1
|
Atia L, Fredberg JJ. A life off the beaten track in biomechanics: Imperfect elasticity, cytoskeletal glassiness, and epithelial unjamming. BIOPHYSICS REVIEWS 2023; 4:041304. [PMID: 38156333 PMCID: PMC10751956 DOI: 10.1063/5.0179719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 11/17/2023] [Indexed: 12/30/2023]
Abstract
Textbook descriptions of elasticity, viscosity, and viscoelasticity fail to account for certain mechanical behaviors that typify soft living matter. Here, we consider three examples. First, strong empirical evidence suggests that within lung parenchymal tissues, the frictional stresses expressed at the microscale are fundamentally not of viscous origin. Second, the cytoskeleton (CSK) of the airway smooth muscle cell, as well as that of all eukaryotic cells, is more solid-like than fluid-like, yet its elastic modulus is softer than the softest of soft rubbers by a factor of 104-105. Moreover, the eukaryotic CSK expresses power law rheology, innate malleability, and fluidization when sheared. For these reasons, taken together, the CSK of the living eukaryotic cell is reminiscent of the class of materials called soft glasses, thus likening it to inert materials such as clays, pastes slurries, emulsions, and foams. Third, the cellular collective comprising a confluent epithelial layer can become solid-like and jammed, fluid-like and unjammed, or something in between. Esoteric though each may seem, these discoveries are consequential insofar as they impact our understanding of bronchospasm and wound healing as well as cancer cell invasion and embryonic development. Moreover, there are reasons to suspect that certain of these phenomena first arose in the early protist as a result of evolutionary pressures exerted by the primordial microenvironment. We have hypothesized, further, that each then became passed down virtually unchanged to the present day as a conserved core process. These topics are addressed here not only because they are interesting but also because they track the journey of one laboratory along a path less traveled by.
Collapse
Affiliation(s)
- Lior Atia
- Ben Gurion University of the Negev, Beer Sheva, Israel
| | | |
Collapse
|
2
|
YG-1 Extract Improves Acute Pulmonary Inflammation by Inducing Bronchodilation and Inhibiting Inflammatory Cytokines. Nutrients 2021; 13:nu13103414. [PMID: 34684415 PMCID: PMC8537401 DOI: 10.3390/nu13103414] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 09/23/2021] [Accepted: 09/25/2021] [Indexed: 12/23/2022] Open
Abstract
YG-1 extract used in this study is a mixture of Lonicera japonica, Arctic Fructus, and Scutellariae Radix. The present study was designed to investigate the effect of YG-1 extract on bronchodilatation (ex vivo) and acute bronchial and pulmonary inflammation relief (in vivo). Ex vivo: The bronchodilation reaction was confirmed by treatment with YG-1 concentration-accumulation (0.01, 0.03, 0.1, 0.3, and 1 mg/mL) in the bronchial tissue ring pre-contracted by acetylcholine (10 μM). As a result, YG-1 extract is considered to affect bronchodilation by increased cyclic adenosine monophosphate, cAMP) levels through the β2-adrenergic receptor. In vivo: experiments were performed in C57BL/6 mice were divided into the following groups: control group; PM2.5 (fine particulate matter)-exposed group (PM2.5, 200 μg/kg/mL saline); and PM2.5-exposed + YG-1 extract (200 mg/kg/day) group. The PM2.5 (200 μg/kg/mL saline) was exposed for 1 h for 5 days using an ultrasonic nebulizer aerosol chamber to instill fine dust in the bronchi and lungs, thereby inducing acute lung and bronchial inflammation. From two days before PM2.5 exposure, YG-1 extract (200 mg/kg/day) was administered orally for 7 days. The PM2.5 exposure was involved in airway remodeling and inflammation, suggesting that YG-1 treatment improves acute bronchial and pulmonary inflammation by inhibiting the inflammatory cytokines (NLRP3/caspase-1 pathway). The application of YG-1 extract with broncho-dilating effect to acute bronchial and pulmonary inflammation animal models has great significance in developing therapeutic agents for respiratory diseases. Therefore, these results can provide essential data for the development of novel respiratory symptom relievers. Our study provides strong evidence that YG-1 extracts reduce the prevalence of respiratory symptoms and the incidence of non-specific lung diseases and improve bronchial and lung function.
Collapse
|
3
|
Uray K, Major E, Lontay B. MicroRNA Regulatory Pathways in the Control of the Actin-Myosin Cytoskeleton. Cells 2020; 9:E1649. [PMID: 32660059 PMCID: PMC7408560 DOI: 10.3390/cells9071649] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 07/03/2020] [Accepted: 07/07/2020] [Indexed: 12/12/2022] Open
Abstract
MicroRNAs (miRNAs) are key modulators of post-transcriptional gene regulation in a plethora of processes, including actin-myosin cytoskeleton dynamics. Recent evidence points to the widespread effects of miRNAs on actin-myosin cytoskeleton dynamics, either directly on the expression of actin and myosin genes or indirectly on the diverse signaling cascades modulating cytoskeletal arrangement. Furthermore, studies from various human models indicate that miRNAs contribute to the development of various human disorders. The potentially huge impact of miRNA-based mechanisms on cytoskeletal elements is just starting to be recognized. In this review, we summarize recent knowledge about the importance of microRNA modulation of the actin-myosin cytoskeleton affecting physiological processes, including cardiovascular function, hematopoiesis, podocyte physiology, and osteogenesis.
Collapse
Affiliation(s)
- Karen Uray
- Correspondence: (K.U.); (B.L.); Tel.: +36-52-412345 (K.U. & B.L.)
| | | | - Beata Lontay
- Correspondence: (K.U.); (B.L.); Tel.: +36-52-412345 (K.U. & B.L.)
| |
Collapse
|
4
|
Ye X, Hong W, Hao B, Peng G, Huang L, Zhao Z, Zhou Y, Zheng M, Li C, Liang C, Yi E, Pu J, Li B, Ran P. PM2.5 promotes human bronchial smooth muscle cell migration via the sonic hedgehog signaling pathway. Respir Res 2018; 19:37. [PMID: 29499705 PMCID: PMC5833105 DOI: 10.1186/s12931-017-0702-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Accepted: 12/14/2017] [Indexed: 12/12/2022] Open
Abstract
Background The contribution of airway remodeling in chronic obstructive pulmonary disease (COPD) has been well documented, with airway smooth muscle cell proliferation and migration playing a role in the remodeling process. Here, we aimed to verify the effects of fine particulate matter (PM2.5) on human bronchial smooth muscle cell (HBSMC) migration and to explore the underlying signaling pathways. Methods HBSMC apoptosis, proliferation and migration were measured using flow cytometry, cell counting and transwell migration assays, respectively. The role of the hedgehog pathway in cell migration was assessed by western blotting to measure the expression of Sonic hedgehog (Shh), Gli1 and Snail. Furthermore, siRNA was used to knock down Gli1 or Snail expression. Results PM2.5 induced HBSMC apoptosis in a dose-dependent manner, although certain concentrations of PM2.5 did not induce HBSMC proliferation or apoptosis. Interestingly, cell migration was stimulated by PM2.5 doses far below those that induced apoptosis. Additional experiments revealed that these PM2.5 doses enhanced the expression of Shh, Gli1 and Snail in HBSMCs. Furthermore, PM2.5-induced cell migration and protein expression were enhanced by recombinant Shh and attenuated by cyclopamine. Similar results were obtained by knocking down Gli1 or Snail. Conclusions These findings suggest that PM2.5, which may exert its effects through the Shh signaling pathway, is necessary for the migration of HBSMCs. These data define a novel role for PM2.5 in airway remodeling in COPD. Electronic supplementary material The online version of this article (10.1186/s12931-017-0702-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Xiuqin Ye
- State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,Xiamen Humanity Hospital, Xiamen, Fujian, China
| | - Wei Hong
- State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,GMU-GIBH Joint School of Life Sciences, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Binwei Hao
- State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Gongyong Peng
- State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Lingmei Huang
- State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,Respiratory Department of the First Hospital of Yueyang City, Yueyang, Hunan, China
| | - Zhuxiang Zhao
- The First Affiliated Municipal Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Yumin Zhou
- State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Mengning Zheng
- State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Chenglong Li
- State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Chunxiao Liang
- State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Erkang Yi
- State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Jinding Pu
- State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Bing Li
- GMU-GIBH Joint School of Life Sciences, Guangzhou Medical University, Guangzhou, Guangdong, China.
| | - Pixin Ran
- State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.
| |
Collapse
|
5
|
Abstract
Asthma is the most common inflammatory disease of the lungs. The prevalence of asthma is increasing in many parts of the world that have adopted aspects of the Western lifestyle, and the disease poses a substantial global health and economic burden. Asthma involves both the large-conducting and the small-conducting airways, and is characterized by a combination of inflammation and structural remodelling that might begin in utero. Disease progression occurs in the context of a developmental background in which the postnatal acquisition of asthma is strongly linked with allergic sensitization. Most asthma cases follow a variable course, involving viral-induced wheezing and allergen sensitization, that is associated with various underlying mechanisms (or endotypes) that can differ between individuals. Each set of endotypes, in turn, produces specific asthma characteristics that evolve across the lifecourse of the patient. Strong genetic and environmental drivers of asthma interconnect through novel epigenetic mechanisms that operate prenatally and throughout childhood. Asthma can spontaneously remit or begin de novo in adulthood, and the factors that lead to the emergence and regression of asthma, irrespective of age, are poorly understood. Nonetheless, there is mounting evidence that supports a primary role for structural changes in the airways with asthma acquisition, on which altered innate immune mechanisms and microbiota interactions are superimposed. On the basis of the identification of new causative pathways, the subphenotyping of asthma across the lifecourse of patients is paving the way for more-personalized and precise pathway-specific approaches for the prevention and treatment of asthma, creating the real possibility of total prevention and cure for this chronic inflammatory disease.
Collapse
Affiliation(s)
- Stephen T. Holgate
- Clinical and Experimental Sciences, Mail Point 810, Level F, Sir Henry Wellcome Building
- Southampton General Hospital, Southampton, SO16 6YD UK
| | - Sally Wenzel
- Subsection Chief of Allergy, Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh, Asthma Institute at UPMC/UPSOM, Pittsburgh, Pennsylvania USA
| | - Dirkje S. Postma
- Department of Pulmonology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Scott T. Weiss
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts USA
| | - Harald Renz
- Institute of Laboratory Medicine and Pathobiochemistry, Molecular Diagnostics, Philipps University Marburg, University Hospital Giessen and Marburg GmbH, Campus Marburg, Marburg, Germany
| | - Peter D. Sly
- Queensland Children's Medical Research Institute and Centre for Child Health Research, University of Queensland, Brisbane, Australia
| |
Collapse
|
6
|
|
7
|
Wyczalkowski MA, Varner VD, Taber LA. Computational and experimental study of the mechanics of embryonic wound healing. J Mech Behav Biomed Mater 2013; 28:125-46. [PMID: 23973771 DOI: 10.1016/j.jmbbm.2013.07.018] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2013] [Revised: 07/14/2013] [Accepted: 07/16/2013] [Indexed: 01/07/2023]
Abstract
Wounds in the embryo show a remarkable ability to heal quickly without leaving a scar. Previous studies have found that an actomyosin ring (purse string) forms around the wound perimeter and contracts to close the wound over the course of several dozens of minutes. Here, we report experiments that reveal an even faster mechanism which remarkably closes wounds by more than 50% within the first 30s. Circular and elliptical wounds (~100μm in size) were made in the blastoderm of early chick embryos and allowed to heal, with wound area and shape characterized as functions of time. The closure rate displayed a biphasic behavior, with rapid constriction lasting about a minute, followed by a period of more gradual closure to complete healing. Fluorescent staining suggests that both healing phases are driven by actomyosin contraction, with relatively rapid contraction of fibers at cell borders within a relatively thick ring of tissue (several cells wide) around the wound followed by slower contraction of a thin supracellular actomyosin ring along the margin, consistent with a purse string mechanism. Finite-element modeling showed that this idea is biophysically plausible, with relatively isotropic contraction within the thick ring giving way to tangential contraction in the thin ring. In addition, consistent with experimental results, simulated elliptical wounds heal with little change in aspect ratio, and decreased membrane tension can cause these wounds to open briefly before going on to heal. These results provide new insight into the healing mechanism in embryonic epithelia.
Collapse
|
8
|
Lee SL, Nekouzadeh A, Butler B, Pryse KM, McConnaughey WB, Nathan AC, Legant WR, Schaefer PM, Pless RB, Elson EL, Genin GM. Physically-induced cytoskeleton remodeling of cells in three-dimensional culture. PLoS One 2012; 7:e45512. [PMID: 23300512 PMCID: PMC3531413 DOI: 10.1371/journal.pone.0045512] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2012] [Accepted: 08/20/2012] [Indexed: 01/15/2023] Open
Abstract
Characterizing how cells in three-dimensional (3D) environments or natural tissues respond to biophysical stimuli is a longstanding challenge in biology and tissue engineering. We demonstrate a strategy to monitor morphological and mechanical responses of contractile fibroblasts in a 3D environment. Cells responded to stretch through specific, cell-wide mechanisms involving staged retraction and reinforcement. Retraction responses occurred for all orientations of stress fibers and cellular protrusions relative to the stretch direction, while reinforcement responses, including extension of cellular processes and stress fiber formation, occurred predominantly in the stretch direction. A previously unreported role of F-actin clumps was observed, with clumps possibly acting as F-actin reservoirs for retraction and reinforcement responses during stretch. Responses were consistent with a model of cellular sensitivity to local physical cues. These findings suggest mechanisms for global actin cytoskeleton remodeling in non-muscle cells and provide insight into cellular responses important in pathologies such as fibrosis and hypertension.
Collapse
Affiliation(s)
- Sheng-Lin Lee
- Department of Mechanical Engineering & Materials Science, Washington University, St. Louis, Missouri, United States of America
| | - Ali Nekouzadeh
- Department of Biomedical Engineering, Washington University, St. Louis, Missouri, United States of America
| | - Boyd Butler
- Department of Biological Sciences Texas Tech University, Lubbock, Texas, United States of America
| | - Kenneth M. Pryse
- Department of Biochemistry & Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - William B. McConnaughey
- Department of Biochemistry & Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Adam C. Nathan
- Department of Mechanical Engineering & Materials Science, Washington University, St. Louis, Missouri, United States of America
| | - Wesley R. Legant
- Department of Biomedical Engineering, Washington University, St. Louis, Missouri, United States of America
| | - Pascal M. Schaefer
- Department of Biology, Washington University, St. Louis, Missouri, United States of America
| | - Robert B. Pless
- Department of Computer Science and Engineering, Washington University, St. Louis, Missouri, United States of America
| | - Elliot L. Elson
- Department of Biochemistry & Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Guy M. Genin
- Department of Mechanical Engineering & Materials Science, Washington University, St. Louis, Missouri, United States of America
| |
Collapse
|
9
|
The potential use of tyrosine kinase inhibitors in severe asthma. Curr Opin Allergy Clin Immunol 2012; 12:68-75. [PMID: 22157153 DOI: 10.1097/aci.0b013e32834ecb4f] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
PURPOSE OF REVIEW Severe asthma comprises heterogeneous phenotypes that share in common a poor response to traditional therapies. Recent and ongoing work with tyrosine kinase inhibitors suggests a potential beneficial role in treatment of severe asthma. RECENT FINDINGS Various receptor and nonreceptor tyrosine kinase pathways contribute to aspects of airway inflammation, airway hyperresponsiveness, and remodeling of asthma. Selective and nonselective tyrosine kinase inhibitors may be useful to block pathways that are pathologically overactive or overexpressed in severe asthma. Recent in-vivo studies have demonstrated the utility of inhibitors against specific tyrosine kinases (epidermal growth factor receptor, c-kit/platelet derived growth factor receptor, vascular endothelial growth factor receptor, spleen tyrosine kinase, and janus kinase) in altering key aspects of severe asthma. SUMMARY Asthma and even severe asthma does not consist of a single phenotype. Targeting key inflammatory and remodeling pathways engaged across subphenotypes with tyrosine kinase inhibitors appears to hold promise.
Collapse
|
10
|
Yoon CH, Park HJ, Cho YW, Kim EJ, Lee JD, Kang KR, Han J, Kang D. Cigarette Smoke Extract-induced Reduction in Migration and Contraction in Normal Human Bronchial Smooth Muscle Cells. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2011; 15:397-403. [PMID: 22359478 PMCID: PMC3282228 DOI: 10.4196/kjpp.2011.15.6.397] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2011] [Revised: 11/21/2011] [Accepted: 12/01/2011] [Indexed: 11/18/2022]
Abstract
The proliferation, migration, cytokine release, and contraction of airway smooth muscle cells are key events in the airway remodeling process that occur in lung disease such as asthma, chronic obstruction pulmonary disease, and cancer. These events can be modulated by a number of factors, including cigarette smoke extract (CSE). CSE-induced alterations in the viability, migration, and contractile abilities of normal human airway cells remain unclear. This study investigated the effect of CSE on cell viability, migration, tumor necrosis factor (TNF)-α secretion, and contraction in normal human bronchial smooth muscle cells (HBSMCs). Treatment of HBSMCs with 10% CSE induced cell death, and the death was accompanied by the generation of reactive oxygen species (ROS). CSE-induced cell death was reduced by N-acetyl-l-cysteine (NAC), an ROS scavenger. In addition, CSE reduced the migration ability of HBSMCs by 75%. The combination of NAC with CSE blocked the CSE-induced reduction of cell migration. However, CSE had no effect on TNF-α secretion and NF-κB activation. CSE induced an increase in intracellular Ca2+ concentration in 64% of HBSMCs. CSE reduced the contractile ability of HBSMCs, and the ability was enhanced by NAC treatment. These results demonstrate that CSE treatment induces cell death and reduces migration and contraction by increasing ROS generation in normal HBSMCs. These results suggest that CSE may induce airway change through cell death and reduction in migration and contraction of normal HBSMCs.
Collapse
Affiliation(s)
- Chul Ho Yoon
- Department of Rehabilitation Medicine, Gyeongsang National University School of Medicine, Jinju 660-751, Korea
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Miller C, George S, Niklason L. Developing a tissue-engineered model of the human bronchiole. J Tissue Eng Regen Med 2011; 4:619-27. [PMID: 20603896 DOI: 10.1002/term.277] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Scientists are always looking for new tools to better mimic human anatomy and physiology, especially to study chronic respiratory disease. Airway remodelling is a predominant feature in asthma and occurs in conjunction with chronic airway inflammation. Both the inflammatory and repair processes alter the airway wall which is marked by anatomical, physiological and functional changes. A tissue-engineered model of bronchiole remodelling presents a novel approach to investigating the initiation and progression of airway remodelling. By developing a unique bioreactor system, cylindrical-shaped bronchioles constructed from well-characterized human lung primary cells have been engineered and examined with a much greater control over experimental variables. We have grown human bronchioles composed of fibroblasts, airway smooth muscle cells, small airway epithelial cells and extracellular matrices. The various cell types are in close proximity to one another for cell-cell signalling and matrix interactions. The cylindrical geometry of the tissue applies radial distension for mechanotransduction and the air interface provides a natural environment for the epithelial cells. Optimal cell density, extracellular matrix concentration and media composition were determined. Immunohistochemistry verified bronchiole phenotypic stability. Quiescence was gauged by protein expression which verified a change in phenotype after the initial fabrication stage and implementation of the air interface. A fabrication timeline was devised for repeatable bronchiole fabrication and to understand tissue contraction and cell-seeding duration. The stability of the bronchiole structures and their cellular composition lends these bronchioles to study cell-cell interactions and remodelling events while maintaining in vivo geometrical dimensions and relationships.
Collapse
Affiliation(s)
- Cheryl Miller
- Department of Biomedical Engineering, St. Louis University, St. Louis, MO 63103, USA.
| | | | | |
Collapse
|
12
|
Mujahid N, Bowers C, Costa L, Ferrari C, Cooley J, Burgess S, Mays S, Swiderski C. Smooth Muscle Proliferation is a Histologic Feature of Airway Remodeling in Summer Pasture Associated Recurrent Airway Obstruction. J Equine Vet Sci 2011. [DOI: 10.1016/j.jevs.2011.03.048] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
13
|
Xu W, Hong W, Shao Y, Ning Y, Cai Z, Li Q. Nogo-B regulates migration and contraction of airway smooth muscle cells by decreasing ARPC 2/3 and increasing MYL-9 expression. Respir Res 2011; 12:14. [PMID: 21251247 PMCID: PMC3037873 DOI: 10.1186/1465-9921-12-14] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2010] [Accepted: 01/21/2011] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Abnormal proliferation, apoptosis, migration and contraction of airway smooth muscle (ASM) cells in airway remodeling in asthma are basically excessive repair responses to a network of inflammatory mediators such as PDGF, but the mechanisms of such responses remain unclear. Nogo-B, a member of the reticulum family 4(RTN4), is known to play a key role in arteriogenesis and tissue repair. Further studies are needed to elucidate the role of Nogo-B in airway smooth muscle abnormalities. METHODS A mouse model of chronic asthma was established by repeated OVA inhalation and subjected to Nogo-B expression analysis using immunohistochemistry and Western Blotting. Then, primary human bronchial smooth muscle cells (HBSMCs) were cultured in vitro and a siRNA interference was performed to knockdown the expression of Nogo-B in the cells. The effects of Nogo-B inhibition on PDGF-induced HBSMCs proliferation, migration and contraction were evaluated. Finally, a proteomic analysis was conducted to unveil the underlying mechanisms responsible for the function of Nogo-B. RESULTS Total Nogo-B expression was approximately 3.08-fold lower in chronic asthmatic mice compared to naïve mice, which was obvious in the smooth muscle layer of the airways. Interference of Nogo-B expression by siRNA resulted nearly 96% reduction in mRNA in cultured HBSMCs. In addition, knockdown of Nogo-B using specific siRNA significantly decreased PDGF-induced migration of HBSMCs by 2.3-fold, and increased the cellular contraction by 16% compared to negative controls, but had limited effects on PDGF-induced proliferation. Furthermore, using proteomic analysis, we demonstrate that the expression of actin related protein 2/3 complex subunit 5 (ARPC 2/3) decreased and, myosin regulatory light chain 9 isoform a (MYL-9) increased after Nogo-B knockdown. CONCLUSIONS These data define a novel role for Nogo-B in airway remodeling in chronic asthma. Endogenous Nogo-B, which may exert its effects through ARPC 2/3 and MYL-9, is necessary for the migration and contraction of airway smooth muscle cells.
Collapse
Affiliation(s)
- Wujian Xu
- Department of Respiratory Diseases, ChangHai Hospital, Second Military Medical University, Shanghai 200433, China
| | | | | | | | | | | |
Collapse
|
14
|
Pradidarcheep W, Wallner C, Dabhoiwala NF, Lamers WH. Anatomy and histology of the lower urinary tract. Handb Exp Pharmacol 2011:117-148. [PMID: 21290225 DOI: 10.1007/978-3-642-16499-6_7] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
The function of the lower urinary tract is basically storage of urine in the bladder and the at-will periodic evacuation of the stored urine. Urinary incontinence is one of the most common lower urinary tract disorders in adults, but especially in the elderly female. The urethra, its sphincters, and the pelvic floor are key structures in the achievement of continence, but their basic anatomy is little known and, to some extent, still incompletely understood. Because questions with respect to continence arise from human morbidity, but are often investigated in rodent animal models, we present findings in human and rodent anatomy and histology. Differences between males and females in the role that the pelvic floor plays in the maintenance of continence are described. Furthermore, we briefly describe the embryologic origin of ureters, bladder, and urethra, because the developmental origin of structures such as the vesicoureteral junction, the bladder trigone, and the penile urethra are often invoked to explain (clinical) observations. As the human pelvic floor has acquired features in evolution that are typical for a species with bipedal movement, we also compare the pelvic floor of humans with that of rodents to better understand the rodent (or any other quadruped, for that matter) as an experimental model species. The general conclusion is that the "Bauplan" is well conserved, even though its common features are sometimes difficult to discern.
Collapse
Affiliation(s)
- Wisuit Pradidarcheep
- AMC Liver Center, Academic Medical Center, University of Amsterdam, Meibergdreef 69-71, 1105 BK, Amsterdam, The Netherlands
| | | | | | | |
Collapse
|
15
|
TABER L, SHI Y, YANG L, BAYLY P. A POROELASTIC MODEL FOR CELL CRAWLING INCLUDING MECHANICAL COUPLING BETWEEN CYTOSKELETAL CONTRACTION AND ACTIN POLYMERIZATION. JOURNAL OF MECHANICS OF MATERIALS AND STRUCTURES 2011; 6:569-589. [PMID: 21765817 PMCID: PMC3134831 DOI: 10.2140/jomms.2011.6.569] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Much is known about the biophysical mechanisms involved in cell crawling, but how these processes are coordinated to produce directed motion is not well understood. Here, we propose a new hypothesis whereby local cytoskeletal contraction generates fluid flow through the lamellipodium, with the pressure at the front of the cell facilitating actin polymerization which pushes the leading edge forward. The contraction, in turn, is regulated by stress in the cytoskeleton. To test this hypothesis, finite element models for a crawling cell are presented. These models are based on nonlinear poroelasticity theory, modified to include the effects of active contraction and growth, which are regulated by mechanical feedback laws. Results from the models agree reasonably well with published experimental data for cell speed, actin flow, and cytoskeletal deformation in migrating fish epidermal keratocytes. The models also suggest that oscillations can occur for certain ranges of parameter values.
Collapse
Affiliation(s)
- L.A. TABER
- Department of Biomedical Engineering, 1 Brookings Drive, Box 1097, Washington University, St. Louis, MO 63130, USA
| | - Y. SHI
- Department of Biomedical Engineering, Washington University, 1 Brookings Drive, Box 1097, St. Louis, MO 63130, USA
| | - L. YANG
- Department of Biomedical Engineering, Washington University, 1 Brookings Drive, Box 1097, St. Louis, MO 63130, USA
| | - P.V. BAYLY
- Department of Mechanical Engineering and Materials Science, Washington University, 1 Brookings Drive, Box 1185, St. Louis, MO 63130, USA
| |
Collapse
|
16
|
Abstract
Asthma is an inflammatory disorder of the conducting airways that has strong association with allergic sensitization. The disease is characterized by a polarized Th-2 (T-helper-2)-type T-cell response, but in general targeting this component of the disease with selective therapies has been disappointing and most therapy still relies on bronchodilators and corticosteroids rather than treating underlying disease mechanisms. With the disappointing outcomes of targeting individual Th-2 cytokines or manipulating T-cells, the time has come to re-evaluate the direction of research in this disease. A case is made that asthma has its origins in the airways themselves involving defective structural and functional behaviour of the epithelium in relation to environmental insults. Specifically, a defect in barrier function and an impaired innate immune response to viral infection may provide the substrate upon which allergic sensitization takes place. Once sensitized, the repeated allergen exposure will lead to disease persistence. These mechanisms could also be used to explain airway wall remodelling and the susceptibility of the asthmatic lung to exacerbations provoked by respiratory viruses, air pollution episodes and exposure to biologically active allergens. Variable activation of this epithelial-mesenchymal trophic unit could also lead to the emergence of different asthma phenotypes and a more targeted approach to the treatment of these. It also raises the possibility of developing treatments that increase the lung's resistance to the inhaled environment rather than concentrating all efforts on trying to suppress inflammation once it has become established.
Collapse
|