1
|
Cardoso FC, Schmit M, Kuiper MJ, Lewis RJ, Tuck KL, Duggan PJ. Inhibition of N-type calcium ion channels by tricyclic antidepressants - experimental and theoretical justification for their use for neuropathic pain. RSC Med Chem 2022; 13:183-195. [PMID: 35308021 PMCID: PMC8864487 DOI: 10.1039/d1md00331c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 12/20/2021] [Indexed: 11/21/2022] Open
Abstract
A number of tricyclic antidepressants (TCAs) are commonly prescribed off-label for the treatment of neuropathic pain. The blockade of neuronal calcium ion channels is often invoked to partially explain the analgesic activity of TCAs, but there has been very limited experimental or theoretical evidence reported to support this assertion. The N-type calcium ion channel (CaV2.2) is a well-established target for the treatment of neuropathic pain and in this study a series of eleven TCAs and two closely related drugs were shown to be moderately effective inhibitors of this channel when endogenously expressed in the SH-SY5Y neuroblastoma cell line. A homology model of the channel, which matches closely a recently reported Cryo-EM structure, was used to investigate via docking and molecular dynamics experiments the possible mode of inhibition of CaV2.2 channels by TCAs. Two closely related binding modes, that occur in the channel cavity that exists between the selectivity filter and the internal gate, were identified. The TCAs are predicted to position themselves such that their ammonium side chains interfere with the selectivity filter, with some, such as amitriptyline, also appearing to hinder the channel's ability to open. This study provides the most comprehensive evidence to date that supports the notion that the blockade of neuronal calcium ion channels by TCAs is at least partially responsible for their analgesic effect.
Collapse
Affiliation(s)
- Fernanda C Cardoso
- Institute for Molecular Bioscience, The University of Queensland St Lucia QLD 4072 Australia
| | - Matthieu Schmit
- School of Chemistry, Monash University Victoria 3800 Australia
- CSIRO Manufacturing Research Way Clayton Victoria 3168 Australia
| | | | - Richard J Lewis
- Institute for Molecular Bioscience, The University of Queensland St Lucia QLD 4072 Australia
| | - Kellie L Tuck
- School of Chemistry, Monash University Victoria 3800 Australia
| | - Peter J Duggan
- CSIRO Manufacturing Research Way Clayton Victoria 3168 Australia
- College of Science and Engineering, Flinders University Adelaide South Australia 5042 Australia
| |
Collapse
|
2
|
Braga L, Ali H, Secco I, Chiavacci E, Neves G, Goldhill D, Penn R, Jimenez-Guardeño JM, Ortega-Prieto AM, Bussani R, Cannatà A, Rizzari G, Collesi C, Schneider E, Arosio D, Shah AM, Barclay WS, Malim MH, Burrone J, Giacca M. Drugs that inhibit TMEM16 proteins block SARS-CoV-2 spike-induced syncytia. Nature 2021; 594:88-93. [PMID: 33827113 PMCID: PMC7611055 DOI: 10.1038/s41586-021-03491-6] [Citation(s) in RCA: 282] [Impact Index Per Article: 70.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 03/25/2021] [Indexed: 02/01/2023]
Abstract
COVID-19 is a disease with unique characteristics that include lung thrombosis1, frequent diarrhoea2, abnormal activation of the inflammatory response3 and rapid deterioration of lung function consistent with alveolar oedema4. The pathological substrate for these findings remains unknown. Here we show that the lungs of patients with COVID-19 contain infected pneumocytes with abnormal morphology and frequent multinucleation. The generation of these syncytia results from activation of the SARS-CoV-2 spike protein at the cell plasma membrane level. On the basis of these observations, we performed two high-content microscopy-based screenings with more than 3,000 approved drugs to search for inhibitors of spike-driven syncytia. We converged on the identification of 83 drugs that inhibited spike-mediated cell fusion, several of which belonged to defined pharmacological classes. We focused our attention on effective drugs that also protected against virus replication and associated cytopathicity. One of the most effective molecules was the antihelminthic drug niclosamide, which markedly blunted calcium oscillations and membrane conductance in spike-expressing cells by suppressing the activity of TMEM16F (also known as anoctamin 6), a calcium-activated ion channel and scramblase that is responsible for exposure of phosphatidylserine on the cell surface. These findings suggest a potential mechanism for COVID-19 disease pathogenesis and support the repurposing of niclosamide for therapy.
Collapse
Affiliation(s)
- Luca Braga
- King's College London, British Heart Foundation Centre of Research Excellence, School of Cardiovascular Medicine & Sciences, London, UK
| | - Hashim Ali
- King's College London, British Heart Foundation Centre of Research Excellence, School of Cardiovascular Medicine & Sciences, London, UK
| | - Ilaria Secco
- King's College London, British Heart Foundation Centre of Research Excellence, School of Cardiovascular Medicine & Sciences, London, UK
| | - Elena Chiavacci
- King's College London, British Heart Foundation Centre of Research Excellence, School of Cardiovascular Medicine & Sciences, London, UK
| | - Guilherme Neves
- MRC Centre for Neurodevelopmental Disorders, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Daniel Goldhill
- Department of Infectious Diseases, Imperial College London, London, UK
| | - Rebecca Penn
- Department of Infectious Diseases, Imperial College London, London, UK
| | - Jose M Jimenez-Guardeño
- Department of Infectious Diseases, School of Immunology & Microbial Sciences, King's College London, London, UK
| | - Ana M Ortega-Prieto
- Department of Infectious Diseases, School of Immunology & Microbial Sciences, King's College London, London, UK
| | - Rossana Bussani
- Department of Medical, Surgical and Health Sciences, University of Trieste, Trieste, Italy
| | - Antonio Cannatà
- King's College London, British Heart Foundation Centre of Research Excellence, School of Cardiovascular Medicine & Sciences, London, UK
| | - Giorgia Rizzari
- King's College London, British Heart Foundation Centre of Research Excellence, School of Cardiovascular Medicine & Sciences, London, UK
| | - Chiara Collesi
- Department of Medical, Surgical and Health Sciences, University of Trieste, Trieste, Italy
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Trieste, Italy
| | - Edoardo Schneider
- King's College London, British Heart Foundation Centre of Research Excellence, School of Cardiovascular Medicine & Sciences, London, UK
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Trieste, Italy
| | - Daniele Arosio
- Istituto di Biofisica (IBF), Consiglio Nazionale delle Ricerche (CNR), Trento, Italy
| | - Ajay M Shah
- King's College London, British Heart Foundation Centre of Research Excellence, School of Cardiovascular Medicine & Sciences, London, UK
| | - Wendy S Barclay
- Department of Infectious Diseases, Imperial College London, London, UK
| | - Michael H Malim
- Department of Infectious Diseases, School of Immunology & Microbial Sciences, King's College London, London, UK
| | - Juan Burrone
- MRC Centre for Neurodevelopmental Disorders, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Mauro Giacca
- King's College London, British Heart Foundation Centre of Research Excellence, School of Cardiovascular Medicine & Sciences, London, UK.
- Department of Medical, Surgical and Health Sciences, University of Trieste, Trieste, Italy.
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Trieste, Italy.
| |
Collapse
|
3
|
Belinskaia DA, Belinskaia MA, Barygin OI, Vanchakova NP, Shestakova NN. Psychotropic Drugs for the Management of Chronic Pain and Itch. Pharmaceuticals (Basel) 2019; 12:ph12020099. [PMID: 31238561 PMCID: PMC6631469 DOI: 10.3390/ph12020099] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2019] [Revised: 06/19/2019] [Accepted: 06/21/2019] [Indexed: 12/11/2022] Open
Abstract
Clinical observations have shown that patients with chronic neuropathic pain or itch exhibit symptoms of increased anxiety, depression and cognitive impairment. Such patients need corrective therapy with antidepressants, antipsychotics or anticonvulsants. It is known that some psychotropic drugs are also effective for the treatment of neuropathic pain and pruritus syndromes due to interaction with the secondary molecular targets. Our own clinical studies have identified antipruritic and/or analgesic efficacy of the following compounds: tianeptine (atypical tricyclic antidepressant), citalopram (selective serotonin reuptake inhibitor), mianserin (tetracyclic antidepressant), carbamazepine (anticonvulsant), trazodone (serotonin antagonist and reuptake inhibitor), and chlorprothixene (antipsychotic). Venlafaxine (serotonin-norepinephrine reuptake inhibitor) is known to have an analgesic effect too. The mechanism of such effect of these drugs is not fully understood. Herein we review and correlate the literature data on analgesic/antipruritic activity with pharmacological profile of these compounds.
Collapse
Affiliation(s)
- Daria A Belinskaia
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, pr. Torez 44, St. Petersburg 194223, Russia.
| | - Mariia A Belinskaia
- International Centre for Neurotherapeutics, Dublin City University, Glasnevin, Dublin 9, Ireland.
| | - Oleg I Barygin
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, pr. Torez 44, St. Petersburg 194223, Russia.
| | - Nina P Vanchakova
- Department of Pedagogy and Psychology, Faculty of Postgraduate Education, First Pavlov State Medical University, L'va Tolstogo str. 6-8, St. Petersburg 197022, Russia.
| | - Natalia N Shestakova
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, pr. Torez 44, St. Petersburg 194223, Russia.
| |
Collapse
|
4
|
Stanford SC. Psychostimulants, antidepressants and neurokinin-1 receptor antagonists ('motor disinhibitors') have overlapping, but distinct, effects on monoamine transmission: the involvement of L-type Ca2+ channels and implications for the treatment of ADHD. Neuropharmacology 2014; 87:9-18. [PMID: 24727210 DOI: 10.1016/j.neuropharm.2014.03.021] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Revised: 03/21/2014] [Accepted: 03/31/2014] [Indexed: 11/15/2022]
Abstract
Both psychostimulants and antidepressants target monoamine transporters and, as a consequence, augment monoamine transmission. These two groups of drugs also increase motor activity in preclinical behavioural screens for antidepressants. Substance P-preferring receptor (NK1R) antagonists similarly increase both motor activity in these tests and monoamine transmission in the brain. In this article, the neurochemical and behavioural responses to these three groups of drugs are compared. It becomes evident that NK1R antagonists represent a distinct class of compounds ('motor disinhibitors') that differ substantially from both psychostimulants and antidepressants, especially during states of heightened arousal or stress. Also, all three groups of drugs influence the activation of voltage-gated Ca(v)1.2 and Ca(v)1.3 L-type channels (LTCCs) in the brain, albeit in different ways. This article discusses evidence that points to disruption of these functional interactions between NK1R and LTCCs as a contributing factor in the cognitive and behavioural abnormalities that are prominent features of Attention Deficit Hyperactivity Disorder (ADHD). Arising from this is the interesting possibility that the hyperactivity and impulsivity (as in ADHD) and psychomotor retardation (as in depression) reflect opposite poles of a behavioural continuum. A better understanding of this pharmacological network could help explain why psychostimulants augment motor behaviour during stress (e.g., in preclinical screens for antidepressants) and yet reduce locomotor activity and impulsivity in ADHD. This article is part of the Special Issue entitled 'CNS Stimulants'.
Collapse
Affiliation(s)
- S Clare Stanford
- Department of Neuroscience, Physiology and Pharmacology, University College London, Gower Street, London WC1E 6BT, UK.
| |
Collapse
|
5
|
Jung J, Loy K, Schilling EM, Röther M, Brauner JM, Huth T, Schlötzer-Schrehardt U, Alzheimer C, Kornhuber J, Welzel O, Groemer TW. The Antidepressant Fluoxetine Mobilizes Vesicles to the Recycling Pool of Rat Hippocampal Synapses During High Activity. Mol Neurobiol 2013; 49:916-30. [DOI: 10.1007/s12035-013-8569-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2013] [Accepted: 10/03/2013] [Indexed: 11/29/2022]
|
6
|
Chew DJ, Murrell K, Carlstedt T, Shortland PJ. Segmental spinal root avulsion in the adult rat: a model to study avulsion injury pain. J Neurotrauma 2013; 30:160-72. [PMID: 22934818 DOI: 10.1089/neu.2012.2481] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Road traffic accidents are the most common cause of avulsion injury, in which spinal roots are torn from the spinal cord. Patients suffer from a loss of sensorimotor function, intractable spontaneous pain, and border-zone hypersensitivity. The neuropathic pains are particularly difficult to treat because the lack of a well-established animal model of avulsion injury prevents identifying the underlying mechanisms and hinders the development of efficacious drugs. This article describes a hindlimb model of avulsion injury in adult rats where the L5 dorsal and ventral spinal root are unilaterally avulsed (spinal root avulsion [SRA]), leaving the adjacent L4 spinal root intact. SRA produced a significant ipsilateral hypersensitivity to mechanical and thermal stimulation by 5 days compared with sham-operated or naïve rats. This hypersensitivity is maintained for up to 60 days. No autotomy was observed and locomotor deficits were minimal. The hypersensitivity to peripheral stimuli could be temporarily ameliorated by administration of amitriptyline and carbamazepine, drugs that are currently prescribed to avulsion patients. Histological assessment of the L4 ganglion cells revealed no significant alterations in calcitonin gene-related peptide (CGRP), IB4, transient receptor potential cation channel subfamily V member 1 (TrpV1), or N52 staining across groups. Immunohistochemistry of the spinal cord revealed a localized glial response, phagocyte infiltration, and neuronal loss within the ipsilateral avulsed segment. A comparable response from glia and phagocytes was also found in the intact L4 spinal cord, supporting the role for central mechanisms within the L4-5 spinal cord in contributing to the generation of the pain-related behavior. The SRA model provides a platform to investigate possible new pharmacological treatments for avulsion injuries.
Collapse
Affiliation(s)
- Daniel J Chew
- Centre for Neuroscience and Trauma, Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Newark Street, London, United Kingdom.
| | | | | | | |
Collapse
|
7
|
Receptor targets for antidepressant therapy in bipolar disorder: an overview. J Affect Disord 2012; 138:222-38. [PMID: 21601292 DOI: 10.1016/j.jad.2011.04.043] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2011] [Accepted: 04/27/2011] [Indexed: 11/20/2022]
Abstract
The treatment of bipolar depression is one of the most challenging issues in contemporary psychiatry. Currently only quetiapine and the olanzapine-fluoxetine combination are officially approved by the FDA against this condition. The neurobiology of bipolar depression and the possible targets of bipolar antidepressant therapy remain relatively elusive. We performed a complete and systematic review to identify agents with definite positive or negative results concerning efficacy followed by a second systematic review to identify the pharmacodynamic properties of these agents. The comparison of properties suggests that the stronger predictors for antidepressant efficacy in bipolar depression were norepinephrine alpha-1, dopamine D1 and histamine antagonism, followed by 5-HT2A, muscarinic and dopamine D2 and D3 antagonism and eventually by norepinephrine reuptake inhibition and 5HT-1A agonism. Serotonin reuptake which constitutes the cornerstone in unipolar depression treatment does not seem to play a significant role for bipolar depression. Our exhaustive review is compatible with a complex model with multiple levels of interaction between the major neurotransmitter systems without a single target being either necessary or sufficient to elicit the antidepressant effect in bipolar depression.
Collapse
|
8
|
Casamassima F, Hay AC, Benedetti A, Lattanzi L, Cassano GB, Perlis RH. L-type calcium channels and psychiatric disorders: A brief review. Am J Med Genet B Neuropsychiatr Genet 2010; 153B:1373-90. [PMID: 20886543 DOI: 10.1002/ajmg.b.31122] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2009] [Accepted: 07/28/2010] [Indexed: 01/11/2023]
Abstract
Emerging evidence from genome-wide association studies (GWAS) support the association of polymorphisms in the alpha 1C subunit of the L-type voltage-gated calcium channel gene (CACNA1C) with bipolar disorder. These studies extend a rich prior literature implicating dysfunction of L-type calcium channels (LTCCs) in the pathophysiology of neuropsychiatric disorders. Moreover, calcium channel blockers reduce Ca(2+) flux by binding to the α1 subunit of the LTCC and are used extensively for treating hypertension, preventing angina, cardiac arrhythmias and stroke. Calcium channel blockers have also been studied clinically in psychiatric conditions such as mood disorders and substance abuse/dependence, yielding conflicting results. In this review, we begin with a summary of LTCC pharmacology. For each category of disorder, this article then provides a review of animal and human data. In particular, we extensively focus on animal models of depression and clinical trials in mood disorders and substance abuse/dependence. Through examining rationale and study design of published clinical trials, we provide some of the possible reasons why we still do not have definitive evidence of efficacy of calcium-channel antagonists for mood disorders. Refinement of genetic results and target phenotypes, enrollment of adequate sample sizes in clinical trials and progress in physiologic and pharmacologic studies to synthesize tissue and isoform specific calcium channel antagonists, are all future challenges of research in this promising field. © 2010 Wiley-Liss, Inc.
Collapse
|
9
|
Lanni C, Govoni S, Lucchelli A, Boselli C. Depression and antidepressants: molecular and cellular aspects. Cell Mol Life Sci 2009; 66:2985-3008. [PMID: 19521663 PMCID: PMC11115917 DOI: 10.1007/s00018-009-0055-x] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2009] [Revised: 04/28/2009] [Accepted: 05/20/2009] [Indexed: 01/05/2023]
Abstract
Clinical depression is viewed as a physical and psychic disease process having a neuropathological basis, although a clear understanding of its ethiopathology is still missing. The observation that depressive symptoms are influenced by pharmacological manipulation of monoamines led to the hypothesis that depression results from reduced availability or functional deficiency of monoaminergic transmitters in some cerebral regions. However, there are limitations to current monoamine theories related to mood disorders. Recently, a growing body of experimental data has showed that other classes of endogenous compounds, such as neuropeptides and amino acids, may play a significant role in the pathophysiology of affective disorders. With the development of neuroscience, neuronal networks and intracellular pathways have been identified and characterized, describing the existence of the interaction between monoamines and receptors in turn able to modulate the expression of intracellular proteins and neurotrophic factors, suggesting that depression/antidepressants may be intermingled with neurogenesis/neurodegenerative processes.
Collapse
Affiliation(s)
- Cristina Lanni
- Department of Experimental and Applied Pharmacology, Centre of Excellence in Applied Biology, University of Pavia, Viale Taramelli 14, 27100 Pavia, Italy
| | - Stefano Govoni
- Department of Experimental and Applied Pharmacology, Centre of Excellence in Applied Biology, University of Pavia, Viale Taramelli 14, 27100 Pavia, Italy
| | - Adele Lucchelli
- Department of Experimental and Applied Pharmacology, Centre of Excellence in Applied Biology, University of Pavia, Viale Taramelli 14, 27100 Pavia, Italy
| | - Cinzia Boselli
- Department of Experimental and Applied Pharmacology, Centre of Excellence in Applied Biology, University of Pavia, Viale Taramelli 14, 27100 Pavia, Italy
| |
Collapse
|
10
|
Haws CA, Gray DD, Yurgelun-Todd DA, Moskos M, Meyer LJ, Renshaw PF. The possible effect of altitude on regional variation in suicide rates. Med Hypotheses 2009; 73:587-90. [PMID: 19581053 DOI: 10.1016/j.mehy.2009.05.040] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2009] [Revised: 05/07/2009] [Accepted: 05/10/2009] [Indexed: 01/12/2023]
Abstract
In the United States, suicide rates consistently vary among geographic regions; the western states have significantly higher suicide rates than the eastern states. The reason for this variation is unknown but may be due to regional elevation differences. States' suicide rates (1990-1994), when adjusted for potentially confounding demographic variables, are positively correlated with their peak and capital elevations. These findings indicate that decreased oxygen saturation at high altitude may exacerbate the bioenergetic dysfunction associated with affective illnesses. Should such a link exist, therapies traditionally used to treat the metabolic disturbances associated with altitude sickness may have a role in treating those at risk for suicide.
Collapse
Affiliation(s)
- Charlotte A Haws
- Department of Psychiatry, University of Utah School of Medicine, Salt Lake City, UT 84108 USA
| | | | | | | | | | | |
Collapse
|