1
|
Yurkevich OY, Samatadze TE, Zoshchuk SA, Amosova AV, Muravenko OV. Species of the Sections Hedysarum and Multicaulia of the Genus Hedysarum (Fabaceae): Taxonomy, Distribution, Chromosomes, Genomes, and Phylogeny. Int J Mol Sci 2024; 25:8489. [PMID: 39126057 PMCID: PMC11312482 DOI: 10.3390/ijms25158489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 07/28/2024] [Accepted: 08/01/2024] [Indexed: 08/12/2024] Open
Abstract
The genus Hedysarum L. (Fabaceae) includes about 200 species of annual and perennial herbs distributed in Asia, Europe, North Africa, and North America. Many species of this genus are valuable medicinal, melliferous, and forage resources. In this review, we consider the taxonomic history of the genus Hedysarum, the chromosomal organization of the species from the sections Hedysarum and Multicaulia, as well as phylogenetic relationships between these sections. According to morphological, genetic, and phylogenetic data, the genus Hedysarum is divided into three main sections: Hedysarum (= syn. Gamotion), Multicaulia, and Stracheya. In species of this genus, two basic chromosome numbers, x = 7 (section Hedysarum) and x = 8 (sections Multicaulia and Stracheya), were determined. The systematic positions of some species within the sections are still uncertain due to their morphological similarities. The patterns of distribution of molecular chromosomal markers (45S rDNA, 5S rDNA, and different satellite DNAs) in karyotypes of various Hedysarum species made it possible to determine their ploidy status and also specify genomic relationships within the sections Hedysarum and Multicaulia. Recent molecular phylogenetic studies clarified significantly the taxonomy and evolutionary development of the genus Hedysarum.
Collapse
Affiliation(s)
| | | | | | | | - Olga V. Muravenko
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 32 Vavilov St, 119991 Moscow, Russia
| |
Collapse
|
2
|
Zolotova D, Teterovska R, Bandere D, Lauberte L, Niedra S. Antidiabetic Properties of the Root Extracts of Dandelion ( Taraxacum officinale) and Burdock ( Arctium lappa). PLANTS (BASEL, SWITZERLAND) 2024; 13:1021. [PMID: 38611548 PMCID: PMC11013470 DOI: 10.3390/plants13071021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 03/23/2024] [Accepted: 04/01/2024] [Indexed: 04/14/2024]
Abstract
Several preclinical studies suggest the potential of edible plants in controlling blood sugar levels and stabilizing diet. The goals of the study were to examine, analyze, and describe whether there are chemical compounds in dandelion and burdock roots that could have antidiabetic properties. The 70% ethyl alcohol and lyophilizate extracts (AE and LE, respectively), were used, and analyses were carried out on their total polysaccharide (TP), total phenolic content (TPC), tannin, and inulin. The antioxidant activity of extracts was determined using the DPPH (2,2-diphenyl-1-picrylhydrazyl) assay, and hypoglycemic properties were based on α-amylase activity. Liquid chromatography-mass spectrometry was used for the tentative identification of the chemical components. Qualitative techniques confirmed the presence of inulin in both roots. Analysis of TPC, tannin content, DPPH assay, and α-amylase activity revealed higher values for burdock compared to dandelion. However, dandelion exhibited higher TP content. Burdock contained a small amount of tannin, whereas the tannin content in dandelion was insignificant. All LE consistently exhibited higher values in all analyses and assays for all roots compared to AE. Despite burdock root showing overall better results, it is uncertain whether these plants can be recommended as antidiabetic agents without in vivo studies.
Collapse
Affiliation(s)
- Daria Zolotova
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Rīga Stradiņš University, LV-1007 Riga, Latvia; (R.T.); (D.B.)
| | - Renāte Teterovska
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Rīga Stradiņš University, LV-1007 Riga, Latvia; (R.T.); (D.B.)
- Department of Pharmaceuticals, Red Cross Medical College, Rīga Stradiņš University, LV-1007 Riga, Latvia
| | - Dace Bandere
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Rīga Stradiņš University, LV-1007 Riga, Latvia; (R.T.); (D.B.)
- Baltic Biomaterials Centre of Excellence, Headquarters at Riga Technical University, LV-1658 Riga, Latvia
| | - Liga Lauberte
- Laboratory of Finished Dosage Forms, Riga Stradiņš University, LV-1007 Riga, Latvia; (L.L.); (S.N.)
| | - Santa Niedra
- Laboratory of Finished Dosage Forms, Riga Stradiņš University, LV-1007 Riga, Latvia; (L.L.); (S.N.)
| |
Collapse
|
3
|
Zhang Y, Niu J, Zhang S, Si X, Bian TT, Wu H, Li D, Sun Y, Jia J, Xin E, Yan X, Li Y. Comparative study on the gastrointestinal- and immune- regulation functions of Hedysari Radix Paeparata Cum Melle and Astragali Radix Praeparata cum Melle in rats with spleen-qi deficiency, based on fuzzy matter-element analysis. PHARMACEUTICAL BIOLOGY 2022; 60:1237-1254. [PMID: 35763552 PMCID: PMC9246251 DOI: 10.1080/13880209.2022.2086990] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 05/31/2022] [Accepted: 06/02/2022] [Indexed: 05/27/2023]
Abstract
CONTEXT Hedysari Radix Praeparata Cum Melle (HRPCM) and Astragali Radix Praeparata Cum Melle (ARPCM) are used interchangeably in clinics to treat spleen-qi deficiency (SQD) symptom mainly including gastrointestinal dysfunction and decreased immunity, which has unknown differences in efficacy. OBJECTIVE To investigate the differences between HRPCM and ARPCM on intervening gastrointestinal- and immune-function with SQD syndrome. MATERIALS AND METHODS After the SQD model was established, the Sprague-Dawley (SD) rats were randomly divided into nine groups (n = 10): normal; model; Bu-Zhong-Yi-Qi Pills; 18.9, 12.6 and 6.3 g/kg dose groups of HRPCM and ARPCM. Gastrointestinal function including d-xylose, gastrin, amylase vasoactive intestinal peptide, motilin, pepsin, H+/K+-ATPase, Na+/K+-ATPase, sodium-glucose cotransporter 1 (SGLT1), glucose transporter 2 (GLUT2) and immune function including spleen and thymus index, blood routine, interleukin (IL)-2, IL-6, interferon-γ (IFN-γ), tumour necrosis factor-α (TNF-α), immunoglobulin (Ig) M, IgA, IgG and delayed-type hypersensitivity (DTH) were detected. Finally, the efficacy differences were analysed comprehensively by the fuzzy matter-element method. RESULTS In regulating immune, the doses differences in efficacy between HRPCM and ARPCM showed in the high-dose (18.9 g/kg), but there were no differences in the middle- and low- dose (12.6 and 6.37 g/kg); the efficacy differences were primarily reflected in levels of IL-6, IFN-γ, TNF-α and IgM in serum, and the mRNA expression of IL-6 and IFN-γ in the spleen. In regulating gastrointestinal, the efficacy differences were primarily reflected in the levels of D-xylose, MTL, and GAS in serum, and the mRNA and protein expression of SGLT1 and GLUT2 in jejunum and ileum. DISCUSSION AND CONCLUSIONS HRPCM is more effective than ARPCM on regulating gastrointestinal function and immune function with SQD syndrome. Therefore, we propose that HRPCM should be mainly used to treat SQD syndrome in the future.
Collapse
Affiliation(s)
- Yugui Zhang
- College of Pharmacy, Gansu University of Chinese Medicine, Lanzhou, PR China
- Key Laboratory of Standard and Quality of Chinese Medicine Research of Gansu, Engineering Research Center of Chinese Medicine Pharmaceutical Process of Gansu, Gansu University of Chinese Medicine, Lanzhou, PR China
| | - Jiangtao Niu
- College of Pharmacy, Gansu University of Chinese Medicine, Lanzhou, PR China
- Key Laboratory of Standard and Quality of Chinese Medicine Research of Gansu, Engineering Research Center of Chinese Medicine Pharmaceutical Process of Gansu, Gansu University of Chinese Medicine, Lanzhou, PR China
| | - Shujuan Zhang
- College of Pharmacy, Gansu University of Chinese Medicine, Lanzhou, PR China
- Key Laboratory of Standard and Quality of Chinese Medicine Research of Gansu, Engineering Research Center of Chinese Medicine Pharmaceutical Process of Gansu, Gansu University of Chinese Medicine, Lanzhou, PR China
| | - Xinlei Si
- College of Pharmacy, Gansu University of Chinese Medicine, Lanzhou, PR China
- Key Laboratory of Standard and Quality of Chinese Medicine Research of Gansu, Engineering Research Center of Chinese Medicine Pharmaceutical Process of Gansu, Gansu University of Chinese Medicine, Lanzhou, PR China
| | - Tian-Tian Bian
- College of Pharmacy, Gansu University of Chinese Medicine, Lanzhou, PR China
- Key Laboratory of Standard and Quality of Chinese Medicine Research of Gansu, Engineering Research Center of Chinese Medicine Pharmaceutical Process of Gansu, Gansu University of Chinese Medicine, Lanzhou, PR China
| | - Hongwei Wu
- College of Pharmacy, Gansu University of Chinese Medicine, Lanzhou, PR China
- Key Laboratory of Standard and Quality of Chinese Medicine Research of Gansu, Engineering Research Center of Chinese Medicine Pharmaceutical Process of Gansu, Gansu University of Chinese Medicine, Lanzhou, PR China
| | - Donghui Li
- College of Pharmacy, Gansu University of Chinese Medicine, Lanzhou, PR China
- Key Laboratory of Standard and Quality of Chinese Medicine Research of Gansu, Engineering Research Center of Chinese Medicine Pharmaceutical Process of Gansu, Gansu University of Chinese Medicine, Lanzhou, PR China
| | - Yujing Sun
- College of Pharmacy, Gansu University of Chinese Medicine, Lanzhou, PR China
- Key Laboratory of Standard and Quality of Chinese Medicine Research of Gansu, Engineering Research Center of Chinese Medicine Pharmaceutical Process of Gansu, Gansu University of Chinese Medicine, Lanzhou, PR China
| | - Jing Jia
- College of Acupuncture-Moxibustion and Tuina, Laboratory of Molecular Biology, Gansu University of Chinese Medicine, Lanzhou, PR China
| | - Erdan Xin
- College of Pharmacy, Gansu University of Chinese Medicine, Lanzhou, PR China
- Key Laboratory of Standard and Quality of Chinese Medicine Research of Gansu, Engineering Research Center of Chinese Medicine Pharmaceutical Process of Gansu, Gansu University of Chinese Medicine, Lanzhou, PR China
| | - Xingke Yan
- College of Acupuncture-Moxibustion and Tuina, Laboratory of Molecular Biology, Gansu University of Chinese Medicine, Lanzhou, PR China
| | - Yuefeng Li
- College of Pharmacy, Gansu University of Chinese Medicine, Lanzhou, PR China
- Key Laboratory of Standard and Quality of Chinese Medicine Research of Gansu, Engineering Research Center of Chinese Medicine Pharmaceutical Process of Gansu, Gansu University of Chinese Medicine, Lanzhou, PR China
- Scientific Research and Experimental Center, Gansu University of Chinese Medicine, Lanzhou, PR China
| |
Collapse
|
4
|
Nurcahyanti ADR, Jap A, Lady J, Prismawan D, Sharopov F, Daoud R, Wink M, Sobeh M. Function of selected natural antidiabetic compounds with potential against cancer via modulation of the PI3K/AKT/mTOR cascade. Biomed Pharmacother 2021; 144:112138. [PMID: 34750026 DOI: 10.1016/j.biopha.2021.112138] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 08/19/2021] [Accepted: 08/31/2021] [Indexed: 12/12/2022] Open
Abstract
Diabetes mellitus (DM) is a metabolic disorder with growing global incidence, as 387 million people were diagnosed in 2014 with an expected projection of 642 million in 2040. Several complications are associated with DM including heart attack, stroke, kidney failure, blindness, and cancer. The latter is the second leading cause of death worldwide accounting for one in every six deaths, with liver, pancreas, and endometrium cancers are the most abundant among patients with diabetes. Phosphoinositide 3-kinase (PI3K)/protein kinase B (Akt)/mammalian target of rapamycin (mTOR) pathway plays a vital role in developing a wide array of pathological disorders, among them diabetes and cancer. Natural secondary metabolites that counteract the deleterious effects of reactive oxygen species (ROS) and modulate PI3K/Akt/mTOR pathway could be a promising approach in cancer therapy. Here, 717 medicinal plants with antidiabetic activities were highlighted along with 357 bioactive compounds responsible for the antidiabetic activity. Also, 43 individual plant compounds with potential antidiabetic activities against cancer via the modulation of PI3K/Akt/mTOR cascade were identified. Taken together, the available data give an insight of the potential of repurposing medicinal plants and/or the individual secondary metabolites with antidiabetic activities for cancer therapy.
Collapse
Affiliation(s)
- Agustina Dwi Retno Nurcahyanti
- Department of Pharmacy, School of Medicine and Health Sciences, Atma Jaya Catholic University of Indonesia, Pluit Raya 2, 14440 Jakarta, Indonesia.
| | - Adeline Jap
- Department of Pharmacy, School of Medicine and Health Sciences, Atma Jaya Catholic University of Indonesia, Pluit Raya 2, 14440 Jakarta, Indonesia
| | - Jullietta Lady
- Department of Pharmacy, School of Medicine and Health Sciences, Atma Jaya Catholic University of Indonesia, Pluit Raya 2, 14440 Jakarta, Indonesia
| | - Deka Prismawan
- Department of Pharmacy, School of Medicine and Health Sciences, Atma Jaya Catholic University of Indonesia, Pluit Raya 2, 14440 Jakarta, Indonesia
| | - Farukh Sharopov
- Chinese-Tajik Innovation Center for Natural Products, National Academy of Sciences of Tajikistan, Ayni str. 299/2, 734063, Dushanbe, Tajikistan
| | - Rachid Daoud
- African Genome Center, Mohammed VI Polytechnic University (UM6P), Lot 660, Hay Moulay Rachid, Ben Guerir 43150, Morocco
| | - Michael Wink
- Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Im Neuenheimer Feld 364, 69120 Heidelberg, Germany
| | - Mansour Sobeh
- AgroBiosciences Research, Mohammed VI Polytechnic University, Lot 660-Hay Moulay Rachid, 43150 Ben-Guerir, Morocco.
| |
Collapse
|
5
|
Cao JN, Han CR, Yang YC. Characterization of the complete chloroplast genome of Hedysarum polybotrys var. alaschanicum (Fabaceae) and its phylogeny. Mitochondrial DNA B Resour 2021; 6:3312-3313. [PMID: 34712819 PMCID: PMC8547834 DOI: 10.1080/23802359.2021.1994900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Hedysarum polybotrys var. alaschanicum is an important medicinal plant and is widely used in traditional Chinese medicine. The complete chloroplast genome of H. polybotrys var. alaschanicum was assembled from Illumina pair-end sequence reads. The whole chloroplast genome is 122,933 bp in length and encodes a total of 110 genes, including 76 protein-coding genes, 30 tRNA genes and 4 rRNA genes. The overall GC content of the cp genome is 35.3%. A maximum likelihood (ML) phylogenetic analysis revealed that H. polybotrys var. alaschanicum was close to Hedysarum semenovii.
Collapse
Affiliation(s)
- Jia-Ning Cao
- School of Biological Science and Technology, Baotou Teachers’ College, Baotou, China
| | - Chun-Rong Han
- Inner Mongolia Wuhai Wetland Administration, Wuhai, China
| | - Yan-Ci Yang
- School of Biological Science and Technology, Baotou Teachers’ College, Baotou, China
| |
Collapse
|
6
|
Liu K, Li XY, Luo JP, Zha XQ. Bioactivities. Food Hydrocoll 2021. [DOI: 10.1007/978-981-16-0320-4_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
7
|
Hypoglycemic effects and mechanism of different molecular weights of konjac glucomannans in type 2 diabetic rats. Int J Biol Macromol 2020; 165:2231-2243. [PMID: 33058981 DOI: 10.1016/j.ijbiomac.2020.10.021] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Revised: 09/19/2020] [Accepted: 10/02/2020] [Indexed: 12/31/2022]
Abstract
Konjac glucomannan (KGM) is a hypoglycemic polysaccharide with a wide range of molecular weights. But study on hypoglycemic effects of KGMs relate to molecular weight is limited. In this study, KGMs with high and medium molecular weights, and the degraded KGMs were analyzed with physicochemical properties, hypoglycemic effects and mechanisms. Results showed that as the molecular weight KGMs decreased, the viscosity decreased, molecular flexibility increased, while chemical groups, crystal structures and main chains showed little change. KGMs with medium molecular weights (KGM-M1, KGM-M2) showed better effects on increasing body weight, decreasing levels of fasting blood glucose, insulin resistance, total cholesterol and low density lipoprotein cholesterol, and enhancing integrity of pancreas and colon, than KGMs with high or low molecular weights (KGM-H, KGM-L) in type 2 diabetic rats. Mechanism analysis suggested that KGM-M1 and KGM-M2 had higher antioxidant and anti-inflammatory activities on elevating superoxide dismutase, decreasing malondialdehyde and tumor necrosis factor-α levels. Moreover, KGM-M1 and KGM-M2 increased gut microbiota diversity, Bacteroidetes/Firmicutes ratio and Muribaculaceae, decreased Romboutsia and Klebsiella, and improved 6 diabetic related metabolites. Combined, KGM-M1 and KGM-M2 showed higher hypoglycemic effects, due to regulatory activities of antioxidant, anti-inflammatory, intestinal microbiota, and relieved metabolic disorders.
Collapse
|
8
|
Fiorito S, Epifano F, Preziuso F, Taddeo VA, Genovese S. Selenylated plant polysaccharides: A survey of their chemical and pharmacological properties. PHYTOCHEMISTRY 2018; 153:1-10. [PMID: 29803859 DOI: 10.1016/j.phytochem.2018.05.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 04/30/2018] [Accepted: 05/10/2018] [Indexed: 06/08/2023]
Abstract
Polysaccharides from plants and fungi are considered nowadays as powerful pharmacological tools with a great therapeutic potential. In the meantime, efforts have been addressed to set up effective chemical modifications of naturally occurring polysaccharides to improve their biological effects as well as to positively modify some key parameters like solubility, bioavailability, pharmacokinetic, and similar. To this concern much attention has been focused during the last decade to the selenylation of natural polysaccharides from plants, algae, and fungi, the use of which is already encoded in ethnomedical traditions. The aim of this review article is to provide a detailed survey of the in so far reported literature data and a deeper knowledge about the state of the art on the chemical and pharmacological properties of selenylated polysaccharides of plant, algal, and fungal origin in terms of anti-oxidant, anti-cancer, anti-diabetic, and immunomodulatory activities. In all cases, literature data revealed that selenylation greatly improved such properties respect to the parent polysaccharides, indicating that selenylation is a valid, alternative, and effective chemical modification of naturally occurring carbohydrates.
Collapse
Affiliation(s)
- Serena Fiorito
- Dipartimento di Farmacia, Università"G. d'Annunzio" of Chieti-Pescara, Via dei Vestini 31, 66100, Chieti Scalo, CH, Italy; Dipartimento di Scienze Farmaceutiche, Università degli Studi di Perugia, Via del Liceo, 06123, Perugia, Italy
| | - Francesco Epifano
- Dipartimento di Farmacia, Università"G. d'Annunzio" of Chieti-Pescara, Via dei Vestini 31, 66100, Chieti Scalo, CH, Italy.
| | - Francesca Preziuso
- Dipartimento di Farmacia, Università"G. d'Annunzio" of Chieti-Pescara, Via dei Vestini 31, 66100, Chieti Scalo, CH, Italy
| | - Vito Alessandro Taddeo
- Dipartimento di Farmacia, Università"G. d'Annunzio" of Chieti-Pescara, Via dei Vestini 31, 66100, Chieti Scalo, CH, Italy
| | - Salvatore Genovese
- Dipartimento di Farmacia, Università"G. d'Annunzio" of Chieti-Pescara, Via dei Vestini 31, 66100, Chieti Scalo, CH, Italy
| |
Collapse
|
9
|
Bektaş E, Kaltalıoğlu K, Şahin H, Türkmen Z, Kandemir A. Analysis of phenolic compounds, antioxidant and antimicrobial properties of some endemic medicinal plants. INTERNATIONAL JOURNAL OF SECONDARY METABOLITE 2018. [DOI: 10.21448/ijsm.392354] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
10
|
Mechanisms underlying the effect of polysaccharides in the treatment of type 2 diabetes: A review. Carbohydr Polym 2016; 144:474-94. [DOI: 10.1016/j.carbpol.2016.02.040] [Citation(s) in RCA: 142] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Revised: 01/18/2016] [Accepted: 02/14/2016] [Indexed: 12/11/2022]
|
11
|
Wang PC, Zhao S, Yang BY, Wang QH, Kuang HX. Anti-diabetic polysaccharides from natural sources: A review. Carbohydr Polym 2016; 148:86-97. [PMID: 27185119 DOI: 10.1016/j.carbpol.2016.02.060] [Citation(s) in RCA: 157] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Revised: 02/13/2016] [Accepted: 02/20/2016] [Indexed: 12/15/2022]
Abstract
Diabetes mellitus (DM) is a metabolic disease attracted worldwide concerns, which severely impairs peoples' quality of life and is attributed to several life-threatening complications, including atherosclerosis, nephropathy and retinopathy. The current therapies for DM include mainly oral anti-diabetic drugs and insulin. However, continuous use of these causes insulin resistance and side-effects, and the demand of effective, nontoxic and affordable drugs for DM patients is eager. Several previous studies have shown that non-toxic biological macromolecules, mainly polysaccharides, possess prominent efficacies on DM. Based on these encouraging observations, a great deal of efforts have been focused on discovering anti-diabetic polysaccharides for the development of effective therapeutics for DM. This review focuses on the advancements in the anti-diabetic efficacy of various natural polysaccharides and polysaccharide complexes from 2010 to 2015.
Collapse
Affiliation(s)
- Peng-Cheng Wang
- Key Laboratory of Chinese Materia Medica (Ministry of Education), Heilongjiang University of Chinese Medicine, Harbin 150040, People's Republic of China
| | - Shan Zhao
- Key Laboratory of Chinese Materia Medica (Ministry of Education), Heilongjiang University of Chinese Medicine, Harbin 150040, People's Republic of China
| | - Bing-You Yang
- Key Laboratory of Chinese Materia Medica (Ministry of Education), Heilongjiang University of Chinese Medicine, Harbin 150040, People's Republic of China
| | - Qiu-Hong Wang
- Key Laboratory of Chinese Materia Medica (Ministry of Education), Heilongjiang University of Chinese Medicine, Harbin 150040, People's Republic of China.
| | - Hai-Xue Kuang
- Key Laboratory of Chinese Materia Medica (Ministry of Education), Heilongjiang University of Chinese Medicine, Harbin 150040, People's Republic of China.
| |
Collapse
|
12
|
Pan L, Weng H, Li H, Liu Z, Xu Y, Zhou C, Lu X, Su X, Zhang Y, Chen D. Therapeutic Effects of Bupleurum Polysaccharides in Streptozotocin Induced Diabetic Mice. PLoS One 2015; 10:e0133212. [PMID: 26176625 PMCID: PMC4503743 DOI: 10.1371/journal.pone.0133212] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Accepted: 06/08/2015] [Indexed: 01/14/2023] Open
Abstract
Diabetes mellitus is related to low-grade chronic inflammation and oxidative stress. Bupleurum Polysaccharides (BPs), isolated from Bupleurum smithii var. parvifolium has anti-inflammatory and anti-oxidative properties. However, little is known about its therapeutic effects on diabetes. In this experiment, the effects of BPs on alleviation of diabetes and the underlying mechanisms were investigated. Diabetic mice model was established via successive intraperitoneal injections of streptozotocin (100 mg/kg body weight) for two days. Mice with blood glucose levels higher than 16.8mmol/L were selected for experiments. The diabetic mice were orally administered with BPs (30 and 60 mg/kg) once a day for 35 days. BPs not only significantly decreased levels of blood glucose, but also increased those of serum insulin and liver glycogen in diabetic mice compared to model mice. Additionally, BPs adminstration improved the insulin expression and suppressed the apoptosis in pancreas of the diabetic mice. Histopathological observations further demonstrated that BPs protected the pancreas and liver from oxidative and inflammatory damages. These results suggest that BPs protect pancreatic β cells and liver hepatocytes and ameliorate diabetes, which is associated with its anti-oxidative and anti-inflammatory properties.
Collapse
Affiliation(s)
- Lingyu Pan
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, China
| | - Hongbo Weng
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, China
| | - Hong Li
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, China
- * E-mail: (HL); (DFC)
| | - Zhenzhen Liu
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, China
| | - Yanyan Xu
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, China
| | - Chunjiao Zhou
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, China
| | - Xiaoxiao Lu
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, China
| | - Xiaoyu Su
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, China
| | - Yunyi Zhang
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, China
| | - Daofeng Chen
- Department of Pharmacognosy, School of Pharmacy, Fudan University, Shanghai, China
- * E-mail: (HL); (DFC)
| |
Collapse
|
13
|
Zhao L, Zhao H, Sheng X, Chen T, Dang Z, An L, Ma J, Feng S, Xia Y. Structural characterization and stimulating effect on osteoblast differentiation of a purified heteropolysaccharide isolated from Hedysarum polybotrys. Carbohydr Polym 2014; 111:714-21. [DOI: 10.1016/j.carbpol.2014.05.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2014] [Revised: 04/20/2014] [Accepted: 05/03/2014] [Indexed: 01/11/2023]
|
14
|
Eddouks M, Bidi A, El Bouhali B, Hajji L, Zeggwagh NA. Antidiabetic plants improving insulin sensitivity. ACTA ACUST UNITED AC 2014; 66:1197-214. [PMID: 24730446 DOI: 10.1111/jphp.12243] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2013] [Accepted: 02/23/2014] [Indexed: 12/19/2022]
Abstract
BACKGROUND Globally, the prevalence of diabetes mellitus is increasing at an alarming rate. This chronic pathology gravely troubled the human health and quality of life. Both insulin deficiency and insulin resistance are involved in the pathophysiology of diabetes mellitus. Moreover, insulin resistance is being diagnosed nowadays in a growing population of diabetic and obese patients, especially in industrialized societies. There are lots of conventional agents available to control and to treat diabetes, but total recovery from this disorder has not been reported up to this date. Plants provided a potential source of hypoglycemic drugs and are widely used in several traditional systems of medicine to prevent diabetes. A few reviews with less attention paid to mechanisms of action have been published on antidiabetic plants. OBJECTIVES The present review focuses on the various plants that have been reported to be effective in improving insulin sensitivity associated with diabetes. KEY FINDINGS In this work, an updated systematic review of the published literature has been conducted to review the antidiabetic plants improving insulin sensitivity and 111 medicinal plants have been reported to have a beneficial effect on insulin sensitivity using several in-vitro and in-vivo animal models of diabetes. CONCLUSION The different metabolic and cellular effects of the antidiabetic plants improving insulin sensitivity are reported indicating the important role of medicinal plants as potential alternative or complementary use in controlling insulin resistance associated with diabetes mellitus.
Collapse
Affiliation(s)
- Mohamed Eddouks
- Faculty of Sciences and Techniques Errachidia, Moulay Ismail University, Errachidia, Morocco
| | | | | | | | | |
Collapse
|
15
|
Zhao LG, Chen TQ, Feng DM, Xiao TG, Dang ZL, Feng SL, Xia YY. Structural characterization and antioxidant activity of a heteropolysaccharide isolated from Hedysarum polybotrys. JOURNAL OF ASIAN NATURAL PRODUCTS RESEARCH 2014; 16:677-684. [PMID: 24625202 DOI: 10.1080/10286020.2014.893512] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2013] [Accepted: 01/29/2014] [Indexed: 06/03/2023]
Abstract
A water-soluble polysaccharide (HPS3aS) with a molecular mass of 1.22 × 10(4) Da was isolated from Hedysarum polybotrys using anion-exchange and gel-permeation chromatography. HPS3aS exhibits a globular-shaped conformation in 0.1 M NaNO3 by size exclusion chromatography with multi-angle laser light scattering (SEC-MALLS). The investigation of the structural features of this heteropolysaccharide through a combination of chemical and instrumental analyses revealed that the backbone of HPS3aS is composed of α-D-(1 → 4)-linked glucopyranose residues, which occasionally branched at O-6. The branches are composed of (1 → 4)-linked galactopyranose residues and terminated with glucopyranose residues. HPS3aS possesses good in vitro antioxidant activity, as evaluated by scavenging assays with 1,1-diphenyl-2-picrylhydrazyl, hydroxyl, and superoxide radicals, which suggests that HPS3aS could be a potential antioxidant.
Collapse
Affiliation(s)
- Liang-Gong Zhao
- a The Second Clinical Medical College, Lanzhou University , Lanzhou 730030 , China
| | | | | | | | | | | | | |
Collapse
|
16
|
Liu W, Zheng Y, Zhang Z, Yao W, Gao X. Hypoglycemic, hypolipidemic and antioxidant effects of Sarcandra glabra polysaccharide in type 2 diabetic mice. Food Funct 2014; 5:2850-60. [DOI: 10.1039/c4fo00430b] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Sarcandra glabra(Thunb.) Nakai is a traditional Chinese herbal medicine and dietary supplement used for treating several diseases.
Collapse
Affiliation(s)
- Wei Liu
- State Key Laboratory of Natural Medicines
- China Pharmaceutical University
- Nanjing 210009, PR China
- Department of Food Quality and Safety
- China Pharmaceutical University
| | - Ying Zheng
- State Key Laboratory of Natural Medicines
- China Pharmaceutical University
- Nanjing 210009, PR China
- School of Life Science and Technology
- China Pharmaceutical University
| | - Zhenzhen Zhang
- State Key Laboratory of Natural Medicines
- China Pharmaceutical University
- Nanjing 210009, PR China
- School of Life Science and Technology
- China Pharmaceutical University
| | - Wenbing Yao
- State Key Laboratory of Natural Medicines
- China Pharmaceutical University
- Nanjing 210009, PR China
- School of Life Science and Technology
- China Pharmaceutical University
| | - Xiangdong Gao
- State Key Laboratory of Natural Medicines
- China Pharmaceutical University
- Nanjing 210009, PR China
- School of Life Science and Technology
- China Pharmaceutical University
| |
Collapse
|
17
|
Potential utility of sodium selenate as an adjunct to metformin in treating type II diabetes mellitus in rats: a perspective on protein tyrosine phosphatase. BIOMED RESEARCH INTERNATIONAL 2013; 2013:231378. [PMID: 24106697 PMCID: PMC3784083 DOI: 10.1155/2013/231378] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/17/2013] [Accepted: 08/12/2013] [Indexed: 12/14/2022]
Abstract
Metformin is widely regarded as the standard first-line antidiabetic agent, in terms of efficacy and safety profiles. However, in most patients with type II diabetes mellitus (T2DM), it was found that metformin alone is not enough to adequately control hyperglycemia. Thus, we designed this study with the aim to investigate the effect of sodium selenate, a protein tyrosine phosphatase (PTP) inhibitor, individually and as an adjunct to metformin, on a rat model that simulates the metabolic characteristics of human T2DM. T2DM model was achieved by feeding the rats with high-fat, high-fructose diet (HFFD) for 8 weeks followed by a low dose of streptozotocin (STZ) (35 mg/kg/day, i.p.). Changes in serum glucose, insulin, adiponectin, homeostasis model assessment of insulin resistance (HOMA-IR) index, and the lipid profile were assessed. In addition, the level of reduced glutathione (GSH) and the activity of PTP were determined in the liver. Results showed that the addition of sodium selenate to metformin was able to restore hepatic GSH back to normal levels. Also, this combination therapy corrected the altered serum total cholesterol (TC), triglycerides (TG), and adiponectin levels. In conclusion, additive therapeutic effect was recorded when sodium selenate was used as an adjunct to metformin.
Collapse
|
18
|
Dong Y, Tang D, Zhang N, Li Y, Zhang C, Li L, Li M. Phytochemicals and biological studies of plants in genus Hedysarum. Chem Cent J 2013; 7:124. [PMID: 23866043 PMCID: PMC3727964 DOI: 10.1186/1752-153x-7-124] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2013] [Accepted: 07/04/2013] [Indexed: 11/10/2022] Open
Abstract
In China, several species (Hedysarum polybotrys Hand.-Mazz., Hedysarum limprichtii Hlbr., Hedysarum vicioider Turcz. var. Taipeicum Hand.-Mazz. Liu, Hedysarum smithianum, et al.) of genus Hedysarum have a long history of use in traditional Chinese medicine (TCM). In TCM, these plants are used to increase the energy of the body. To date, 155 compounds, including flavonoids, triterpenes, coumarins, lignanoids, nitrogen compounds, sterols, carbohydrates, fatty compounds, and benzofuran, have been isolated from plants of the genus Hedysarum. Various chemical constituents contribute to the antioxidant, anti-tumor, anti-aging, anti-diabetic, and anti-hypertensive properties of these plants. Hedysarum species are used to treat infestation with gastrointestinal nematodes and may support the immune system and peripheral nervous system. In the present review, we summarize the research on the phytochemistry and pharmacology of Hedysarum species, which will be useful for better utilization of these important species in TCM.
Collapse
Affiliation(s)
- Yinmao Dong
- Department of chemistry, Harbin Institute of Technology, Harbin 150000, China
- Beijing Key Lab of Plant Resources Research and Development, Beijing Technology and Business University, Beijing 100048, China
| | - Dongyan Tang
- Department of chemistry, Harbin Institute of Technology, Harbin 150000, China
| | - Na Zhang
- Baotou Medical College, No. 31 Construction Road, Baotou, Inner Mongolia 014060, P. R. China
| | - Yue Li
- Baotou Medical College, No. 31 Construction Road, Baotou, Inner Mongolia 014060, P. R. China
| | - Chunhong Zhang
- Baotou Medical College, No. 31 Construction Road, Baotou, Inner Mongolia 014060, P. R. China
| | - Li Li
- Beijing Key Lab of Plant Resources Research and Development, Beijing Technology and Business University, Beijing 100048, China
| | - Minhui Li
- Baotou Medical College, No. 31 Construction Road, Baotou, Inner Mongolia 014060, P. R. China
| |
Collapse
|
19
|
Wang J, Jin W, Zhang W, Hou Y, Zhang H, Zhang Q. Hypoglycemic property of acidic polysaccharide extracted from Saccharina japonica and its potential mechanism. Carbohydr Polym 2013; 95:143-7. [PMID: 23618250 DOI: 10.1016/j.carbpol.2013.02.076] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2013] [Revised: 02/14/2013] [Accepted: 02/28/2013] [Indexed: 11/23/2022]
Abstract
In the present study, a sulfated polysaccharide fucoidan extracted from Saccharina japonica was administered to normal and alloxan-diabetic rats/mice, and its effects on glycemia, insulin and serum lipid levels were evaluated. Fucoidan administered at 200 or 1200 mg/kg body weight/day could significantly reduce the blood glucose level by 22% and 34%, respectively, in alloxan-induced diabetic rats. Serum insulin levels in diabetic mice were increased by the administration of fucoidan (P<0.05). The results of an oral glucose tolerance test (OGTT) revealed that fucoidan treatment had some effect on glucose disposal after 15 days of treatment. Furthermore, fucoidan altered plasma lipid levels by lowering cholesterol, triglyceride and plasma low-density lipoprotein concentrations, while elevating plasma high-density lipoprotein cholesterol at 100 or 300 mg/kg body weight/day. The results suggested that fucoidan exhibited a considerable hypoglycemic effect, possibly by stimulating pancreatic release of insulin and/or by reducing insulin metabolism. Our results indicated that fucoidan could be developed as a potential oral hypoglycemic agents or functional food for the management of diabetes.
Collapse
Affiliation(s)
- Jing Wang
- Nantong Branch, Institute of Oceanology, Chinese Academy of Sciences, Nantong, Jiangsu 226006, PR China.
| | | | | | | | | | | |
Collapse
|
20
|
Jin H, Zhang YJ, Jiang JX, Zhu LY, Chen P, Li J, Yao HY. Studies on the extraction of pumpkin components and their biological effects on blood glucose of diabetic mice. J Food Drug Anal 2013. [DOI: 10.1016/j.jfda.2013.05.009] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
21
|
Salama RM, Schaalan MF, Ibrahim ME, Khalifa AE, Elkoussi AA. Effectiveness of Telmisartan as an Adjunct to Metformin in Treating Type II Diabetes Mellitus in Rats. ACTA ACUST UNITED AC 2013. [DOI: 10.4236/ojemd.2013.33026] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
22
|
Antidiabetic activities of oligosaccharides of Ophiopogonis japonicus in experimental type 2 diabetic rats. Int J Biol Macromol 2012; 51:749-55. [DOI: 10.1016/j.ijbiomac.2012.07.007] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2012] [Revised: 06/07/2012] [Accepted: 07/08/2012] [Indexed: 11/20/2022]
|
23
|
Shi Y, Zhao L, Liu X, Hu F, Cui F, Bi Y, Ma Y, Feng S. Structural characterization of a sulfated glucan isolated from the aqueous extract of Hedysarum polybotrys Hand.-Mazz. Carbohydr Polym 2012; 87:160-169. [DOI: 10.1016/j.carbpol.2011.07.032] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2011] [Revised: 07/10/2011] [Accepted: 07/20/2011] [Indexed: 11/17/2022]
|
24
|
Zhao LY, Lan QJ, Huang ZC, Ouyang LJ, Zeng FH. Antidiabetic effect of a newly identified component of Opuntia dillenii polysaccharides. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2011; 18:661-668. [PMID: 21300531 DOI: 10.1016/j.phymed.2011.01.001] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2010] [Revised: 10/21/2010] [Accepted: 01/06/2011] [Indexed: 05/30/2023]
Abstract
The aim of this study was to determine the most effective hypoglycemic component of polysaccharides from Opuntia dillenii Haw. by preliminary screening and to specifically study the antidiabetic effects of O. dillenii polysaccharide (ODP)-Ia in mice with streptozotocin (STZ)-induced diabetes. Three kinds of ODPs - ODP-Ia, ODP-Ib, and ODP-II' - were isolated by using an ultrasonic extraction method and diethylaminoethyl (DEAE)-Sepharose fast-flow column chromatography. The mice were administered ODPs for 3 weeks. Gavage administration of ODP-Ia significantly decreased (P<0.05) their intake of food and water; the fasting levels of blood glucose (BG), total cholesterol (TC), triglycerides (TGs), plasma urea nitrogen (PUN), and malondialdehyde (MDA); and the activity of glucose-6-phosphatase (G-6-Pase). In contrast, it significantly increased (P<0.05) the body weights, hepatic glycogen (HG) levels, high-density lipoprotein cholesterol (HDL-C) levels, and the hepatic superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) activity in diabetic mice. However, ODP-Ia did not significantly increase insulin levels in the mice with STZ-induced diabetes. We propose that ODP-Ia exerts its antihyperglycemic effect by protecting the liver from peroxidation damage and by maintaining tissue function, thereby improving the sensitivity and response of target cells in diabetic mice to insulin.
Collapse
Affiliation(s)
- L Y Zhao
- College of Life Science and Technology, Zhanjiang Normal University, Zhanjiang, Guangdong, China
| | | | | | | | | |
Collapse
|