1
|
Jiang H, Zhang C, Lin M, Yin Y, Deng S, Liu W, Zhuo B, Tian G, Du Y, Meng Z. Deciphering the mechanistic impact of acupuncture on the neurovascular unit in acute ischemic stroke: Insights from basic research in a narrative review. Ageing Res Rev 2024; 101:102536. [PMID: 39384155 DOI: 10.1016/j.arr.2024.102536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 09/27/2024] [Accepted: 10/01/2024] [Indexed: 10/11/2024]
Abstract
Ischemic stroke(IS), a severe acute cerebrovascular disease, not only imposes a heavy economic burden on society but also presents numerous challenges in treatment. During the acute phase, while thrombolysis and thrombectomy serve as primary treatments, these approaches are restricted by a narrow therapeutic window. During rehabilitation, commonly used neuroprotective agents struggle with their low drug delivery efficiency and inadequate preclinical testing, and the long-term pharmacological and toxicity effects of nanomedicines remain undefined. Meanwhile, acupuncture as a therapeutic approach is widely acknowledged for its effectiveness in treating IS and has been recommended by the World Health Organization (WHO) as an alternative and complementary therapy, even though its exact mechanisms remain unclear. This review aims to summarize the known mechanisms of acupuncture and electroacupuncture (EA) in the treatment of IS. Research shows that acupuncture treatment mainly protects the neurovascular unit through five mechanisms: 1) reducing neuronal apoptosis and promoting neuronal repair and proliferation; 2) maintaining the integrity of the blood-brain barrier (BBB); 3) inhibiting the overactivation and polarization imbalance of microglia; 4) regulating the movement of vascular smooth muscle (VSM) cells; 5) promoting the proliferation of oligodendrocyte precursors. Through an in-depth analysis, this review reveals the multi-level, multi-dimensional impact of acupuncture treatment on the neurovascular unit (NVU) following IS, providing stronger evidence and a theoretical basis for its clinical application.
Collapse
Affiliation(s)
- Hailun Jiang
- Department of Acupuncture, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China; Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Department of Acupuncture, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300381, China
| | - Chao Zhang
- Department of Acupuncture, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China; Department of Acupuncture, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300381, China
| | - Mengxuan Lin
- Department of Acupuncture, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China; Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Department of Acupuncture, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300381, China
| | - Yu Yin
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Shizhe Deng
- Department of Acupuncture, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China; Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Department of Acupuncture, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300381, China
| | - Wei Liu
- Department of Acupuncture, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China; Department of Acupuncture, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300381, China
| | - Bifang Zhuo
- Department of Acupuncture, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China; Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Department of Acupuncture, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300381, China
| | - Guang Tian
- Department of Acupuncture, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China; Department of Acupuncture, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300381, China
| | - Yuzheng Du
- Department of Acupuncture, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China; Department of Acupuncture, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300381, China.
| | - Zhihong Meng
- Department of Acupuncture, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China; Department of Acupuncture, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300381, China.
| |
Collapse
|
2
|
Hu S, Trieb M, Huang R, Tamalunas A, Keller P, Götz M, Waidelich R, Stief CG, Hennenberg M. Organ-specific off-target effects of Pim/ZIP kinase inhibitors suggest lack of contractile Pim kinase activity in prostate, bladder, and vascular smooth muscle. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:1219-1231. [PMID: 37658212 PMCID: PMC10791718 DOI: 10.1007/s00210-023-02664-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 08/07/2023] [Indexed: 09/03/2023]
Abstract
Smooth muscle contraction by Pim kinases and ZIPK has been suggested, but evidence for lower urinary tract organs or using Pim-selective inhibitor concentrations is not yet available. Here, we assessed effects of the Pim inhibitors AZD1208 and TCS PIM-1 and the dual ZIPK/Pim inhibitor HS38 on contractions of human prostate and bladder tissues and of porcine interlobar arteries. Human tissues were obtained from radical prostatectomy and radical cystectomy and renal interlobar arteries from pigs. Contractions were studied in an organ bath. Noradrenaline-, phenylephrine- and methoxamine-induced contractions were reduced (up to > 50%) with 500-nM AZD1208 in prostate tissues and to lesser degree and not consistently with all agonists in interlobar arteries. A total of 100-nM AZD1208 or 500-nM TCS PIM-1 did not affect agonist-induced contractions in prostate tissues. Decreases in agonist-induced contractions with 3-µM HS38 in prostate tissues and interlobar arteries were of small extent and did not occur with each agonist. Carbachol-induced contractions in detrusor tissues were unchanged with AZD1208 (500 nM) or HS38. Electric field stimulation-induced contractions were not affected with AZD1208 or HS38 in any tissue, but slightly reduced with 500-nM TCS PIM-1 in prostate tissues. Concentration-dependent effects of Pim inhibitors suggest lacking Pim-driven smooth muscle contraction in the prostate, bladder, and interlobar arteries but point to organ-specific functions of off-targets. Procontractile functions of ZIPK in the prostate and interlobar arteries may be limited and are lacking in the detrusor.
Collapse
Affiliation(s)
- Sheng Hu
- Department of Urology, University Hospital Munich, LMU Munich, Munich, Germany
| | - Moritz Trieb
- Department of Urology, University Hospital Munich, LMU Munich, Munich, Germany
| | - Ru Huang
- Department of Urology, University Hospital Munich, LMU Munich, Munich, Germany
| | - Alexander Tamalunas
- Department of Urology, University Hospital Munich, LMU Munich, Munich, Germany
| | - Patrick Keller
- Department of Urology, University Hospital Munich, LMU Munich, Munich, Germany
| | - Melanie Götz
- Department of Urology, University Hospital Munich, LMU Munich, Munich, Germany
| | - Raphaela Waidelich
- Department of Urology, University Hospital Munich, LMU Munich, Munich, Germany
| | - Christian G Stief
- Department of Urology, University Hospital Munich, LMU Munich, Munich, Germany
| | - Martin Hennenberg
- Department of Urology, University Hospital Munich, LMU Munich, Munich, Germany.
- Urologische Klinik Und Poliklinik, Marchioninistr. 15, 81377, München, Germany.
| |
Collapse
|
3
|
Turner SR, Al‐Ghabkari A, Carlson DA, Chappellaz M, Sutherland C, Haystead TAJ, Cole WC, MacDonald JA. Death-associated protein kinase 3 regulates the myogenic reactivity of cerebral arteries. Exp Physiol 2023; 108:986-997. [PMID: 37084168 PMCID: PMC10988501 DOI: 10.1113/ep090631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 03/28/2023] [Indexed: 04/22/2023]
Abstract
NEW FINDINGS What is the central question of this study? DAPK3 contributes to the Ca2+ -sensitization of vascular smooth muscle contraction: does this protein kinase participate in the myogenic response of cerebral arteries? What is the main finding and its importance? Small molecule inhibitors of DAPK3 effectively block the myogenic responses of cerebral arteries. HS38-dependent changes to vessel constriction occur independent of LC20 phosphorylation, and therefore DAPK3 appears to operate via the actin cytoskeleton. A role for DAPK3 in the myogenic response was not previously reported, and the results support a potential new therapeutic target in the cerebrovascular system. ABSTRACT The vascular smooth muscle (VSM) of resistance blood vessels is a target of intrinsic autoregulatory responses to increased intraluminal pressure, the myogenic response. In the brain, the myogenic reactivity of cerebral arteries is critical to homeostatic blood flow regulation. Here we provide the first evidence to link the death-associated protein kinase 3 (DAPK3) to the myogenic response of rat and human cerebral arteries. DAPK3 is a Ser/Thr kinase involved in Ca2+ -sensitization mechanisms of smooth muscle contraction. Ex vivo administration of a specific DAPK3 inhibitor (i.e., HS38) could attenuate vessel constrictions invoked by serotonin as well as intraluminal pressure elevation. The HS38-dependent dilatation was not associated with any change in myosin light chain (LC20) phosphorylation. The results suggest that DAPK3 does not regulate Ca2+ sensitization pathways during the myogenic response of cerebral vessels but rather operates to control the actin cytoskeleton. A slow return of myogenic tone was observed during the sustained ex vivo exposure of cerebral arteries to HS38. Recovery of tone was associated with greater LC20 phosphorylation that suggests intrinsic signalling compensation in response to attenuation of DAPK3 activity. Additional experiments with VSM cells revealed HS38- and siDAPK-dependent effects on the actin cytoskeleton and focal adhesion kinase phosphorylation status. The translational importance of DAPK3 to the human cerebral vasculature was noted, with robust expression of the protein kinase and significant HS38-dependent attenuation of myogenic reactivity found for human pial vessels.
Collapse
Affiliation(s)
- Sara R. Turner
- Department of Biochemistry & Molecular Biology, Cumming School of MedicineUniversity of CalgaryCalgaryABCanada
| | - Abdulhameed Al‐Ghabkari
- Department of Biochemistry & Molecular Biology, Cumming School of MedicineUniversity of CalgaryCalgaryABCanada
| | - David A. Carlson
- Department of Pharmacology & Cancer BiologyDuke University School of MedicineDurhamNCUSA
| | - Mona Chappellaz
- Department of Biochemistry & Molecular Biology, Cumming School of MedicineUniversity of CalgaryCalgaryABCanada
| | - Cindy Sutherland
- Department of Biochemistry & Molecular Biology, Cumming School of MedicineUniversity of CalgaryCalgaryABCanada
- Department of Physiology and Pharmacology, Cumming School of MedicineUniversity of CalgaryCalgaryABCanada
| | - Timothy A. J. Haystead
- Department of Pharmacology & Cancer BiologyDuke University School of MedicineDurhamNCUSA
| | - William C. Cole
- Department of Physiology and Pharmacology, Cumming School of MedicineUniversity of CalgaryCalgaryABCanada
| | - Justin A. MacDonald
- Department of Biochemistry & Molecular Biology, Cumming School of MedicineUniversity of CalgaryCalgaryABCanada
| |
Collapse
|
4
|
Chen HM, MacDonald JA. Death-associated protein kinases and intestinal epithelial homeostasis. Anat Rec (Hoboken) 2022; 306:1062-1087. [PMID: 35735750 DOI: 10.1002/ar.25022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 05/12/2022] [Accepted: 06/06/2022] [Indexed: 12/15/2022]
Abstract
The family of death-associated protein kinases (DAPKs) and DAPK-related apoptosis-inducing protein kinases (DRAKs) act as molecular switches for a multitude of cellular processes, including apoptotic and autophagic cell death events. This review summarizes the mechanisms for kinase activity regulation and discusses recent molecular investigations of DAPK and DRAK family members in the intestinal epithelium. In general, recent literature convincingly supports the importance of this family of protein kinases in the homeostatic processes that govern the proper function of the intestinal epithelium. Each of the DAPK family of proteins possesses distinct biochemical properties, and we compare similarities in the information available as well as those cases where functional distinctions are apparent. As the prototypical member of the family, DAPK1 is noteworthy for its tumor suppressor function and association with colorectal cancer. In the intestinal epithelium, DAPK2 is associated with programmed cell death, potential tumor-suppressive functions, and a unique influence on granulocyte biology. The impact of the DRAKs in the epithelium is understudied, but recent studies support a role for DRAK1 in inflammation-mediated tumor growth and metastasis. A commentary is provided on the potential importance of DAPK3 in facilitating epithelial restitution and wound healing during the resolution of colitis. An update on efforts to develop selective pharmacologic effectors of individual DAPK members is also supplied.
Collapse
Affiliation(s)
- Huey-Miin Chen
- Department of Biochemistry & Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Justin A MacDonald
- Department of Biochemistry & Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
5
|
Markandran K, Yu H, Song W, Lam DTUH, Madathummal MC, Ferenczi MA. Functional and Molecular Characterisation of Heart Failure Progression in Mice and the Role of Myosin Regulatory Light Chains in the Recovery of Cardiac Muscle Function. Int J Mol Sci 2021; 23:ijms23010088. [PMID: 35008512 PMCID: PMC8745055 DOI: 10.3390/ijms23010088] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 12/07/2021] [Accepted: 12/14/2021] [Indexed: 02/07/2023] Open
Abstract
Heart failure (HF) as a result of myocardial infarction (MI) is a major cause of fatality worldwide. However, the cause of cardiac dysfunction succeeding MI has not been elucidated at a sarcomeric level. Thus, studying the alterations within the sarcomere is necessary to gain insights on the fundamental mechansims leading to HF and potentially uncover appropriate therapeutic targets. Since existing research portrays regulatory light chains (RLC) to be mediators of cardiac muscle contraction in both human and animal models, its role was further explored In this study, a detailed characterisation of the physiological changes (i.e., isometric force, calcium sensitivity and sarcomeric protein phosphorylation) was assessed in an MI mouse model, between 2D (2 days) and 28D post-MI, and the changes were related to the phosphorylation status of RLCs. MI mouse models were created via complete ligation of left anterior descending (LAD) coronary artery. Left ventricular (LV) papillary muscles were isolated and permeabilised for isometric force and Ca2+ sensitivity measurement, while the LV myocardium was used to assay sarcomeric proteins’ (RLC, troponin I (TnI) and myosin binding protein-C (MyBP-C)) phosphorylation levels and enzyme (myosin light chain kinase (MLCK), zipper interacting protein kinase (ZIPK) and myosin phosphatase target subunit 2 (MYPT2)) expression levels. Finally, the potential for improving the contractility of diseased cardiac papillary fibres via the enhancement of RLC phosphorylation levels was investigated by employing RLC exchange methods, in vitro. RLC phosphorylation and isometric force potentiation were enhanced in the compensatory phase and decreased in the decompensatory phase of HF failure progression, respectively. There was no significant time-lag between the changes in RLC phosphorylation and isometric force during HF progression, suggesting that changes in RLC phosphorylation immediately affect force generation. Additionally, the in vitro increase in RLC phosphorylation levels in 14D post-MI muscle segments (decompensatory stage) enhanced its force of isometric contraction, substantiating its potential in HF treatment. Longitudinal observation unveils potential mechanisms involving MyBP-C and key enzymes regulating RLC phosphorylation, such as MLCK and MYPT2 (subunit of MLCP), during HF progression. This study primarily demonstrates that RLC phosphorylation is a key sarcomeric protein modification modulating cardiac function. This substantiates the possibility of using RLCs and their associated enzymes to treat HF.
Collapse
Affiliation(s)
- Kasturi Markandran
- Lee Kong Chian School of Medicine, Nanyang Technological University, Experimental Medicine Building, 59 Nanyang Drive, Singapore 636921, Singapore; (K.M.); (H.Y.); (W.S.); (D.T.U.H.L.); (M.C.M.)
| | - Haiyang Yu
- Lee Kong Chian School of Medicine, Nanyang Technological University, Experimental Medicine Building, 59 Nanyang Drive, Singapore 636921, Singapore; (K.M.); (H.Y.); (W.S.); (D.T.U.H.L.); (M.C.M.)
| | - Weihua Song
- Lee Kong Chian School of Medicine, Nanyang Technological University, Experimental Medicine Building, 59 Nanyang Drive, Singapore 636921, Singapore; (K.M.); (H.Y.); (W.S.); (D.T.U.H.L.); (M.C.M.)
| | - Do Thuy Uyen Ha Lam
- Lee Kong Chian School of Medicine, Nanyang Technological University, Experimental Medicine Building, 59 Nanyang Drive, Singapore 636921, Singapore; (K.M.); (H.Y.); (W.S.); (D.T.U.H.L.); (M.C.M.)
- Laboratory of Precision Disease Therapeutics, Genome Institute of Singapore, 60 Biopolis Street, Singapore 138672, Singapore
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, 10 Medical Drive, Singapore 117597, Singapore
| | - Mufeeda Changaramvally Madathummal
- Lee Kong Chian School of Medicine, Nanyang Technological University, Experimental Medicine Building, 59 Nanyang Drive, Singapore 636921, Singapore; (K.M.); (H.Y.); (W.S.); (D.T.U.H.L.); (M.C.M.)
- A*STAR Microscopy Platform—Electron Microscopy, 61 Biopolis Drive, Proteos, Singapore 138673, Singapore
| | - Michael A. Ferenczi
- Lee Kong Chian School of Medicine, Nanyang Technological University, Experimental Medicine Building, 59 Nanyang Drive, Singapore 636921, Singapore; (K.M.); (H.Y.); (W.S.); (D.T.U.H.L.); (M.C.M.)
- Brunel Medical School, Brunel University London, Kingston Lane, Uxbridge UB8 3PH, UK
- Correspondence:
| |
Collapse
|
6
|
Thein W, Po WW, Choi WS, Sohn UD. Autophagy and Digestive Disorders: Advances in Understanding and Therapeutic Approaches. Biomol Ther (Seoul) 2021; 29:353-364. [PMID: 34127572 PMCID: PMC8255139 DOI: 10.4062/biomolther.2021.086] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 05/11/2021] [Accepted: 05/24/2021] [Indexed: 12/16/2022] Open
Abstract
The gastrointestinal (GI) tract is a series of hollow organs that is responsible for the digestion and absorption of ingested foods and the excretion of waste. Any changes in the GI tract can lead to GI disorders. GI disorders are highly prevalent in the population and account for substantial morbidity, mortality, and healthcare utilization. GI disorders can be functional, or organic with structural changes. Functional GI disorders include functional dyspepsia and irritable bowel syndrome. Organic GI disorders include inflammation of the GI tract due to chronic infection, drugs, trauma, and other causes. Recent studies have highlighted a new explanatory mechanism for GI disorders. It has been suggested that autophagy, an intracellular homeostatic mechanism, also plays an important role in the pathogenesis of GI disorders. Autophagy has three primary forms: macroautophagy, microautophagy, and chaperone-mediated autophagy. It may affect intestinal homeostasis, host defense against intestinal pathogens, regulation of the gut microbiota, and innate and adaptive immunity. Drugs targeting autophagy could, therefore, have therapeutic potential for treating GI disorders. In this review, we provide an overview of current understanding regarding the evidence for autophagy in GI diseases and updates on potential treatments, including drugs and complementary and alternative medicines.
Collapse
Affiliation(s)
- Wynn Thein
- College of Pharmacy, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Wah Wah Po
- College of Pharmacy, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Won Seok Choi
- College of Pharmacy, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Uy Dong Sohn
- College of Pharmacy, Chung-Ang University, Seoul 06974, Republic of Korea
| |
Collapse
|
7
|
Ono T, Terada F, Okumura M, Chihara T, Hamao K. Impairment of cytokinesis by cancer-associated DAPK3 mutations. Biochem Biophys Res Commun 2020; 533:1095-1101. [PMID: 33032825 DOI: 10.1016/j.bbrc.2020.09.078] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 09/19/2020] [Indexed: 12/29/2022]
Abstract
Death-associated protein kinase 3 (DAPK3), a member of the DAPK family, contributes to cytokinesis by phosphorylating myosin II regulatory light chain (MRLC). Missense mutations in DAPK3, T112M, D161N, and P216S, were observed in the lung, colon, and cervical cancers, respectively, but the effects of these mutations on cytokinesis remain unclear. Here, we show that cells expressing EGFP-DAPK3-T112M, -D161N, or -P216S exhibited reduced rates of cytokinesis, with an increased ratio of multinucleated cells. In addition, these cells exhibited reduced levels of phosphorylated MRLC at the contractile ring. Collectively, our data demonstrates that cancer-associated DAPK3 mutations impair cytokinesis by reducing phosphorylated MRLC.
Collapse
Affiliation(s)
- Taichiro Ono
- Department of Biological Science, Graduate School of Science, Hiroshima University, 1-3-1 Kagamiyama, Hiroshima, 739-8526, Japan
| | - Fumi Terada
- Program of Biomedical Science, Graduate School of Integrated Sciences for Life, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima, 739-8526, Japan
| | - Misako Okumura
- Department of Biological Science, Graduate School of Science, Hiroshima University, 1-3-1 Kagamiyama, Hiroshima, 739-8526, Japan; Program of Biomedical Science, Graduate School of Integrated Sciences for Life, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima, 739-8526, Japan; Program of Basic Biology, Graduate School of Integrated Sciences for Life, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima, 739-8526, Japan
| | - Takahiro Chihara
- Department of Biological Science, Graduate School of Science, Hiroshima University, 1-3-1 Kagamiyama, Hiroshima, 739-8526, Japan; Program of Biomedical Science, Graduate School of Integrated Sciences for Life, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima, 739-8526, Japan; Program of Basic Biology, Graduate School of Integrated Sciences for Life, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima, 739-8526, Japan
| | - Kozue Hamao
- Department of Biological Science, Graduate School of Science, Hiroshima University, 1-3-1 Kagamiyama, Hiroshima, 739-8526, Japan; Program of Biomedical Science, Graduate School of Integrated Sciences for Life, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima, 739-8526, Japan; Program of Basic Biology, Graduate School of Integrated Sciences for Life, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima, 739-8526, Japan.
| |
Collapse
|
8
|
Deng JT, Bhaidani S, Sutherland C, MacDonald JA, Walsh MP. Rho-associated kinase and zipper-interacting protein kinase, but not myosin light chain kinase, are involved in the regulation of myosin phosphorylation in serum-stimulated human arterial smooth muscle cells. PLoS One 2019; 14:e0226406. [PMID: 31834925 PMCID: PMC6910671 DOI: 10.1371/journal.pone.0226406] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Accepted: 11/26/2019] [Indexed: 01/09/2023] Open
Abstract
Myosin regulatory light chain (LC20) phosphorylation plays an important role in vascular smooth muscle contraction and cell migration. Ca2+/calmodulin-dependent myosin light chain kinase (MLCK) phosphorylates LC20 (its only known substrate) exclusively at S19. Rho-associated kinase (ROCK) and zipper-interacting protein kinase (ZIPK) have been implicated in the regulation of LC20 phosphorylation via direct phosphorylation of LC20 at T18 and S19 and indirectly via phosphorylation of MYPT1 (the myosin targeting subunit of myosin light chain phosphatase, MLCP) and Par-4 (prostate-apoptosis response-4). Phosphorylation of MYPT1 at T696 and T853 inhibits MLCP activity whereas phosphorylation of Par-4 at T163 disrupts its interaction with MYPT1, exposing the sites of phosphorylation in MYPT1 and leading to MLCP inhibition. To evaluate the roles of MLCK, ROCK and ZIPK in these phosphorylation events, we investigated the time courses of phosphorylation of LC20, MYPT1 and Par-4 in serum-stimulated human vascular smooth muscle cells (from coronary and umbilical arteries), and examined the effects of siRNA-mediated MLCK, ROCK and ZIPK knockdown and pharmacological inhibition on these phosphorylation events. Serum stimulation induced rapid phosphorylation of LC20 at T18 and S19, MYPT1 at T696 and T853, and Par-4 at T163, peaking within 30–120 s. MLCK knockdown or inhibition, or Ca2+ chelation with EGTA, had no effect on serum-induced LC20 phosphorylation. ROCK knockdown decreased the levels of phosphorylation of LC20 at T18 and S19, of MYPT1 at T696 and T853, and of Par-4 at T163, whereas ZIPK knockdown decreased LC20 diphosphorylation, but increased phosphorylation of MYPT1 at T696 and T853 and of Par-4 at T163. ROCK inhibition with GSK429286A reduced serum-induced phosphorylation of LC20 at T18 and S19, MYPT1 at T853 and Par-4 at T163, while ZIPK inhibition by HS38 reduced only LC20 diphosphorylation. We also demonstrated that serum stimulation induced phosphorylation (activation) of ZIPK, which was inhibited by ROCK and ZIPK down-regulation and inhibition. Finally, basal phosphorylation of LC20 in the absence of serum stimulation was unaffected by MLCK, ROCK or ZIPK knockdown or inhibition. We conclude that: (i) serum stimulation of cultured human arterial smooth muscle cells results in rapid phosphorylation of LC20, MYPT1, Par-4 and ZIPK, in contrast to the slower phosphorylation of kinases and other proteins involved in other signaling pathways (Akt, ERK1/2, p38 MAPK and HSP27), (ii) ROCK and ZIPK, but not MLCK, are involved in serum-induced phosphorylation of LC20, (iii) ROCK, but not ZIPK, directly phosphorylates MYPT1 at T853 and Par-4 at T163 in response to serum stimulation, (iv) ZIPK phosphorylation is enhanced by serum stimulation and involves phosphorylation by ROCK and autophosphorylation, and (v) basal phosphorylation of LC20 under serum-free conditions is not attributable to MLCK, ROCK or ZIPK.
Collapse
Affiliation(s)
- Jing-Ti Deng
- Department of Biochemistry & Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Sabreena Bhaidani
- Department of Biochemistry & Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Cindy Sutherland
- Department of Biochemistry & Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Justin A. MacDonald
- Department of Biochemistry & Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Michael P. Walsh
- Department of Biochemistry & Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- * E-mail:
| |
Collapse
|
9
|
Li KX, Du Q, Wang HP, Sun HJ. Death-associated protein kinase 3 deficiency alleviates vascular calcification via AMPK-mediated inhibition of endoplasmic reticulum stress. Eur J Pharmacol 2019; 852:90-98. [PMID: 30851272 DOI: 10.1016/j.ejphar.2019.03.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2019] [Revised: 03/02/2019] [Accepted: 03/06/2019] [Indexed: 12/11/2022]
Abstract
Vascular calcification (VC) is a critical feature of chronic kidney disease (CKD), diabetes, hypertension, and atherosclerosis. Death-associated protein kinase 3 (DAPK3) is involved in vascular remodeling in hypertension. However, it remains to be clarified whether DAPK3 controls vascular smooth muscle cell (VSMC) phenotypic transition into an osteogenic cell phenotype, which is an important process for VC. In vivo VC was induced in rats by vitamin D3 and nicotine. VSMCs were incubated with calcifying media containing β-glycerophosphate and Ca2+ to induce VC in vitro. Herein, we demonstrated increased expression of DAPK3 in the aortas of VC rats and VSMCs cultured in calcifying media. Knockdown of DAPK3 significantly inhibited calcifying media-induced VSMC mineralization and retarded the phenotypic transformation of VSMCs into osteogenic cells. Silencing of DAPK3 suppressed endoplasmic reticulum stress (ERS) related protein expressions, but upregulated the phosphorylation level of AMP-activated protein kinase (AMPK) in calcified VSMCs. Moreover, pretreatment with AMPK inhibitor Compound C abolished DAPK3 shRNA-mediated inhibition of ERS in VSMCs. In vivo, DAPK inhibitor significantly prevented calcium deposition in the aortas of VC rats. The present results revealed that DAPK3 modulated VSMC calcification through AMPK-mediated ERS signaling.
Collapse
Affiliation(s)
- Ke-Xue Li
- Department of Physiology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, PR China
| | - Qiong Du
- Department of Physiology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, PR China
| | - Hui-Ping Wang
- Department of Basic Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu 214122, PR China
| | - Hai-Jian Sun
- Department of Basic Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu 214122, PR China.
| |
Collapse
|
10
|
Al-Ghabkari A, Moffat LD, Walsh MP, MacDonald JA. Validation of chemical genetics for the study of zipper-interacting protein kinase signaling. Proteins 2018; 86:1211-1217. [PMID: 30381843 DOI: 10.1002/prot.25607] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 09/05/2018] [Accepted: 09/14/2018] [Indexed: 01/23/2023]
Abstract
Zipper-interacting protein kinase (ZIPK) is a Ser/Thr kinase that mediates a variety of cellular functions. Analogue-sensitive kinase technology was applied to the study of ZIPK signaling in coronary artery smooth muscle cells. ZIPK was engineered in the ATP-binding pocket by substitution of a bulky gatekeeper amino acid (Leu93) with glycine. Cell-permeable derivatives of pyrazolo[3,4-d]pyrimidine provided effective inhibition of L93G-ZIPK (1NM-PP1, IC50 , 1.0 μM; 3MB-PP1, IC50 , 2.0 μM; and 1NA-PP1, IC50 , 8.6 μM) but only 3MB-PP1 had inhibitory potential (IC50 > 10 μM) toward wild-type ZIPK. Each of the compounds also attenuated Rho-associated coiled-coil containing protein kinase (ROCK) activity under experimental conditions found to be optimal for inhibition of L93G-ZIPK. In silico molecular simulations showed effective docking of 1NM-PP1 into ZIPK following mutational enlargement of the ATP-binding pocket. Molecular simulation of 1NM-PP1 docking in the ATP-binding pocket of ROCK was also completed. The 1NM-PP1 inhibitor was selected as the optimal compound for selective chemical genetics in smooth muscle cells since it displayed the highest potency for L93G-ZIPK relative to WT-ZIPK and the weakest off-target effects against other relevant kinases. Finally, the 1NM-PP1 and L93G-ZIPK pairing was effectively applied in vascular smooth muscle cells to manipulate the phosphorylation level of LC20, a previously defined target of ZIPK.
Collapse
Affiliation(s)
- Abdulhameed Al-Ghabkari
- Department of Biochemistry & Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Lori D Moffat
- Department of Biochemistry & Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Michael P Walsh
- Department of Biochemistry & Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Justin A MacDonald
- Department of Biochemistry & Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
11
|
Carlson DA, Singer MR, Sutherland C, Redondo C, Alexander LT, Hughes PF, Knapp S, Gurley SB, Sparks MA, MacDonald JA, Haystead TAJ. Targeting Pim Kinases and DAPK3 to Control Hypertension. Cell Chem Biol 2018; 25:1195-1207.e32. [PMID: 30033129 PMCID: PMC6863095 DOI: 10.1016/j.chembiol.2018.06.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Revised: 03/16/2018] [Accepted: 06/20/2018] [Indexed: 01/19/2023]
Abstract
Sustained vascular smooth muscle hypercontractility promotes hypertension and cardiovascular disease. The etiology of hypercontractility is not completely understood. New therapeutic targets remain vitally important for drug discovery. Here we report that Pim kinases, in combination with DAPK3, regulate contractility and control hypertension. Using a co-crystal structure of lead molecule (HS38) in complex with DAPK3, a dual Pim/DAPK3 inhibitor (HS56) and selective DAPK3 inhibitors (HS94 and HS148) were developed to provide mechanistic insight into the polypharmacology of hypertension. In vitro and ex vivo studies indicated that Pim kinases directly phosphorylate smooth muscle targets and that Pim/DAPK3 inhibition, unlike selective DAPK3 inhibition, significantly reduces contractility. In vivo, HS56 decreased blood pressure in spontaneously hypertensive mice in a dose-dependent manner without affecting heart rate. These findings suggest including Pim kinase inhibition within a multi-target engagement strategy for hypertension management. HS56 represents a significant step in the development of molecularly targeted antihypertensive medications.
Collapse
Affiliation(s)
- David A Carlson
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC 27710, USA
| | - Miriam R Singer
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC 27710, USA
| | - Cindy Sutherland
- Department of Biochemistry & Molecular Biology, Cumming School of Medicine, University of Calgary, 3280 Hospital Drive NW, Calgary, AB T2N 4Z6, Canada
| | - Clara Redondo
- Structural Genomics Consortium, University of Oxford, Oxford OX3 7DQ, UK
| | - Leila T Alexander
- Structural Genomics Consortium, University of Oxford, Oxford OX3 7DQ, UK
| | - Philip F Hughes
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC 27710, USA
| | - Stefan Knapp
- Structural Genomics Consortium, University of Oxford, Oxford OX3 7DQ, UK; Institute for Pharmaceutical Chemistry, Johann Wolfgang Goethe-University, Max-von-Laue-Strasse 9, 60438 Frankfurt am Main, Germany
| | - Susan B Gurley
- Division of Nephrology, Department of Medicine, Duke University and Durham VA Medical Centers, Durham, NC 27710, USA
| | - Matthew A Sparks
- Division of Nephrology, Department of Medicine, Duke University and Durham VA Medical Centers, Durham, NC 27710, USA
| | - Justin A MacDonald
- Department of Biochemistry & Molecular Biology, Cumming School of Medicine, University of Calgary, 3280 Hospital Drive NW, Calgary, AB T2N 4Z6, Canada
| | - Timothy A J Haystead
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC 27710, USA.
| |
Collapse
|
12
|
Novel Functions of Death-Associated Protein Kinases through Mitogen-Activated Protein Kinase-Related Signals. Int J Mol Sci 2018; 19:ijms19103031. [PMID: 30287790 PMCID: PMC6213522 DOI: 10.3390/ijms19103031] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 10/01/2018] [Accepted: 10/01/2018] [Indexed: 01/05/2023] Open
Abstract
Death associated protein kinase (DAPK) is a calcium/calmodulin-regulated serine/threonine kinase; its main function is to regulate cell death. DAPK family proteins consist of DAPK1, DAPK2, DAPK3, DAPK-related apoptosis-inducing protein kinases (DRAK)-1 and DRAK-2. In this review, we discuss the roles and regulatory mechanisms of DAPK family members and their relevance to diseases. Furthermore, a special focus is given to several reports describing cross-talks between DAPKs and mitogen-activated protein kinases (MAPK) family members in various pathologies. We also discuss small molecule inhibitors of DAPKs and their potential as therapeutic targets against human diseases.
Collapse
|
13
|
Xu Z, Zhang M, Dou D, Tao X, Kang T. Berberine Depresses Contraction of Smooth Muscle via Inhibiting Myosin Light-chain Kinase. Pharmacogn Mag 2017; 13:454-458. [PMID: 28839371 PMCID: PMC5551364 DOI: 10.4103/pm.pm_205_16] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Revised: 05/13/2016] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND Berberine is a natural isoquinoline alkaloid possessing various pharmacological effects, particularly apparent in the treatment of diarrhea, but the underlying mechanism remains unclear. Smooth muscle myosin light-chain kinase (MLCK) plays a crucial role in the smooth muscle relaxation-contraction events, and it is well known that berberine can effectively depress the contraction of smooth muscle. Hence, whether berberine could inhibit MLCK and then depress the smooth muscle contractility might be researched. OBJECTIVE The purpose of this study is to investigate the effects of berberine on MLCK. Based on this, the contractility of gastro-intestine, catalysis activity of MLCK, and molecular docking are going to be evaluated. MATERIALS AND METHODS The experiment of smooth muscle contraction was directly monitored the contractions of the isolated gastrointestine by frequency and amplitude at different concentration of berberine. The effects of berberine on MLCK were measured in the presence of Ca2+-calmodulin, using the activities of 20 kDa myosin light chain (MLC20) phosphorylation, and myosin Mg2+-ATPase induced by MLCK. The docking study was conducted with expert software in the meantime. RESULTS The phosphorylation of myosin and the Mg2+-ATPase activity is reduced in the presence of berberine. Moreover, berberine could inhibit the contractibility of isolated gastric intestine smooth muscle. Berberine could bind to the ATP binding site of MLCK through hydrophobic effect and hydrogen bonding according to the docking study. CONCLUSION The present work gives a deep insight into the molecular mechanism for the treatment of diarrhea with berberine, i.e., berberine could suppress the contractility of smooth muscle through binding to MLCK and depressing the catalysis activity of MLCK. SUMMARY Berberine significantly reduced the amplitude of contraction in isolated duodenum and gastric strips in ratsBerberine inhibited the phosphorylated extents of MLC20 and Mg2+-ATPase activity of phosphorylated myosin induced by MLCKBerberine binds to the ATP binding site of MLCK by hydrophobic effect and hydrogen bondingBerberine may modulate contraction of smooth muscle by inhibiting MLCK. Abbreviations used: MLCK: Myosin light chain kinase; MLC20: 20 KDa regulating myosin light chain; CaM: Calmodulin.
Collapse
Affiliation(s)
- Zhili Xu
- Department of Pharmacology, College of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian 116600, P.R. China
| | - Mingbo Zhang
- Department of Pharmacology, College of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian 116600, P.R. China
| | - Deqiang Dou
- Department of Pharmacology, College of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian 116600, P.R. China
| | - Xiaojun Tao
- Department of Pharmacology, College of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian 116600, P.R. China
| | - Tingguo Kang
- Department of Pharmacology, College of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian 116600, P.R. China
| |
Collapse
|
14
|
Abd-Elrahman KS, Colinas O, Walsh EJ, Zhu HL, Campbell CM, Walsh MP, Cole WC. Abnormal myosin phosphatase targeting subunit 1 phosphorylation and actin polymerization contribute to impaired myogenic regulation of cerebral arterial diameter in the type 2 diabetic Goto-Kakizaki rat. J Cereb Blood Flow Metab 2017; 37:227-240. [PMID: 26721393 PMCID: PMC5363741 DOI: 10.1177/0271678x15622463] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Revised: 10/26/2015] [Accepted: 11/17/2015] [Indexed: 12/11/2022]
Abstract
The myogenic response of cerebral resistance arterial smooth muscle to intraluminal pressure elevation is a key physiological mechanism regulating blood flow to the brain. Rho-associated kinase plays a critical role in the myogenic response by activating Ca2+ sensitization mechanisms: (i) Rho-associated kinase inhibits myosin light chain phosphatase by phosphorylating its targeting subunit myosin phosphatase targeting subunit 1 (at T855), augmenting 20 kDa myosin regulatory light chain (LC20) phosphorylation and force generation; and (ii) Rho-associated kinase stimulates cytoskeletal actin polymerization, enhancing force transmission to the cell membrane. Here, we tested the hypothesis that abnormal Rho-associated kinase-mediated myosin light chain phosphatase regulation underlies the dysfunctional cerebral myogenic response of the Goto-Kakizaki rat model of type 2 diabetes. Basal levels of myogenic tone, LC20, and MYPT1-T855 phosphorylation were elevated and G-actin content was reduced in arteries of pre-diabetic 8-10 weeks Goto-Kakizaki rats with normal serum insulin and glucose levels. Pressure-dependent myogenic constriction, LC20, and myosin phosphatase targeting subunit 1 phosphorylation and actin polymerization were suppressed in both pre-diabetic Goto-Kakizaki and diabetic (18-20 weeks) Goto-Kakizaki rats, whereas RhoA, ROK2, and MYPT1 expression were unaffected. We conclude that abnormal Rho-associated kinase-mediated Ca2+ sensitization contributes to the dysfunctional cerebral myogenic response in the Goto-Kakizaki model of type 2 diabetes.
Collapse
Affiliation(s)
- Khaled S Abd-Elrahman
- The Smooth Muscle Research Group, Departments of Physiology & Pharmacology, Libin Cardiovascular Institute & Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Alberta, Canada
| | - Olaia Colinas
- The Smooth Muscle Research Group, Departments of Physiology & Pharmacology, Libin Cardiovascular Institute & Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Alberta, Canada
| | - Emma J Walsh
- The Smooth Muscle Research Group, Departments of Physiology & Pharmacology, Libin Cardiovascular Institute & Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Alberta, Canada
| | - Hai-Lei Zhu
- The Smooth Muscle Research Group, Departments of Physiology & Pharmacology, Libin Cardiovascular Institute & Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Alberta, Canada
| | - Christine M Campbell
- The Smooth Muscle Research Group, Departments of Physiology & Pharmacology, Libin Cardiovascular Institute & Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Alberta, Canada
| | - Michael P Walsh
- The Smooth Muscle Research Group, Department of Biochemistry & Molecular Biology, Libin Cardiovascular Institute & Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Alberta, Canada
| | - William C Cole
- The Smooth Muscle Research Group, Departments of Physiology & Pharmacology, Libin Cardiovascular Institute & Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Alberta, Canada
| |
Collapse
|
15
|
Yu H, Chakravorty S, Song W, Ferenczi MA. Phosphorylation of the regulatory light chain of myosin in striated muscle: methodological perspectives. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2016; 45:779-805. [PMID: 27084718 PMCID: PMC5101276 DOI: 10.1007/s00249-016-1128-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Revised: 03/10/2016] [Accepted: 03/23/2016] [Indexed: 12/18/2022]
Abstract
Phosphorylation of the regulatory light chain (RLC) of myosin modulates cellular functions such as muscle contraction, mitosis, and cytokinesis. Phosphorylation defects are implicated in a number of diseases. Here we focus on striated muscle where changes in RLC phosphorylation relate to diseases such as hypertrophic cardiomyopathy and muscular dystrophy, or age-related changes. RLC phosphorylation in smooth muscle and non-muscle cells are covered briefly where relevant. There is much scientific interest in controlling the phosphorylation levels of RLC in vivo and in vitro in order to understand its physiological function in striated muscles. A summary of available and emerging in vivo and in vitro methods is presented. The physiological role of RLC phosphorylation and novel pathways are discussed to highlight the differences between muscle types and to gain insights into disease processes.
Collapse
Affiliation(s)
- Haiyang Yu
- Lee Kong Chian School of Medicine, Nanyang Technological University, Experimental Medicine Building, Level 3, 59 Nanyang Drive, Singapore, 636921, Singapore
| | - Samya Chakravorty
- Lee Kong Chian School of Medicine, Nanyang Technological University, Experimental Medicine Building, Level 3, 59 Nanyang Drive, Singapore, 636921, Singapore
| | - Weihua Song
- Lee Kong Chian School of Medicine, Nanyang Technological University, Experimental Medicine Building, Level 3, 59 Nanyang Drive, Singapore, 636921, Singapore
| | - Michael A Ferenczi
- Lee Kong Chian School of Medicine, Nanyang Technological University, Experimental Medicine Building, Level 3, 59 Nanyang Drive, Singapore, 636921, Singapore.
| |
Collapse
|
16
|
Ye S, Song Z, Li J, Li C, Yang J, Chang B. Early Intervention of Didang Decoction on MLCK Signaling Pathways in Vascular Endothelial Cells of Type 2 Diabetic Rats. Int J Endocrinol 2016; 2016:6704851. [PMID: 27703477 PMCID: PMC5040811 DOI: 10.1155/2016/6704851] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Revised: 07/16/2016] [Accepted: 08/10/2016] [Indexed: 11/21/2022] Open
Abstract
In the study, type 2 diabetic rat model was established using streptozotocin (STZ) combined with a high-fat diet, and the rats were divided into control and diabetic groups. Diabetic groups were further divided into nonintervening, simvastatin, Didang Decoction (DDD) early-phase intervening, DDD mid-phase intervening, and DDD late-phase intervening groups. The expression level of MLCK was detected using Western Blot analysis, and the levels of cyclic adenosine monophosphate (cAMP), protein kinase C (PKC), and protein kinase A (PKA) were examined using Real Time PCR. Under the electron microscope, the cells in the early-DDD-intervention group and the simvastatin group were significantly more continuous and compact than those in the diabetic group. Compared with the control group, the expression of cAMP-1 and PKA was decreased in all diabetic groups, whereas the expression of MLCK and PKC was increased in early- and mid-phase DDD-intervening groups (P < 0.05); compared with the late-phase DDD-intervening group, the expression of cAMP-1 and PKA was higher, but the level of MLCK and PKC was lower in early-phase DDD-intervening group (P < 0.05). In conclusion, the early use of DDD improves the permeability of vascular endothelial cells by regulating the MLCK signaling pathway.
Collapse
Affiliation(s)
- Shoujiao Ye
- Endocrinology, 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Key Laboratory of Hormones and Development (Ministry of Health), Metabolic Diseases Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, No. 66, Tongan Road, Heping District, Tianjin 300070, China
- Endocrinology, Nanyang TCM Hospital, No. 939, Qiyi Road, Wolong District, Nanyang, Henan 473000, China
- Clinical Medicine Combined with Chinese Traditional Medicine and Western Medicine, Tianjin Chinese Medical University, No. 88, Yuquan Road, Nankai District, Tianjin 300193, China
| | - Zhenqiang Song
- Endocrinology, 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Key Laboratory of Hormones and Development (Ministry of Health), Metabolic Diseases Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, No. 66, Tongan Road, Heping District, Tianjin 300070, China
| | - Jing Li
- Endocrinology, 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Key Laboratory of Hormones and Development (Ministry of Health), Metabolic Diseases Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, No. 66, Tongan Road, Heping District, Tianjin 300070, China
| | - Chunshen Li
- Clinical Medicine Combined with Chinese Traditional Medicine and Western Medicine, Tianjin Chinese Medical University, No. 88, Yuquan Road, Nankai District, Tianjin 300193, China
| | - Juhong Yang
- Endocrinology, 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Key Laboratory of Hormones and Development (Ministry of Health), Metabolic Diseases Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, No. 66, Tongan Road, Heping District, Tianjin 300070, China
| | - Bai Chang
- Endocrinology, 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Key Laboratory of Hormones and Development (Ministry of Health), Metabolic Diseases Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, No. 66, Tongan Road, Heping District, Tianjin 300070, China
- *Bai Chang:
| |
Collapse
|
17
|
MacDonald JA, Sutherland C, Carlson DA, Bhaidani S, Al-Ghabkari A, Swärd K, Haystead TAJ, Walsh MP. A Small Molecule Pyrazolo[3,4-d]Pyrimidinone Inhibitor of Zipper-Interacting Protein Kinase Suppresses Calcium Sensitization of Vascular Smooth Muscle. Mol Pharmacol 2015; 89:105-17. [DOI: 10.1124/mol.115.100529] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Accepted: 10/09/2015] [Indexed: 11/22/2022] Open
|
18
|
Anderson CD, Kendig DM, Al-Qudah M, Mahavadi S, Murthy KS, Grider JR. Role of various kinases in muscarinic M3 receptor-mediated contraction of longitudinal muscle of rat colon. J Smooth Muscle Res 2015; 50:103-19. [PMID: 25891767 PMCID: PMC4862207 DOI: 10.1540/jsmr.50.103] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The longitudinal muscle layer in gut is the functional opponent to the circular muscle
layer during peristalsis. Differences in innervation of the layers allow for the
contraction of one layer concurrently with the relaxation of the other, enabling the
passage of gut contents in a controlled fashion. Differences in development have given the
cells of the two layers differences in receptor populations, membrane lipid handling, and
calcium handling profiles/behaviors. The contractile activity of the longitudinal muscle
is largely mediated by cholinergic neural input from myenteric plexus. Activation of
muscarinic receptors leads to rapid activation of several kinases including MLC kinase,
ERK1/2, CaMKII and Rho kinase. Phosphorylation of myosin light chain (MLC20) by
MLC kinase (MLCK) is a prerequisite for contraction in both circular and longitudinal
muscle cells. In rat colonic longitudinal muscle strips, we measured muscarinic
receptor-mediated contraction following incubation with kinase inhibitors. Basal tension
was differentially regulated by Rho kinase, ERK1/2, CaMKII and CaMKK. Selective inhibitors
of Rho kinase, ERK1/2, CaMKK/AMPK, and CaMKII each reduced carbachol-induced contraction
in the innervated muscle strips. These inhibitors had no direct effect on MLCK activity.
Thus unlike previously reported for isolated muscle cells where CaMKII and ERK1/2 are not
involved in contraction, we conclude that the regulation of carbachol-induced contraction
in innervated longitudinal muscle strips involves the interplay of Rho kinase, ERK1/2,
CaMKK/AMPK, and CAMKII.
Collapse
Affiliation(s)
- Charles D Anderson
- Department of Physiology and Biophysics, VCU Program in Enteric Neuromuscular Sciences, Virginia Commonwealth University, USA
| | | | | | | | | | | |
Collapse
|
19
|
de Fátima Reis C, de Andrade DML, Neves BJ, de Almeida Ribeiro Oliveira L, Pinho JF, da Silva LP, Cruz JDS, Bara MTF, Andrade CH, Rocha ML. Blocking the L-type Ca2+ channel (Cav 1.2) is the key mechanism for the vascular relaxing effect of Pterodon spp. and its isolated diterpene methyl-6α-acetoxy-7β-hydroxyvouacapan-17β-oate. Pharmacol Res 2015; 100:242-9. [DOI: 10.1016/j.phrs.2015.08.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Revised: 07/14/2015] [Accepted: 08/07/2015] [Indexed: 11/27/2022]
|
20
|
The Effects of Lactobacillus acidophilus on the Intestinal Smooth Muscle Contraction through PKC/MLCK/MLC Signaling Pathway in TBI Mouse Model. PLoS One 2015; 10:e0128214. [PMID: 26030918 PMCID: PMC4451510 DOI: 10.1371/journal.pone.0128214] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2014] [Accepted: 04/23/2015] [Indexed: 12/30/2022] Open
Abstract
Clinical studies have shown that probiotics influence gastrointestinal motility. However, the molecular mechanisms by which probiotic Lactobacillus modulates intestinal motility in traumatic brain injury (TBI) mouse model have not been explored. In the present study, we provided evidence showing that treatment of TBI mice with Lactobacillus acidophilus significantly improved the terminal ileum villus morphology, restored the impaired interstitial cells of Cajal (ICC) and the disrupted ICC networks after TBI, and prevented TBI-mediated inhibition of contractile activity in intestinal smooth muscle. Mechanistically, the decreased concentration of MLCK, phospho-MLC20 and phospho-MYPT1 and increased concentration of MLCP and PKC were observed after TBI, and these events mediated by TBI were efficiently prevented by Lactobacillus acidophilus application. These findings may provide a novel mechanistic basis for the application of Lactobacillus acidophilus in the treatment of TBI.
Collapse
|
21
|
Phosphorylation of myosin II regulatory light chain by ZIP kinase is responsible for cleavage furrow ingression during cell division in mammalian cultured cells. Biochem Biophys Res Commun 2015; 459:686-91. [PMID: 25769953 DOI: 10.1016/j.bbrc.2015.03.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Accepted: 03/02/2015] [Indexed: 01/25/2023]
Abstract
Zipper-interacting protein kinase (ZIPK) is known to regulate several functions such as apoptosis, smooth muscle contraction, and cell migration. While exogenously expressed GFP-ZIPK localizes to the cleavage furrow, role of ZIPK in cytokinesis is obscure. Here, we show that ZIPK is a major MRLC kinase during mitosis. Moreover, ZIPK siRNA-mediated knockdown causes delay of cytokinesis. The delay in cytokinesis of ZIPK-knockdown cells was rescued by the exogenous diphosphorylation-mimicking MRLC mutant. Taken together, these findings suggest that ZIPK plays a role in the progression and completion of cytokinesis through MRLC phosphorylation.
Collapse
|
22
|
Deng JT, Wang XL, Chen YX, O’Brien ER, Gui Y, Walsh MP. The effects of knockdown of rho-associated kinase 1 and zipper-interacting protein kinase on gene expression and function in cultured human arterial smooth muscle cells. PLoS One 2015; 10:e0116969. [PMID: 25723491 PMCID: PMC4344299 DOI: 10.1371/journal.pone.0116969] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2014] [Accepted: 12/17/2014] [Indexed: 12/16/2022] Open
Abstract
Rho-associated kinase (ROCK) and zipper-interacting protein kinase (ZIPK) have been implicated in diverse physiological functions. ROCK1 phosphorylates and activates ZIPK suggesting that at least some of these physiological functions may require both enzymes. To test the hypothesis that sequential activation of ROCK1 and ZIPK is commonly involved in regulatory pathways, we utilized siRNA to knock down ROCK1 and ZIPK in cultured human arterial smooth muscle cells (SMC). Microarray analysis using a whole-transcript expression chip identified changes in gene expression induced by ROCK1 and ZIPK knockdown. ROCK1 knockdown affected the expression of 553 genes, while ZIPK knockdown affected the expression of 390 genes. A high incidence of regulation of transcription regulator genes was observed in both knockdowns. Other affected groups included transporters, kinases, peptidases, transmembrane and G protein-coupled receptors, growth factors, phosphatases and ion channels. Only 76 differentially expressed genes were common to ROCK1 and ZIPK knockdown. Ingenuity Pathway Analysis identified five pathways shared between the two knockdowns. We focused on cytokine signaling pathways since ROCK1 knockdown up-regulated 5 and down-regulated 4 cytokine genes, in contrast to ZIPK knockdown, which affected the expression of only two cytokine genes (both down-regulated). IL-6 gene expression and secretion of IL-6 protein were up-regulated by ROCK1 knockdown, whereas ZIPK knockdown reduced IL-6 mRNA expression and IL-6 protein secretion and increased ROCK1 protein expression, suggesting that ROCK1 may inhibit IL-6 secretion. IL-1β mRNA and protein levels were increased in response to ROCK1 knockdown. Differences in the effects of ROCK1 and ZIPK knockdown on cell cycle regulatory genes suggested that ROCK1 and ZIPK regulate the cell cycle by different mechanisms. ROCK1, but not ZIPK knockdown reduced the viability and inhibited proliferation of vascular SMC. We conclude that ROCK1 and ZIPK have diverse, but predominantly distinct regulatory functions in vascular SMC and that ROCK1-mediated activation of ZIPK is not involved in most of these functions.
Collapse
Affiliation(s)
- Jing-Ti Deng
- Smooth Muscle Research Group and Department of Biochemistry and Molecular Biology, University of Calgary, Alberta, Canada
| | - Xiu-Ling Wang
- Southern Alberta Cancer Research Institute Microarray and Genomics Facility, University of Calgary, Alberta, Canada
| | - Yong-Xiang Chen
- Division of Cardiology, Libin Cardiovascular Institute of Alberta, University of Calgary, Alberta, Canada
| | - Edward R. O’Brien
- Division of Cardiology, Libin Cardiovascular Institute of Alberta, University of Calgary, Alberta, Canada
| | - Yu Gui
- Department of Physiology and Pharmacology, University of Calgary, Alberta, Canada
| | - Michael P. Walsh
- Smooth Muscle Research Group and Department of Biochemistry and Molecular Biology, University of Calgary, Alberta, Canada
- Hotchkiss Brain Institute and Libin Cardiovascular Institute of Alberta, University of Calgary, Alberta, Canada
- * E-mail:
| |
Collapse
|
23
|
Death-associated protein kinase 3 mediates vascular structural remodelling via stimulating smooth muscle cell proliferation and migration. Clin Sci (Lond) 2014; 127:539-48. [PMID: 24814693 DOI: 10.1042/cs20130591] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Death-associated protein kinase 3 (DAPK3) also known as zipper-interacting kinase is a serine/threonine kinase that mainly regulates cell death and smooth muscle contraction. We have previously found that protein expression of DAPK3 increases in the mesenteric artery from spontaneously hypertensive rats (SHRs) and that DAPK3 mediates the development of hypertension in SHRs partly through promoting reactive oxygen species-dependent vascular inflammation. However, it remains to be clarified how DAPK3 controls smooth muscle cell (SMC) proliferation and migration, which are also important processes for hypertension development. We, therefore, sought to investigate whether DAPK3 affects SMC proliferation and migration. siRNA against DAPK3 significantly inhibited platelet-derived growth factor (PDGF)-BB-induced SMC proliferation and migration as determined by bromodeoxyuridine (BrdU) incorporation and a cell counting assay as well as a Boyden chamber assay respectively. DAPK3 siRNA or a pharmacological inhibitor of DAPK3 inhibited PDGF-BB-induced lamellipodia formation as determined by rhodamine-phalloidin staining. DAPK3 siRNA or the DAPK inhibitor significantly reduced PDGF-BB-induced activation of p38 and heat-shock protein 27 (HSP27) as determined by Western blotting. In ex vivo studies, PDGF-BB-induced SMC out-growth was significantly inhibited by the DAPK inhibitor. In vivo, the DAPK inhibitor significantly prevented carotid neointimal hyperplasia in a mouse ligation model. The present results, for the first time, revealed that DAPK3 mediates PDGF-BB-induced SMC proliferation and migration through activation of p38/HSP27 signals, which may lead to vascular structural remodelling including neointimal hyperplasia. The present study suggests DAPK3 as a novel pharmaceutical target for the prevention of hypertensive cardiovascular diseases.
Collapse
|
24
|
Carr BW, Basepayne TL, Chen L, Jayashankar V, Weiser DC. Characterization of the zebrafish homolog of zipper interacting protein kinase. Int J Mol Sci 2014; 15:11597-613. [PMID: 24983477 PMCID: PMC4139802 DOI: 10.3390/ijms150711597] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Revised: 06/12/2014] [Accepted: 06/23/2014] [Indexed: 11/16/2022] Open
Abstract
Zipper-interacting protein kinase (ZIPK) is a conserved vertebrate-specific regulator of actomyosin contractility in smooth muscle and non-muscle cells. Murine ZIPK has undergone an unusual divergence in sequence and regulation compared to other ZIPK orthologs. In humans, subcellular localization is controlled by phosphorylation of threonines 299 and 300. In contrast, ZIPK subcellular localization in mouse and rat is controlled by interaction with PAR-4. We carried out a comparative biochemical characterization of the regulation of the zebrafish ortholog of ZIPK. Like the human orthologs zebrafish ZIPK undergoes nucleocytoplasmic-shuttling and is abundant in the cytoplasm, unlike the primarily nuclear rat ZIPK. Rat ZIPK, but not human or zebrafish ZIPK, interacts with zebrafish PAR-4. Mutation of the conserved residues required for activation of the mammalian orthologs abrogated activity of the zebrafish ZIPK. In contrast to the human ortholog, mutation of threonine 299 and 300 in the zebrafish ZIPK has no effect on the activity or subcellular localization. Thus, we found that zebrafish ZIPK functions in a manner most similar to the human ZIPK and quite distinct from murine orthologs, yet the regulation of subcellular localization is not conserved.
Collapse
Affiliation(s)
- Brandon W Carr
- Department of Biological Sciences, University of the Pacific, Stockton, CA 98211, USA.
| | - Tamara L Basepayne
- Department of Biological Sciences, University of the Pacific, Stockton, CA 98211, USA.
| | - Lawrence Chen
- Department of Biological Sciences, University of the Pacific, Stockton, CA 98211, USA.
| | - Vaishali Jayashankar
- Department of Biological Sciences, University of the Pacific, Stockton, CA 98211, USA.
| | - Douglas C Weiser
- Department of Biological Sciences, University of the Pacific, Stockton, CA 98211, USA.
| |
Collapse
|
25
|
Molecular and cellular basis of the regulation of lymphatic contractility and lymphatic absorption. Int J Biochem Cell Biol 2014; 53:134-40. [PMID: 24836907 DOI: 10.1016/j.biocel.2014.05.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2013] [Revised: 04/22/2014] [Accepted: 05/05/2014] [Indexed: 11/23/2022]
Abstract
Lymphatic absorption is a highly regulated process driven by both an extrinsic mechanism (external force) and an intrinsic mechanism (lymphatic vessel contractility). The lymphatic muscle is a specialized smooth muscle with unique mechanical properties. To understand the molecular mechanism and relative contribution of smooth muscle contraction in lymphatic absorption, we analyzed mice with a smooth muscle-specific deletion of Mylk, a critical gene for smooth muscle contraction. Interestingly, the knockout mice were significantly resistant to anesthesia reagents. Upon injection in the feet with FITC-dextran, the mutant mice displayed a 2-fold delay of the absorption peak in the peripheral circulation. Examining the ear lymphatic vessels of the mutant mice revealed a reduction in the amount of fluid in the lumens of the lymphangions, suggesting an impairment of lymph formation. The Mylk-deficient lymphatic muscle exhibited a significant reduction of peristalsis and of myosin light chain phosphorylation in response to depolarization. We thus concluded that MLCK and myosin light chain phosphorylation are required for lymphatic vessel contraction. Lymphatic contractility is not an exclusive requirement for lymphatic absorption, and external force appears to be necessary for absorption.
Collapse
|
26
|
Rho kinase acts as a downstream molecule to participate in protein kinase Cε regulation of vascular reactivity after hemorrhagic shock in rats. Shock 2014; 42:239-45. [PMID: 24827390 DOI: 10.1097/shk.0000000000000199] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Our previous study demonstrated that Rho kinase and protein kinase C (PKC) played important parts in the regulation of vascular reactivity after shock. Using superior mesenteric arteries (SMAs) from hemorrhagic shock rats and hypoxia-treated vascular smooth muscle cells (VSMCs), relationship of PKCε regulation of vascular reactivity to Rho kinase, as well as the signal transduction after shock, was investigated. The results showed that inhibition of Rho kinase with the Rho kinase-specific inhibitor Y-27632 antagonized the PKCε-specific agonist carbachol and highly expressed PKCε-induced increase of vascular reactivity in SMAs and VSMCs, whereas inhibition of PKCε with its specific inhibitory peptide did not antagonize the Rho kinase agonist (U-46619)-induced increase of vascular reactivity in SMAs and VSMCs. Activation of PKCε or highly expressed PKCε upregulated the activity of Rho kinase and the phosphorylation of PKC-dependent phosphatase inhibitor 17 (CPI-17), zipper interacting protein kinase (ZIPK), and integrin-linked kinase (ILK), whereas activation of Rho kinase increased only CPI-17 phosphorylation. The specific neutralization antibodies of ZIPK and ILK antagonized PKCε-induced increases in the activity of Rho kinase, but CPI-17 neutralization antibody did not antagonize this effect. These results suggested that Rho kinase takes part in the regulation of PKCε on vascular reactivity after shock. Rho kinase is downstream of PKCε. Protein kinase Cε activates Rho kinase via ZIPK and ILK; CPI-17 is downstream of Rho kinase.
Collapse
|
27
|
Turner SR, MacDonald JA. Novel Contributions of the Smoothelin-like 1 Protein in Vascular Smooth Muscle Contraction and its Potential Involvement in Myogenic Tone. Microcirculation 2014; 21:249-58. [DOI: 10.1111/micc.12108] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2013] [Accepted: 11/04/2013] [Indexed: 12/19/2022]
Affiliation(s)
- Sara R. Turner
- The Smooth Muscle Research Group at the Libin Cardiovascular Institute of Alberta; Department of Biochemistry & Molecular Biology; University of Calgary; Calgary Alberta Canada
| | - Justin A. MacDonald
- The Smooth Muscle Research Group at the Libin Cardiovascular Institute of Alberta; Department of Biochemistry & Molecular Biology; University of Calgary; Calgary Alberta Canada
| |
Collapse
|
28
|
Carlson DA, Franke AS, Weitzel DH, Speer BL, Hughes PF, Hagerty L, Fortner CN, Veal JM, Barta TE, Zieba BJ, Somlyo AV, Sutherland C, Deng JT, Walsh MP, MacDonald JA, Haystead TAJ. Fluorescence linked enzyme chemoproteomic strategy for discovery of a potent and selective DAPK1 and ZIPK inhibitor. ACS Chem Biol 2013; 8:2715-23. [PMID: 24070067 DOI: 10.1021/cb400407c] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
DAPK1 and ZIPK (also called DAPK3) are closely related serine/threonine protein kinases that regulate programmed cell death and phosphorylation of non-muscle and smooth muscle myosin. We have developed a fluorescence linked enzyme chemoproteomic strategy (FLECS) for the rapid identification of inhibitors for any element of the purinome and identified a selective pyrazolo[3,4-d]pyrimidinone (HS38) that inhibits DAPK1 and ZIPK in an ATP-competitive manner at nanomolar concentrations. In cellular studies, HS38 decreased RLC20 phosphorylation. In ex vivo studies, HS38 decreased contractile force generated in mouse aorta, rabbit ileum, and calyculin A stimulated arterial muscle by decreasing RLC20 and MYPT1 phosphorylation. The inhibitor also promoted relaxation in Ca(2+)-sensitized vessels. A close structural analogue (HS43) with 5-fold lower affinity for ZIPK produced no effect on cells or tissues. These findings are consistent with a mechanism of action wherein HS38 specifically targets ZIPK in smooth muscle. The discovery of HS38 provides a lead scaffold for the development of therapeutic agents for smooth muscle related disorders and a chemical means to probe the function of DAPK1 and ZIPK across species.
Collapse
Affiliation(s)
- David A. Carlson
- Department
of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina 27710, United States
| | - Aaron S. Franke
- Department
of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, Virginia 22908, United States
| | - Douglas H. Weitzel
- Department
of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina 27710, United States
| | - Brittany L. Speer
- Department
of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina 27710, United States
| | - Philip F. Hughes
- Department
of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina 27710, United States
| | - Laura Hagerty
- Department
of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina 27710, United States
| | - Christopher N. Fortner
- Department
of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina 27710, United States
| | - James M. Veal
- Quanticel
Pharmaceuticals, San Francisco, California 94158, United States
| | - Thomas E. Barta
- Department
of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina 27710, United States
| | - Bartosz J. Zieba
- Department
of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, Virginia 22908, United States
| | - Avril V. Somlyo
- Department
of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, Virginia 22908, United States
| | - Cindy Sutherland
- Smooth Muscle Research Group at the Libin Cardiovascular Institute of Alberta. Department of Biochemistry & Molecular Biology, University of Calgary, 3280 Hospital Drive NW, Calgary, AB T2N 4Z6, Canada
| | - Jing Ti Deng
- Smooth Muscle Research Group at the Libin Cardiovascular Institute of Alberta. Department of Biochemistry & Molecular Biology, University of Calgary, 3280 Hospital Drive NW, Calgary, AB T2N 4Z6, Canada
| | - Michael P. Walsh
- Smooth Muscle Research Group at the Libin Cardiovascular Institute of Alberta. Department of Biochemistry & Molecular Biology, University of Calgary, 3280 Hospital Drive NW, Calgary, AB T2N 4Z6, Canada
| | - Justin A. MacDonald
- Smooth Muscle Research Group at the Libin Cardiovascular Institute of Alberta. Department of Biochemistry & Molecular Biology, University of Calgary, 3280 Hospital Drive NW, Calgary, AB T2N 4Z6, Canada
| | - Timothy A. J. Haystead
- Department
of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina 27710, United States
| |
Collapse
|
29
|
|
30
|
Usui T, Okada M, Yamawaki H. Zipper interacting protein kinase (ZIPK): function and signaling. Apoptosis 2013; 19:387-91. [DOI: 10.1007/s10495-013-0934-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
31
|
Jayashankar V, Nguyen MJ, Carr BW, Zheng DC, Rosales JB, Rosales JB, Weiser DC. Protein phosphatase 1 β paralogs encode the zebrafish myosin phosphatase catalytic subunit. PLoS One 2013; 8:e75766. [PMID: 24040418 PMCID: PMC3770619 DOI: 10.1371/journal.pone.0075766] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2013] [Accepted: 08/19/2013] [Indexed: 12/21/2022] Open
Abstract
Background The myosin phosphatase is a highly conserved regulator of actomyosin contractility. Zebrafish has emerged as an ideal model system to study the invivo role of myosin phosphatase in controlling cell contractility, cell movement and epithelial biology. Most work in zebrafish has focused on the regulatory subunit of the myosin phosphatase called Mypt1. In this work, we examined the critical role of Protein Phosphatase 1, PP1, the catalytic subunit of the myosin phosphatase. Methodology/Principal Findings We observed that in zebrafish two paralogous genes encoding PP1β, called ppp1cba and ppp1cbb, are both broadly expressed during early development. Furthermore, we found that both gene products interact with Mypt1 and assemble an active myosin phosphatase complex. In addition, expression of this complex results in dephosphorylation of the myosin regulatory light chain and large scale rearrangements of the actin cytoskeleton. Morpholino knock-down of ppp1cba and ppp1cbb results in severe defects in morphogenetic cell movements during gastrulation through loss of myosin phosphatase function. Conclusions/Significance Our work demonstrates that zebrafish have two genes encoding PP1β, both of which can interact with Mypt1 and assemble an active myosin phosphatase. In addition, both genes are required for convergence and extension during gastrulation and correct dosage of the protein products is required.
Collapse
Affiliation(s)
- Vaishali Jayashankar
- Department of Biological Sciences, University of the Pacific, Stockton, California, United States of America
| | - Michael J. Nguyen
- Department of Biological Sciences, University of the Pacific, Stockton, California, United States of America
| | - Brandon W. Carr
- Department of Biological Sciences, University of the Pacific, Stockton, California, United States of America
| | - Dale C. Zheng
- Department of Biological Sciences, University of the Pacific, Stockton, California, United States of America
| | - Joseph B. Rosales
- Department of Biological Sciences, University of the Pacific, Stockton, California, United States of America
| | - Joshua B. Rosales
- Department of Biological Sciences, University of the Pacific, Stockton, California, United States of America
| | - Douglas C. Weiser
- Department of Biological Sciences, University of the Pacific, Stockton, California, United States of America
- * E-mail:
| |
Collapse
|
32
|
Usui T, Okada M, Hara Y, Yamawaki H. [Vascular effects of novel calmodulin-related proteins that mediate development of hypertension]. Nihon Yakurigaku Zasshi 2013; 141:85-89. [PMID: 23391548 DOI: 10.1254/fpj.141.85] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
|
33
|
Gao N, Huang J, He W, Zhu M, Kamm KE, Stull JT. Signaling through myosin light chain kinase in smooth muscles. J Biol Chem 2013; 288:7596-7605. [PMID: 23362260 DOI: 10.1074/jbc.m112.427112] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Ca(2+)/calmodulin-dependent myosin light chain kinase (MLCK) phosphorylates smooth muscle myosin regulatory light chain (RLC) to initiate contraction. We used a tamoxifen-activated, smooth muscle-specific inactivation of MLCK expression in adult mice to determine whether MLCK was differentially limiting in distinct smooth muscles. A 50% decrease in MLCK in urinary bladder smooth muscle had no effect on RLC phosphorylation or on contractile responses, whereas an 80% decrease resulted in only a 20% decrease in RLC phosphorylation and contractile responses to the muscarinic agonist carbachol. Phosphorylation of the myosin light chain phosphatase regulatory subunit MYPT1 at Thr-696 and Thr-853 and the inhibitor protein CPI-17 were also stimulated with carbachol. These results are consistent with the previous findings that activation of a small fraction of MLCK by limiting amounts of free Ca(2+)/calmodulin combined with myosin light chain phosphatase inhibition is sufficient for robust RLC phosphorylation and contractile responses in bladder smooth muscle. In contrast, a 50% decrease in MLCK in aortic smooth muscle resulted in 40% inhibition of RLC phosphorylation and aorta contractile responses, whereas a 90% decrease profoundly inhibited both responses. Thus, MLCK content is limiting for contraction in aortic smooth muscle. Phosphorylation of CPI-17 and MYPT1 at Thr-696 and Thr-853 were also stimulated with phenylephrine but significantly less than in bladder tissue. These results indicate differential contributions of MLCK to signaling. Limiting MLCK activity combined with modest Ca(2+) sensitization responses provide insights into how haploinsufficiency of MLCK may result in contractile dysfunction in vivo, leading to dissections of human thoracic aorta.
Collapse
Affiliation(s)
- Ning Gao
- Department of Physiology, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas 75390
| | - Jian Huang
- Department of Physiology, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas 75390
| | - Weiqi He
- Model Animal Research Center and Ministry of Education Key Laboratory of Model Animal for Disease Study, Nanjing University, 210061 Nanjing, China
| | - Minsheng Zhu
- Model Animal Research Center and Ministry of Education Key Laboratory of Model Animal for Disease Study, Nanjing University, 210061 Nanjing, China
| | - Kristine E Kamm
- Department of Physiology, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas 75390
| | - James T Stull
- Department of Physiology, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas 75390.
| |
Collapse
|
34
|
Chen DP, Xiong YJ, Lv BC, Liu FF, Wang L, Tang ZY, Lin Y. Effects of berberine on rat jejunal motility. J Pharm Pharmacol 2013; 65:734-44. [PMID: 23600391 DOI: 10.1111/jphp.12026] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2012] [Accepted: 12/19/2012] [Indexed: 02/06/2023]
Abstract
OBJECTIVES The aim of the study was to evaluate berberine-induced bidirectional regulation on the contractility of jejunum. METHODS Different low and high contractile states of isolated jejunal segment from rat were established to investigate the effects of berberine. KEY FINDINGS Stimulatory effects on jejunal segment were exerted by berberine in six low contractile states and inhibitory effects were produced on jejunal segment in six high contractile states. The effects of berberine on myosin light chain kinase (MLCK) mRNA expression, MLCK protein content, and myosin phosphorylation in jejunum were also bidirectional. Bidirectional regulation was not observed in the presence of tetrodotoxin. No regulatory effects of berberine on jejunal contractility were observed in the presence of verapamil. The stimulatory effects of berberine on jejunal contractility were blocked by atropine. The inhibitory effects of berberine on jejunal contractility were abolished by phentolamine, propranolol and L-NG-nitro-arginine, respectively. CONCLUSIONS Berberine-induced bidirectional regulation needed the presence of the enteric nervous system, and depended on the influx of extracellular Ca(2+) , related to the cholinergic system while jejunum was in low contractile states, and related to the adrenergic system and nitric oxide relaxing mechanism while jejunum was in high contractile states. The results suggested the potential clinical implication of berberine for alternating-type irritable bowel syndrome.
Collapse
Affiliation(s)
- Da-Peng Chen
- Department of Pharmacology, Dalian Medical University, Dalian, China
| | | | | | | | | | | | | |
Collapse
|
35
|
Cai Q, Li B, Yu F, Lu W, Zhang Z, Yin M, Gao H. Investigation of the Protective Effects of Phlorizin on Diabetic Cardiomyopathy in db/db Mice by Quantitative Proteomics. J Diabetes Res 2013; 2013:263845. [PMID: 23671862 PMCID: PMC3647560 DOI: 10.1155/2013/263845] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2012] [Revised: 01/07/2013] [Accepted: 01/08/2013] [Indexed: 12/14/2022] Open
Abstract
Patients with diabetes often develop hypertension and atherosclerosis leading to cardiovascular disease. However, some diabetic patients develop heart failure without hypertension and coronary artery disease, a process termed diabetic cardiomyopathy. Phlorizin has been reported to be effective as an antioxidant in treating diabetes mellitus, but little is known about its cardioprotective effects on diabetic cardiomyopathy. In this study, we investigated the role of phlorizin in preventing diabetic cardiomyopathy in db/db mice. We found that phlorizin significantly decreased body weight gain and the levels of serum fasting blood glucose (FBG), triglycerides (TG), total cholesterol (TC), and advanced glycation end products (AGEs). Morphologic observations showed that normal myocardial structure was better preserved after phlorizin treatment. Using isobaric tag for relative and absolute quantitation (iTRAQ) proteomics, we identified differentially expressed proteins involved in cardiac lipid metabolism, mitochondrial function, and cardiomyopathy, suggesting that phlorizin may prevent the development of diabetic cardiomyopathy by regulating the expression of key proteins in these processes. We used ingenuity pathway analysis (IPA) to generate an interaction network to map the pathways containing these proteins. Our findings provide important information about the mechanism of diabetic cardiomyopathy and also suggest that phlorizin may be a novel therapeutic approach for the treatment of diabetic cardiomyopathy.
Collapse
Affiliation(s)
- Qian Cai
- Key laboratory of Cardiovascular Proteomics, Qi-Lu Hospital of Shandong University, Jinan, Shandong 250012, China
- Department of Geriatrics, Qi-Lu Hospital of Shandong University, 107 Wenhuaxi Road, Jinan, Shandong 250012, China
| | - Baoying Li
- Key laboratory of Cardiovascular Proteomics, Qi-Lu Hospital of Shandong University, Jinan, Shandong 250012, China
- Department of Geriatrics, Qi-Lu Hospital of Shandong University, 107 Wenhuaxi Road, Jinan, Shandong 250012, China
| | - Fei Yu
- Key laboratory of Cardiovascular Proteomics, Qi-Lu Hospital of Shandong University, Jinan, Shandong 250012, China
- Department of Geriatrics, Qi-Lu Hospital of Shandong University, 107 Wenhuaxi Road, Jinan, Shandong 250012, China
| | - Weida Lu
- Key laboratory of Cardiovascular Proteomics, Qi-Lu Hospital of Shandong University, Jinan, Shandong 250012, China
- Department of Geriatrics, Qi-Lu Hospital of Shandong University, 107 Wenhuaxi Road, Jinan, Shandong 250012, China
| | - Zhen Zhang
- Key laboratory of Cardiovascular Proteomics, Qi-Lu Hospital of Shandong University, Jinan, Shandong 250012, China
- Department of Geriatrics, Qi-Lu Hospital of Shandong University, 107 Wenhuaxi Road, Jinan, Shandong 250012, China
| | - Mei Yin
- Key laboratory of Cardiovascular Proteomics, Qi-Lu Hospital of Shandong University, Jinan, Shandong 250012, China
- Department of Geriatrics, Qi-Lu Hospital of Shandong University, 107 Wenhuaxi Road, Jinan, Shandong 250012, China
| | - Haiqing Gao
- Key laboratory of Cardiovascular Proteomics, Qi-Lu Hospital of Shandong University, Jinan, Shandong 250012, China
- Department of Geriatrics, Qi-Lu Hospital of Shandong University, 107 Wenhuaxi Road, Jinan, Shandong 250012, China
- *Haiqing Gao:
| |
Collapse
|
36
|
Sanders KM, Koh SD, Ro S, Ward SM. Regulation of gastrointestinal motility--insights from smooth muscle biology. Nat Rev Gastroenterol Hepatol 2012; 9:633-45. [PMID: 22965426 PMCID: PMC4793911 DOI: 10.1038/nrgastro.2012.168] [Citation(s) in RCA: 275] [Impact Index Per Article: 22.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Gastrointestinal motility results from coordinated contractions of the tunica muscularis, the muscular layers of the alimentary canal. Throughout most of the gastrointestinal tract, smooth muscles are organized into two layers of circularly or longitudinally oriented muscle bundles. Smooth muscle cells form electrical and mechanical junctions between cells that facilitate coordination of contractions. Excitation-contraction coupling occurs by Ca(2+) entry via ion channels in the plasma membrane, leading to a rise in intracellular Ca(2+). Ca(2+) binding to calmodulin activates myosin light chain kinase; subsequent phosphorylation of myosin initiates cross-bridge cycling. Myosin phosphatase dephosphorylates myosin to relax muscles, and a process known as Ca(2+) sensitization regulates the activity of the phosphatase. Gastrointestinal smooth muscles are 'autonomous' and generate spontaneous electrical activity (slow waves) that does not depend upon input from nerves. Intrinsic pacemaker activity comes from interstitial cells of Cajal, which are electrically coupled to smooth muscle cells. Patterns of contractile activity in gastrointestinal muscles are determined by inputs from enteric motor neurons that innervate smooth muscle cells and interstitial cells. Here we provide an overview of the cells and mechanisms that generate smooth muscle contractile behaviour and gastrointestinal motility.
Collapse
|
37
|
Usui T, Okada M, Hara Y, Yamawaki H. Death-Associated Protein Kinase 3 Mediates Vascular Inflammation and Development of Hypertension in Spontaneously Hypertensive Rats. Hypertension 2012; 60:1031-9. [DOI: 10.1161/hypertensionaha.112.200337] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Death-associated protein kinase (DAPK) is a Ca
2+
/calmodulin-regulated serine/threonine kinase that mediates cell death. Our recent study demonstrated that DAPK3 protein increases in the mesenteric artery from spontaneously hypertensive rats compared with Wistar Kyoto rats. Pathogenesis of hypertension is modulated at least in part by vascular inflammation. We examined whether DAPK3 mediates vascular inflammatory responses and development of hypertension. In rat mesenteric arterial smooth muscle cells, small interfering RNA against DAPK3 inhibited vascular cell adhesion molecule 1 expression and monocyte adhesion induced by tumor necrosis factor-α. DAPK3 small interfering RNA inhibited phosphorylation of c-Jun amino-terminal kinase, p38, and Akt, as well as reactive oxygen species (ROS) production induced by tumor necrosis factor-α. In human umbilical vein endothelial cells, expressions of vascular cell adhesion molecule 1, endothelial selectin, and cyclooxygenase 2, as well as ROS production induced by tumor necrosis factor-α, were inhibited by DAPK inhibitor. In vivo, blood pressure, ROS production, inflammatory molecule expression (vascular cell adhesion molecule 1 and endothelial selectin), and hypertrophy in isolated mesenteric artery were elevated in spontaneously hypertensive rats (10 weeks old), which were prevented by long-term treatment with a DAPK inhibitor (500 µg/kg per day for 6 weeks). In isolated mesenteric artery, the increased angiotensin II–induced contraction and the impaired acetylcholine-induced endothelium-dependent relaxation in spontaneously hypertensive rats were reversed by a DAPK inhibitor. The present results for the first time demonstrated in cultured smooth muscle cells and endothelial cells that DAPK3 mediates tumor necrosis factor–induced inflammatory responses via ROS-dependent mechanisms. It is also suggested that DAPK3 mediates the development of hypertension in spontaneously hypertensive rats likely via ROS-dependent inflammation, hypertrophy, and hypercontractility.
Collapse
Affiliation(s)
- Tatsuya Usui
- From the Laboratory of Veterinary Pharmacology, School of Veterinary Medicine, Kitasato University, Towada, Aomori, Japan
| | - Muneyoshi Okada
- From the Laboratory of Veterinary Pharmacology, School of Veterinary Medicine, Kitasato University, Towada, Aomori, Japan
| | - Yukio Hara
- From the Laboratory of Veterinary Pharmacology, School of Veterinary Medicine, Kitasato University, Towada, Aomori, Japan
| | - Hideyuki Yamawaki
- From the Laboratory of Veterinary Pharmacology, School of Veterinary Medicine, Kitasato University, Towada, Aomori, Japan
| |
Collapse
|
38
|
Morgado M, Cairrão E, Santos-Silva AJ, Verde I. Cyclic nucleotide-dependent relaxation pathways in vascular smooth muscle. Cell Mol Life Sci 2012; 69:247-66. [PMID: 21947498 PMCID: PMC11115151 DOI: 10.1007/s00018-011-0815-2] [Citation(s) in RCA: 135] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2011] [Revised: 08/21/2011] [Accepted: 08/23/2011] [Indexed: 02/07/2023]
Abstract
Vascular smooth muscle tone is controlled by a balance between the cellular signaling pathways that mediate the generation of force (vasoconstriction) and release of force (vasodilation). The initiation of force is associated with increases in intracellular calcium concentrations, activation of myosin light-chain kinase, increases in the phosphorylation of the regulatory myosin light chains, and actin-myosin crossbridge cycling. There are, however, several signaling pathways modulating Ca(2+) mobilization and Ca(2+) sensitivity of the contractile machinery that secondarily regulate the contractile response of vascular smooth muscle to receptor agonists. Among these regulatory mechanisms involved in the physiological regulation of vascular tone are the cyclic nucleotides (cAMP and cGMP), which are considered the main messengers that mediate vasodilation under physiological conditions. At least four distinct mechanisms are currently thought to be involved in the vasodilator effect of cyclic nucleotides and their dependent protein kinases: (1) the decrease in cytosolic calcium concentration ([Ca(2+)]c), (2) the hyperpolarization of the smooth muscle cell membrane potential, (3) the reduction in the sensitivity of the contractile machinery by decreasing the [Ca(2+)]c sensitivity of myosin light-chain phosphorylation, and (4) the reduction in the sensitivity of the contractile machinery by uncoupling contraction from myosin light-chain phosphorylation. This review focuses on each of these mechanisms involved in cyclic nucleotide-dependent relaxation of vascular smooth muscle under physiological conditions.
Collapse
Affiliation(s)
- Manuel Morgado
- Health Sciences Research Centre (CICS-UBI), University of Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal
| | - Elisa Cairrão
- Health Sciences Research Centre (CICS-UBI), University of Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal
| | - António José Santos-Silva
- Health Sciences Research Centre (CICS-UBI), University of Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal
| | - Ignacio Verde
- Health Sciences Research Centre (CICS-UBI), University of Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal
| |
Collapse
|
39
|
Ihara E, Chappellaz M, Turner SR, MacDonald JA. The contribution of protein kinase C and CPI-17 signaling pathways to hypercontractility in murine experimental colitis. Neurogastroenterol Motil 2012; 24:e15-26. [PMID: 22093175 DOI: 10.1111/j.1365-2982.2011.01821.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
BACKGROUND Colonic smooth muscle contractility is altered in colitis, and several protein kinase pathways can mediate colonic smooth muscle contraction. In the present study, we investigated whether protein kinase C (PKC) pathways also play a role in colonic hypercontractility observed during T(H) 2 colitis in BALB/c mice. METHODS Colitis was induced in BALB/c mice by provision of 5% dextran sodium sulfate (DSS) for 7 days. Changes in smooth muscle contractility were examined using dissected circular smooth muscle preparations from the distal colon. The contribution of conventional and novel PKC isozymes to the hypercontractile response was examined with pharmacological PKC inhibitors. Western blot analyses were used to examine protein expression and phosphorylation changes. KEY RESULTS Colonic smooth muscle was associated with inflammation-induced hypercontractility and altered PKC expression. Carbachol-induced peak (phasic) and sustained (tonic) contractions were increased. Chelerythrine was the most effective PKC inhibitor of both phasic and tonic contractions. There was no general difference in the percent contribution of conventional and novel PKC isozymes toward the DSS-induced hypercontractility, but inhibition of sustained force with GF109203x was higher for inflamed muscle. The CPI-17 phosphorylation was equally suppressed in both normal and DSS conditions by Gö6976 and chelerythrine, but only for the phasic component of contraction. CONCLUSIONS & INFERENCES The outcomes suggest that both conventional and novel PKC isozymes contribute to the phasic and tonic contractile components of BALB/c colonic circular smooth muscle under normal conditions, with novel PKC isozymes having a greater contribution to the tonic contraction. However, no effect of inflammation was observed on the relative contribution of PKC and CPI-17 toward the observed hypercontractility.
Collapse
Affiliation(s)
- E Ihara
- Smooth Muscle and Gastrointestinal Research Groups, Department of Biochemistry & Molecular Biology, Faculty of Medicine, University of Calgary, Calgary, Alberta, Canada
| | | | | | | |
Collapse
|
40
|
Moffat LD, Brown SBA, Grassie ME, Ulke-Lemée A, Williamson LM, Walsh MP, MacDonald JA. Chemical genetics of zipper-interacting protein kinase reveal myosin light chain as a bona fide substrate in permeabilized arterial smooth muscle. J Biol Chem 2011; 286:36978-91. [PMID: 21880706 DOI: 10.1074/jbc.m111.257949] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Zipper-interacting protein kinase (ZIPK) has been implicated in Ca(2+)-independent smooth muscle contraction, although its specific role is unknown. The addition of ZIPK to demembranated rat caudal arterial strips induced an increase in force, which correlated with increases in LC(20) and MYPT1 phosphorylation. However, because of the number of kinases capable of phosphorylating LC(20) and MYPT1, it has proven difficult to identify the mechanism underlying ZIPK action. Therefore, we set out to identify bona fide ZIPK substrates using a chemical genetics method that takes advantage of ATP analogs with bulky substituents at the N(6) position and an engineered ZIPK capable of utilizing such substrates. (32)P-Labeled 6-phenyl-ATP and ZIPK-L93G mutant protein were added to permeabilized rat caudal arterial strips, and substrate proteins were detected by autoradiography following SDS-PAGE. Mass spectrometry identified LC(20) as a direct target of ZIPK in situ for the first time. Tissues were also exposed to 6-phenyl-ATP and ZIPK-L93G in the absence of endogenous ATP, and putative ZIPK substrates were identified by Western blotting. LC(20) was thereby confirmed as a direct target of ZIPK; however, no phosphorylation of MYPT1 was detected. We conclude that ZIPK is involved in the regulation of smooth muscle contraction through direct phosphorylation of LC(20).
Collapse
Affiliation(s)
- Lori D Moffat
- Smooth Muscle Research Group and the Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, Alberta T2N 4Z6, Canada
| | | | | | | | | | | | | |
Collapse
|
41
|
Nair DG, Han TY, Lourenssen S, Blennerhassett MG. Proliferation modulates intestinal smooth muscle phenotype in vitro and in colitis in vivo. Am J Physiol Gastrointest Liver Physiol 2011; 300:G903-13. [PMID: 21311027 DOI: 10.1152/ajpgi.00528.2010] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Intestinal inflammation causes an increased intestinal wall thickness, in part, due to the proliferation of smooth muscle cells, which impairs the contractile phenotype elsewhere. To study this, cells from the circular muscle layer of the rat colon (CSMC) were isolated and studied, both in primary culture and after extended passage, using quantitative PCR, Western blot analysis, and immunocytochemistry. By 4 days in vitro, both mRNA and protein for the smooth muscle marker proteins α-smooth muscle actin, desmin, and SM22-α were reduced by >50%, and mRNA for cyclin D1 was increased threefold, evidence for modulation to a proliferative phenotype. Continued growth caused significant further decrease in expression, evidence that phenotypic loss in CSMC was proportional to the extent of proliferation. In CSMC isolated at day 2 of trinitrobenzene sulfonic acid-induced colitis, flow cytometry and Western blotting showed that these differentiated markers were reduced in mitotic CSMC, while similar to control in nonmitotic CSMC. By day 35 post-trinitrobenzene sulfonic acid, when inflammation has resolved, CSMC were hypertrophic, but, nonetheless, showed markedly decreased expression of smooth muscle protein markers per cell. In vitro, day 35 CSMC displayed an accelerated loss of phenotype and increased thymidine uptake in response to serum or PDGF-BB. Furthermore, carbachol-induced expression of phospho-AKT (a marker of cholinergic response) was lost from day 35 CSMC in vitro, while retained in control cells. Therefore, proliferation reduces the expression of smooth-muscle-specific markers in CSMC, possibly leading to altered contractility. However, inflammation-induced proliferation in vivo also causes lasting changes that include unexpected priming for an exaggerated response to proliferative stimuli. Identification of the molecular mechanisms of intestinal smooth muscle cell phenotypic modulation will be helpful in reducing the detrimental effects of inflammation.
Collapse
Affiliation(s)
- Dileep G Nair
- Gastrointestinal Diseases Research Unit, Department of Medicine, Queen’s University, Kingston, Ontario, Canada
| | | | | | | |
Collapse
|
42
|
Cho YE, Ahn DS, Morgan KG, Lee YH. Enhanced contractility and myosin phosphorylation induced by Ca(2+)-independent MLCK activity in hypertensive rats. Cardiovasc Res 2011; 91:162-70. [PMID: 21378385 DOI: 10.1093/cvr/cvr043] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
AIMS The role of Ca(2+) sensitization induced by a Ca(2+)-independent myosin light chain kinase (MLCK) in hypertension has not been determined. The aim of this study was to clarify the role of possible Ca(2+)-independent MLCK activity in hypertension. METHODS AND RESULTS We compared increases in contractile force and phosphorylation of myosin light chain (MLC) evoked by calyculin A, a phosphatase inhibitor, in β-escin-permeabilized mesenteric arteries at pCa 9.0 between spontaneously hypertensive rat (SHR) and Wistar Kyoto rat (WKY). We found that there was no detectable phosphorylation of MLC at pCa 9.0, but that the administration of 1 μM calyculin A gradually increased force and mono- and di-phosphorylation of MLC. This contraction was inhibited by staurosporine but not by wortmannin, Y-27632, or calphostin-C. The calyculin A-induced contraction was significantly greater in the SHR than in the WKY and was associated with an increase in mono- and di-phosphorylation of MLC. SM-1, a zipper-interacting protein kinase (ZIPK)-inhibiting peptide, significantly inhibited the amplitude of the calyculin A-induced contraction and di-phosphorylation. Total ZIPK expression (54 + 32 kDa) was greater in the SHR than in the WKY. Phosphorylation of myosin phosphatase target subunit at Thr(697), but not at Thr(855), was consistently stronger in the SHR than in the WKY in calyculin A-treated tissues at pCa 9.0. CONCLUSIONS Our results suggest that Ca(2+)-independent MLCK activity is enhanced in the SHR, and that ZIPK plays, at least in part, an important role as a candidate for this kinase in rat mesenteric arteries.
Collapse
Affiliation(s)
- Young-Eun Cho
- Department of Physiology, College of Medicine, BK 21 Project for Medical Sciences, Yonsei University, CPO Box 8044, Seoul 120-752, Korea
| | | | | | | |
Collapse
|
43
|
Scruggs SB, Solaro RJ. The significance of regulatory light chain phosphorylation in cardiac physiology. Arch Biochem Biophys 2011; 510:129-34. [PMID: 21345328 DOI: 10.1016/j.abb.2011.02.013] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2010] [Revised: 02/04/2011] [Accepted: 02/11/2011] [Indexed: 10/24/2022]
Abstract
It has been over 35 years since the first identification of phosphorylation of myosin light chains in skeletal and cardiac muscle. Yet only in the past few years has the role of these phosphorylations in cardiac dynamics been more fully understood. Advances in this understanding have come about with further evidence on the control mechanisms regulating the level of phosphorylation by kinases and phosphatases. Moreover, studies clarifiying the role of light chain phosphorylation in short and long term control of cardiac contractility and as a factor in cardiac remodeling have improved our knowledge. Especially important in these advances has been the use of gain and loss of function approaches, which have not only testedthe role of kinases and phosphatases, but also the effects of loss of RLC phosphorylation sites. Major conclusions from these studies indicate that (i) two negatively-charged post-translational modifications occupy the ventricular RLC N-terminus, with mouse RLC being doubly phosphorylated (Ser 14/15), and human RLC being singly phosphorylated (Ser 15) and singly deamidated(Asn14/16 to Asp); (ii)a distinct cardiac myosin light kinase (cMLCK) and a unique myosin phosphatase targeting peptide (MYPT2) control phosphoryl group transfer;and (iii) ablation of RLC phosphorylationdecreases ventricular power, lengthens the duration of ventricular ejection, and may also modify other sarcomeric proteins (e.g., troponin I) as substrates for kinases and/or phosphatases. A long term effect of low levels of RLC phosphorylation in mouse models also involves remodeling of the heart with hypertrophy, depressed contractility, and sarcomeric disarray. Data demonstrating altered levels of RLC phosphorylation in comparisons of samples from normal and stressed human hearts indicate the significance of these findings in translational medicine.
Collapse
Affiliation(s)
- Sarah B Scruggs
- University of California Los Angeles, Department of Physiology, Division of Cardiology, 90095, USA
| | | |
Collapse
|
44
|
Grassie ME, Moffat LD, Walsh MP, MacDonald JA. The myosin phosphatase targeting protein (MYPT) family: a regulated mechanism for achieving substrate specificity of the catalytic subunit of protein phosphatase type 1δ. Arch Biochem Biophys 2011; 510:147-59. [PMID: 21291858 DOI: 10.1016/j.abb.2011.01.018] [Citation(s) in RCA: 181] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2010] [Revised: 01/22/2011] [Accepted: 01/26/2011] [Indexed: 12/23/2022]
Abstract
The mammalian MYPT family consists of the products of five genes, denoted MYPT1, MYPT2, MBS85, MYPT3 and TIMAP, which function as targeting and regulatory subunits to confer substrate specificity and subcellular localization on the catalytic subunit of type 1δ protein serine/threonine phosphatase (PP1cδ). Family members share several conserved domains, including an RVxF motif for PP1c binding and several ankyrin repeats that mediate protein-protein interactions. MYPT1, MYPT2 and MBS85 contain C-terminal leucine zipper domains involved in dimerization and protein-protein interaction, whereas MYPT3 and TIMAP are targeted to membranes via a C-terminal prenylation site. All family members are regulated by phosphorylation at multiple sites by various protein kinases; for example, Rho-associated kinase phosphorylates MYPT1, MYPT2 and MBS85, resulting in inhibition of phosphatase activity and Ca(2+) sensitization of smooth muscle contraction. A great deal is known about MYPT1, the myosin targeting subunit of myosin light chain phosphatase, in terms of its role in the regulation of smooth muscle contraction and, to a lesser extent, non-muscle motile processes. MYPT2 appears to be the key myosin targeting subunit of myosin light chain phosphatase in cardiac and skeletal muscles. MBS85 most closely resembles MYPT2, but little is known about its physiological function. Little is also known about the physiological role of MYPT3, although it is likely to target myosin light chain phosphatase to membranes and thereby achieve specificity for substrates involved in regulation of the actin cytoskeleton. MYPT3 is regulated by phosphorylation by cAMP-dependent protein kinase. TIMAP appears to target PP1cδ to the plasma membrane of endothelial cells where it serves to dephosphorylate proteins involved in regulation of the actin cytoskeleton and thereby control endothelial barrier function. With such a wide range of regulatory targets, MYPT family members have been implicated in diverse pathological events, including hypertension, Parkinson's disease and cancer.
Collapse
Affiliation(s)
- Michael E Grassie
- Smooth Muscle Research Group, Department of Biochemistry and Molecular Biology, University of Calgary, AB, Canada
| | | | | | | |
Collapse
|
45
|
Abstract
Myosin regulatory light chain (RLC) phosphorylation in skeletal and cardiac muscles modulates Ca(2+)-dependent troponin regulation of contraction. RLC is phosphorylated by a dedicated Ca(2+)-dependent myosin light chain kinase in fast skeletal muscle, where biochemical properties of RLC kinase and phosphatase converge to provide a biochemical memory for RLC phosphorylation and post-activation potentiation of force development. The recent identification of cardiac-specific myosin light chain kinase necessary for basal RLC phosphorylation and another potential RLC kinase (zipper-interacting protein kinase) provides opportunities for new approaches to study signaling pathways related to the physiological function of RLC phosphorylation and its importance in cardiac muscle disease.
Collapse
Affiliation(s)
- Kristine E Kamm
- Department of Physiology, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas 75390, USA
| | | |
Collapse
|
46
|
Ding P, Huang J, Battiprolu PK, Hill JA, Kamm KE, Stull JT. Cardiac myosin light chain kinase is necessary for myosin regulatory light chain phosphorylation and cardiac performance in vivo. J Biol Chem 2010; 285:40819-29. [PMID: 20943660 PMCID: PMC3003383 DOI: 10.1074/jbc.m110.160499] [Citation(s) in RCA: 93] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2010] [Revised: 10/11/2010] [Indexed: 12/22/2022] Open
Abstract
In contrast to studies on skeletal and smooth muscles, the identity of kinases in the heart that are important physiologically for direct phosphorylation of myosin regulatory light chain (RLC) is not known. A Ca(2+)/calmodulin-activated myosin light chain kinase is expressed only in cardiac muscle (cMLCK), similar to the tissue-specific expression of skeletal muscle MLCK and in contrast to the ubiquitous expression of smooth muscle MLCK. We have ablated cMLCK expression in male mice to provide insights into its role in RLC phosphorylation in normally contracting myocardium. The extent of RLC phosphorylation was dependent on the extent of cMLCK expression in both ventricular and atrial muscles. Attenuation of RLC phosphorylation led to ventricular myocyte hypertrophy with histological evidence of necrosis and fibrosis. Echocardiography showed increases in left ventricular mass as well as end-diastolic and end-systolic dimensions. Cardiac performance measured as fractional shortening decreased proportionally with decreased cMLCK expression culminating in heart failure in the setting of no RLC phosphorylation. Hearts from female mice showed similar responses with loss of cMLCK associated with diminished RLC phosphorylation and cardiac hypertrophy. Isoproterenol infusion elicited hypertrophic cardiac responses in wild type mice. In mice lacking cMLCK, the hypertrophic hearts showed no additional increases in size with the isoproterenol treatment, suggesting a lack of RLC phosphorylation blunted the stress response. Thus, cMLCK appears to be the predominant protein kinase that maintains basal RLC phosphorylation that is required for normal physiological cardiac performance in vivo.
Collapse
Affiliation(s)
| | | | | | - Joseph A. Hill
- Internal Medicine (Cardiology), and
- Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390
| | | | | |
Collapse
|
47
|
Renteria LS, Raj JU, Ibe BO. Prolonged hypoxia modulates platelet activating factor receptor-mediated responses by fetal ovine pulmonary vascular smooth muscle cells. Mol Genet Metab 2010; 101:400-8. [PMID: 20813571 PMCID: PMC2991540 DOI: 10.1016/j.ymgme.2010.08.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2010] [Accepted: 08/04/2010] [Indexed: 11/21/2022]
Abstract
Hypoxia augments PAF receptor (PAFr) binding and PAFr protein expression in venous SMC (SMC-PV). We compared effect of acute and prolonged hypoxia (pO(2)<40 torr) on PAFr-mediated responses in arterial SMC (SMC-PA) and SMC-PV. Cells were studied for 30 min (acute) or for 48 h (prolonged) hypoxia and compared to normoxic (pO(2) ~100 torr) conditions. PAF binding was quantified in fmol/10(6) cells (mean ± SEM). PAF binding in normoxia were SMC-PA, 5.2 ± 0.2 and in SMC-PV, 19.3 ± 1.1; values in acute hypoxia were SMC-PA, 7.7 ± 0.4 and in SMC-PV, 27.8 ± 1.7. Prolonged hypoxia produced 6-fold increase in binding in SMC-PA, but only 2-fold increase in SMC-PV, but binding in SMC-PV was still higher. Acute hypoxia augmented inositol phosphate release by 50% and 40% in SMC-PA and SMC-PV, respectively. During normoxia, PAFr mRNA expression by both cell types was similar, but expression in hypoxia by SMC-PA was greater. In SMC-PA, hypoxia and PAF augmented intracellular calcium flux. Re-exposure of cells to 30 min normoxia after 48 h hypoxia decreased binding by 45-60%, suggesting immediate down-regulation of hypoxia-induced PAFr-mediated effects. We speculate that re-oxygenation immediately reverses hypoxia effect probably due to oxygen tension-dependent reversibility of PAFr activation and suggest that exposure of the neonate to prolonged state of hypoxia will vilify oxygen exchange capacity of the neonatal lungs.
Collapse
MESH Headings
- Animals
- Calcium/metabolism
- Cells, Cultured
- Down-Regulation
- Female
- Fetus
- Hypoxia/genetics
- Hypoxia/metabolism
- Inositol Phosphates/metabolism
- Muscle, Smooth, Vascular/cytology
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/metabolism
- Oxygen/metabolism
- Oxygen/pharmacology
- Platelet Activating Factor/pharmacology
- Platelet Membrane Glycoproteins/biosynthesis
- Platelet Membrane Glycoproteins/genetics
- Platelet Membrane Glycoproteins/metabolism
- Pregnancy
- Pulmonary Artery/cytology
- Pulmonary Artery/metabolism
- Pulmonary Veins/cytology
- Pulmonary Veins/metabolism
- RNA, Messenger/biosynthesis
- RNA, Messenger/genetics
- Receptors, G-Protein-Coupled/biosynthesis
- Receptors, G-Protein-Coupled/genetics
- Receptors, G-Protein-Coupled/metabolism
- Sheep
Collapse
Affiliation(s)
- Lissette S. Renteria
- Department of Pediatrics, David Geffen School of Medicine at UCLA, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, CA 90502
| | - J. Usha Raj
- Department of Pediatrics, University of Illinois at Chicago, Chicago, IL 60612
| | - Basil O. Ibe
- Department of Pediatrics, David Geffen School of Medicine at UCLA, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, CA 90502
| |
Collapse
|
48
|
Weitzel DH, Chambers J, Haystead TAJ. Phosphorylation-dependent control of ZIPK nuclear import is species specific. Cell Signal 2010; 23:297-303. [PMID: 20854903 DOI: 10.1016/j.cellsig.2010.09.016] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2010] [Revised: 08/27/2010] [Accepted: 09/13/2010] [Indexed: 12/30/2022]
Abstract
ZIPK (zipper-interacting protein kinase) is a Ca(2+)-independent protein kinase that promotes myosin phosphorylation in both smooth muscle and non-muscle cells. A recent report attempted to clarify a debate over the subcellular localization of ZIPK in non-muscle cells (Shoval et. al. (2007) Plos Genetics. 3: 1884-1883). A species-specific loss of a key phosphorylation site (T299) in murine (mouse and rat) ZIPK seems to direct it to the nucleus, while the presence of the T299 site in human ZIPK correlates with cytoplasmic localization. T299 is immediately adjacent to a putative nuclear localization sequence (NLS) and may mask its function when phosphorylated, therefore explaining the species-specific dichotomy of intracellular localization. However, despite the murine ZIPK (mZIPK) lacking the T299 residue that is critical for controlling human ZIPK (hZIPK) subcellular localization, mutational analysis showed that this NLS control locus is nonfunctional in the murine context. A constitutively active Rho promoted the cytoplasmic retention of a human ZIPK mutant that would otherwise localize to the nucleus. Endogenous hZIPK showed sensitivity to the nuclear export inhibitor leptomycin B, suggesting a continuous shuttling between cytoplasm and nucleus that is dependent upon T299 dephosphorylation. Thus, the C-terminal domain of human and murine ZIPK demonstrated quite divergent nuclear import and export functionality. We conclude that in the case of ZIPK, studies between the species may not be directly comparable to each other given the gross differences in intracellular localization and movement.
Collapse
Affiliation(s)
- Douglas H Weitzel
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | | | |
Collapse
|
49
|
Goyal R, Mittal A, Chu N, Arthur RA, Zhang L, Longo LD. Maturation and long-term hypoxia-induced acclimatization responses in PKC-mediated signaling pathways in ovine cerebral arterial contractility. Am J Physiol Regul Integr Comp Physiol 2010; 299:R1377-86. [PMID: 20702800 DOI: 10.1152/ajpregu.00344.2010] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
In the developing fetus, cerebral arteries (CA) show striking differences in signal transduction mechanisms compared with the adult, and these differences are magnified in response to high-altitude long-term hypoxia (LTH). In addition, in the mature organism, cerebrovascular acclimatization to LTH may be associated with several clinical problems, the mechanisms of which are unknown. Because PKC plays a key role in regulating CA contractility, in fetal and adult cerebral arteries, we tested the hypothesis that LTH differentially regulates the PKC-mediated Ca(2+) sensitization pathways and contractility. In four groups of sheep [fetal normoxic (FN), fetal hypoxic (FH), adult normoxic (AN), and adult hypoxic (AH)], we examined, simultaneously, responses of CA tension and intracellular Ca(2+) concentration and measured CA levels of PKC, ERK1/2, RhoA, 20-kDa myosin light chain, and the 17-kDa PKC-potentiated myosin phosphatase inhibitor CPI-17. The PKC activator phorbol 12,13-dibutyrate (PDBu) produced robust contractions in all four groups. However, PDBu-induced contractions were significantly greater in AH CA than in the other groups. In all CA groups except AH, in the presence of MEK inhibitor (U-0126), the PDBu-induced contractions were increased a further 20-30%. Furthermore, in adult CA, PDBu led to increased phosphorylation of ERK1, but not ERK2; in fetal CA, the reverse was the case. PDBu-stimulated ERK2 phosphorylation also was significantly greater in FH than FN CA. Also, although RhoA/Rho kinase played a significant role in PDBu-mediated contractions of FN CA, this was not the case in FH or either adult group. Also, whereas CPI-17 had a significant role in adult CA contractility, this was not the case for the fetus. Overall, in ovine CA, the present study demonstrates several important maturational and LTH acclimatization changes in PKC-induced contractile responses and downstream pathways. The latter may play a key role in the pathophysiologic disorders associated with acclimatization to high altitude.
Collapse
Affiliation(s)
- Ravi Goyal
- Center for Perinatal Biology and Department of Physiology, Loma Linda University, School of Medicine, Loma Linda, California 92350, USA
| | | | | | | | | | | |
Collapse
|
50
|
Kinase-related protein/telokin inhibits Ca2+-independent contraction in Triton-skinned guinea pig taenia coli. Biochem J 2010; 429:291-302. [PMID: 20459395 DOI: 10.1042/bj20090819] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
KRP (kinase-related protein), also known as telokin, has been proposed to inhibit smooth muscle contractility by inhibiting the phosphorylation of the rMLC (regulatory myosin light chain) by the Ca2+-activated MLCK (myosin light chain kinase). Using the phosphatase inhibitor microcystin, we show in the present study that KRP also inhibits Ca2+-independent rMLC phosphorylation and smooth muscle contraction mediated by novel Ca2+-independent rMLC kinases. Incubating KRP-depleted Triton-skinned taenia coli with microcystin at pCa>8 induced a slow contraction reaching 90% of maximal force (Fmax) at pCa 4.5 after approximately 25 min. Loading the fibres with KRP significantly slowed down the force development, i.e. the time to reach 50% of Fmax was increased from 8 min to 35 min. KRP similarly inhibited rMLC phosphorylation of HMM (heavy meromyosin) in vitro by MLCK or by the constitutively active MLCK fragment (61K-MLCK) lacking the myosin-docking KRP domain. A C-terminally truncated KRP defective in myosin binding inhibited neither force nor HMM phosphorylation. Phosphorylated KRP inhibited the rMLC phosphorylation of HMM in vitro and Ca2+-insensitive contractions in fibres similar to unphosphorylated KRP, whereby the phosphorylation state of KRP was not altered in the fibres. We conclude that (i) KRP inhibits not only MLCK-induced contractions, but also those elicited by Ca2+-independent rMLC kinases; (ii) phosphorylation of KRP does not modulate this effect; (iii) binding of KRP to myosin is essential for this inhibition; and (iv) KRP inhibition of rMLC phosphorylation is most probably due to the shielding of the phosphorylation site on the rMLC.
Collapse
|