|
2
|
Eid AH, El-Yazbi AF, Zouein F, Arredouani A, Ouhtit A, Rahman MM, Zayed H, Pintus G, Abou-Saleh H. Inositol 1,4,5-Trisphosphate Receptors in Hypertension. Front Physiol 2018; 9:1018. [PMID: 30093868 PMCID: PMC6071574 DOI: 10.3389/fphys.2018.01018] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Accepted: 07/09/2018] [Indexed: 12/21/2022] Open
Abstract
Chronic hypertension remains a major cause of global mortality and morbidity. It is a complex disease that is the clinical manifestation of multiple genetic, environmental, nutritional, hormonal, and aging-related disorders. Evidence supports a role for vascular aging in the development of hypertension involving an impairment in endothelial function together with an alteration in vascular smooth muscle cells (VSMCs) calcium homeostasis leading to increased myogenic tone. Changes in free intracellular calcium levels ([Ca2+] i ) are mediated either by the influx of Ca2+ from the extracellular space or release of Ca2+ from intracellular stores, mainly the sarcoplasmic reticulum (SR). The influx of extracellular Ca2+ occurs primarily through voltage-gated Ca2+ channels (VGCCs), store-operated Ca2+ channels (SOC), and Ca2+ release-activated channels (CRAC), whereas SR-Ca2+ release occurs through inositol trisphosphate receptor (IP3R) and ryanodine receptors (RyRs). IP3R-mediated SR-Ca2+ release, in the form of Ca2+ waves, not only contributes to VSMC contraction and regulates VGCC function but is also intimately involved in structural remodeling of resistance arteries in hypertension. This involves a phenotypic switch of VSMCs as well as an alteration of cytoplasmic Ca2+ signaling machinery, a phenomena tightly related to the aging process. Several lines of evidence implicate changes in expression/function levels of IP3R isoforms in the development of hypertension, VSMC phenotypic switch, and vascular aging. The present review discusses the current knowledge of these mechanisms in an integrative approach and further suggests potential new targets for hypertension management and treatment.
Collapse
Affiliation(s)
- Ali H Eid
- Department of Pharmacology and Toxicology, Faculty of Medicine, American University of Beirut, Beirut, Lebanon.,Department of Biological and Environmental Sciences, College of Arts and Sciences, Qatar University, Doha, Qatar
| | - Ahmed F El-Yazbi
- Department of Pharmacology and Toxicology, Faculty of Medicine, American University of Beirut, Beirut, Lebanon.,Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| | - Fouad Zouein
- Department of Pharmacology and Toxicology, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Abdelilah Arredouani
- Qatar Biomedical Research Institute, Hamad Bin Khalifa University, Qatar Foundation, Doha, Qatar
| | - Allal Ouhtit
- Department of Biological and Environmental Sciences, College of Arts and Sciences, Qatar University, Doha, Qatar
| | - Md M Rahman
- Department of Biological and Environmental Sciences, College of Arts and Sciences, Qatar University, Doha, Qatar
| | - Hatem Zayed
- Department of Biomedical Sciences, College of Health Sciences, Qatar University, Doha, Qatar
| | - Gianfranco Pintus
- Department of Biomedical Sciences, College of Health Sciences, Qatar University, Doha, Qatar
| | - Haissam Abou-Saleh
- Department of Biological and Environmental Sciences, College of Arts and Sciences, Qatar University, Doha, Qatar
| |
Collapse
|
3
|
Mufti RE, Zechariah A, Sancho M, Mazumdar N, Brett SE, Welsh DG. Implications of αvβ3 Integrin Signaling in the Regulation of Ca2+ Waves and Myogenic Tone in Cerebral Arteries. Arterioscler Thromb Vasc Biol 2015; 35:2571-8. [PMID: 26494230 DOI: 10.1161/atvbaha.115.305619] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Accepted: 10/09/2015] [Indexed: 11/16/2022]
Abstract
OBJECTIVE The myogenic response is central to blood flow regulation in the brain. Its induction is tied to elevated cytosolic [Ca(2+)], a response primarily driven by voltage-gated Ca(2+) channels and secondarily by Ca(2+) wave production. Although the signaling events leading to the former are well studied, those driving Ca(2+) waves remain uncertain. APPROACH AND RESULTS We postulated that αvβ3 integrin signaling is integral to the generation of pressure-induced Ca(2+) waves and cerebral arterial tone. This hypothesis was tested in rat cerebral arteries using the synergistic strengths of pressure myography, rapid Ca(2+) imaging, and Western blot analysis. GRGDSP, a peptide that preferentially blocks αvβ3 integrin, attenuated myogenic tone, indicating the modest role for sarcoplasmic reticulum Ca(2+) release in myogenic tone generation. The RGD peptide was subsequently shown to impair Ca(2+) wave generation and myosin light chain 20 (MLC20) phosphorylation, the latter of which was attributed to the modulation of MLC kinase and MLC phosphatase via MYPT1-T855 phosphorylation. Subsequent experiments revealed that elevated pressure enhanced phospholipase Cγ1 phosphorylation in an RGD-dependent manner and that phospholipase C inhibition attenuated Ca(2+) wave generation. Direct inhibition of inositol 1, 4, 5-triphosphate receptors also impaired Ca(2+) wave generation, myogenic tone, and MLC20 phosphorylation, partly through the T-855 phosphorylation site of MYPT1. CONCLUSIONS Our investigation reveals a hitherto unknown role for αvβ3 integrin as a cerebral arterial pressure sensor. The membrane receptor facilitates Ca(2+) wave generation through a signaling cascade, involving phospholipase Cγ1, inositol 1,3,4 triphosphate production, and inositol 1, 4, 5-triphosphate receptor activation. These discrete asynchronous Ca(2+) events facilitate MLC20 phosphorylation and, in part, myogenic tone by influencing both MLC kinase and MLC phosphatase activity.
Collapse
Affiliation(s)
- Rania E Mufti
- From the Hotchkiss Brain Institute (R.E.M., A.Z., M.S., N.M., S.E.B., D.G.W.), Libin Cardiovascular Institute (R.E.M., A.Z., M.S., N.M., S.E.B., D.G.W.), and Department of Physiology and Pharmacology (R.E.M., A.Z., M.S., N.M., S.E.B., D.G.W.), University of Calgary, Alberta, Canada; and Department of Physiology and Pharmacology, University of Western Ontario, London, Ontario, Canada (A.Z., M.S., N.M., S.E.B., D.G.W.)
| | - Anil Zechariah
- From the Hotchkiss Brain Institute (R.E.M., A.Z., M.S., N.M., S.E.B., D.G.W.), Libin Cardiovascular Institute (R.E.M., A.Z., M.S., N.M., S.E.B., D.G.W.), and Department of Physiology and Pharmacology (R.E.M., A.Z., M.S., N.M., S.E.B., D.G.W.), University of Calgary, Alberta, Canada; and Department of Physiology and Pharmacology, University of Western Ontario, London, Ontario, Canada (A.Z., M.S., N.M., S.E.B., D.G.W.)
| | - Maria Sancho
- From the Hotchkiss Brain Institute (R.E.M., A.Z., M.S., N.M., S.E.B., D.G.W.), Libin Cardiovascular Institute (R.E.M., A.Z., M.S., N.M., S.E.B., D.G.W.), and Department of Physiology and Pharmacology (R.E.M., A.Z., M.S., N.M., S.E.B., D.G.W.), University of Calgary, Alberta, Canada; and Department of Physiology and Pharmacology, University of Western Ontario, London, Ontario, Canada (A.Z., M.S., N.M., S.E.B., D.G.W.)
| | - Neil Mazumdar
- From the Hotchkiss Brain Institute (R.E.M., A.Z., M.S., N.M., S.E.B., D.G.W.), Libin Cardiovascular Institute (R.E.M., A.Z., M.S., N.M., S.E.B., D.G.W.), and Department of Physiology and Pharmacology (R.E.M., A.Z., M.S., N.M., S.E.B., D.G.W.), University of Calgary, Alberta, Canada; and Department of Physiology and Pharmacology, University of Western Ontario, London, Ontario, Canada (A.Z., M.S., N.M., S.E.B., D.G.W.)
| | - Suzanne E Brett
- From the Hotchkiss Brain Institute (R.E.M., A.Z., M.S., N.M., S.E.B., D.G.W.), Libin Cardiovascular Institute (R.E.M., A.Z., M.S., N.M., S.E.B., D.G.W.), and Department of Physiology and Pharmacology (R.E.M., A.Z., M.S., N.M., S.E.B., D.G.W.), University of Calgary, Alberta, Canada; and Department of Physiology and Pharmacology, University of Western Ontario, London, Ontario, Canada (A.Z., M.S., N.M., S.E.B., D.G.W.)
| | - Donald G Welsh
- From the Hotchkiss Brain Institute (R.E.M., A.Z., M.S., N.M., S.E.B., D.G.W.), Libin Cardiovascular Institute (R.E.M., A.Z., M.S., N.M., S.E.B., D.G.W.), and Department of Physiology and Pharmacology (R.E.M., A.Z., M.S., N.M., S.E.B., D.G.W.), University of Calgary, Alberta, Canada; and Department of Physiology and Pharmacology, University of Western Ontario, London, Ontario, Canada (A.Z., M.S., N.M., S.E.B., D.G.W.).
| |
Collapse
|
4
|
Tripovic D, McLachlan EM, Brock JA. Removal of half the sympathetic innervation does not reduce vasoconstrictor responses in rat tail artery. J Physiol 2013; 591:2867-84. [PMID: 23551946 DOI: 10.1113/jphysiol.2012.250365] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Following reinnervation of denervated rat tail arteries, nerve-evoked contractions are at least as large as those evoked in normally innervated arteries despite a much lower nerve terminal density. Here nerve-evoked contractions have been investigated after transection of half the sympathetic innervation of normal tail arteries. After 1 week, the noradrenergic plexus 50-70 mm along the tail was about half as dense as control. Excitatory junction potentials recorded in smooth muscle cells of arterial segments isolated in vitro were half their normal amplitude. Surprisingly, nerve-evoked contractions of isometrically mounted segments were not reduced in amplitude, as was also the case after only 3 days. After 1 week, enhancement of nerve-evoked contractions by blocking either neuronal re-uptake of noradrenaline with desmethylimipramine or prejunctional α2-adrenoceptors with idazoxan was similar to control, suggesting that these mechanisms are matched to the number of innervating axons. The relative contribution of postjunctional α2-adrenoceptors to contractions evoked by long trains of stimuli was enhanced but that of α1-adrenoceptors was unchanged. Transiently, sensitivity to the α1-adrenoceptor agonist phenylephrine was slightly increased. After 7 weeks, amplitudes of nerve-evoked contractions remained similar to control, and sensitivity to phenylephrine had recovered but that to the α2-adrenoceptor agonist clonidine was slightly raised. The normal amplitude of nerve-evoked contractions after partial denervation is only partly explained by the greater contribution of α2-adrenoceptors. While the post-receptor mechanisms activated by nerve-released transmitter may be modified to amplify the contractions after partial denervation, our findings suggest that these mechanisms are normally saturated, at least in this artery.
Collapse
Affiliation(s)
- Diana Tripovic
- Department of Anatomy and Neuroscience, University of Melbourne, Parkville, Vic. 3010, Australia
| | | | | |
Collapse
|
5
|
Zhu Y, Qiu H, Trzeciakowski JP, Sun Z, Li Z, Hong Z, Hill MA, Hunter WC, Vatner DE, Vatner SF, Meininger GA. Temporal analysis of vascular smooth muscle cell elasticity and adhesion reveals oscillation waveforms that differ with aging. Aging Cell 2012; 11:741-50. [PMID: 22639979 DOI: 10.1111/j.1474-9726.2012.00840.x] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
A spectral analysis approach was developed for detailed study of time-resolved, dynamic changes in vascular smooth muscle cell (VSMC) elasticity and adhesion to identify differences in VSMC from young and aged monkeys. Atomic force microscopy (AFM) was used to measure Young's modulus of elasticity and adhesion as assessed by fibronectin (FN) or anti-beta 1 integrin interaction with the VSMC surface. Measurements demonstrated that VSMC cells from old vs. young monkeys had increased elasticity (21.6 kPa vs. 3.5 kPa or a 612% increase in elastic modulus) and adhesion (86 pN vs. 43 pN or a 200% increase in unbinding force). Spectral analysis identified three major frequency components in the temporal oscillation patterns for elasticity (ranging from 1.7 × 10(-3) to 1.9 × 10(-2) Hz in old and 8.4 × 10(-4) to 1.5 × 10(-2) Hz in young) and showed that the amplitude of oscillation was larger (P < 0.05) in old than in young at all frequencies. It was also observed that patterns of oscillation in the adhesion data were similar to the elasticity waveforms. Cell stiffness was reduced and the oscillations were inhibited by treatment with cytochalasin D, ML7 or blebbistatin indicating the involvement of actin-myosin-driven processes. In conclusion, these data demonstrate the efficacy of time-resolved analysis of AFM cell elasticity and adhesion measurements and that it provides a uniquely sensitive method to detect real-time functional differences in biomechanical and adhesive properties of cells. The oscillatory behavior suggests that mechanisms governing elasticity and adhesion are coupled and affected differentially during aging, which may link these events to changes in vascular stiffness.
Collapse
Affiliation(s)
- Yi Zhu
- Dalton Cardiovascular Res Center and Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, MO 65211, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Mufti RE, Brett SE, Tran CHT, Abd El-Rahman R, Anfinogenova Y, El-Yazbi A, Cole WC, Jones PP, Chen SRW, Welsh DG. Intravascular pressure augments cerebral arterial constriction by inducing voltage-insensitive Ca2+ waves. J Physiol 2010; 588:3983-4005. [PMID: 20736418 DOI: 10.1113/jphysiol.2010.193300] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
This study examined whether elevated intravascular pressure stimulates asynchronous Ca(2+) waves in cerebral arterial smooth muscle cells and if their generation contributes to myogenic tone development. The endothelium was removed from rat cerebral arteries, which were then mounted in an arteriograph, pressurized (20-100 mmHg) and examined under a variety of experimental conditions. Diameter and membrane potential (V(M)) were monitored using conventional techniques; Ca(2+) wave generation and myosin light chain (MLC(20))/MYPT1 (myosin phosphatase targeting subunit) phosphorylation were assessed by confocal microscopy and Western blot analysis, respectively. Elevating intravascular pressure increased the proportion of smooth muscle cells firing asynchronous Ca(2+) waves as well as event frequency. Ca(2+) wave augmentation occurred primarily at lower intravascular pressures (<60 mmHg) and ryanodine, a plant alkaloid that depletes the sarcoplasmic reticulum (SR) of Ca(2+), eliminated these events. Ca(2+) wave generation was voltage insensitive as Ca(2+) channel blockade and perturbations in extracellular [K(+)] had little effect on measured parameters. Ryanodine-induced inhibition of Ca(2+) waves attenuated myogenic tone and MLC(20) phosphorylation without altering arterial V(M). Thapsigargin, an SR Ca(2+)-ATPase inhibitor also attenuated Ca(2+) waves, pressure-induced constriction and MLC(20) phosphorylation. The SR-driven component of the myogenic response was proportionally greater at lower intravascular pressures and subsequent MYPT1 phosphorylation measures revealed that SR Ca(2+) waves facilitated pressure-induced MLC(20) phosphorylation through mechanisms that include myosin light chain phosphatase inhibition. Cumulatively, our findings show that mechanical stimuli augment Ca(2+) wave generation in arterial smooth muscle and that these transient events facilitate tone development particularly at lower intravascular pressures by providing a proportion of the Ca(2+) required to directly control MLC(20) phosphorylation.
Collapse
Affiliation(s)
- Rania E Mufti
- Hotchkiss Brain Institute, Libin Cardiovascular Institute, Department of Physiology & Pharmacology, University of Calgary, Alberta, Canada
| | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Delmotte P, Sanderson MJ. Effects of formoterol on contraction and Ca2+ signaling of mouse airway smooth muscle cells. Am J Respir Cell Mol Biol 2009; 42:373-81. [PMID: 19502388 DOI: 10.1165/rcmb.2008-0403oc] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Formoterol, a long-acting beta(2)-receptor agonist, is used to relieve bronchial constriction. However, formoterol is often a racemic formulation, and contains both (R,R)- and (S,S)-enantiomers. Because the activity of each isomer is poorly defined, the mechanisms by which formoterol relaxes smooth muscle cells (SMCs) of intrapulmonary airways are not well understood. Consequently, we compared the effects of (S,S)-, (R,R)-, and racemic formoterol, as well as (R)-albuterol, on the contraction and Ca(2+) signaling of airway SMCs in mouse lung slices with phase-contrast and confocal microscopy. Small airways were contracted with methacholine and the associated SMCs displayed sustained Ca(2+) oscillations and an increase in Ca(2+) sensitivity. These contracted airways displayed a substantial, concentration-dependent relaxation in response to (R,R)-formoterol. Racemic formoterol had a similar potency as (R,R)-formoterol for relaxing airways. By contrast, (S,S)-formoterol only induced a small relaxation. In conjunction with relaxation, (R,R)- and racemic formoterol stopped and decreased the methacholine-induced Ca(2+) oscillations and Ca(2+) sensitivity of the SMCs, respectively, whereas (S,S)-formoterol only decreased the Ca(2+) sensitivity. In these studies, (R,R)- and racemic formoterol had a similar, but much greater, potency than (R)-albuterol for relaxing mice airways. This action was quickly initiated at high concentrations by decreasing the frequency of Ca(2+) oscillations, but was more usually mediated at lower concentrations by decreasing the Ca(2+) sensitivity of the SMCs.
Collapse
Affiliation(s)
- Philippe Delmotte
- Department of Physiology, University of Massachusetts Medical School, 55 Lake Avenue North, Worcester, MA 01655, USA
| | | |
Collapse
|
8
|
Fritz N, Dabertrand F, Mironneau J, Macrez N, Morel JL. Acetylcholine evokes an InsP3R1-dependent transient Ca2+ signal in rat duodenum myocytes. Can J Physiol Pharmacol 2008; 86:626-32. [PMID: 18758512 DOI: 10.1139/y08-067] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
In smooth muscle myocytes, agonist-activated release of calcium ions (Ca2+) stored in the sarcoplasmic reticulum (SR) occurs via different but overlapping transduction pathways. Hence, to fully study how SR Ca2+ channels are activated, the simultaneous activation of different Ca2+ signals should be separated. In rat duodenum myocytes, we have previously characterized that acetylcholine (ACh) induces Ca2+ oscillations by binding to its M2 muscarinic receptor and activating the ryanodine receptor subtype 2. Here, we show that ACh simultaneously evokes a Ca2+ signal dependent on activation of inositol 1,4,5-trisphosphate (InsP3) receptor subtype 1. A pharmacologic approach, the use of antisense oligonucleotides directed against InsP3R1, and the expression of a specific biosensor derived from green-fluorescent protein coupled to the pleckstrin homology domain of phospholipase C, suggested that the InsP3R1-dependent Ca2+ signal is transient and due to a transient synthesis of InsP3 via M3 muscarinic receptor. Moreover, we suggest that both M2 and M3 signalling pathways are modulating phosphatidylinositol 4,5-bisphosphate and InsP3 concentration, thus describing closely interacting pathways activated by ACh in duodenum myocytes.
Collapse
Affiliation(s)
- Nicolas Fritz
- Division of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | | | | | | | | |
Collapse
|
9
|
Jacobsen JCB, Aalkjaer C, Matchkov VV, Nilsson H, Freiberg JJ, Holstein-Rathlou NH. Heterogeneity and weak coupling may explain the synchronization characteristics of cells in the arterial wall. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2008; 366:3483-3502. [PMID: 18632459 DOI: 10.1098/rsta.2008.0105] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Vascular smooth muscle cells (SMCs) exhibit different types of calcium dynamics. Static vascular tone is associated with unsynchronized calcium waves and the developed force depends on the number of recruited cells. Global calcium transients synchronized among a large number of cells cause rhythmic development of force known as vasomotion. We present experimental data showing a considerable heterogeneity in cellular calcium dynamics in the vascular wall. In stimulated vessels, some SMCs remain quiescent, whereas others display waves of variable frequency. At the onset of vasomotion, all SMCs are enrolled into synchronized oscillation. Simulations of coupled SMCs show that the experimentally observed cellular recruitment, the presence of quiescent cells and the variation in oscillation frequency may arise if the cell population is phenotypically heterogeneous. In this case, quiescent cells can be entrained at the onset of vasomotion by the collective driving force from the synchronized oscillations in the membrane potential of the surrounding cells. Partial synchronization arises with an increase in the concentration of cyclic guanosine monophosphate, but in a heterogeneous cell population complete synchronization also requires a high-conductance pathway that provides strong coupling between the cells.
Collapse
Affiliation(s)
- Jens Christian Brings Jacobsen
- The Danish National Research Foundation Centre for Cardiac Arrhythmias, Department of Biomedical Sciences, University of Copenhagen, 2200 Copenhagen N, Denmark.
| | | | | | | | | | | |
Collapse
|
10
|
Chung WS, Farley JM. Tachyphylaxis to the inhibitory effect of L-type channel blockers on ACh-induced [Ca2+]i oscillations in porcine tracheal myocytes. J Biomed Sci 2007; 14:129-43. [PMID: 17278012 DOI: 10.1007/s11373-006-9122-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2006] [Accepted: 09/19/2006] [Indexed: 01/08/2023] Open
Abstract
Discrepancies about the role of L-type voltage-gated calcium channels (VGCC) in acetylcholine (ACh)-induced [Ca(2+)](i) oscillations in tracheal smooth muscle cells (TSMCs) have been seen in recent reports. We demonstrate here that ACh-induced [Ca(2+)](i) oscillations in TMCS were reversibly inhibited by three VGCC blockers, nicardipine, nifedipine and verapamil. Prolonged (several minutes) application of VGCC blockers, led to tachyphylaxis; that is, [Ca(2+)](i) oscillations resumed, but at a lower frequency. Brief (15-30 s) removal of VGCC blockers re-sensitized [Ca(2+)](i) oscillations to inhibition by the agents. Calcium oscillations tolerant to VGCC blockers were abolished by KB-R7943, an inhibitor of the reverse mode of Na(+)/Ca(2+) exchanger (NCX). KB-R7943 alone also abolished ACh-induced [Ca(2+)](i) oscillations. Enhancement of the reverse mode of NCX via removing extracellular Na(+) reversed inhibition of ACh-induced [Ca(2+)](i) oscillations by VGCC blockers. Inhibition of non-selective cation channels using Gd(3+) slightly reduced the frequency of ACh-induced [Ca(2+)](i) oscillations, but did not prevent the occurrence of tachyphylaxis. Altogether, these results suggest that VGCC and the reverse mode of NCX are two primary Ca(2+) entry pathways for maintaining ACh-induced [Ca(2+)](i) oscillations in TSMCs. The two pathways complement each other, and may account for tachyphylaxis of ACh-induced [Ca(2+)](i) oscillations to VGCC blockers.
Collapse
Affiliation(s)
- Wen-Shuo Chung
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS 39216-4505, USA
| | | |
Collapse
|
11
|
Zacharia J, Zhang J, Wier WG. Ca2+ signaling in mouse mesenteric small arteries: myogenic tone and adrenergic vasoconstriction. Am J Physiol Heart Circ Physiol 2006; 292:H1523-32. [PMID: 17114244 DOI: 10.1152/ajpheart.00670.2006] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Arteries that have developed myogenic tone (MT) are in a markedly different physiological state compared with those that have not, with higher cytosolic [Ca(2+)] and altered activity of several signal transduction pathways. In this study, we sought to determine whether alpha(1)-adrenoceptor-induced Ca(2+) signaling is different in pressurized arteries that have spontaneously developed MT (the presumptive physiological state) compared with those that have not (a common experimental state). At 32 degrees C and intraluminal pressure of 70 mmHg, cytoplasmic [Ca(2+)] was steady in most smooth muscle cells (SMCs). In a minority of cells (34%), however, at least one propagating Ca(2+) wave occurred. alpha(1)-Adrenoceptor activation (phenylephrine, PE; 0.1-10.0 microM) caused strong vasoconstriction and markedly increased the frequency of Ca(2+) waves (in virtually all cells). However, when cytosolic [Ca(2+)] was elevated experimentally in these arteries ([K(+)] 20 mM), PE failed to elicit Ca(2+) waves, although it did elevate [Ca(2+)] (F/F(0)) further and caused further vasoconstriction. During development of MT, the cytosolic [Ca(2+)] (F/F(0)) in individual SMCs increased, Ca(2+) waves disappeared (from SMCs that had them), and small Ca(2+) ripples (frequency approximately 0.05 Hz) appeared in approximately 13% of cells. PE elicited only spatially uniform increases in [Ca(2+)] and a smaller change in diameter (than in the absence of MT). Nevertheless, when cytosolic [Ca(2+)] and MT were decreased by nifedipine (1 microM), PE did elicit Ca(2+) waves. Thus alpha(1)-adrenoceptor-mediated Ca(2+) signaling is markedly different in arteries with and without MT, perhaps due to the elevated [Ca(2+)], and may have a different molecular basis. alpha(1)-Adrenoceptor-induced vasoconstriction may be supported either by Ca(2+) waves or by steady elevation of cytoplasmic [Ca(2+)], depending on the amount of MT.
Collapse
Affiliation(s)
- Joseph Zacharia
- Dept of Physiology, Univ of Maryland, Baltimore, MD 21201, USA
| | | | | |
Collapse
|
12
|
Abstract
The voltage-gated calcium channels (VGCCs) are a large and functionally diverse group of ion channels found throughout the central nervous system (CNS) and the periphery. Neuronal functions include the control of neurotransmitter release and neuronal excitability in important pain pathways. In the current review we will give an overview of the data that has been generated in support of these channels performing a pivotal role in the pain pathway.
Collapse
Affiliation(s)
- Valentin K Gribkoff
- Knopp Neurosciences, Inc., 100 Technology Drive, Suite 400, Pittsburgh, PA 15219, USA.
| |
Collapse
|