1
|
Cano I, González-Delgado S, Hernández JC. Benthic community phase shifts towards macroalgae beds compromise the recruitment of the long-spined sea urchin Diademaafricanum. MARINE ENVIRONMENTAL RESEARCH 2025; 205:106999. [PMID: 39933325 DOI: 10.1016/j.marenvres.2025.106999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 01/17/2025] [Accepted: 02/04/2025] [Indexed: 02/13/2025]
Abstract
The long-spined sea urchin Diadema africanum is a key herbivore in sublittoral ecosystems of the Eastern Atlantic, mediating shifts between productive macroalgae beds and barren grounds. Historical increases in D. africanum densities have been linked to predator overfishing and rising temperatures favoring settlement. However, recurrent mass mortality events have recently decimated populations, reversing benthic communities from urchin barrens to macroalgal beds across the Canary Islands. We investigated the influence of biological factors, such as adult density and macroalgal coverage, alongside physical variables, including substrate rugosity, crevice presence, and slope, on the distribution of newly settled D. africanum prior to mass mortality events. In 2004, when D. africanum densities were high, early recruits were positively associated with adult habitats and negatively with areas dominated by erect, non-calcareous algae. These findings highlight that a combination of adult conspecifics, high structural complexity, and crustose coralline algae favored D. africanum recruitment, while macroalgal habitats were unfavorable. Surveys in 2024, following recurrent mass mortalities, revealed a dramatic phase shift from encrusting corallines to erect algae and a recruitment failure of D. africanum. This recent shift has altered former favorable habitats, potentially compromising recruit survival and hindering population recovery.
Collapse
Affiliation(s)
- Iván Cano
- Marine Community Ecology and Conservation, Dpto. Biología Animal, Edafología y Geología, Universidad de La Laguna, Tenerife, Canary Islands, (38208), Spain.
| | - Sara González-Delgado
- Marine Community Ecology and Conservation, Dpto. Biología Animal, Edafología y Geología, Universidad de La Laguna, Tenerife, Canary Islands, (38208), Spain; Department de Biologia Evolutiva, Ecologia i Ciències Ambientals, Facultat de Biologia, and Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona (UB), (08028), Barcelona, Spain.
| | - José Carlos Hernández
- Marine Community Ecology and Conservation, Dpto. Biología Animal, Edafología y Geología, Universidad de La Laguna, Tenerife, Canary Islands, (38208), Spain.
| |
Collapse
|
2
|
Massri AJ, Berrio A, Afanassiev A, Greenstreet L, Pipho K, Byrne M, Schiebinger G, McClay DR, Wray GA. Single-Cell Transcriptomics Reveals Evolutionary Reconfiguration of Embryonic Cell Fate Specification in the Sea Urchin Heliocidaris erythrogramma. Genome Biol Evol 2025; 17:evae258. [PMID: 39587400 PMCID: PMC11719709 DOI: 10.1093/gbe/evae258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 11/15/2024] [Accepted: 11/19/2024] [Indexed: 11/27/2024] Open
Abstract
Altered regulatory interactions during development likely underlie a large fraction of phenotypic diversity within and between species, yet identifying specific evolutionary changes remains challenging. Analysis of single-cell developmental transcriptomes from multiple species provides a powerful framework for unbiased identification of evolutionary changes in developmental mechanisms. Here, we leverage a "natural experiment" in developmental evolution in sea urchins, where a major life history switch recently evolved in the lineage leading to Heliocidaris erythrogramma, precipitating extensive changes in early development. Comparative analyses of single-cell transcriptome analysis (scRNA-seq) developmental time courses from H. erythrogramma and Lytechinus variegatus (representing the derived and ancestral states, respectively) reveal numerous evolutionary changes in embryonic patterning. The earliest cell fate specification events and the primary signaling center are co-localized in the ancestral developmental gene regulatory network; remarkably, in H. erythrogramma, they are spatially and temporally separate. Fate specification and differentiation are delayed in most embryonic cell lineages, although in some cases, these processes are conserved or even accelerated. Comparative analysis of regulator-target gene co-expression is consistent with many specific interactions being preserved but delayed in H. erythrogramma, while some otherwise widely conserved interactions have likely been lost. Finally, specific patterning events are directly correlated with evolutionary changes in larval morphology, suggesting that they are directly tied to the life history shift. Together, these findings demonstrate that comparative scRNA-seq developmental time courses can reveal a diverse set of evolutionary changes in embryonic patterning and provide an efficient way to identify likely candidate regulatory interactions for subsequent experimental validation.
Collapse
Affiliation(s)
- Abdull J Massri
- Department of Biology, Duke University, Durham, NC 27708, USA
| | | | - Anton Afanassiev
- Department of Mathematics, University of British Colombia, Vancouver, BC, Canada V6T 1Z2
| | - Laura Greenstreet
- Department of Mathematics, University of British Colombia, Vancouver, BC, Canada V6T 1Z2
| | - Krista Pipho
- Department of Biology, Duke University, Durham, NC 27708, USA
| | - Maria Byrne
- School of Life and Environmental Sciences, Sydney University, Sydney, NSW, Australia
| | - Geoffrey Schiebinger
- Department of Mathematics, University of British Colombia, Vancouver, BC, Canada V6T 1Z2
| | - David R McClay
- Department of Biology, Duke University, Durham, NC 27708, USA
| | - Gregory A Wray
- Department of Biology, Duke University, Durham, NC 27708, USA
| |
Collapse
|
3
|
Byrne M, Cisternas P, O'Hara TD, Sewell MA, Selvakumaraswamy P. Evolution of Maternal Provisioning and Development in the Ophiuroidea: Egg Size, Larval Form, and Parental Care. Integr Comp Biol 2024; 64:1536-1555. [PMID: 38782731 PMCID: PMC11659680 DOI: 10.1093/icb/icae048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 04/23/2024] [Accepted: 04/29/2024] [Indexed: 05/25/2024] Open
Abstract
The Ophiuroidea is the most speciose class of echinoderms and has the greatest diversity of larval forms, but we know less about the evolution of development (evo-devo) in this group than for the other echinoderm classes. As is typical of echinoderms, evo-devo in the Ophiuroidea resulted in the switch from production of small eggs and feeding (planktotrophic) larvae to large eggs and non-feeding (lecithotrophic) larvae. Parental care (ovoviviparity or viviparity/matrotrophy) is the most derived life history. Analysis of egg data for 140 species (excluding viviparity and facultative planktotrophy) indicated a bimodal distribution in egg volume corresponding to planktotrophy and lecithotrophy + ovoviviparity, with three significant egg size groups due to the very large eggs of the ovoviviparous species. The marked reduction in fecundity in species with extremely large eggs is exemplified by the ovoviviparous species. Egg size in the two species with facultative planktotrophy was intermediate with respect to the two modes. Identifying the ancestral larval life history pattern and the pathways in the switch from feeding to non-feeding larvae is complicated by the two patterns of metamorphosis seen in species with planktotrophic development: Type I (ophiopluteus only) and Type II (ophiopluteus + vitellaria larva). The variability in arm resorption at metamorphosis across ophiuroid families indicates that the Type I and II patterns may be two ends of a morphological continuum. This variability indicates ancestral morphological plasticity at metamorphosis, followed by canalization in some taxa to the vitellaria as the metamorphic larva. Vestigial ophiopluteal traits in lecithotrophic ophioplutei and vitellaria indicate evolution from the ancestral (feeding larva) state. Parental care has evolved many times from an ancestor that had a planktonic ophiopluteus or vitellaria and is often associated with hermaphroditism and paedomorphosis. A secondary reduction in egg size occurred in the viviparous species.
Collapse
Affiliation(s)
- Maria Byrne
- School of Life and Environmental Sciences and Marine Studies Institute, The University Sydney, Sydney, New South Wales 2006, Australia
| | - Paula Cisternas
- School of Life and Environmental Sciences and Marine Studies Institute, The University Sydney, Sydney, New South Wales 2006, Australia
- Museum Victoria, 11 Nicholson St, Melbourne, Victoria 3001, Australia
| | - Timothy D O'Hara
- Museum Victoria, 11 Nicholson St, Melbourne, Victoria 3001, Australia
| | - Mary A Sewell
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Paulina Selvakumaraswamy
- School of Life and Environmental Sciences and Marine Studies Institute, The University Sydney, Sydney, New South Wales 2006, Australia
| |
Collapse
|
4
|
McDonald BD, Massri AJ, Berrio A, Byrne M, McClay DR, Wray GA. Contrasting the development of larval and adult body plans during the evolution of biphasic lifecycles in sea urchins. Development 2024; 151:dev203015. [PMID: 39465623 PMCID: PMC11529275 DOI: 10.1242/dev.203015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 09/16/2024] [Indexed: 10/29/2024]
Abstract
Biphasic lifecycles are widespread among animals, but little is known about how the developmental transition between larvae and adults is regulated. Sea urchins are a unique system for studying this phenomenon because of the stark differences between their bilateral larval and pentaradial adult body plans. Here, we use single-cell RNA sequencing to analyze the development of Heliocidaris erythrogramma (He), a sea urchin species with an accelerated, non-feeding mode of larval development. The sequencing time course extends from embryogenesis to roughly a day before the onset of metamorphosis in He larvae, which is a period that has not been covered by previous datasets. We find that the non-feeding developmental strategy of He is associated with several changes in the specification of larval cell types compared to sea urchins with feeding larvae, such as the loss of a larva-specific skeletal cell population. Furthermore, the development of the larval and adult body plans in sea urchins may utilize largely different sets of regulatory genes. These findings lay the groundwork for extending existing developmental gene regulatory networks to cover additional stages of biphasic lifecycles.
Collapse
Affiliation(s)
| | | | | | - Maria Byrne
- School of Life and Environmental Sciences, A11, University of Sydney, Sydney, NSW, 2006, Australia
| | - David R. McClay
- Department of Biology, Duke University, Durham, NC 27708, USA
| | - Gregory A. Wray
- Department of Biology, Duke University, Durham, NC 27708, USA
| |
Collapse
|
5
|
Rosner A, Ballarin L, Barnay-Verdier S, Borisenko I, Drago L, Drobne D, Concetta Eliso M, Harbuzov Z, Grimaldi A, Guy-Haim T, Karahan A, Lynch I, Giulia Lionetto M, Martinez P, Mehennaoui K, Oruc Ozcan E, Pinsino A, Paz G, Rinkevich B, Spagnuolo A, Sugni M, Cambier S. A broad-taxa approach as an important concept in ecotoxicological studies and pollution monitoring. Biol Rev Camb Philos Soc 2024; 99:131-176. [PMID: 37698089 DOI: 10.1111/brv.13015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 08/23/2023] [Accepted: 08/28/2023] [Indexed: 09/13/2023]
Abstract
Aquatic invertebrates play a pivotal role in (eco)toxicological assessments because they offer ethical, cost-effective and repeatable testing options. Additionally, their significance in the food chain and their ability to represent diverse aquatic ecosystems make them valuable subjects for (eco)toxicological studies. To ensure consistency and comparability across studies, international (eco)toxicology guidelines have been used to establish standardised methods and protocols for data collection, analysis and interpretation. However, the current standardised protocols primarily focus on a limited number of aquatic invertebrate species, mainly from Arthropoda, Mollusca and Annelida. These protocols are suitable for basic toxicity screening, effectively assessing the immediate and severe effects of toxic substances on organisms. For more comprehensive and ecologically relevant assessments, particularly those addressing long-term effects and ecosystem-wide impacts, we recommended the use of a broader diversity of species, since the present choice of taxa exacerbates the limited scope of basic ecotoxicological studies. This review provides a comprehensive overview of (eco)toxicological studies, focusing on major aquatic invertebrate taxa and how they are used to assess the impact of chemicals in diverse aquatic environments. The present work supports the use of a broad-taxa approach in basic environmental assessments, as it better represents the natural populations inhabiting various ecosystems. Advances in omics and other biochemical and computational techniques make the broad-taxa approach more feasible, enabling mechanistic studies on non-model organisms. By combining these approaches with in vitro techniques together with the broad-taxa approach, researchers can gain insights into less-explored impacts of pollution, such as changes in population diversity, the development of tolerance and transgenerational inheritance of pollution responses, the impact on organism phenotypic plasticity, biological invasion outcomes, social behaviour changes, metabolome changes, regeneration phenomena, disease susceptibility and tissue pathologies. This review also emphasises the need for harmonised data-reporting standards and minimum annotation checklists to ensure that research results are findable, accessible, interoperable and reusable (FAIR), maximising the use and reusability of data. The ultimate goal is to encourage integrated and holistic problem-focused collaboration between diverse scientific disciplines, international standardisation organisations and decision-making bodies, with a focus on transdisciplinary knowledge co-production for the One-Health approach.
Collapse
Affiliation(s)
- Amalia Rosner
- Israel Oceanographic and Limnological Research, National Institute of Oceanography, PO 2336 Sha'ar Palmer 1, Haifa, 3102201, Israel
| | - Loriano Ballarin
- Department of Biology, University of Padova, via Ugo Bassi 58/B, Padova, I-35121, Italy
| | - Stéphanie Barnay-Verdier
- Sorbonne Université; CNRS, INSERM, Université Côte d'Azur, Institute for Research on Cancer and Aging Nice, 28 avenue Valombrose, Nice, F-06107, France
| | - Ilya Borisenko
- Faculty of Biology, Department of Embryology, Saint Petersburg State University, Universitetskaya embankment 7/9, Saint Petersburg, 199034, Russia
| | - Laura Drago
- Department of Biology, University of Padova, via Ugo Bassi 58/B, Padova, I-35121, Italy
| | - Damjana Drobne
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Večna pot 111, Ljubljana, 1111, Slovenia
| | - Maria Concetta Eliso
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Naples, 80121, Italy
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Zoya Harbuzov
- Israel Oceanographic and Limnological Research, National Institute of Oceanography, PO 2336 Sha'ar Palmer 1, Haifa, 3102201, Israel
- Leon H. Charney School of Marine Sciences, Department of Marine Biology, University of Haifa, 199 Aba Koushy Ave., Haifa, 3498838, Israel
| | - Annalisa Grimaldi
- Department of Biotechnology and Life Sciences, University of Insubria, Via J. H. Dunant, Varese, 3-21100, Italy
| | - Tamar Guy-Haim
- Israel Oceanographic and Limnological Research, National Institute of Oceanography, PO 2336 Sha'ar Palmer 1, Haifa, 3102201, Israel
| | - Arzu Karahan
- Middle East Technical University, Institute of Marine Sciences, Erdemli-Mersin, PO 28, 33731, Turkey
| | - Iseult Lynch
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Maria Giulia Lionetto
- Department of Biological and Environmental Sciences and Technologies, University of Salento, via prov. le Lecce -Monteroni, Lecce, I-73100, Italy
- NBFC, National Biodiversity Future Center, Piazza Marina, 61, Palermo, I-90133, Italy
| | - Pedro Martinez
- Department de Genètica, Microbiologia i Estadística, Universitat de Barcelona, Av. Diagonal 643, Barcelona, 08028, Spain
- Institut Català de Recerca i Estudis Avançats (ICREA), Passeig de Lluís Companys, Barcelona, 08010, Spain
| | - Kahina Mehennaoui
- Environmental Research and Innovation (ERIN) Department, Luxembourg Institute of Science and Technology (LIST), 41, rue du Brill, Belvaux, L-4422, Luxembourg
| | - Elif Oruc Ozcan
- Faculty of Arts and Science, Department of Biology, Cukurova University, Balcali, Saricam, Adana, 01330, Turkey
| | - Annalisa Pinsino
- National Research Council, Institute of Translational Pharmacology (IFT), National Research Council (CNR), Via Ugo La Malfa 153, Palermo, 90146, Italy
| | - Guy Paz
- Israel Oceanographic and Limnological Research, National Institute of Oceanography, PO 2336 Sha'ar Palmer 1, Haifa, 3102201, Israel
| | - Baruch Rinkevich
- Israel Oceanographic and Limnological Research, National Institute of Oceanography, PO 2336 Sha'ar Palmer 1, Haifa, 3102201, Israel
| | - Antonietta Spagnuolo
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Naples, 80121, Italy
| | - Michela Sugni
- Department of Environmental Science and Policy, University of Milan, Via Celoria 26, Milan, 20133, Italy
| | - Sébastien Cambier
- Environmental Research and Innovation (ERIN) Department, Luxembourg Institute of Science and Technology (LIST), 41, rue du Brill, Belvaux, L-4422, Luxembourg
| |
Collapse
|
6
|
Selvakumaraswamy P, Byrne M. Evo-Devo in Ophiuroids: The Switch from Planktotrophy to Lecithotrophy in Ophionereis. THE BIOLOGICAL BULLETIN 2023; 244:164-176. [PMID: 38457674 DOI: 10.1086/727755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/10/2024]
Abstract
AbstractUnderstanding the evolution of development (evo-devo) in the Ophiuroidea and the pathways in the switch from a feeding to a nonfeeding larva is complicated by the variability in the phenotype of the metamorphic larva, being a reduced yolky ophiopluteus in some species (type I development) and a vitellaria larva in others (type II development). We investigated evo-devo in the family Ophionereididae, a group dominated by lecithotrophic development through a vitellaria larva. We reared the planktotrophic larvae of Ophionereis fasciata to settlement to determine the metamorphic phenotype. Counter to expectations, O. fasciata did not exhibit type II metamorphosis through a vitellaria, although it did exhibit transient vitellaria-like features. Resorption of the larval arms in the same interradial positions where the ciliary bands form in vitellariae gave them a fleeting vitellaria-like appearance. Development of O. fasciata exhibits heterochronic features in early formation of the skeletal primordium of the third pair (postoral) of larval arms and in the presettlement juvenile early appearance of the juvenile terminal arm plates on external view in parallel with larval arm resorption. Development of the fourth pair (posterodorsal) of larval arms, the last pair to be formed, is plastic, with 44% of larvae exhibiting partial arm growth. Heterochronic traits in development, as seen in O. fasciata, may have facilitated evolution of a lecithotrophic mode of development in Ophionereis. Comparison of the ophiopluteus of O. fasciata and the vestigial pluteus of O. schayeri provided insights into the simplification of larval form from the ancestral (feeding larva) state in Ophionereis. The diverse metamorphic phenotypes in ophiuroids indicate that type I and type II development may not be completely divergent lines of evo-devo and point to selective pressure in the pelagic-benthic transition in the evolution of ophiuroid development.
Collapse
|
7
|
Sweet HC, Azriel G, Jaff N, Moser J, Riola TA, Ideman C, Barton M, Nelson J, Lenhart MM. Formation of Coelomic Cavities during Abbreviated Development of the Brittle Star Ophioplocus esmarki. THE BIOLOGICAL BULLETIN 2022; 243:283-298. [PMID: 36716487 DOI: 10.1086/721954] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
AbstractIn brittle stars, the coelomic cavities that form during embryogenesis contribute to most of the internal organ systems of the juvenile. In the ancestral mode of development, the coelomic cavities begin with bilateral symmetry and play a minor role in the function of the ophiopluteus larva. However, the coelomic cavities undergo extensive changes during metamorphosis to set up the body systems of the juvenile brittle star. Many lineages of brittle stars have evolved life histories without the ophiopluteus larva. The non-feeding vitellaria larva has rapid development of juvenile structures. This work demonstrates the modifications to the origin and early development of the coelomic cavities in a vitellaria larva. Much of the archenteron forms an unpaired axocoel, hydrocoel, and somatocoel. The posterior-most portion of the archenteron forms the rudiment of the juvenile stomach. The right somatocoel and a portion of the left somatocoel form as invaginations of the lateral ectoderm. Later morphogenesis of the axocoel, the hydrocoel, and the two somatocoels is similar to what has been shown for brittle stars with an ophiopluteus larva. Confocal microscopy and three-dimensional modeling were used to show new details for the later morphogenesis of the coelomic cavities. The stone canal originates as an outgrowth of the hydrocoel between lobes 4 and 5. The hydrocoel lobes have minimal migration after they meet to complete the ring canal. The right somatocoel contributes to a component of the axial complex and perihemal system. A detailed description is given for how the left somatocoel contributes to multiple organ systems.
Collapse
|
8
|
Davidson PL, Guo H, Swart JS, Massri AJ, Edgar A, Wang L, Berrio A, Devens HR, Koop D, Cisternas P, Zhang H, Zhang Y, Byrne M, Fan G, Wray GA. Recent reconfiguration of an ancient developmental gene regulatory network in Heliocidaris sea urchins. Nat Ecol Evol 2022; 6:1907-1920. [PMID: 36266460 DOI: 10.1038/s41559-022-01906-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 09/12/2022] [Indexed: 12/15/2022]
Abstract
Changes in developmental gene regulatory networks (dGRNs) underlie much of the diversity of life, but the evolutionary mechanisms that operate on regulatory interactions remain poorly understood. Closely related species with extreme phenotypic divergence provide a valuable window into the genetic and molecular basis for changes in dGRNs and their relationship to adaptive changes in organismal traits. Here we analyse genomes, epigenomes and transcriptomes during early development in two Heliocidaris sea urchin species that exhibit highly divergent life histories and in an outgroup species. Positive selection and chromatin accessibility modifications within putative regulatory elements are enriched on the branch leading to the derived life history, particularly near dGRN genes. Single-cell transcriptomes reveal a dramatic delay in cell fate specification in the derived state, which also has far fewer open chromatin regions, especially near conserved cell fate specification genes. Experimentally perturbing key transcription factors reveals profound evolutionary changes to early embryonic patterning events, disrupting regulatory interactions previously conserved for ~225 million years. These results demonstrate that natural selection can rapidly reshape developmental gene expression on a broad scale when selective regimes abruptly change. More broadly, even highly conserved dGRNs and patterning mechanisms in the early embryo remain evolvable under appropriate ecological circumstances.
Collapse
Affiliation(s)
| | - Haobing Guo
- BGI-Qingdao, BGI-Shenzhen, Qingdao, China
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen, China
| | - Jane S Swart
- Department of Biology, Duke University, Durham, NC, USA
| | | | - Allison Edgar
- Department of Biology, Duke University, Durham, NC, USA
| | - Lingyu Wang
- Department of Biology, Duke University, Durham, NC, USA
| | | | | | - Demian Koop
- School of Life and Environmental Sciences, The University of Sydney, Sydney, New South Wales, Australia
| | - Paula Cisternas
- School of Life and Environmental Sciences, The University of Sydney, Sydney, New South Wales, Australia
| | - He Zhang
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen, China
| | - Yaolei Zhang
- BGI-Qingdao, BGI-Shenzhen, Qingdao, China
- Qingdao-Europe Advanced Institute for Life Sciences, BGI-Qingdao, BGI-Shenzhen, Qingdao, China
| | - Maria Byrne
- School of Life and Environmental Sciences, The University of Sydney, Sydney, New South Wales, Australia
| | - Guangyi Fan
- BGI-Qingdao, BGI-Shenzhen, Qingdao, China
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen, China
| | - Gregory A Wray
- Department of Biology, Duke University, Durham, NC, USA.
- Center for Genomic and Computational Biology, Duke University, Durham, NC, USA.
| |
Collapse
|
9
|
Davidson PL, Byrne M, Wray GA. Evolutionary Changes in the Chromatin Landscape Contribute to Reorganization of a Developmental Gene Network During Rapid Life History Evolution in Sea Urchins. Mol Biol Evol 2022; 39:msac172. [PMID: 35946348 PMCID: PMC9435058 DOI: 10.1093/molbev/msac172] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Chromatin configuration is highly dynamic during embryonic development in animals, exerting an important point of control in transcriptional regulation. Yet there exists remarkably little information about the role of evolutionary changes in chromatin configuration to the evolution of gene expression and organismal traits. Genome-wide assays of chromatin configuration, coupled with whole-genome alignments, can help address this gap in knowledge in several ways. In this study we present a comparative analysis of regulatory element sequences and accessibility throughout embryogenesis in three sea urchin species with divergent life histories: a lecithotroph Heliocidaris erythrogramma, a closely related planktotroph H. tuberculata, and a distantly related planktotroph Lytechinus variegatus. We identified distinct epigenetic and mutational signatures of evolutionary modifications to the function of putative cis-regulatory elements in H. erythrogramma that have accumulated nonuniformly throughout the genome, suggesting selection, rather than drift, underlies many modifications associated with the derived life history. Specifically, regulatory elements composing the sea urchin developmental gene regulatory network are enriched for signatures of positive selection and accessibility changes which may function to alter binding affinity and access of developmental transcription factors to these sites. Furthermore, regulatory element changes often correlate with divergent expression patterns of genes involved in cell type specification, morphogenesis, and development of other derived traits, suggesting these evolutionary modifications have been consequential for phenotypic evolution in H. erythrogramma. Collectively, our results demonstrate that selective pressures imposed by changes in developmental life history rapidly reshape the cis-regulatory landscape of core developmental genes to generate novel traits and embryonic programs.
Collapse
Affiliation(s)
| | - Maria Byrne
- School of Life and Environmental Sciences, University of Sydney, Sydney, NSW, Australia
| | | |
Collapse
|
10
|
Oulhen N, Byrne M, Duffin P, Gomez-Chiarri M, Hewson I, Hodin J, Konar B, Lipp EK, Miner BG, Newton AL, Schiebelhut LM, Smolowitz R, Wahltinez SJ, Wessel GM, Work TM, Zaki HA, Wares JP. A Review of Asteroid Biology in the Context of Sea Star Wasting: Possible Causes and Consequences. THE BIOLOGICAL BULLETIN 2022; 243:50-75. [PMID: 36108034 PMCID: PMC10642522 DOI: 10.1086/719928] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
AbstractSea star wasting-marked in a variety of sea star species as varying degrees of skin lesions followed by disintegration-recently caused one of the largest marine die-offs ever recorded on the west coast of North America, killing billions of sea stars. Despite the important ramifications this mortality had for coastal benthic ecosystems, such as increased abundance of prey, little is known about the causes of the disease or the mechanisms of its progression. Although there have been studies indicating a range of causal mechanisms, including viruses and environmental effects, the broad spatial and depth range of affected populations leaves many questions remaining about either infectious or non-infectious mechanisms. Wasting appears to start with degradation of mutable connective tissue in the body wall, leading to disintegration of the epidermis. Here, we briefly review basic sea star biology in the context of sea star wasting and present our current knowledge and hypotheses related to the symptoms, the microbiome, the viruses, and the associated environmental stressors. We also highlight throughout the article knowledge gaps and the data needed to better understand sea star wasting mechanistically, its causes, and potential management.
Collapse
Affiliation(s)
- Nathalie Oulhen
- Department of Molecular and Cell Biology and Biochemistry, Brown University, Providence, Rhode Island
| | - Maria Byrne
- School of Life and Environmental Sciences, University of Sydney, Sydney, New South Wales, Australia
| | - Paige Duffin
- Department of Genetics, University of Georgia, Athens, Georgia
| | - Marta Gomez-Chiarri
- Department of Fisheries, Animal, and Veterinary Science, University of Rhode Island, Kingston, Rhode Island
| | - Ian Hewson
- Department of Microbiology, Cornell University, Ithaca, New York
| | - Jason Hodin
- Friday Harbor Labs, University of Washington, Friday Harbor, Washington
| | - Brenda Konar
- College of Fisheries and Ocean Sciences, University of Alaska, Fairbanks, Alaska
| | - Erin K. Lipp
- Department of Environmental Health Science, University of Georgia, Athens, Georgia
| | - Benjamin G. Miner
- Department of Biology, Western Washington University, Bellingham, Washington
| | | | - Lauren M. Schiebelhut
- Department of Life and Environmental Sciences, University of California, Merced, California
| | - Roxanna Smolowitz
- Department of Biology and Marine Biology, Roger Williams University, Bristol, Rhode Island
| | - Sarah J. Wahltinez
- Department of Comparative, Diagnostic, and Population Medicine, College of Veterinary Medicine, University of Florida, Gainesville, Florida
| | - Gary M. Wessel
- Department of Molecular and Cell Biology and Biochemistry, Brown University, Providence, Rhode Island
| | - Thierry M. Work
- US Geological Survey, National Wildlife Health Center, Honolulu Field Station, Honolulu, Hawaii
| | - Hossam A. Zaki
- Department of Molecular and Cell Biology and Biochemistry, Brown University, Providence, Rhode Island
| | - John P. Wares
- Department of Genetics, University of Georgia, Athens, Georgia
- Odum School of Ecology, University of Georgia, Athens, Georgia
| |
Collapse
|
11
|
Meyer A, Hinman V. The arm of the starfish: The far-reaching applications of Patiria miniata as a model system in evolutionary, developmental, and regenerative biology. Curr Top Dev Biol 2022; 147:523-543. [PMID: 35337461 DOI: 10.1016/bs.ctdb.2022.01.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Many species of echinoderms have long been considered model research organisms in biology. Historically, much of this research has focused on the embryology of sea urchins and the use of their extensive gene regulatory networks as a tool to understand how the genome controls cell state specification and patterning. The establishment of Patiria miniata, the bat sea star, as a research organism has allowed us to expand on the concepts explored with sea urchins, viewing these genetic networks through a comparative lens, gaining great insight into the evolutionary mechanisms that shape developmental diversity. Extensive molecular tools have been developed in P. miniata, designed to explore gene expression dynamics and build gene regulatory networks. Echinoderms also have a robust set of bioinformatic and computational resources, centered around echinobase.org, an extensive database containing multiomic, developmental, and experimental resources for researchers. In addition to comparative evolutionary development, P. miniata is a promising system in its own right for studying whole body regeneration, metamorphosis and body plan development, as well as marine disease.
Collapse
Affiliation(s)
- Anne Meyer
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA, United States
| | - Veronica Hinman
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA, United States.
| |
Collapse
|
12
|
Saleh F, Guenser P, Gibert C, Balseiro D, Serra F, Waisfeld BG, Antcliffe JB, Daley AC, Mángano MG, Buatois LA, Ma X, Vizcaïno D, Lefebvre B. Contrasting Early Ordovician assembly patterns highlight the complex initial stages of the Ordovician Radiation. Sci Rep 2022; 12:3852. [PMID: 35264650 PMCID: PMC8907272 DOI: 10.1038/s41598-022-07822-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 02/25/2022] [Indexed: 11/09/2022] Open
Abstract
The Early Ordovician is a key interval for our understanding of the evolution of life on Earth as it lays at the transition between the Cambrian Explosion and the Ordovician Radiation and because the fossil record of the late Cambrian is scarce. In this study, assembly processes of Early Ordovician trilobite and echinoderm communities from the Central Anti-Atlas (Morocco), the Montagne Noire (France), and the Cordillera Oriental (Argentina) are explored. The results show that dispersal increased diachronically in trilobite communities during the Early Ordovician. Dispersal did not increase for echinoderms. Dispersal was most probably proximally triggered by the planktic revolution, the fall in seawater temperatures, changes in oceanic circulation, with an overall control by tectonic frameworks and phylogenetic constraints. The diachronous increase in dispersal within trilobite communities in the Early Ordovician highlights the complexity of ecosystem structuring during the early stages of the Ordovician Radiation. As Early Ordovician regional dispersal was followed by well-documented continental dispersal in the Middle/Late Ordovician, it is possible to consider that alongside a global increase in taxonomic richness, the Ordovician Radiation is also characterized by a gradual increase in dispersal.
Collapse
Affiliation(s)
- Farid Saleh
- Yunnan Key Laboratory for Palaeobiology, Institute of Palaeontology, Yunnan University, Kunming, China. .,MEC International Joint Laboratory for Palaeobiology and Palaeoenvironment, Institute of Palaeontology, Yunnan University, Kunming, China.
| | - Pauline Guenser
- Université Claude Bernard Lyon 1, CNRS, UMR5023, LEHNA, Université de Lyon, 69622, Villeurbanne, France
| | - Corentin Gibert
- Laboratoire de la Préhistoire à l'Actuel: Culture, Environnement et Anthropologie (PACEA, UMR 5199 CNRS, INEE), University of Bordeaux, Bordeaux, France.
| | - Diego Balseiro
- Facultad de Ciencias Exactas, Físicas y Naturales, Universidad Nacional de Córdoba, Córdoba, Argentina.,Centro de Investigaciones en Ciencias de la Tierra (CICTERRA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Av. Vélez Sarsfield 1611, CP X5016GCA, Córdoba, Argentina
| | - Fernanda Serra
- Facultad de Ciencias Exactas, Físicas y Naturales, Universidad Nacional de Córdoba, Córdoba, Argentina.,Centro de Investigaciones en Ciencias de la Tierra (CICTERRA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Av. Vélez Sarsfield 1611, CP X5016GCA, Córdoba, Argentina
| | - Beatriz G Waisfeld
- Facultad de Ciencias Exactas, Físicas y Naturales, Universidad Nacional de Córdoba, Córdoba, Argentina.,Centro de Investigaciones en Ciencias de la Tierra (CICTERRA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Av. Vélez Sarsfield 1611, CP X5016GCA, Córdoba, Argentina
| | - Jonathan B Antcliffe
- Institute of Earth Sciences, University of Lausanne, Géopolis, 1015, Lausanne, Switzerland
| | - Allison C Daley
- Institute of Earth Sciences, University of Lausanne, Géopolis, 1015, Lausanne, Switzerland
| | - M Gabriela Mángano
- Department of Geological Sciences, University of Saskatchewan, Saskatoon, SK, S7N 5E2, Canada
| | - Luis A Buatois
- Department of Geological Sciences, University of Saskatchewan, Saskatoon, SK, S7N 5E2, Canada
| | - Xiaoya Ma
- Yunnan Key Laboratory for Palaeobiology, Institute of Palaeontology, Yunnan University, Kunming, China. .,MEC International Joint Laboratory for Palaeobiology and Palaeoenvironment, Institute of Palaeontology, Yunnan University, Kunming, China. .,Centre for Ecology and Conservation, University of Exeter, Penryn, UK.
| | | | - Bertrand Lefebvre
- Université Claude Bernard Lyon1, École Normale Supérieure de Lyon, CNRS, UMR5276, LGL-TPE, Université de Lyon, Villeurbanne, France
| |
Collapse
|
13
|
Abstract
As analyses of developmental mechanisms extend to ever more species, it becomes important to understand not just what is conserved or altered during evolution, but why. Closely related species that exhibit extreme phenotypic divergence can be uniquely informative in this regard. A case in point is the sea urchin genus Heliocidaris, which contains species that recently evolved a life history involving nonfeeding larvae following nearly half a billion years of prior evolution with feeding larvae. The resulting shift in selective regimes produced rapid and surprisingly extensive changes in developmental mechanisms that are otherwise highly conserved among echinoderm species. The magnitude and extent of these changes challenges the notion that conservation of early development in echinoderms is largely due to internal constraints that prohibit modification and instead suggests that natural selection actively maintains stability of inherently malleable trait developmental mechanisms over immense time periods. Knowing how and why natural selection changed during the evolution of nonfeeding larvae can also reveal why developmental mechanisms do and do not change in particular ways.
Collapse
Affiliation(s)
- Gregory A Wray
- Department of Biology, Duke University, Durham, NC, United States.
| |
Collapse
|
14
|
Pierrat J, Bédier A, Eeckhaut I, Magalon H, Frouin P. Sophistication in a seemingly simple creature: a review of wild holothurian nutrition in marine ecosystems. Biol Rev Camb Philos Soc 2022; 97:273-298. [PMID: 34647401 PMCID: PMC9293300 DOI: 10.1111/brv.12799] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Revised: 09/15/2021] [Accepted: 09/20/2021] [Indexed: 11/29/2022]
Abstract
Holothurians are marine invertebrates that are among the most widespread benthic megafauna communities by both biomass and abundance in shallow-water and deep-sea ecosystems, their functions supporting important ecological services worldwide. Despite their simple appearance as sea cucumbers, holothurians show a wide range of feeding practices. However, information on what and how these animals eat is scattered and potentially confusing. We provide a comprehensive review of holothurian nutrition in coastal and deep-sea ecosystems. First, we describe morphological aspects of holothurian feeding and the ultrastructure of tentacles. We discuss the two processes for food capture, concluding that mucus adhesion is likely the main method; two mucous cells, type-1 and type-2, possibly allow the adhesion and de-adhesion, respectively, of food particles. Secondly, this review aims to clarify behavioural aspects of holothurian suspension- and deposit-feeding. We discuss the daily feeding cycle, and selective feeding strategies. We conclude that there is selectivity for fine and organically rich particles, and that feeding through the cloaca is also a route for nutrient absorption. Third, we provide a wide description of the diet of holothurians, which can be split into two categories: living and non-living material. We suggest that Synallactida, Molpadida, Persiculida, Holothuriida and Elasipodida, ingest the same fractions, and emphasise the importance of bacteria in the diet of holothurians.
Collapse
Affiliation(s)
- Joséphine Pierrat
- UMR ENTROPIE (IRD, CNRS, Univ. Reunion, Ifremer, Univ. New Caledonia)University of La RéunionSt‐Denis97 400France
| | | | - Igor Eeckhaut
- Biology of Marine Organisms and Biomimetism LabUniversity of MonsMons7000Belgium
| | - Hélène Magalon
- UMR ENTROPIE (IRD, CNRS, Univ. Reunion, Ifremer, Univ. New Caledonia)University of La RéunionSt‐Denis97 400France
- Labex CorailPerpignan66 000France
| | - Patrick Frouin
- UMR ENTROPIE (IRD, CNRS, Univ. Reunion, Ifremer, Univ. New Caledonia)University of La RéunionSt‐Denis97 400France
- Labex CorailPerpignan66 000France
| |
Collapse
|
15
|
Hodin J, Pearson-Lund A, Anteau FP, Kitaeff P, Cefalu S. Progress Toward Complete Life-Cycle Culturing of the Endangered Sunflower Star, Pycnopodia helianthoides. THE BIOLOGICAL BULLETIN 2021; 241:243-258. [PMID: 35015622 DOI: 10.1086/716552] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
AbstractUntil recently, the sunflower star, Pycnopodia helianthoides, was a dominant and common predator in a wide variety of benthic habitats in the northeast Pacific. Then, in 2013, its populations began to plummet across its entire range as a result of the spread of a phenomenon known as sea star wasting disease, or sea star wasting. Although dozens of sea star species were impacted by this wasting event, P. helianthoides seems to have suffered the greatest losses and is now listed by the International Union for the Conservation of Nature as the first critically endangered sea star. In order to learn more about the life history of this endangered predator and to explore the potential for its restoration, we have initiated a captive rearing program to attempt complete life-cycle (egg-to-egg) culture for P. helianthoides. We report our observations on holding and distinguishing individual adults, reproductive seasonality, larval development, inducers of settlement, and early juvenile growth and feeding. These efforts will promote and help guide conservation interventions to protect remaining populations of this species in the wild and facilitate its ultimate return.
Collapse
|
16
|
Carter HF, Thompson JR, Elphick MR, Oliveri P. The Development and Neuronal Complexity of Bipinnaria Larvae of the Sea Star Asterias rubens. Integr Comp Biol 2021; 61:337-351. [PMID: 34048552 PMCID: PMC8427176 DOI: 10.1093/icb/icab103] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Free-swimming planktonic larvae are a key stage in the development of many marine phyla, and studies of these organisms have contributed to our understanding of major genetic and evolutionary processes. Although transitory, these larvae often attain a remarkable degree of tissue complexity, with well-defined musculature and nervous systems. Among the best studied are larvae belonging to the phylum Echinodermata, but with work largely focused on the pluteus larvae of sea urchins (class Echinoidea). The greatest diversity of larval strategies among echinoderms is found in the class Asteroidea (sea stars), organisms that are rapidly emerging as experimental systems for genetic and developmental studies. However, the bipinnaria larvae of sea stars have only been studied in detail in a small number of species and although they have been relatively well described neuro-anatomically, they are poorly understood neurochemically. Here, we have analyzed embryonic development and bipinnaria larval anatomy in the common North Atlantic sea star Asterias rubens, using a variety of staining methods in combination with confocal microscopy. Importantly, the chemical complexity of the nervous system of bipinnaria larvae was revealed through use of a diverse set of antibodies, with identification of at least three centers of differing neurochemical signature within the previously described nervous system: the anterior apical organ, oral region, and ciliary bands. Furthermore, the anatomy of the musculature and sites of cell division in bipinnaria larvae was analyzed. Comparisons of developmental progression and molecular anatomy across the Echinodermata provided a basis for hypotheses on the shared evolutionary and developmental processes that have shaped this group of animals. We conclude that bipinnaria larvae appear to be remarkably conserved across ∼200 million years of evolutionary time and may represent a strong evolutionary and/or developmental constraint on species utilizing this larval strategy.
Collapse
Affiliation(s)
- Hugh F Carter
- Department of Genetics, Evolution and Environment, University College London, Darwin Building, Gower Street, London WC1E 6BT, UK
- Department of Life Sciences, Natural History Museum, Cromwell Road, South Kensington, London SW7 5BD, UK
| | - Jeffrey R Thompson
- Department of Genetics, Evolution and Environment, University College London, Darwin Building, Gower Street, London WC1E 6BT, UK
- UCL Centre for Life’s Origins and Evolution (CLOE), University College London, Darwin Building, Gower Street, London WC1E 6BT, UK
| | - Maurice R Elphick
- School of Biological and Chemical Sciences, Queen Mary University of London, London E1 4NS, UK
| | - Paola Oliveri
- Department of Genetics, Evolution and Environment, University College London, Darwin Building, Gower Street, London WC1E 6BT, UK
- UCL Centre for Life’s Origins and Evolution (CLOE), University College London, Darwin Building, Gower Street, London WC1E 6BT, UK
| |
Collapse
|
17
|
Fraysse CP, Boy CC, Becker YA, Calcagno JA, Pérez AF. Brooding in the Southern Ocean: The Case of the Pterasterid Sea Star Diplopteraster verrucosus (Sladen, 1882). THE BIOLOGICAL BULLETIN 2020; 239:1-12. [PMID: 32812811 DOI: 10.1086/709664] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Diplopteraster verrucosus is a sea star that incubates its offspring in nidamental chambers. The offspring rely exclusively on maternally provided nutrition. The retention of the embryonic stages allows the allocation of nutritional supplies from the female to the brooded juveniles during the brooding period. The main objectives of this study are, first, to quantify the reproductive investment of D. verrucosus and, second, to describe the morphology, energetics, and oxidative metabolism throughout early ontogenetic stages. A skewed sex ratio of 2:1 females:males was found, and 17 of 39 females were brooding. Both brooding and non-brooding females showed higher energy density and total antioxidant capacity in their gonads than males. We identified three cohorts of offspring being retained within the female body simultaneously. Energy density and reactive oxygen species increased significantly with the offspring's volume throughout ontogeny. Moreover, we found evidence of at least two key events during ontogeny. First, the depletion of antioxidants, the increase of reactive oxygen species, and the development of a complete digestive system appear to trigger feeding on the mothers's pyloric caeca. Second, another oxidative imbalance appears to be associated with the release of the brooded juveniles to the environment. Therefore, oxidative balance and energetic variances may be associated with development of autonomous feeding and juvenile release in D. verrucosus.
Collapse
|
18
|
Energetics and development modes of Asteroidea (Echinodermata) from the Southwestern Atlantic Ocean including Burdwood Bank/MPA Namuncurá. Polar Biol 2020. [DOI: 10.1007/s00300-020-02621-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
19
|
Retinoic Acid Signaling Regulates the Metamorphosis of Feather Stars (Crinoidea, Echinodermata): Insight into the Evolution of the Animal Life Cycle. Biomolecules 2019; 10:biom10010037. [PMID: 31881787 PMCID: PMC7023313 DOI: 10.3390/biom10010037] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 12/17/2019] [Accepted: 12/23/2019] [Indexed: 12/21/2022] Open
Abstract
Many marine invertebrates have a life cycle with planktonic larvae, although the evolution of this type of life cycle remains enigmatic. We recently proposed that the regulatory mechanism of life cycle transition is conserved between jellyfish (Cnidaria) and starfish (Echinoderm); retinoic acid (RA) signaling regulates strobilation and metamorphosis, respectively. However, the function of RA signaling in other animal groups is poorly understood in this context. Here, to determine the ancestral function of RA signaling in echinoderms, we investigated the role of RA signaling during the metamorphosis of the feather star, Antedon serrata (Crinoidea, Echinodermata). Although feather stars have different larval forms from starfish, we found that exogenous RA treatment on doliolaria larvae induced metamorphosis, like in starfish. Furthermore, blocking RA synthesis or binding to the RA receptor suppressed metamorphosis. These results suggested that RA signaling functions as a regulator of metamorphosis in the ancestor of echinoderms. Our data provides insight into the evolution of the animal life cycle from the viewpoint of RA signaling.
Collapse
|
20
|
Yamakawa S, Morino Y, Honda M, Wada H. Regulation of Metamorphosis by Environmental Cues and Retinoic Acid Signaling in the Lecithotrophic Larvae of the Starfish Astropecten latespinosus. THE BIOLOGICAL BULLETIN 2019; 237:213-226. [PMID: 31922909 DOI: 10.1086/706039] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
|
21
|
Annunziata R, Andrikou C, Perillo M, Cuomo C, Arnone MI. Development and evolution of gut structures: from molecules to function. Cell Tissue Res 2019; 377:445-458. [PMID: 31446445 DOI: 10.1007/s00441-019-03093-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 08/09/2019] [Indexed: 12/13/2022]
Abstract
The emergence of a specialized system for food digestion and nutrient absorption was a crucial innovation for multicellular organisms. Digestive systems with different levels of complexity evolved in different animals, with the endoderm-derived one-way gut of most bilaterians to be the prevailing and more specialized form. While the molecular events regulating the early phases of embryonic tissue specification have been deeply investigated in animals occupying different phylogenetic positions, the mechanisms underlying gut patterning and gut-associated structures differentiation are still mostly obscure. In this review, we describe the main discoveries in gut and gut-associated structures development in echinoderm larvae (mainly for sea urchin and, when available, for sea star) and compare them with existing information in vertebrates. An impressive degree of conservation emerges when comparing the transcription factor toolkits recruited for gut cells and tissue differentiation in animals as diverse as echinoderms and vertebrates, thus suggesting that their function emerged in the deuterostome ancestor.
Collapse
Affiliation(s)
- Rossella Annunziata
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Villa comunale, 80121, Naples, Italy
| | - Carmen Andrikou
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Villa comunale, 80121, Naples, Italy
- Sars International Centre for Marine Molecular Biology, University of Bergen, Thormøhlensgate 55, 5006, Bergen, Norway
| | - Margherita Perillo
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Villa comunale, 80121, Naples, Italy
- Department of Molecular and Cell Biology and Biochemistry, Brown University, 185 Meeting St, Providence, RI, 02912, USA
| | - Claudia Cuomo
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Villa comunale, 80121, Naples, Italy
| | - Maria I Arnone
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Villa comunale, 80121, Naples, Italy.
| |
Collapse
|
22
|
Davidson PL, Thompson JW, Foster MW, Moseley MA, Byrne M, Wray GA. A comparative analysis of egg provisioning using mass spectrometry during rapid life history evolution in sea urchins. Evol Dev 2019; 21:188-204. [PMID: 31102332 PMCID: PMC7232848 DOI: 10.1111/ede.12289] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Revised: 12/20/2018] [Accepted: 02/27/2019] [Indexed: 01/20/2023]
Abstract
A dramatic life history switch that has evolved numerous times in marine invertebrates is the transition from planktotrophic (feeding) to lecithotrophic (nonfeeding) larval development-an evolutionary tradeoff with many important developmental and ecological consequences. To attain a more comprehensive understanding of the molecular basis for this switch, we performed untargeted lipidomic and proteomic liquid chromatography-tandem mass spectrometry on eggs and larvae from three sea urchin species: the lecithotroph Heliocidaris erythrogramma, the closely related planktotroph Heliocidaris tuberculata, and the distantly related planktotroph Lytechinus variegatus. We identify numerous molecular-level changes possibly associated with the evolution of lecithotrophy in H. erythrogramma. We find the massive lipid stores of H. erythrogramma eggs are largely composed of low-density, diacylglycerol ether lipids that, contrary to expectations, appear to support postmetamorphic development and survivorship. Rapid premetamorphic development in this species may instead be powered by upregulated carbohydrate metabolism or triacylglycerol metabolism. We also find proteins involved in oxidative stress regulation are upregulated in H. erythrogramma eggs, and apoB-like lipid transfer proteins may be important for echinoid oogenic nutrient provisioning. These results demonstrate how mass spectrometry can enrich our understanding of life history evolution and organismal diversity by identifying specific molecules associated with distinct life history strategies and prompt new hypotheses about how and why these adaptations evolve.
Collapse
Affiliation(s)
| | - J. Will Thompson
- Center for Genomic and Computational Biology, Duke University, Durham, North Carolina
- Department of Pharmacology and Cancer Biology, Duke University, Durham, North Carolina
- Proteomics and Metabolomics Shared Resource, Duke University, Durham, North Carolina
| | - Matthew W. Foster
- Center for Genomic and Computational Biology, Duke University, Durham, North Carolina
- Department of Medicine, Duke University, Durham, North Carolina
- Proteomics and Metabolomics Shared Resource, Duke University, Durham, North Carolina
| | - M. Arthur Moseley
- Center for Genomic and Computational Biology, Duke University, Durham, North Carolina
- Department of Medicine, Duke University, Durham, North Carolina
- Proteomics and Metabolomics Shared Resource, Duke University, Durham, North Carolina
| | - Maria Byrne
- School of Medical Sciences, University of Sydney, Sydney, New South Wales, Australia
| | - Gregory A. Wray
- Department of Biology, Duke University, Durham, North Carolina
- Center for Genomic and Computational Biology, Duke University, Durham, North Carolina
| |
Collapse
|
23
|
Abstract
Echinoderms and especially echinoids have a rich history as model systems for the study of oogenesis, fertilization, and early embryogenesis. The ease of collecting and maintaining adults, as well as in obtaining gametes and culturing large quantities of synchronous embryos, is complemented by the ability to do biochemistry, reverse genetics, embryo manipulations and study gene regulatory networks. The diversity of species and developmental modes as well as unparalleled transparency in early developmental stages also makes echinoderms an excellent system in which to study evolutionary aspects of developmental biology. This chapter provides a practical guide to experimental methods for procuring adults and gametes, achieving synchronous in vitro fertilization, and culturing embryos through early larval stages for several echinoderm species representing four classes (Echinoidea, Asteroidea, Ophiuroidea, and Holothuroidea). We provide specific examples of protocols for obtaining adults and gametes and for culturing embryos of a selected number of species for experimental analysis of their development. The species were chosen to provide breadth across the phylum Echinodermata, as well as to provide practical guidelines for handling some of the more commonly studied species. For each species, we highlight specific advantages, and special note is made of key issues to consider when handling adults, collecting gametes, or setting and maintaining embryo cultures. Finally, information regarding interspecific crosses is provided.
Collapse
|
24
|
Bribiesca-Contreras G, Pineda-Enríquez T, Márquez-Borrás F, Solís-Marín FA, Verbruggen H, Hugall AF, O'Hara TD. Dark offshoot: Phylogenomic data sheds light on the evolutionary history of a new species of cave brittle star. Mol Phylogenet Evol 2019; 136:151-163. [PMID: 30981811 DOI: 10.1016/j.ympev.2019.04.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2018] [Revised: 02/28/2019] [Accepted: 04/10/2019] [Indexed: 11/28/2022]
Abstract
Caves are a useful system for testing evolutionary and biogeographic hypotheses, as they are isolated, and their environmental conditions have resulted in adaptive selection across different taxa. Although in recent years many more cave species have been discovered, cave-dwelling members of the class Ophiuroidea (brittle stars) remain scarce. Out of the more than two thousand species of brittle stars described to date, only three are regarded as true cave-dwellers. These occurrences represent rare colonising events, compared to other groups that are known to have successfully diversified in these systems. A third species from an anchihaline cave system in the Yucatan Peninsula, Mexico, has been previously identified from cytochrome oxidase I (COI) barcodes. In this study, we reassess the species boundaries of this putative cave species using a phylogenomic dataset (20 specimens in 13 species, 100 exons, 18.7 kbp). We perform species delimitation analyses using robust full-coalescent methods for discovery and validation of hypotheses on species boundaries, as well as infer its phylogenetic relationships with species distributed in adjacent marine regions, in order to investigate the origin of this cave-adapted species. We assess which hypotheses on the origin of subterranean taxa can be applied to this species by taking into account its placement within the genus Ophionereis and its demographic history. We provide a detailed description of Ophionereis commutabilis n. sp., and evaluate its morphological characters in the light of its successful adaptation to life in caves.
Collapse
Affiliation(s)
- Guadalupe Bribiesca-Contreras
- Museum Victoria, GPO Box 666, Melbourne 3001, Australia; School of Biosciences, University of Melbourne, Victoria 3010, Australia.
| | - Tania Pineda-Enríquez
- Department of Biology, Division of Invertebrate Zoology, Florida Museum of Natural History, University of Florida, Gainesville, FL, USA; Natural History Museum of Los Angeles County, 900 Exposition Blvd, Los Angeles, CA 90007, USA
| | - Francisco Márquez-Borrás
- Laboratorio de Sistemática y Ecología de Equinodermos, Instituto de Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México, Circuito Universitario s/n, Ciudad de México CP 04510, Mexico; Posgrado en Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México, Circuito Universitario s/n, Ciudad de México CP 04510, Mexico
| | - Francisco A Solís-Marín
- Laboratorio de Sistemática y Ecología de Equinodermos, Instituto de Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México, Circuito Universitario s/n, Ciudad de México CP 04510, Mexico
| | - Heroen Verbruggen
- School of Biosciences, University of Melbourne, Victoria 3010, Australia
| | | | | |
Collapse
|
25
|
Mercurio S, Gattoni G, Messinetti S, Sugni M, Pennati R. Nervous system characterization during the development of a basal echinoderm, the feather star Antedon mediterranea. J Comp Neurol 2019; 527:1127-1139. [PMID: 30520044 DOI: 10.1002/cne.24596] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 11/15/2018] [Accepted: 11/16/2018] [Indexed: 12/25/2022]
Abstract
Neural development of echinoderms has always been difficult to interpret, as larval neurons degenerate at metamorphosis and a tripartite nervous system differentiates in the adult. Despite their key phylogenetic position as basal echinoderms, crinoids have been scarcely studied in developmental research. However, since they are the only extant echinoderms retaining the ancestral body plan of the group, crinoids are extremely valuable models to clarify neural evolution in deuterostomes. Antedon mediterranea is a feather star, endemic to the Mediterranean Sea. Its development includes a swimming lecithotrophic larva, the doliolaria, with basiepithelial nerve plexus, and a sessile filter-feeding juvenile, the pentacrinoid, whose nervous system has never been described in detail. Thus, we characterized the nervous system of both these developmental stages by means of immunohistochemistry and, for the first time, in situ hybridization techniques. The results confirmed previous descriptions of doliolaria morphology and revealed that the larval apical organ contains two bilateral clusters of serotonergic cells while GABAergic neurons are localized under the adhesive pit. This suggested that different larval activities (e.g., attachment and metamorphosis) are under the control of different neural populations. In pentacrinoids, the analysis showed the presence of a cholinergic entoneural system while the ectoneural plexus appeared more composite, displaying different neural populations. The expression of three neural-related microRNAs was described for the first time, suggesting that these are evolutionarily conserved also in basal echinoderms. Overall, our results set the stage for future investigations that will reveal new information on echinoderm evo-devo neurobiology.
Collapse
Affiliation(s)
- Silvia Mercurio
- Department of Environmental Science and Policy, Università degli Studi di Milano, Milan, Italy
| | - Giacomo Gattoni
- Department of Environmental Science and Policy, Università degli Studi di Milano, Milan, Italy
| | - Silvia Messinetti
- Department of Environmental Science and Policy, Università degli Studi di Milano, Milan, Italy
| | - Michela Sugni
- Department of Environmental Science and Policy, Università degli Studi di Milano, Milan, Italy.,Center for Complexity and Biosystems, Università degli Studi di Milano, Milan, Italy
| | - Roberta Pennati
- Department of Environmental Science and Policy, Università degli Studi di Milano, Milan, Italy
| |
Collapse
|
26
|
Sweet HC, Doolin MC, Yanowiak CN, Coots AD, Freyn AW, Armstrong JM, Spiecker BJ. Abbreviated Development of the Brooding Brittle Star Ophioplocus esmarki. THE BIOLOGICAL BULLETIN 2019; 236:75-87. [PMID: 30933639 DOI: 10.1086/701916] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The bilaterally symmetrical, feeding larval stage is an ancestral condition in echinoderms. However, many echinoderms have evolved abbreviated development and form a pentamerous juvenile without a feeding larva. Abbreviated development with a non-feeding vitellaria larva is found in five families of brittle stars, but very little is known about this type of development. In this study, the external anatomy, ciliary bands, neurons, and muscles were examined in the development of the brooded vitellaria larva of Ophioplocus esmarki. The external morphology throughout development shows typical vitellaria features, including morphogenetic movements to set up the vitellaria body plan, an anterior preoral lobe, a posterior lobe, transverse ciliary bands, and development of juvenile structures on the mid-ventral side. An early population of neurons forms at the base of the preoral lobe at the pre-vitellaria stage after the initial formation of the coelomic cavities. These early neurons may be homologous to the apical neurons that develop in echinoderms with feeding larval forms. Neurons form close to the ciliary bands, but the vitellaria larva lacks the tracts of neurons associated with the ciliary bands found in echinoderms with feeding larvae. Additional neurons form in association with the axial complex and persist into the juvenile stage. Juvenile nerves and muscles form with pentamerous symmetry in the late vitellaria stage in a manner similar to their development within the late ophiopluteus larva. Even though O. esmarki is a brooding brittle star, its developmental sequence retains the general vitellaria shape and structure; however, the vitellaria larvae are unable to swim in the water column.
Collapse
|
27
|
Hodin J, Heyland A, Mercier A, Pernet B, Cohen DL, Hamel JF, Allen JD, McAlister JS, Byrne M, Cisternas P, George SB. Culturing echinoderm larvae through metamorphosis. Methods Cell Biol 2018; 150:125-169. [PMID: 30777174 DOI: 10.1016/bs.mcb.2018.11.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Echinoderms are favored study organisms not only in cell and developmental biology, but also physiology, larval biology, benthic ecology, population biology and paleontology, among other fields. However, many echinoderm embryology labs are not well-equipped to continue to rear the post-embryonic stages that result. This is unfortunate, as such labs are thus unable to address many intriguing biological phenomena, related to their own cell and developmental biology studies, that emerge during larval and juvenile stages. To facilitate broader studies of post-embryonic echinoderms, we provide here our collective experience rearing these organisms, with suggestions to try and pitfalls to avoid. Furthermore, we present information on rearing larvae from small laboratory to large aquaculture scales. Finally, we review taxon-specific approaches to larval rearing through metamorphosis in each of the four most commonly-studied echinoderm classes-asteroids, echinoids, holothuroids and ophiuroids.
Collapse
Affiliation(s)
- Jason Hodin
- Friday Harbor Labs, University of Washington, Friday Harbor, WA, United States.
| | - Andreas Heyland
- Department of Integrative Biology, University of Guelph, Guelph, ON, Canada
| | - Annie Mercier
- Department of Ocean Sciences, Memorial University, St. John's, NL, Canada
| | - Bruno Pernet
- Department of Biological Sciences, California State University Long Beach, Long Beach, CA, United States
| | - David L Cohen
- State of Hawai'i, Division of Aquatic Resources, Ānuenue Fisheries Research Center, Honolulu, HI, United States
| | - Jean-François Hamel
- Society for the Exploration and Valuing of the Environment (SEVE), Portugal Cove-St. Philips, NL, Canada
| | - Jonathan D Allen
- Biology Department, College of William and Mary, Williamsburg, VA, United States
| | - Justin S McAlister
- Department of Biology, College of the Holy Cross, Worcester, MA, United States
| | - Maria Byrne
- School of Medical Sciences and School of Life and Environmental Sciences, University of Sydney, Sydney, NSW, Australia
| | - Paula Cisternas
- School of Medical Sciences and School of Life and Environmental Sciences, University of Sydney, Sydney, NSW, Australia
| | - Sophie B George
- Department of Biology, Georgia Southern University, Statesboro, GA, United States
| |
Collapse
|
28
|
Phylogenomics, life history and morphological evolution of ophiocomid brittlestars. Mol Phylogenet Evol 2018; 130:67-80. [PMID: 30308280 DOI: 10.1016/j.ympev.2018.10.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 10/01/2018] [Accepted: 10/01/2018] [Indexed: 12/23/2022]
Abstract
Brittlestars in the family Ophiocomidae are large and colourful inhabitants of tropical shallow water habitats across the globe. Here we use targeted capture and next-generation sequencing to generate robust phylogenomic trees for 39 of the 43 species in order to test the monophyly of existing genera. The large genus Ophiocoma, as currently constituted, is paraphyletic on our trees and required revision. Four genera are recognised herein: an expanded Ophiomastix (now including Ophiocoma wendtii, O. occidentalis, O. endeani, O. macroplaca, and Ophiarthrum spp), Ophiocomella (now including the non-fissiparous Ophiocoma pumila, aethiops and valenciae) and Breviturma (now including Ophiocoma pica, O. pusilla, O. paucigranulata and O. longispina) and a restricted Ophiocoma. The resulting junior homonym Ophiomastix elegans is renamed O. brocki. The genus Ophiomastix exhibits relatively high rates of morphological disparity compared to other lineages. Ophiomastix flaccida and O. (formerly Ophiarthrum) pictum have divergent mitochondrial genomes, characterised by gene-order rearrangements, strand recoding, enriched GT base composition, and a corresponding divergence of nuclear mitochondrial protein genes. The new phylogeny indicates that larval and developmental transitions occurred rarely. Larval culture trials show that species with abbreviated lecithotrophic larval development occur only within Ophiomastix, although the possible monophyly of these species is obscured by the rapid early radiation within this genus. Asexual reproduction by fission is limited to one species-complex within Ophiocomella, also characterised by elevated levels of allelic heterozygosity, and which has achieved a relatively rapid global distribution. The crown ages of the new genera considerably predate the closure of the Tethyan seaway and all four are distributed in both the Atlantic and Indo-Pacific Oceans. Two species pairs appear to reflect the closure of the Panama Seaway, although their fossil-calibrated node ages (12-14 ± 6 my), derived from both concatenated sequence and multispecies coalescent analyses, considerably predate the terminal closure event. Ophiocoma erinaceus has crossed the East Pacific barrier and is recorded from Clipperton Island, SW of Mexico.
Collapse
|
29
|
Zakas C, Deutscher JM, Kay AD, Rockman MV. Decoupled maternal and zygotic genetic effects shape the evolution of development. eLife 2018; 7:e37143. [PMID: 30198842 PMCID: PMC6168281 DOI: 10.7554/elife.37143] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Accepted: 09/09/2018] [Indexed: 01/04/2023] Open
Abstract
Evolutionary transitions from indirect to direct development involve changes in both maternal and zygotic genetic factors, with distinctive population-genetic implications, but empirical data on the genetics of such transitions are lacking. The polychaete Streblospio benedicti provides an opportunity to dissect a major transition in developmental mode using forward genetics. Females in this species produce either small eggs that develop into planktonic larvae or large eggs that develop into benthic juveniles. We identify large-effect loci that act maternally to influence larval size and independent, unlinked large-effect loci that act zygotically to affect discrete aspects of larval morphology. The likely fitness of zygotic alleles depends on their maternal background, creating a positive frequency-dependence that may homogenize local populations. Developmental and population genetics interact to shape larval evolution.
Collapse
Affiliation(s)
- Christina Zakas
- Center for Genomics & Systems Biology, Department of BiologyNew York UniversityNew YorkUnited States
| | - Jennifer M Deutscher
- Center for Genomics & Systems Biology, Department of BiologyNew York UniversityNew YorkUnited States
| | - Alex D Kay
- Center for Genomics & Systems Biology, Department of BiologyNew York UniversityNew YorkUnited States
| | - Matthew V Rockman
- Center for Genomics & Systems Biology, Department of BiologyNew York UniversityNew YorkUnited States
| |
Collapse
|
30
|
Hunt MK, Maslakova SA. Development of a lecithotrophic pilidium larva illustrates convergent evolution of trochophore-like morphology. Front Zool 2017; 14:7. [PMID: 28194219 PMCID: PMC5299685 DOI: 10.1186/s12983-017-0189-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Accepted: 01/03/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The pilidium larva is an idiosyncrasy defining one clade of marine invertebrates, the Pilidiophora (Nemertea, Spiralia). Uniquely, in pilidial development, the juvenile worm forms from a series of isolated rudiments called imaginal discs, then erupts through and devours the larval body during catastrophic metamorphosis. A typical pilidium is planktotrophic and looks like a hat with earflaps, but pilidial diversity is much broader and includes several types of non-feeding pilidia. One of the most intriguing recently discovered types is the lecithotrophic pilidium nielseni of an undescribed species, Micrura sp. "dark" (Lineidae, Heteronemertea, Pilidiophora). The egg-shaped pilidium nielseni bears two transverse circumferential ciliary bands evoking the prototroch and telotroch of the trochophore larva found in some other spiralian phyla (e.g. annelids), but undergoes catastrophic metamorphosis similar to that of other pilidia. While it is clear that the resemblance to the trochophore is convergent, it is not clear how pilidium nielseni acquired this striking morphological similarity. RESULTS Here, using light and confocal microscopy, we describe the development of pilidium nielseni from fertilization to metamorphosis, and demonstrate that fundamental aspects of pilidial development are conserved. The juvenile forms via three pairs of imaginal discs and two unpaired rudiments inside a distinct larval epidermis, which is devoured by the juvenile during rapid metamorphosis. Pilidium nielseni even develops transient, reduced lobes and lappets in early stages, re-creating the hat-like appearance of a typical pilidium. Notably, its two transverse ciliary bands can be ontogenetically linked to the primary ciliary band spanning the larval lobes and lappets of the typical planktotrophic pilidium. CONCLUSIONS Our data shows that the development of pilidium nielseni differs remarkably from that of the trochophore, even though their larval morphology is superficially similar. Pilidium nielseni's morphological and developmental features are best explained by transition from planktotrophy to lecithotrophy in the context of pilidial development, rather than by retention of or reversal to what is often assumed to be the spiralian ancestral larval type - the trochophore. Development of pilidium nielseni is a compelling example of convergent evolution of a trochophore-like body plan within Spiralia.
Collapse
Affiliation(s)
- Marie K Hunt
- Oregon Institute of Marine Biology, University of Oregon, P. O. Box 5389, Charleston, OR 97420 USA
| | - Svetlana A Maslakova
- Oregon Institute of Marine Biology, University of Oregon, P. O. Box 5389, Charleston, OR 97420 USA
| |
Collapse
|
31
|
Mayorova TD, Tian S, Cai W, Semmens DC, Odekunle EA, Zandawala M, Badi Y, Rowe ML, Egertová M, Elphick MR. Localization of Neuropeptide Gene Expression in Larvae of an Echinoderm, the Starfish Asterias rubens. Front Neurosci 2016; 10:553. [PMID: 27990106 PMCID: PMC5130983 DOI: 10.3389/fnins.2016.00553] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Accepted: 11/16/2016] [Indexed: 11/13/2022] Open
Abstract
Neuropeptides are an ancient class of neuronal signaling molecules that regulate a variety of physiological and behavioral processes in animals. The life cycle of many animals includes a larval stage(s) that precedes metamorphic transition to a reproductively active adult stage but, with the exception of Drosophila melanogaster and other insects, research on neuropeptide signaling has hitherto largely focused on adult animals. However, recent advances in genome/transcriptome sequencing have facilitated investigation of neuropeptide expression/function in the larvae of protostomian (e.g., the annelid Platynereis dumerilii) and deuterostomian (e.g., the urochordate Ciona intestinalis) invertebrates. Accordingly, here we report the first multi-gene investigation of larval neuropeptide precursor expression in a species belonging to the phylum Echinodermata-the starfish Asterias rubens. Whole-mount mRNA in situ hybridization was used to visualize in bipinnaria and brachiolaria stage larvae the expression of eight neuropeptide precursors: L-type SALMFamide (S1), F-type SALMFamide (S2), vasopressin/oxytocin-type, NGFFYamide, thyrotropin-releasing hormone-type, gonadotropin-releasing hormone-type, calcitonin-type and corticotropin-releasing hormone-type. Expression of only three of the precursors (S1, S2, NGFFYamide) was observed in bipinnaria larvae but by the brachiolaria stage expression of all eight precursors was detected. An evolutionarily conserved feature of larval nervous systems is the apical organ and in starfish larvae this comprises the bilaterally symmetrical lateral ganglia, but only the S1 and S2 precursors were found to be expressed in these ganglia. A prominent feature of brachiolaria larvae is the attachment complex, comprising the brachia and adhesive disk, which mediates larval attachment to a substratum prior to metamorphosis. Interestingly, all of the neuropeptide precursors examined here are expressed in the attachment complex, with distinctive patterns of expression suggesting potential roles for neuropeptides in the attachment process. Lastly, expression of several neuropeptide precursors is associated with ciliary bands, suggesting potential roles for the neuropeptides derived from these precursors in control of larval locomotion and/or feeding. In conclusion, our findings provide novel perspectives on the evolution and development of neuropeptide signaling systems and neuroanatomical insights into neuropeptide function in echinoderm larvae.
Collapse
Affiliation(s)
- Tatiana D Mayorova
- Department of Organismal Biology, School of Biological and Chemical Sciences, Queen Mary University of LondonLondon, UK; Laboratory of Developmental Neurobiology, Koltzov Institute of Developmental Biology of Russian Academy of SciencesMoscow, Russia
| | - Shi Tian
- Department of Organismal Biology, School of Biological and Chemical Sciences, Queen Mary University of London London, UK
| | - Weigang Cai
- Department of Organismal Biology, School of Biological and Chemical Sciences, Queen Mary University of London London, UK
| | - Dean C Semmens
- Department of Organismal Biology, School of Biological and Chemical Sciences, Queen Mary University of London London, UK
| | - Esther A Odekunle
- Department of Organismal Biology, School of Biological and Chemical Sciences, Queen Mary University of London London, UK
| | - Meet Zandawala
- Department of Organismal Biology, School of Biological and Chemical Sciences, Queen Mary University of London London, UK
| | - Yusef Badi
- Department of Organismal Biology, School of Biological and Chemical Sciences, Queen Mary University of London London, UK
| | - Matthew L Rowe
- Department of Organismal Biology, School of Biological and Chemical Sciences, Queen Mary University of London London, UK
| | - Michaela Egertová
- Department of Organismal Biology, School of Biological and Chemical Sciences, Queen Mary University of London London, UK
| | - Maurice R Elphick
- Department of Organismal Biology, School of Biological and Chemical Sciences, Queen Mary University of London London, UK
| |
Collapse
|
32
|
Dautov SS, Dautova TN. The larvae of Diadema setosum (Leske, 1778) (Camarodonta: Diadematidae) from South China Sea. INVERTEBR REPROD DEV 2016. [DOI: 10.1080/07924259.2016.1238411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
33
|
Abstract
SUMMARYComplex life cycles are common in free-living and parasitic organisms alike. The adaptive decoupling hypothesis postulates that separate life cycle stages have a degree of developmental and genetic autonomy, allowing them to be independently optimized for dissimilar, competing tasks. That is, complex life cycles evolved to facilitate functional specialization. Here, I review the connections between the different stages in parasite life cycles. I first examine evolutionary connections between life stages, such as the genetic coupling of parasite performance in consecutive hosts, the interspecific correlations between traits expressed in different hosts, and the developmental and functional obstacles to stage loss. Then, I evaluate how environmental factors link life stages through carryover effects, where stressful larval conditions impact parasites even after transmission to a new host. There is evidence for both autonomy and integration across stages, so the relevant question becomes how integrated are parasite life cycles and through what mechanisms? By highlighting how genetics, development, selection and the environment can lead to interdependencies among successive life stages, I wish to promote a holistic approach to studying complex life cycle parasites and emphasize that what happens in one stage is potentially highly relevant for later stages.
Collapse
|
34
|
Hodin J, Lutek K, Heyland A. A newly identified left-right asymmetry in larval sea urchins. ROYAL SOCIETY OPEN SCIENCE 2016; 3:160139. [PMID: 27853591 PMCID: PMC5108941 DOI: 10.1098/rsos.160139] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Accepted: 07/29/2016] [Indexed: 06/06/2023]
Abstract
Directional asymmetry (DA) in body form is a widespread phenomenon in animals and plants alike, and a functional understanding of such asymmetries can offer insights into the ways in which ecology and development interface to drive evolution. Echinoids (sea urchins, sand dollars and their kin) with planktotrophic development have a bilaterally symmetrical feeding pluteus larva that undergoes a dramatic metamorphosis into a pentameral juvenile that enters the benthos at settlement. The earliest stage of this transformation involves a DA: a left-side invagination in mid-stage larvae leads to the formation of the oral field of the juvenile via a directionally asymmetric structure called the echinus rudiment. Here, we show for the first time in two echinoid species that there is a corresponding DA in the overall shape of the larva: late-stage plutei have consistently shorter arms specifically on the rudiment (left) side. We then demonstrate a mechanistic connection between the rudiment and arm length asymmetries by examining rare, anomalous purple urchin larvae that have rudiments on both the left and the right side. Our data suggest that this asymmetry is probably a broadly shared feature characterizing ontogeny in the class Echinoidea. We propose several functional hypotheses-including developmental constraints and water column stability-to account for this newly identified asymmetry.
Collapse
Affiliation(s)
- Jason Hodin
- Friday Harbor Laboratories, University of Washington, Friday Harbor, WA, USA
| | - Keegan Lutek
- Department of Integrative Biology, University of Guelph, Guelph, Ontario, Canada
| | - Andreas Heyland
- Department of Integrative Biology, University of Guelph, Guelph, Ontario, Canada
| |
Collapse
|
35
|
Lopes EM, Ventura CRR. Development of the Sea Star Echinaster (Othilia) brasiliensis, with Inference on the Evolution of Development and Skeletal Plates in Asteroidea. THE BIOLOGICAL BULLETIN 2016; 230:25-34. [PMID: 26896175 DOI: 10.1086/bblv230n1p25] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
We describe the development and juvenile morphology of the sea star Echinaster (Othilia) brasiliensis in order to explore evolutionary developmental modes and skeletal homologies. This species produces large, buoyant eggs (0.6 ± 0.03 mm diameter), and has a typical lecithotrophic brachiolaria larva. The planktonic brachiolaria larva is formed 2-4 days after fertilization, when cilia cover the surface. Early juveniles are completely formed by 18 days of age. Initial growth is supported by maternal nutrients while the stomach continues to develop until 60 days after fertilization, when juveniles reach about 0.5 mm of radius length. The madreporite was observed 88 days after fertilization. In the youngest juvenile skeleton of E. (O.) brasiliensis, the madreporite and odontophore are homologous to those of other recent, non-paxillosid asteroids, and follow the Late Madreporic Mode. The emergence of plates related to the ambulacral system follows the Ocular Plate Rule. The development and juvenile skeletal morphology of this species are similar to those of the few other studied species in the genus Echinaster. This study corroborates the notion that the mode of development--including a short-lived lecithotrophic brachiolaria larva--in all Echinaster species shares a similar pattern that may be conserved throughout the evolutionary history of the group.
Collapse
Affiliation(s)
- Elinia Medeiros Lopes
- Biodiversity and Evolutionary Biology Graduate Program of the Federal University of Rio de Janeiro, 21941-901, Rio de Janeiro, RJ, Brazil; and Departamento de Invertebrados, Laboratório de Echinodermata, Museu Nacional/Universidade Federal do Rio de Janeiro (UFRJ), Quinta da Boa Vista, s/no, São Cristóvão, 20940-040, Rio de Janeiro, RJ, Brazil
| | - Carlos Renato Rezende Ventura
- Departamento de Invertebrados, Laboratório de Echinodermata, Museu Nacional/Universidade Federal do Rio de Janeiro (UFRJ), Quinta da Boa Vista, s/no, São Cristóvão, 20940-040, Rio de Janeiro, RJ, Brazil
| |
Collapse
|
36
|
O'Hara TD, Hugall AF, Thuy B, Moussalli A. Phylogenomic resolution of the class Ophiuroidea unlocks a global microfossil record. Curr Biol 2014; 24:1874-9. [PMID: 25065752 DOI: 10.1016/j.cub.2014.06.060] [Citation(s) in RCA: 95] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Revised: 05/23/2014] [Accepted: 06/23/2014] [Indexed: 11/17/2022]
Abstract
Our understanding of the origin, evolution, and biogeography of seafloor fauna is limited because we have insufficient spatial and temporal data to resolve underlying processes. The abundance and wide distribution of modern and disarticulated fossil Ophiuroidea, including brittle stars and basket stars, make them an ideal model system for global marine biogeography if we have the phylogenetic framework necessary to link extant and fossil morphology in an evolutionary context. Here we construct a phylogeny from a highly complete 425-gene, 61-taxa transcriptome-based data set covering 15 of the 18 ophiuroid families and representatives of all extant echinoderm classes. We calibrate our phylogeny with a series of novel fossil discoveries from the early Mesozoic. We confirm the traditional paleontological view that ophiuroids are sister to the asteroids and date the crown group Ophiuroidea to the mid-Permian (270 ± 30 mega-annum). We refute all historical classification schemes of the Ophiuroidea based on gross structural characters but find strong congruence with schemes based on lateral arm plate microstructure and the temporal appearance of various plate morphologies in the fossil record. The verification that these microfossils contain phylogenetically informative characters unlocks their potential to advance our understanding of marine biogeographical processes.
Collapse
Affiliation(s)
| | - Andrew F Hugall
- Museum Victoria, GPO Box 666, Melbourne, VIC 3001, Australia
| | - Ben Thuy
- Section Paléontologie, Musée National d'Histoire Naturelle du Luxembourg, 24 Rue Münster, 2160 Luxembourg
| | - Adnan Moussalli
- Museum Victoria, GPO Box 666, Melbourne, VIC 3001, Australia
| |
Collapse
|
37
|
Kitazawa C, Akahoshi S, Sohara S, Noh JT, Tajika A, Yamanaka A, Komatsu M. Development of the brittle star Ophiothrix exigua Lyman, 1874 a species that bypasses early unique and typical planktotrophic ophiopluteus stages. ZOOMORPHOLOGY 2014. [DOI: 10.1007/s00435-014-0233-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
38
|
Naughton KM, O'Hara TD, Appleton B, Gardner MG. Sympatric cryptic species in the crinoid genus Cenolia (Echinodermata: Crinoidea: Comasteridae) delineated by sequence and microsatellite markers. Mol Phylogenet Evol 2014; 78:160-71. [PMID: 24862222 DOI: 10.1016/j.ympev.2014.05.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2014] [Revised: 04/29/2014] [Accepted: 05/05/2014] [Indexed: 11/15/2022]
Abstract
The marine species of the southern coast of Australia have not been well studied with regard to molecular connectivity. Cryptic species are expected to be prevalent on this coastline. Here, we investigate the crinoid genus Cenolia (Echinodermata: Crinoidea: Comasteridae) using molecular methods to elucidate cryptic species and phylogenetic relationships. The genus Cenolia dominates the southern Australian crinoid fauna in shallow waters. Few studies have examined crinoids for cryptic species at a molecular level and these have been predominantly based on mitochondrial data. We employ the nuclear markers 28S rRNA and ITS-2 in addition to the mitochondrial COI. Six divergent mitochondrial clades were identified. Gene flow between confirmed clades was subsequently examined by the use of six novel microsatellite markers, showing that sympatric taxa with low mtDNA divergences (1.7% K2P) were not interbreeding in the wild. The type specimens of Cenolia benhami and C. spanoschistum were examined, as well as all six divergent clades. Morphological characters dividing taxa were refined. Due to comb pinnule morphology, the New Zealand species benhami was determined to belong to the genus Oxycomanthus (nov. comb.). Three new species of Cenolia (including the Australian "benhami") require description.
Collapse
Affiliation(s)
- K M Naughton
- Sciences, Museum Victoria, GPO Box 666, Melbourne, Victoria 3000, Australia; Department of Genetics, Faculty of Science, University of Melbourne, Parkville, Victoria 3010, Australia.
| | - T D O'Hara
- Sciences, Museum Victoria, GPO Box 666, Melbourne, Victoria 3000, Australia
| | - B Appleton
- Department of Genetics, Faculty of Science, University of Melbourne, Parkville, Victoria 3010, Australia
| | - M G Gardner
- School of Biological Sciences, Flinders University, GPO Box 2100, Adelaide 5001, South Australia, Australia; Evolutionary Biology Unit, South Australian Museum, North Terrace, Adelaide 5000, South Australia, Australia
| |
Collapse
|
39
|
Heyland A, Hodin J. A detailed staging scheme for late larval development in Strongylocentrotus purpuratus focused on readily-visible juvenile structures within the rudiment. BMC DEVELOPMENTAL BIOLOGY 2014; 14:22. [PMID: 24886415 PMCID: PMC4055376 DOI: 10.1186/1471-213x-14-22] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Accepted: 04/25/2014] [Indexed: 01/15/2023]
Abstract
BACKGROUND The purple sea urchin, Strongylocentrotus purpuratus, has long been the focus of developmental and ecological studies, and its recently-sequenced genome has spawned a diversity of functional genomics approaches. S. purpuratus has an indirect developmental mode with a pluteus larva that transforms after 1-3 months in the plankton into a juvenile urchin. Compared to insects and frogs, mechanisms underlying the correspondingly dramatic metamorphosis in sea urchins remain poorly understood. In order to take advantage of modern techniques to further our understanding of juvenile morphogenesis, organ formation, metamorphosis and the evolution of the pentameral sea urchin body plan, it is critical to assess developmental progression and rate during the late larval phase. This requires a staging scheme that describes developmental landmarks that can quickly and consistently be used to identify the stage of individual living larvae, and can be tracked during the final two weeks of larval development, as the juvenile is forming. RESULTS Notable structures that are easily observable in developing urchin larvae are the developing spines, test and tube feet within the juvenile rudiment that constitute much of the oral portion of the adult body plan. Here we present a detailed staging scheme of rudiment development in the purple urchin using soft structures of the rudiment and the primordia of these juvenile skeletal elements. We provide evidence that this scheme is robust and applicable across a range of temperature and feeding regimes. CONCLUSIONS Our proposed staging scheme provides both a useful method to study late larval development in the purple urchin, and a framework for developing similar staging schemes across echinoderms. Such efforts will have a high impact on evolutionary developmental studies and larval ecology, and facilitate research on this important deuterostome group.
Collapse
Affiliation(s)
- Andreas Heyland
- University of Guelph, 50 Stone Road East, Guelph, ON N1G 2W1, Canada
| | - Jason Hodin
- Hopkins Marine Station of Stanford University, Pacific Grove, CA 93950, USA
| |
Collapse
|
40
|
Falkner I, Barbosa S, Byrne M. Reproductive biology of four ophiocomid ophiuroids in tropical and temperate Australia – reproductive cycle and oogenic strategies in species with different modes of development. INVERTEBR REPROD DEV 2013. [DOI: 10.1080/07924259.2012.721402] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
41
|
Marshall DJ, Krug PJ, Kupriyanova EK, Byrne M, Emlet RB. The Biogeography of Marine Invertebrate Life Histories. ANNUAL REVIEW OF ECOLOGY EVOLUTION AND SYSTEMATICS 2012. [DOI: 10.1146/annurev-ecolsys-102710-145004] [Citation(s) in RCA: 111] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Biologists have long sought to identify and explain patterns in the diverse array of marine life histories. The most famous speculation about such patterns is Gunnar Thorson's suggestion that species producing planktonic larvae are rarer at higher latitudes (Thorson's rule). Although some elements of Thorson's rule have proven incorrect, other elements remain untested. With a wealth of new life-history data, statistical approaches, and remote-sensing technology, new insights into marine reproduction can be generated. We gathered life-history data for more than 1,000 marine invertebrates and examined patterns in the prevalence of different life histories. Systematic patterns in marine life histories exist at a range of scales, some of which support Thorson, whereas others suggest previously unrecognized relationships between the marine environment and the life histories of marine invertebrates. Overall, marine life histories covary strongly with temperature and local ocean productivity, and different regions should be managed accordingly.
Collapse
Affiliation(s)
- Dustin J. Marshall
- School of Biological Sciences, Monash University, Clayton, Victoria 3800, Australia
- School of Biological Sciences, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Patrick J. Krug
- Department of Biological Sciences, California State University, Los Angeles, California 90032
| | - Elena K. Kupriyanova
- Marine Invertebrates, Australian Museum, Sydney, New South Wales 2010, Australia
| | - Maria Byrne
- School of Medical and Biological Sciences, The University of Sydney, New South Wales 2006, Australia
| | - Richard B. Emlet
- Oregon Institute of Marine Biology, The University of Oregon, Charleston 97420
| |
Collapse
|
42
|
Mah CL, Blake DB. Global diversity and phylogeny of the Asteroidea (Echinodermata). PLoS One 2012; 7:e35644. [PMID: 22563389 PMCID: PMC3338738 DOI: 10.1371/journal.pone.0035644] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2011] [Accepted: 03/19/2012] [Indexed: 11/18/2022] Open
Abstract
Members of the Asteroidea (phylum Echinodermata), popularly known as starfish or sea stars, are ecologically important and diverse members of marine ecosystems in all of the world's oceans. We present a comprehensive overview of diversity and phylogeny as they have figured into the evolution of the Asteroidea from Paleozoic to the living fauna. Living post-Paleozoic asteroids, the Neoasteroidea, are morphologically separate from those in the Paleozoic. Early Paleozoic asteroid faunas were diverse and displayed morphology that foreshadowed later living taxa. Preservation presents significant difficulties, but fossil occurrence and current accounts suggests a diverse Paleozoic fauna, which underwent extinction around the Permian-Triassic interval was followed by re-diversification of at least one surviving lineage. Ongoing phylogenetic classification debates include the status of the Paxillosida and the Concentricycloidea. Fossil and molecular evidence has been and continues to be part of the ongoing evolution of asteroid phylogenetic research. The modern lineages of asteroids include the Valvatacea, the Forcipulatacea, the Spinlosida, and the Velatida. We present an overview of diversity in these taxa, as well as brief notes on broader significance, ecology, and functional morphology of each. Although much asteroid taxonomy is stable, many new taxa remain to be discovered with many new species currently awaiting description. The Goniasteridae is currently one of the most diverse families within the Asteroidea. New data from molecular phylogenetics and the advent of global biodiversity databases, such as the World Asteroidea Database (http://www.marinespecies.org/Asteroidea/) present important new springboards for understanding the global biodiversity and evolution of asteroids.
Collapse
Affiliation(s)
- Christopher L Mah
- Department of Invertebrate Zoology, National Museum of Natural History, Smithsonian Institution, Washington, District of Columbia, United States of America.
| | | |
Collapse
|
43
|
Shibata D, Hirano Y, Komatsu M. Life cycle of the multiarmed sea star Coscinasterias acutispina (Stimpson, 1862) in laboratory culture: sexual and asexual reproductive pathways. Zoolog Sci 2011; 28:313-7. [PMID: 21557653 DOI: 10.2108/zsj.28.313] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The multiarmed sea star Coscinasterias acutispina generally has 7-10 arms and 2-5 madreporites. It is known to be able to reproduce by asexual fission, and we have previously observed that this species also has the ability to reproduce sexually; however, there has been no report until now of spawning in this species. We succeeded in establishing a long-term culture of juveniles produced by artificial fertilization. Twelve months after the completion of metamorphosis, three individuals had six arms of the same length and a madreporite. At this time, fission occurred in two of these individuals, while the remaining individual underwent fission four months later. Each sea star divided into two halves, provided with three arms each. Thereafter, four or five new arms and two or four madreporites were formed anew in each of the six daughter sea-stars, so that by 30 days after the first fission the number of arms and madreporites in each was similar to that in adults. A second fission occurred in four of these six individuals, four or five months after the first fission, and in three of them the plane of division was the same as that of the first fission. The original three individuals eventually proliferated to 12 by undergoing fission. All individuals had fully developed gonads by 1-3 months after the second fission. Some of them eventually spawned under laboratory culture, and the resulting larvae metamorphosed into juveniles. Our observations demonstrate that individuals of C. acutispina possess the potential for both sexual and asexual reproduction.
Collapse
Affiliation(s)
- Daisuke Shibata
- Department of Biology, Graduate School of Science and Engineering, University of Toyama, Toyama 930-8555, Japan.
| | | | | |
Collapse
|
44
|
Foltz DW, Mah CL. Difference in larval type explains patterns of nonsynonymous substitutions in two ancient paralogs of the histone H3 gene in sea stars. Evol Dev 2010; 12:222-30. [PMID: 20433461 DOI: 10.1111/j.1525-142x.2010.00406.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Paralogous genes frequently show differences in patterns and rates of substitution that are typically attributed to different selection regimes, mutation rates, or local recombination rates. Here, two anciently diverged paralogous copies of the histone H3 gene in sea stars, the tandem-repetitive early-stage gene and a newly isolated gene with lower copy number that was termed the "putative late-stage histone H3 gene" were analyzed in 69 species with varying mode of larval development. The two genes showed differences in relative copy number, overall substitution rates, nucleotide composition, and codon usage, but similar patterns of relative nonsynonymous substitution rates, when analyzed by the d(N)/d(S) ratio. Sea stars with a nonpelagic and nonfeeding larval type (i.e., brooding lineages) were observed to have d(N)/d(S) ratios that were larger than for nonbrooders but equal between the two paralogs. This finding suggested that demographic differences between brooding and nonbrooding lineages were responsible for the elevated d(N)/d(S) ratios observed for brooders and refuted a suggestion from a previous analysis of the early-stage gene that the excess nonsynonymous substitutions were due to either (1) gene expression differences at the larval stage between brooders and nonbrooders or (2) the highly repetitive structure of the early-stage histone H3 gene.
Collapse
Affiliation(s)
- David W Foltz
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA.
| | | |
Collapse
|
45
|
Dupont S, Lundve B, Thorndyke M. Near future ocean acidification increases growth rate of the lecithotrophic larvae and juveniles of the sea star Crossaster papposus. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2010; 314:382-9. [PMID: 20309996 DOI: 10.1002/jez.b.21342] [Citation(s) in RCA: 105] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Sam Dupont
- Department of Marine Ecology, University of Gothenburg, Sven Lovén Centre for Marine Sciences, Kristineberg, Sweden.
| | | | | |
Collapse
|
46
|
Arenas-Mena C. Indirect development, transdifferentiation and the macroregulatory evolution of metazoans. Philos Trans R Soc Lond B Biol Sci 2010; 365:653-69. [PMID: 20083640 PMCID: PMC2817142 DOI: 10.1098/rstb.2009.0253] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
It is proposed here that a biphasic life cycle with partial dedifferentiation of intermediate juvenile or larval stages represents the mainstream developmental mode of metazoans. Developmental plasticity of differentiated cells is considered the essential characteristic of indirect development, rather than the exclusive development of the adult from 'set-aside' cells. Many differentiated larval cells of indirect developers resume proliferation, partially dedifferentiate and contribute to adult tissues. Transcriptional pluripotency of differentiated states has premetazoan origins and seems to be facilitated by histone variant H2A.Z. Developmental plasticity of differentiated states also facilitates the evolution of polyphenism. Uncertainty remains about whether the most recent common ancestor of protostomes and deuterostomes was a direct or an indirect developer, and how the feeding larvae of bilaterians are related to non-feeding larvae of sponges and cnidarians. Feeding ciliated larvae of bilaterians form their primary gut opening by invagination, which seems related to invagination in cnidarians. Formation of the secondary gut opening proceeds by protostomy or deuterostomy, and gene usage suggests serial homology of the mouth and anus. Indirect developers do not use the Hox vector to build their ciliated larvae, but the Hox vector is associated with the construction of the reproductive portion of the animal during feeding-dependent posterior growth. It is further proposed that the original function of the Hox cluster was in gonad formation rather than in anteroposterior diversification.
Collapse
Affiliation(s)
- Cesar Arenas-Mena
- Department of Biology, San Diego State University, 5500 Campanile Drive, San Diego, CA 92182-4614, USA.
| |
Collapse
|
47
|
Miner BG, Donovan DA, Andrews KE. Should I stay or should I go: predator- and conspecific-induced hatching in a marine snail. Oecologia 2010; 163:69-78. [PMID: 20151156 DOI: 10.1007/s00442-010-1570-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2009] [Accepted: 01/15/2010] [Indexed: 10/19/2022]
Abstract
Predator-induced hatching plasticity has been demonstrated in many species of amphibians. However, animals from other clades (e.g., marine species of molluscs and annelids) also place their embryos in capsules or gelatinous masses and might also exhibit hatching plasticity to predators. To date there is no evidence of predator-induced hatching plasticity from any marine species or a major clade of bilateria animals, the Lophotrochozoa. We studied predator-induced hatching plasticity of Nucella lamellosa, a carnivorous marine snail that deposits embryos in capsules. We used two experiments to investigate the effects of two types of predator, crabs and isopods, on developing embryos. In the first experiment, we quantified proportion of hatched embryos from capsules through time exposed to water-borne chemicals of crabs and isopods. Crabs delayed time-to-hatching, and the effects of predators were additive. In the second experiment, we quantified proportion of hatched embryos from capsules through time, developmental stage, and size of embryos in capsules exposed to water-borne chemicals of crabs and conspecifics. With this experiment, we wanted to answer: (1) whether a delay in hatching corresponded to embryos developing slower, and (2) whether the general products of metabolic waste from organisms can delay hatching. We unexpectedly observed that adult conspecific snails accelerated hatching but not developmental rate-the few past studies on the effects of conspecifics have all demonstrated that conspecifics delay time-to-hatching and rate of development. The results were also inconsistent with metabolic waste in general causing a delay in hatching, although the effect of conspecifics does weaken this inference. This study demonstrates that predators delay time-to-hatching in a marine mollusc, and suggests that predator-induced hatching plasticity is widespread among animals and likely evolved multiple times within the bilateria. In addition, conspecifics accelerated time-to-hatching in a marine mollusc, which suggests that conspecifics, like predators, might commonly influence when embryos hatch.
Collapse
Affiliation(s)
- Benjamin G Miner
- Department of Biology, Western Washington University, Bellingham, WA 98225, USA.
| | | | | |
Collapse
|
48
|
Foltz DW, Mah CL. Recent relaxation of purifying selection on the tandem-repetitive early-stage histone H3 gene in brooding sea stars. Mar Genomics 2009; 2:113-8. [DOI: 10.1016/j.margen.2009.06.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2009] [Revised: 05/27/2009] [Accepted: 06/03/2009] [Indexed: 11/16/2022]
|
49
|
Bishop CD, Hall BK. Sniffing out new data and hypotheses on the form, function, and evolution of the echinopluteus post-oral vibratile lobe. THE BIOLOGICAL BULLETIN 2009; 216:307-321. [PMID: 19556596 DOI: 10.1086/bblv216n3p307] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
The performance requirements of ciliary band feeding explain the convoluted forms of many marine invertebrate larvae. Convolutions increase surface area and therefore feeding rates per unit body volume. We review recent advances in morphology, neural development, and behavior at settlement of the echinoid Lytechinus pictus and provide new ultrastructural and expression data on larvae of its congener, L. variegatus. Larvae of the echinometrid Colobocentrotus atratus contain neurons identified by their expression of nitric oxide synthase (NOS), indicating that this character is not unique to Lytechinus. We hypothesize that in some echinoids the convoluted shape of the post-oral vibratile lobe (POVL) covaries with the distribution of identified sensory neurons to enable olfaction during settlement. An analysis of variation in structural elaboration of the post-oral transverse ciliary band (PTB) within Echinoida and in feeding larvae of other echinoderm classes indicates that only echinoids, but not all echinoids, possess this novel character; larvae that do are distributed heterogeneously within the class. In recognition of this specialized function for the POVL and surrounding ectoderm, and because it is lobate and grows toward the mouth, we propose naming this structure the adoral lobe.
Collapse
Affiliation(s)
- Cory D Bishop
- Department of Biology, Dalhousie University, Halifax, Nova Scotia B3H 4J1, Canada.
| | | |
Collapse
|
50
|
Naughton KM, O'Hara TD. A new brooding species of the biscuit star Tosia (Echinodermata:Asteroidea:Goniasteridae), distinguished by molecular, morphological and larval characters. INVERTEBR SYST 2009. [DOI: 10.1071/is08021] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The biscuit star Tosia australis Gray, 1840 is a well known component of the shallow rocky reef fauna of south-eastern Australia. The putative T. australis species complex was subjected to reproductive, morphometric and molecular analyses. Molecular analyses of the data from three markers (mitochondrial COI and 16S rRNA and the nuclear non-coding region ITS2) confirmed the presence of a cryptic species, the morphology of which does not agree with any of the existing nominal species. Two separate reproductive modes were observed within the complex and documented via scanning electron microscopy. T. neossia, sp. nov., described herein from south-eastern Australia, is shown to release gametes from gonopores on the actinal surface. Embryos develop first into non-feeding, non-swimming brachiolaria, and then into tripod brachiolaria before metamorphosis. No surface cilia are present at any point throughout development of T. neossia. T. australis sensu stricto is shown to release gametes from the abactinal surface. Embryos develop into non-feeding, swimming brachiolaria before metamorphosis. Whereas T. australis var. astrologorum is confirmed as synonymous with T. australis, the status of the putative Western Australian taxon T. nobilis remains unresolved.
Collapse
|