1
|
Lepedda AJ, Nieddu G, Cannas C, Formato M. Molecular and pathobiological insights of bikunin/UTI in cancer. Mol Biol Rep 2023; 50:1701-1711. [PMID: 36414878 PMCID: PMC9889512 DOI: 10.1007/s11033-022-08117-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 11/12/2022] [Indexed: 11/24/2022]
Abstract
Bikunin is a small chondroitin sulfate proteoglycan (PG) with Ser-protease inhibitory activity that plays pleiotropic roles in health and disease. It is involved in several physiological processes including stabilization of the extracellular matrix (ECM) of connective tissues and key reproductive events. Bikunin is also implicated in both acute and chronic inflammatory conditions and represents a non-invasive circulating and/or urinary (as Urinary Trypsin Inhibitor or UTI) biomarker. It exerts inhibitory effects on urokinase-type plasminogen activator (uPA) and its receptor (uPAR) mediating tumor invasiveness by a down-regulation of uPA mRNA expression, thus representing an anti-metastatic agent. However, only limited data on its potential as a diagnostic and/or prognostic marker of cancer have been reported so far. Recent technological advances in mass spectrometry-based proteomics have provided researchers with a huge amount of information allowing for large-scale surveys of the cancer proteome. To address such issues, we analyzed bikunin expression data across several types of tumors, by using UALCAN proteogenomic analysis portal. In this article we critically review the roles of bikunin in human pathobiology, with a special focus on its inhibitory effects and mechanisms in cancer aggressiveness as well as its significance as cancer circulating biomarker.
Collapse
Affiliation(s)
| | - Gabriele Nieddu
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| | - Claudia Cannas
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| | - Marilena Formato
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| |
Collapse
|
2
|
Iqbal MO, Yahya EB. In vivo assessment of reversing aminoglycoside antibiotics nephrotoxicity using Jatropha mollissima crude extract. Tissue Cell 2021; 72:101525. [PMID: 33780659 DOI: 10.1016/j.tice.2021.101525] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 02/18/2021] [Accepted: 03/07/2021] [Indexed: 01/30/2023]
Abstract
Aminoglycoside antibiotics are widely employed clinically due to their powerful bactericidal activities, less bacterial resistance compared to beta lactam group and low cost. However, their use has been limited in recent years due to their potential induction of nephrotoxicity. Here we investigate the possibility of reversing nephrotoxicity caused by gentamicin in rat models by using ethanolic crude extract of the medicinal plant Jatropha Mollissima. Nephrotoxic male Wistar rats was obtained by gentamicin antibiotic, which then treated with two doses of J. mollissima crude extract for 3 weeks with monitoring their parameter in weekly base. Our results indicate that J. mollissima crude extract at both doses has strong protection ability against gentamicin nephrotoxicity, most of tested parameters backed to normal values after few days from the administration of the crude extract, which could be due to the antagonized the biochemical action of gentamicin on the proximal tubules of the kidney. The results of histopathologic analysis showed observable improvement in J. mollissima treated groups compared with untreated groups. Our findings suggests the J. mollissima has exceptional nephron protection potentials able to reverse the nephrotoxicity caused by gentamicin antibiotic.
Collapse
Affiliation(s)
- Muhammad Omer Iqbal
- Key Laboratory of Marine Drugs, Shandong Provincial Key Laboratory of Glycoscience and Glycoengineering, School of Medicine and Pharmacy, Ocean University of China, Qingdao, Shandong, 266003, China
| | - Esam Bashir Yahya
- School of Industrial Technology, Universiti Sains Malaysia, Penang, 11800, Malaysia.
| |
Collapse
|
3
|
Pakfetrat Z, Janfeshan S, Masjedi F, Rafiei M, Karimi Z. Involvement of oxidative stress and toll-like receptor-4 signaling pathways in gentamicin-induced nephrotoxicity in male Sprague Dawley rats. Drug Chem Toxicol 2021; 45:2568-2575. [PMID: 34538191 DOI: 10.1080/01480545.2021.1977024] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Gentamicin (GM) is an antibiotic belonging to an aminoglycoside family that might induce nephrotoxicity in human and animal models via oxidative stress. Toll-like receptors (TLRs) are part of innate immune systems that participate in inflammatory responses. In this regard, we investigated the effect of GM on kidney functional and structural parameters, enzymatic antioxidant levels, and mRNA expression of TLR4 and IL6 in the rat kidney. Adult male Sprague Dawley rats were randomly divided into two groups (n = 10): Control and Gentamicin (100 mg/kg, i.p.). After ten days of GM administration, a blood sample was taken, and the kidneys were removed. The serum levels of creatinine (Cr) and blood urea nitrogen (BUN) were measured. Furthermore, the right kidney was preserved in formalin 10% for hematoxylin and eosin (H&E) staining, and the left kidney was kept at -80 °C for molecular and oxidative indexes analysis. Administration of GM caused tubular damages and functional disturbance. So that, Cr and BUN values in the GM group were higher than Control group. Furthermore, molecular findings showed upregulation of TLR4 and IL-6 mRNA expression in renal tissue of the GM-received group. In this study, superoxide dismutase (SOD) activity was slightly increased as a compensatory mechanism in response to elevated malondialdehyde (MDA) levels in the GM-treated group. On the other hand, the activity of catalase (CAT) and glutathione peroxidase (GPx) were significantly declined. Our results demonstrated that oxidative stress and subsequent TLR4 upregulation signaling pathways are involved in GM-induced nephrotoxicity.
Collapse
Affiliation(s)
- Zahra Pakfetrat
- Department of Biology, Arsanjan Branch, Islamic Azad University, Arsanjan, Iran
| | - Sahar Janfeshan
- Shiraz Nephro-Urology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Fatemeh Masjedi
- Shiraz Nephro-Urology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Maryam Rafiei
- Department of Biology, Arsanjan Branch, Islamic Azad University, Arsanjan, Iran
| | - Zeinab Karimi
- Shiraz Nephro-Urology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
4
|
Mishra P, Mandlik D, Arulmozhi S, Mahadik K. Nephroprotective role of diosgenin in gentamicin-induced renal toxicity: biochemical, antioxidant, immunological and histopathological approach. FUTURE JOURNAL OF PHARMACEUTICAL SCIENCES 2021. [DOI: 10.1186/s43094-021-00318-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Aminoglycoside antibiotics, gentamicin (GM) owns the utmost nephrotoxic potential than other antibiotics from the same category. To the other side, diosgenin (DG) showed the antioxidant and anti-inflammatory property.
Results
The present study was aimed to explore the nephroprotective effect of diosgenin on gentamicin-induced renal toxicity in Wistar rats. Wistar albino rats were divided into six groups (n = 6): Normal control (NC), Nephrotoxicity control (GM), DG (20 mg/kg), DG (40 mg/kg), DG (80 mg/kg), accordingly. After the treatment, the nephroprotective effects of DG were assessed by measuring serum levels of creatinine (Cr), blood urea nitrogen (BUN), total proteins (TP), albumin and urea levels. Urine volume, proteins, electrolyte levels, creatinine clearance were also evaluated in urine samples. Oxidative stress was evaluated through the measurement of antioxidant stress markers in the kidney tissue. Changes in body weight and kidney weight were also recorded along with a histopathological examination of kidney sections. For evaluation of inflammation, TNF-α and IL-1β levels were measured in the blood serum using ELISA kits. GM intoxication induced elevated serum creatinine, BUN, urea, albumin and TP levels, urine electrolytes levels, pro-inflammatory cytokines, antioxidant parameters which were found to be decreased significantly in a dose-dependent manner in rat groups received DG which was also evidenced by the histological observations.
Conclusion
DG showed a significant nephroprotective effect in a dose-dependent manner by ameliorating the GM induced nephrotoxicity in Wistar rats.
Collapse
|
5
|
Lepedda AJ, De Muro P, Capobianco G, Formato M. Role of the small proteoglycan bikunin in human reproduction. Hormones (Athens) 2020; 19:123-133. [PMID: 31728877 DOI: 10.1007/s42000-019-00149-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 10/21/2019] [Indexed: 02/06/2023]
Abstract
PURPOSE Female reproductive events, including ovulation, menstruation, implantation, and delivery, are physiologically characterized by deep tissue remodeling and display hallmark signs of inflammation. This review discusses the pleiotropic roles played by bikunin in human reproduction. METHODS A comprehensive literature search of the Medline/PubMed database was performed on the following topics: bikunin structure, roles in pathophysiological conditions and involvement in human reproduction, and usefulness as a marker of gestational complications or as a drug to improve pregnancy outcomes. RESULTS Bikunin is a small chondroitin sulfate proteoglycan found in blood, urine, and amniotic and cerebrospinal fluids, known for its anti-inflammatory and anti-proteolytic activities. Its levels are usually low, but they can increase several-fold in both acute and chronic inflammatory diseases. Bikunin plays key roles in reproductive events, such as cumulus-oocyte complex formation, pregnancy, and delivery. Its levels have been associated with the most common pregnancy complications such as preterm delivery, pre-eclampsia, and gestational diabetes mellitus. Finally, its intravaginal administration has been reported to reduce the risk of preterm delivery and to improve neonatal outcomes. CONCLUSIONS Because of its pleiotropic roles in several reproductive events and its association with some life-threatening pathological conditions of pregnancy, bikunin may represent a non-invasive marker for improving follow-up and early diagnosis. Studies showing its usefulness as a drug for reducing the risk of preterm delivery and improving neonatal outcomes have yielded interesting results that deserve to be investigated through further research.
Collapse
Affiliation(s)
- Antonio Junior Lepedda
- Department of Biomedical Sciences, University of Sassari, Viale San Pietro 43, 07100, Sassari, Italy
| | - Pierina De Muro
- Department of Biomedical Sciences, University of Sassari, Viale San Pietro 43, 07100, Sassari, Italy
| | - Giampiero Capobianco
- Gynecologic and Obstetric Clinic, Department of Medical, Surgical and Experimental Sciences, University of Sassari, Viale San Pietro 12, 07100, Sassari, Italy.
| | - Marilena Formato
- Department of Biomedical Sciences, University of Sassari, Viale San Pietro 43, 07100, Sassari, Italy.
| |
Collapse
|
6
|
Lepedda AJ, De Muro P, Capobianco G, Formato M. Significance of urinary glycosaminoglycans/proteoglycans in the evaluation of type 1 and type 2 diabetes complications. J Diabetes Complications 2017; 31:149-155. [PMID: 27842978 DOI: 10.1016/j.jdiacomp.2016.10.013] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Revised: 09/12/2016] [Accepted: 10/09/2016] [Indexed: 11/16/2022]
Abstract
Because of the high incidence of kidney disease in diabetic patients, the early diagnosis of renal impairment is a key point for intervention and management. Although urinary albumin excretion currently represents the accepted standard to assess both diabetic nephropathy and cardiovascular risk, it has some limitations as structural changes in the glomerular basement membrane may occur before the onset of microalbuminuria. It is therefore important to identify urinary markers that may provide greater sensitivity, earlier detection, and greater predictive power for diabetes complications. In this respect, urinary glycosaminoglycans/proteoglycans (GAGs/PGs) have been long associated with several kidney diseases as well as diabetic nephropathies as their levels increase more readily than albuminuria. In particular, heparan sulfate, a key component of the glomerular basement membrane responsible for its charge-dependent permeability, is excreted into urine at higher concentrations during the early kidney remodeling events caused by the altered glucose metabolism in diabetes. Over the past few years, also urinary trypsin inhibitor has been linked to a chronic inflammatory condition in both type 1 and 2 diabetes. The underlying mechanisms of such increase are not completely known since either a systemic inflammatory condition or a more localized early renal impairment could play a role. Nevertheless, the association with other inflammatory markers and a detailed urinary trypsin inhibitor structural characterization in diabetes remain to be elucidated. This review will discuss a great deal of information on the association between urinary GAGs/PGs and type 1 and 2 diabetes, with particular emphasis on renal involvement, and their potential as markers useful in screening, diagnosis and follow up to be associated with the current standard tests.
Collapse
Affiliation(s)
- Antonio Junior Lepedda
- Department of Biomedical Sciences, University of Sassari, Via Muroni 25, 07100, Sassari, Italy.
| | - Pierina De Muro
- Department of Biomedical Sciences, University of Sassari, Via Muroni 25, 07100, Sassari, Italy.
| | - Giampiero Capobianco
- Gynecologic and Obstetric Clinic, Department of Surgical, Microsurgical and Medical Sciences, University of Sassari, Viale San Pietro 12, 07100, Sassari, Italy.
| | - Marilena Formato
- Department of Biomedical Sciences, University of Sassari, Via Muroni 25, 07100, Sassari, Italy.
| |
Collapse
|
7
|
Quirós Y, Blanco-Gozalo V, Sanchez-Gallego JI, López-Hernandez FJ, Ruiz J, Perez de Obanos MP, López-Novoa JM. Cardiotrophin-1 therapy prevents gentamicin-induced nephrotoxicity in rats. Pharmacol Res 2016; 107:137-146. [PMID: 26996880 DOI: 10.1016/j.phrs.2016.02.025] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Revised: 02/29/2016] [Accepted: 02/29/2016] [Indexed: 01/10/2023]
Abstract
Aminoglycosides are very effective antibiotics for the treatment of severe infections, but they rank among the most frequent causes of drug-induced nephrotoxicity. Thus, prevention of aminoglycoside nephrotoxicity is an unmet therapeutic objective. Cardiotrophin-1 (CT-1), a member of the IL-6 family of cytokines, has been reported to protect the kidney against toxic and ischemic acute kidney injury (AKI). We have assessed the effect of rat CT-1 in the severity of gentamicin (G)-induced AKI. Groups of male Wistar rats received the following for 6 consecutive days: i) isotonic saline solution (group CONT), ii) G, 150mg/kg/day, i.p. (group G), iii) CT-1, 100μg/kg/day i.v. (group CT-1), or iv) G and CT-1 at the doses described above. The G group showed a manifest AKI characterized by low creatinine clearance, high plasma creatinine and urea levels, increased urinary excretion of proteins, glucose and AKI markers such as N-acetyl-glucosaminidase, neutrophil gelatinase-associated lipocalin, kidney-injury molecule-1 and T-gelsolin, increased kidney levels of CD-68, iNOS, IL-1β and TNF-α, and markedly higher histological renal damage and leukocyte infiltration than the CONT and CT-1 groups. Administration of CT-1 together with G reduced almost all of the above-described manifestations of G-induced AKI. The results of this study have potential clinical application, as CT-1 is near to being used as a drug for organ protection.
Collapse
Affiliation(s)
| | | | | | - Francisco J López-Hernandez
- Unidad de Fisiopatología Renal y Cardiovascular, Departamento de Fisiología y Farmacología, Universidad de Salamanca, Salamanca, Spain; Instituto de Investigación Biomédica de Salamanca (IBSAL), Salamanca, Spain; Instituto de Estudios de Ciencias de la Salud de Castilla y León (IESCYL), Salamanca, Spain
| | | | | | - José M López-Novoa
- Unidad de Fisiopatología Renal y Cardiovascular, Departamento de Fisiología y Farmacología, Universidad de Salamanca, Salamanca, Spain; Instituto de Investigación Biomédica de Salamanca (IBSAL), Salamanca, Spain.
| |
Collapse
|
8
|
Otunctemur A, Ozbek E, Cekmen M, Cakir SS, Dursun M, Polat EC, Somay A, Ozbay N. Protective effect of montelukast which is cysteinyl-leukotriene receptor antagonist on gentamicin-induced nephrotoxicity and oxidative damage in rat kidney. Ren Fail 2013; 35:403-10. [PMID: 23342977 DOI: 10.3109/0886022x.2012.761040] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Nephrotoxicity is a major complication of gentamicin (GEN). We aimed to evaluate the potential protective effect of montelukast (MK) against GEN-induced nephrotoxicity in rats. Thirty-two rats were randomly divided into four groups, each consisting of eight animals as follows: (1) the rats were control; (2) intraperitoneally injected with GEN 14 consecutive days (100 mg/kg/day); (3) treated with GEN plus distilled water via nasogastric gavage for 14 days; and (4) treated with GEN plus MK (10 mg/kg/day) for 14 days. After 15 days, rats were killed and their kidneys were taken and blood analysis was performed. Twenty-four hours urine collections were obtained in standard metabolic cages a day before the rats were killed. Tubular necrosis and interstitial fibrosis scoring were determined histopathologically in a part of kidneys; nitric oxide (NO), malondialdehyde (MDA), and reduced glutathione (GSH) levels were determined in the other part of kidneys. Statistical analyses were made by the chi-square test and analysis of variance. Serum urea and creatinine levels were significantly higher in rats treated with GEN alone, than the rats in control and GEN + MK groups.The GSH levels in renal tissue of only GEN-treated rats were significantly lower than those in control group, and administration of MK to GEN-treated rats significantly increased the level of GSH. The group that was given GEN and MK had significantly lower MDA and NO levels in kidney cortex tissue than those that was given GEN alone. In rats treated with GEN + MK, despite the presence of mild tubular degeneration and tubular necrosis are less severe, and glomeruli maintained a better morphology when compared with GEN group. We can say that MK prevents kidney damage with antioxidant effect, independently of NO.
Collapse
Affiliation(s)
- Alper Otunctemur
- Department of Urology, Okmeydani Training and Research Hospital, Istanbul, Turkey.
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Cekmen M, Otunctemur A, Ozbek E, Cakir SS, Dursun M, Polat EC, Somay A, Ozbay N. Pomegranate Extract Attenuates Gentamicin-Induced Nephrotoxicity in Rats by Reducing Oxidative Stress. Ren Fail 2012; 35:268-74. [DOI: 10.3109/0886022x.2012.743859] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
10
|
Urinary levels of regenerating islet-derived protein III β and gelsolin differentiate gentamicin from cisplatin-induced acute kidney injury in rats. Kidney Int 2010; 79:518-28. [PMID: 20980976 DOI: 10.1038/ki.2010.439] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
A key aspect for the clinical handling of acute kidney injury is an early diagnosis, for which a new generation of urine biomarkers is currently under development including kidney injury molecule 1 and neutrophil gelatinase-associated lipocalin. A further diagnostic refinement is needed where one specific cause among several potentially nephrotoxic insults can be identified during the administration of multidrug therapies. In this study we identified increases in regenerating islet-derived protein III beta (reg IIIb) and gelsolin as potential differential urinary markers of gentamicin's nephrotoxicity. Indeed, urinary levels of both reg IIIb and gelsolin distinguish between the nephrotoxicity caused by gentamicin from that caused by cisplatin where these markers were not increased by the latter. Reg IIIb was found to be overexpressed in the kidneys of gentamicin-treated rats and excreted into the urine, whereas urinary gelsolin originated from the blood by glomerular filtration. Our results illustrate an etiological diagnosis of acute kidney injury through analysis of urine. Thus, our results raise the possibility of identifying the actual nephrotoxin in critically ill patients who are often treated with several nephrotoxic agents at the same time, thereby providing the potential for tailoring therapy to an individual patient, which is the aim of personalized medicine.
Collapse
|
11
|
Sub-nephrotoxic doses of gentamicin predispose animals to developing acute kidney injury and to excrete ganglioside M2 activator protein. Kidney Int 2010; 78:1006-15. [PMID: 20720524 DOI: 10.1038/ki.2010.267] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
We studied whether nephrotoxic drug administration sensitizes to acute renal failure (ARF) by administering a sub-nephrotoxic dose of gentamicin. This pre-treatment sensitized animals with no sign of renal injury to develop ARF when exposed to a second potential nephrotoxic drug, also given at sub-nephrotoxic doses that would be otherwise harmless to non-sensitized animals. We identified urinary ganglioside M2 activator protein (GM2AP) as a biomarker of an enhanced sensitivity to suffer ARF following sub-nephrotoxic treatment with gentamicin. Sub-nephrotoxic gentamicin did not alter renal GM2AP gene expression or protein levels, determined by reverse transcriptase-PCR, western blot, and immunostaining, nor was its serum level modified. The origin of increased GM2AP in the urine is thought to be a defective tubular handling of this protein as a consequence of gentamicin action. Hence, markers of acquired sensitivity may improve the prevention of ARF by enhancing our capacity to monitor for this condition, in a preemptive manner.
Collapse
|
12
|
Sepehri G, Derakhshanfar A, Yazdi Zadeh F. Protective effects of corn silk extract administration on gentamicin-induced nephrotoxicity in rat. ACTA ACUST UNITED AC 2009. [DOI: 10.1007/s00580-009-0943-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
13
|
Yaman I, Balikci E. Protective effects of nigella sativa against gentamicin-induced nephrotoxicity in rats. ACTA ACUST UNITED AC 2009; 62:183-90. [PMID: 19398313 DOI: 10.1016/j.etp.2009.03.006] [Citation(s) in RCA: 110] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2009] [Revised: 03/10/2009] [Accepted: 03/20/2009] [Indexed: 01/11/2023]
Abstract
The aim of this study was focused on investigating the possible protective effect of NS against GS-induced nephrotoxicity. Twenty four Wistar-albino rats were divided into four equal groups as follows: control group, GS group (100mg/kg intraperitoneal - i.p.), NSL+GS group (0.2 ml/kg+100mg/kg i.p.) and NSH+GS group (0.4 ml/kg+100mg/kg i.p.). Plasma creatinine and urea levels significantly increased as a result of nephrotoxicity in the GS group. Also, creatinine and urea levels significantly decreased in NSL+GS and NSH+GS groups. In the GS group, plasma MDA and NO levels increased significantly (p<0.05) and erythrocyte SOD and GSH-Px activities decreased significantly (p<0.05) when compared with control group. NS administration with GS injection resulted in significantly decreased MDA and NO generation and increased SOD and GSH-Px activities when compared with GS group. Proximal tubular necrosis, vacuolation, desquamation and degeneration in epithelial cells of the proximal tubules, hyaline casts in tubular lumen, mononuclear cell infiltration, glomerular and basement membrane alterations were histopathologically detected in the kidneys of the GS group. Co-treatments with NS (low and high dose) considerably decreased the renal damage when compared with the GS group. In conclusion, NS acts in the kidney as a potent scavenger of free radicals to prevent the toxic effects of GS both in the biochemical and histopathological parameters.
Collapse
Affiliation(s)
- Ihsan Yaman
- Sivrice Vocational College, Department of Animal Breeding, Firat University, 23119 Elazig, Turkey.
| | | |
Collapse
|
14
|
Karadeniz A, Yildirim A, Simsek N, Kalkan Y, Celebi F. Spirulina platensis protects against gentamicin-induced nephrotoxicity in rats. Phytother Res 2008; 22:1506-10. [PMID: 18690652 DOI: 10.1002/ptr.2522] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The present study aimed to investigate the protective effect of Spirulina platensis (SP) on gentamicin sulphate (GS)-induced changes in the levels of lipid peroxidation and endogenous antioxidants in the kidney of rats. Sprague-Dawley rats were treated in separate groups as follows for 7 consecutive days: control (C), gentamicin sulphate (100 mg/kg i.p.) (GS), Spirulina platensis (1000 mg/kg orally) (SP) and Spirulina platensis (1000 mg/kg orally) plus gentamicin sulphate (100 mg/kg i.p.) (SP + GS). The degree of protection was evaluated by determining the effects of Spirulina platensis on malondialdehyde (MDA), glutathione (GSH), superoxide dismutase (SOD), glutathione peroxidase (GPX) and nitric oxide (NO), and plasma creatinine and urea levels were estimated in kidney homogenates to evaluate antioxidant activity, and the kidney was histologically examined as well. Spirulina platensis elicited significant nephroprotective activity by decreasing lipid peroxidation (MDA) and elevated the levels of GSH, SOD, GPX, NO, creatinine and urea. Furthermore, these biochemical observations were supplemented by histological examination of the rat kidneys. In conclusion, the present study indicates a very important role of reactive oxygen species (ROS) and the relation to renal dysfunction and point to the therapeutic potential of Spirulina platensis in gentamicin sulphate induced nephrotoxicity.
Collapse
Affiliation(s)
- Ali Karadeniz
- Department of Physiology, Faculty of Veterinary Medicine, Atatürk University, Erzurum, Turkey.
| | | | | | | | | |
Collapse
|
15
|
Pugia MJ, Valdes R, Jortani SA. Bikunin (Urinary Trypsin Inhibitor): Structure, Biological Relevance, And Measurement. Adv Clin Chem 2007; 44:223-45. [PMID: 17682344 DOI: 10.1016/s0065-2423(07)44007-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Inflammatory processes, such as phagocytosis, coagulation, and vascular dilation, promote the release of serine proteases by neutrophils, macrophages, mast cells, lymphocytes, and the epithelial or endothelial cells. These proteases further facilitate the release of inflammatory cytokines and growth factors as well as take part in signal-cell proliferation through protease-activated receptors (PARs). Controlling the action of this cascade is necessary to prevent further damage to the normal tissues. One of the main anti-inflammatory response mediators is bikunin (Bik) that is responsible for inhibiting the activity of many serine proteases such as trypsin, thrombin, chymotrypsin, kallikrein, plasmin, elastase, cathepsin, Factors IXa, Xa, XIa, and XlIa. During the acute-phase response, Bik is released into plasma from proinhibitors primarily due to increased elastase activity. Bik is a glycoprotein, also referred to as urinary trypsin inhibitor, which in plasma inhibits the trypsin family of serine proteases by binding to either of the two Kunitz-binding domains. Bik also accumulates in urine. In conditions such as infection, cancer, tissue injury during surgery, kidney disease, vascular disease, coagulation, and diabetes, the concentrations of Bik in plasma and urine are increased. Several trypsin inhibitory assays for urine and immunoassays for both blood and urine have been described for measuring Bik. In addition to presenting the synthesis, structure, and pathophysiology of Bik, we will summarize various diagnostic approaches for measuring Bik. Analysis of Bik may provide a rapid approach in assessing various conditions involving the inflammatory processes.
Collapse
Affiliation(s)
- Michael J Pugia
- Siemens Medical Solutions Diagnostics, Tarrytown, New York, USA
| | | | | |
Collapse
|
16
|
Abstract
Inflammation is an important indicator of tissue injury. In the acute form, there is usually accumulation of fluids and plasma components in the affected tissues. Platelet activation and the appearance in blood of abnormally increased numbers of polymorphonucleocytes, lymphocytes, plasma cells and macrophages usually occur. Infectious disorders such as sepsis, meningitis, respiratory infection, urinary tract infection, viral infection, and bacterial infection usually induce an inflammatory response. Chronic inflammation is often associated with diabetes mellitus, acute myocardial infarction, coronary artery disease, kidney diseases, and certain auto-immune disorders, such as rheumatoid arthritis, organ failures and other disorders with an inflammatory component or etiology. The disorder may occur before inflammation is apparent. Markers of inflammation such as C-reactive protein (CRP) and urinary trypsin inhibitors have changed our appraisal of acute events such as myocardial infarction; the infarct may be a response to acute infection and (or) inflammation. We describe here the pathophysiology of an anti-inflammatory agent termed urinary trypsin inhibitor (uTi). It is an important anti-inflammatory substance that is present in urine, blood and all organs. We also describe the anti-inflammatory agent bikunin, a selective inhibitor of serine proteases. The latter are important in modulating inflammatory events and even shutting them down.
Collapse
|
17
|
Maciejewski R, Burdan F, Burski K, Madej B, Ziemiakowicz R, Dabrowski A, Wallner G. Selected biochemical parameters and ultrastructural picture of pancreas due to Ulinastatin treatment of experimental acute pancreatitis. ACTA ACUST UNITED AC 2005; 56:305-11. [PMID: 15816359 DOI: 10.1016/j.etp.2004.09.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Urinary trypsin inhibitor (UTI, Ulinastatin) is a protease inhibitor that has not been yet used in Europe in any experimental trial of severe acute pancreatitis. We have combined the experimental model of severe, hemorrhagic form of acute pancreatitis, and pharmacological treatment with a protease inhibitor. Male Wistar rats were divided into four experimental groups: healthy controls, operated, operated with experimentally induced acute pancreatitis, and animals with acute pancreatitis--treated with UTI preparations. Subjects in the last group were administered UTI intraperitoneally 1 h after pancreatitis induction in an average standard dose of 3000 units/animal. Additionally, four subgroups were created in this treated group, based on the UTI administration time--number of standard doses received: 2 h - 1 standard dose, 6 h - 5 standard doses, 12 h - 11 doses, 24 and 48 h - 15 doses. Statistically significant differences in the serum amylase and lipase activity between the UTI-treated and non-treated subjects were found. In the group of non-treated animals, there a profound destruction of cellular organelles was observed with a total degradation of nuceli, endoplasmatic reticulum and zymogen granules. However, in the UTI-treated subjects, pathological processes proceeded with the significantly slower pace and in much smaller quantities.
Collapse
Affiliation(s)
- R Maciejewski
- Human Anatomy Department, Medical University of Lublin, PL-20074 Lublin, Poland
| | | | | | | | | | | | | |
Collapse
|
18
|
Naidu MU, Shifow AA, Kumar KV, Ratnakar KS. Ginkgo biloba extract ameliorates gentamicin-induced nephrotoxicity in rats. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2000; 7:191-197. [PMID: 11185729 DOI: 10.1016/s0944-7113(00)80003-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The effect of Ginkgo biloba (EGb), a plant extract with an antioxidant effect, has been studied on gentamicin-induced nephrotoxicity in male wistar rats. Ginkgo biloba extract (300 mg/kg BW) was administered orally 2 days before and 8 days concurrently with gentamicin (80 mg/kg BW). Saline treated animals served as control. Estimations of urine creatinine, glucose, blood urea, serum creatinine, plasma and kidney tissue MDA were carried out after 8 days of gentamicin treatment. Kidneys were examined using histological techniques. Blood urea and serum creatinine were increased by 896% and 461% respectively, with gentamicin, compared to saline treated group. Creatinine clearance was significantly decreased with gentamicin. Ginkgo biloba extract protected rats from gentamicin-induced nephrotoxicity. Changes in blood urea, serum creatinine and creatinine clearance induced by gentamicin were significantly prevented by Ginkgo biloba extract. There was a 177% and 374% rise in plasma and kidney tissue MDA with gentamicin, which were significantly reduced to normal with Ginkgo biloba extract. Histomorphology showed necrosis and desquamation of tubular epithelial cells in renal cortex with gentamicin, while it was normal and comparable to control with Ginkgo biloba extract. These data suggest that supplementation of Ginkgo biloba extract may be helpful to reduce gentamicin nephrotoxicity.
Collapse
Affiliation(s)
- M U Naidu
- Central Research Laboratory, Department of Clinical Pharmacology & Therapeutics, Nizam's Institute of Medical Sciences, Punjagutta, Hyderabad, India
| | | | | | | |
Collapse
|
19
|
Kumar KV, Shifow AA, Naidu MU, Ratnakar KS. Carvedilol: a beta blocker with antioxidant property protects against gentamicin-induced nephrotoxicity in rats. Life Sci 2000; 66:2603-11. [PMID: 10883738 DOI: 10.1016/s0024-3205(00)00594-4] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Gentamicin is an antibiotic effective against gram negative infections, whose clinical use is limited by its nephrotoxicity. Since the pathogenesis of gentamicin-induced nephrotoxicity involves oxygen free radicals, the antioxidant carvedilol may protect against gentamicin-induced renal toxicity. We therefore tested this hypothesis using a rat model of gentamicin nephrotoxicity. Carvedilol (2 mg/kg) was administered intraperitoneally 3 days before and 8 days concurrently with gentamicin (80 mg/kg BW). Estimations of urine creatinine, glucose, blood urea, serum creatinine, plasma and kidney tissue malondialdehyde (MDA) were carried out, after the last dose of gentamicin. Kidneys were also examined for morphological changes. Gentamicin caused marked nephrotoxicity as evidenced by increase in blood urea, serum creatinine and decreased in creatinine clearance. Blood urea and serum creatinine was increased by 883% and 480% respectively with gentamicin compared to control. Carvedilol protected the rats from gentamicin induced nephrotoxicity. Rise in blood urea, serum creatinine and decrease in creatinine clearance was significantly prevented by carvedilol. There was 190% and 377% rise in plasma and kidney tissue MDA with gentamicin. Carvedilol prevented the gentamicin induced rise in both plasma and kidney tissue MDA. Kidney from gentamicin treated rats, histologically showed necrosis and desquamation of tubular epithelial cells in renal cortex, whereas it was very much comparable to control with carvedilol. In conclusion, carvedilol with its antioxidant property protected the rats from gentamicin-induced nephrotoxicity.
Collapse
Affiliation(s)
- K V Kumar
- Department of Clinical Pharmacology & Therapeutics, Nizam's Institute of Medical Sciences, Hyderabad, India
| | | | | | | |
Collapse
|
20
|
Affiliation(s)
- M P Mingeot-Leclercq
- Unité de Pharmacologie Cellulaire et Moléculaire, Université Catholique de Louvain, Brussels, Belgium.
| | | |
Collapse
|
21
|
Kato Y, Kudo M, Shinkawa T, Mochizuki H, Isaji M, Shiromizu I, Hoshida K. Role of O-linked carbohydrate of human urinary trypsin inhibitor on its lysosomal membrane-stabilizing property. Biochem Biophys Res Commun 1998; 243:377-83. [PMID: 9480817 DOI: 10.1006/bbrc.1998.8100] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Human urinary trypsin inhibitor (UTI) was digested with various enzymes to obtain O-glycoside linked N-terminal glycopeptide (UTIm1), N-glycoside linked C-terminal tandem Kunitz-domains (domain I and II, UTIm2), UTI lacking O-glycoside (UTIc), asialo UTI (UTIa) and UTI lacking N-glycoside (UTIn). We investigated the membrane stabilizing effect of these UTI derivatives on rat renal lysosome by measurement of lysosomal enzyme N-acetyl-beta-D-glucosaminidase (NAG) release after hypotonic treatment. Intact UTI suppressed NAG release, but aprotinin, gabexate mesilate (FOY), nafamostat mesilate (FUT) and recombinant domain II of UTI (R-020) had no effect, indicating that inhibition of serine proteases was not involved and the carbohydrate moiety of UTI might be necessary for this property. Among UTI derivatives, UTIm1, UTIm2, UTIm1+ UTIm2, and UTIc had no effect. In contrast, UTIa or UTIn suppressed NAG release. From these results, we conclude that O-glycoside linked core protein without N-glycoside is essential to the lysosomal membrane-stabilizing property of UTI.
Collapse
Affiliation(s)
- Y Kato
- Fuji Central Research Laboratory, Mochida Pharmaceutical Co., Ltd., Shizuoka, Japan
| | | | | | | | | | | | | |
Collapse
|