1
|
Kumar N, Thorat ST, Gite A, Patole PB. Synergistic effect of nickel and temperature on gene expression, multiple stress markers, and depuration: an acute toxicity in fish. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:123729-123750. [PMID: 37991621 DOI: 10.1007/s11356-023-30996-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 11/06/2023] [Indexed: 11/23/2023]
Abstract
Aquatic animals are prone to extinction due to metal pollution and global climate change. Even though the fish and their products are also unsafe for human consumption, their exports have been rejected due to inorganic and organic contaminants. Nickel (Ni) is a metal that induces toxicity and accumulates in the aquatic ecosystem, posing health threats to humans, animals, and fish. In light of the above, our present investigation aimed to determine the median lethal concentration (96 h-LC50) of nickel alone and concurrent with high temperature (34 °C) (Ni + T) using static non-renewable bioassay toxicity test in Pangasianodon hypophthalmus. The groups treated under exposure to Ni reared under control condition (25-28.9 °C) and Ni + T exposure group reread under 34 °C. In this study, chose the definitive dose of Ni and Ni + T as 17, 18, 19, and 20 mg L-1 after the range finding test. The median lethal concentration of Ni and Ni + T was determined as 19.38 and 18.75 mg L-1, respectively at 96 h. Oxidative stress viz. catalase (CAT), superoxide dismutase (SOD), glutathione-s-transferase (GST), and glutathione peroxidase (GPx) in the liver, gill, and kidney were noticeably elevated with Ni and Ni + T during 96 h. Whereas, the CAT, GPx, and SOD gene expressions were significantly upregulated with Ni and Ni + T. Trilox equivalent anti-oxidant capacity (TEAC), cupric reducing anti-oxidant capacity (CUPRIC), ferric reducing ability of plasma (FRAP), ethoxy resorufin-O-deethylase (EROD), and acetylcholine esterase (AChE) were reduced due to exposure to Ni and Ni + T. Cellular metabolic stress and lipid peroxidation were highly affected due to Ni and Ni + T exposure. The immunological status, as indicated by total protein, albumin, globulin, A:G ratio, and nitro blue tetrazolium chloride (NBT), was severely affected by the toxicity of Ni and Ni + T. Moreover, the gene expression of interleukin (IL), tumor necrosis factor (TNFα), toll-like receptor (TLR), and total immunoglobulin (Ig) was remarkably downregulated following exposure to Ni and Ni + T. HSP 70, iNOS expression, ATPase, Na + /K + -ATPase, cortisol, and blood glucose was significantly elevated with Ni and Ni + T in P. hypophthalmus. The bioaccumulation of Ni in fish tissues and experimental water was determined. The kidney and liver tissues were highly accumulated with Ni, whereas DNA damage was reported in gill tissue. Interestingly, depuration study revealed that at the 28th day, the Ni bioaccumulation was below the maximum residue limit (MRL) level. Therefore, the present study revealed that Ni and Ni + T led to dysfunctional gene and metabolic regulation affecting physiology and genotoxicity. The bioaccumulation and depuration results also indicate higher residual occurrence of Ni in water and aquatic organisms for longer periods.
Collapse
Affiliation(s)
- Neeraj Kumar
- ICAR-National Institute of Abiotic Stress Management, Baramati, Pune-413115, India.
| | - Supriya T Thorat
- ICAR-National Institute of Abiotic Stress Management, Baramati, Pune-413115, India
| | - Archana Gite
- ICAR-National Institute of Abiotic Stress Management, Baramati, Pune-413115, India
| | - Pooja B Patole
- ICAR-National Institute of Abiotic Stress Management, Baramati, Pune-413115, India
| |
Collapse
|
2
|
Lim MYT, Bernier NJ. Intergenerational plasticity to cycling high temperature and hypoxia affects offspring stress responsiveness and tolerance in zebrafish. J Exp Biol 2023; 226:jeb245583. [PMID: 37497728 PMCID: PMC10482009 DOI: 10.1242/jeb.245583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 07/24/2023] [Indexed: 07/28/2023]
Abstract
Predicted climate change-induced increases in heat waves and hypoxic events will have profound effects on fishes, yet the capacity of parents to alter offspring phenotype via non-genetic inheritance and buffer against these combined stressors is not clear. This study tested how prolonged adult zebrafish exposure to combined diel cycles of thermal stress and hypoxia affect offspring early survival and development, parental investment of cortisol and heat shock proteins (HSPs), larval offspring stress responses, and both parental and offspring heat and hypoxia tolerance. Parental exposure to the combined stressor did not affect fecundity, but increased mortality, produced smaller embryos and delayed hatching. The combined treatment also reduced maternal deposition of cortisol and increased embryo hsf1, hsp70a, HSP70, hsp90aa and HSP90 levels. In larvae, basal cortisol levels did not differ between treatments, but acute exposure to combined heat stress and hypoxia increased cortisol levels in control larvae with no effect on larvae from exposed parents. In contrast, whereas larval basal hsf1, hsp70a and hsp90aa levels differed between parental treatments, the combined acute stressor elicited similar transcriptional responses across treatments. Moreover, the combined acute stressor only induced a marked increase in HSP47 levels in the larvae derived from exposed parents. Finally, combined hypoxia and elevated temperatures increased both thermal and hypoxia tolerance in adults and conferred an increase in offspring thermal but not hypoxia tolerance. These results demonstrate that intergenerational acclimation to combined thermal stress and hypoxia elicit complex carryover effects on stress responsiveness and offspring tolerance with potential consequences for resilience.
Collapse
Affiliation(s)
- Michael Y.-T. Lim
- Department of Integrative Biology, University of Guelph, 50 Stone Road East, Guelph, ON N1G 2W1, Canada
| | - Nicholas J. Bernier
- Department of Integrative Biology, University of Guelph, 50 Stone Road East, Guelph, ON N1G 2W1, Canada
| |
Collapse
|
3
|
Xu L, Wang Y, Lin S, Li H, Qi P, Buttino I, Wang W, Guo B. Insights into the Response in Digestive Gland of Mytilus coruscus under Heat Stress Using TMT-Based Proteomics. Animals (Basel) 2023; 13:2248. [PMID: 37508026 PMCID: PMC10376264 DOI: 10.3390/ani13142248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 06/30/2023] [Accepted: 06/30/2023] [Indexed: 07/30/2023] Open
Abstract
Ocean warming can cause injury and death in mussels and is believed to be one of the main reasons for extensive die-offs of mussel populations worldwide. However, the biological processes by which mussels respond to heat stress are still unclear. In this study, we conducted an analysis of enzyme activity and TMT-labelled based proteomic in the digestive gland tissue of Mytilus coruscus after exposure to high temperatures. Our results showed that the activities of superoxide dismutase, acid phosphatase, lactate dehydrogenase, and cellular content of lysozyme were significantly changed in response to heat stress. Furthermore, many differentially expressed proteins involved in nutrient digestion and absorption, p53, MAPK, apoptosis, and energy metabolism were activated post-heat stress. These results suggest that M. coruscus can respond to heat stress through the antioxidant system, the immune system, and anaerobic respiration. Additionally, M. coruscus may use fat, leucine, and isoleucine to meet energy requirements under high temperature stress via the TCA cycle pathway. These findings provide a useful reference for further exploration of the response mechanism to heat stress in marine mollusks.
Collapse
Affiliation(s)
- Lezhong Xu
- National Engineering Research Center for Marine Aquaculture, Marine Science and Technology College, Zhejiang Ocean University, Zhoushan 316022, China
| | - Yuxia Wang
- National Engineering Research Center for Marine Aquaculture, Marine Science and Technology College, Zhejiang Ocean University, Zhoushan 316022, China
| | - Shuangrui Lin
- National Engineering Research Center for Marine Aquaculture, Marine Science and Technology College, Zhejiang Ocean University, Zhoushan 316022, China
| | - Hongfei Li
- National Engineering Research Center for Marine Aquaculture, Marine Science and Technology College, Zhejiang Ocean University, Zhoushan 316022, China
| | - Pengzhi Qi
- National Engineering Research Center for Marine Aquaculture, Marine Science and Technology College, Zhejiang Ocean University, Zhoushan 316022, China
| | - Isabella Buttino
- Italian Institute for Environmental Protection and Research ISPRA, Via del Cedro n.38, 57122 Livorno, Italy
| | - Weifeng Wang
- National Engineering Research Center for Marine Aquaculture, Marine Science and Technology College, Zhejiang Ocean University, Zhoushan 316022, China
| | - Baoying Guo
- National Engineering Research Center for Marine Aquaculture, Marine Science and Technology College, Zhejiang Ocean University, Zhoushan 316022, China
| |
Collapse
|
4
|
Chen Y, Wu X, Lai J, Liu Y, Song M, Li F, Gong Q. Integrated biochemical, transcriptomic and metabolomic analyses provide insight into heat stress response in Yangtze sturgeon (Acipenser dabryanus). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 249:114366. [PMID: 36508793 DOI: 10.1016/j.ecoenv.2022.114366] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 09/24/2022] [Accepted: 11/28/2022] [Indexed: 06/17/2023]
Abstract
Temperature fluctuations caused by climate change and global warming pose a great threat to various species. Most fish are particularly vulnerable to elevated temperatures. Understanding the mechanism of high-temperature tolerance in fish can be beneficial for proposing effective strategies to help fish cope with global warming. In this study, we systematically studied the effects of high temperature on Acipenser dabryanus, an ancient living fossil and flagship species of the Yangtze River, at the histological, biochemical, transcriptomic and metabolomic levels. Intestinal and liver tissues from the control groups (18 °C) and acute heat stress groups (30 °C) of A. dabryanus were sampled for histological observation and liver tissues were assessed for transcriptomic and metabolomic profiling. Histopathological analysis showed that the intestine and liver tissues were damaged after heat stress. The plasma cortisol content and the levels of oxidative stress markers (catalase/glutathione reductase) and two aminotransferases (aspartate aminotransferase/alanine aminotransferase) increased significantly in response to acute heat stress. Transcriptomic and metabolomic methods showed 6707 upregulated and 4189 downregulated genes and 64 upregulated and 78 downregulated metabolites in the heat stress group. Heat shock protein (HSP) genes showed striking changes in expression under heat stress, with 21 genes belonging to the HSP30, HSP40, HSP60, HSP70 and HSP90 families significantly upregulated by short-term heat stress. The majority of genes associated with ubiquitin and various immune-related pathways were also markedly upregulated in the heat stress group. In addition, the combined analysis of metabolites and gene profiles suggested an enhancement of amino acid metabolism and glycometabolism and the suppression of fatty acid metabolism during heat stress, which could be a potential energy conservation strategy for A. dabryanus. To the best of our knowledge, the present study represents the first attempt to reveal the mechanisms of heat stress responses in A. dabryanus, which can provide insights into improved cultivation of fish in response to global warming.
Collapse
Affiliation(s)
- Yeyu Chen
- The Fishery Institute of the Sichuan Academy of Agricultural Sciences, Chengdu 611730, China
| | - Xiaoyun Wu
- The Fishery Institute of the Sichuan Academy of Agricultural Sciences, Chengdu 611730, China
| | - Jiansheng Lai
- The Fishery Institute of the Sichuan Academy of Agricultural Sciences, Chengdu 611730, China
| | - Ya Liu
- The Fishery Institute of the Sichuan Academy of Agricultural Sciences, Chengdu 611730, China
| | - Mingjiang Song
- The Fishery Institute of the Sichuan Academy of Agricultural Sciences, Chengdu 611730, China
| | - Feiyang Li
- The Fishery Institute of the Sichuan Academy of Agricultural Sciences, Chengdu 611730, China
| | - Quan Gong
- The Fishery Institute of the Sichuan Academy of Agricultural Sciences, Chengdu 611730, China.
| |
Collapse
|
5
|
Thermal Stress Induces Metabolic Responses in Juvenile Qingtian Paddy Field Carp Cyprinus carpio var qingtianensis. Animals (Basel) 2022; 12:ani12233395. [PMID: 36496916 PMCID: PMC9739747 DOI: 10.3390/ani12233395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 11/24/2022] [Accepted: 11/28/2022] [Indexed: 12/12/2022] Open
Abstract
Extreme fluctuations in water temperature lead to significant economic losses for the aquaculture industry. Cyprinus carpio var qingtianensis (locally called Qingtian paddy field carp), is a local variety commonly found in Zhejiang province, China. Unlike traditional aquaculture environments, the water temperature range between day and night in the rice field environment is much larger, and the high temperature in summer may exceed the growth threshold of fish because there is no manual intervention; therefore, the study of how the Qingtian paddy field carp (PF carp) adapts to high-temperature conditions can shed light how the species adapt to the rice field environment. To investigate the molecular mechanisms of this fish under thermal stress, the liver metabolomics of Qiangtian paddy field carp (PF carp) were analyzed. In this study, metabolomics was used to examine the metabolic reaction of PF carp (102 days old, 104.69 ± 3.08 g in weight, 14.65 ± 0.46 cm in length) at water temperatures of 28 °C (control group, CG), 34 °C (experimental group (EG) 34), and 38 °C (EG38). The results show that 175 expression profile metabolites (DEMs), including 115 upregulated and 60 downregulated metabolites, were found in the CG vs. EG34. A total of 354 DEMs were inspected in CG vs. EG38, with 85 metabolites downregulated and 269 metabolites upregulated. According to the pathway enrichment study, various pathways were altered by thermal stress, including those of lipid, amino-acid, and carbohydrate metabolism. Our study presents a potential metabolic profile for PF carp under thermal stress. It also demonstrates how the host responds to thermal stress on a metabolic and molecular level.
Collapse
|
6
|
Oliveira-Cunha P, McIntyre PB, Neres-Lima V, Caliman A, Moreira-Ferreira B, Zandonà E. Body size has primacy over stoichiometric variables in nutrient excretion by a tropical stream fish community. Sci Rep 2022; 12:14844. [PMID: 36050417 PMCID: PMC9436996 DOI: 10.1038/s41598-022-19149-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 08/24/2022] [Indexed: 11/18/2022] Open
Abstract
Ecological Stoichiometry (ES) and the Metabolic Theory of Ecology (MTE) are the main theories used to explain consumers’ nutrient recycling. ES posits that imbalances between an animal’s body and its diet stoichiometry determine its nutrient excretion rates, whereas the MTE predicts that excretion reflects metabolic activity arising from body size and temperature. We measured nitrogen, phosphorus and N:P excretion, body N:P stoichiometry, body size, and temperature for 12 fish species from a Brazilian stream. We fitted competing models reflecting different combinations of ES (body N:P, armor classification, diet group) and MTE (body size, temperature) variables. Only body size predicted P excretion rates, while N excretion was predicted by body size and time of day. N:P excretion was not explained by any variable. There was no interspecific difference in size-scaling coefficients neither for N nor for P. Fitted size scaling coefficients were lower than the MTE prediction of 0.75 for N (0.58), and for P (0.56). We conclude that differences in nutrient excretion among species within a shared environment primarily reflect contrasts in metabolic rates arising from body size, rather than disparities between consumer and resource stoichiometry. Our findings support the MTE as the primary framework for predicting nutrient excretion rates.
Collapse
Affiliation(s)
- Priscila Oliveira-Cunha
- Programa de Pós-Graduação em Ecologia e Evolução, Universidade do Estado do Rio de Janeiro, Rua São Francisco Xavier, 524, Maracanã, Rio de Janeiro, RJ, CEP 20550-013, Brazil.
| | - Peter B McIntyre
- Department of Natural Resources and the Environment, Cornell University, Ithaca, NY, USA
| | - Vinicius Neres-Lima
- Programa de Pós-Graduação em Ecologia e Evolução, Universidade do Estado do Rio de Janeiro, Rua São Francisco Xavier, 524, Maracanã, Rio de Janeiro, RJ, CEP 20550-013, Brazil
| | - Adriano Caliman
- Departamento de Ecologia, Universidade Federal do Rio Grande Do Norte, Natal, RN, Brazil
| | - Beatriz Moreira-Ferreira
- Programa de Pós-Graduação em Ecologia e Evolução, Universidade do Estado do Rio de Janeiro, Rua São Francisco Xavier, 524, Maracanã, Rio de Janeiro, RJ, CEP 20550-013, Brazil
| | - Eugenia Zandonà
- Programa de Pós-Graduação em Ecologia e Evolução, Universidade do Estado do Rio de Janeiro, Rua São Francisco Xavier, 524, Maracanã, Rio de Janeiro, RJ, CEP 20550-013, Brazil.,Departamento de Ecologia, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| |
Collapse
|
7
|
Zhao H, Ke H, Zhang L, Zhao Z, Lai J, Zhou J, Huang Z, Li H, Du J, Li Q. Integrated analysis about the effects of heat stress on physiological responses and energy metabolism in Gymnocypris chilianensis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 806:151252. [PMID: 34710409 DOI: 10.1016/j.scitotenv.2021.151252] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 10/20/2021] [Accepted: 10/22/2021] [Indexed: 06/13/2023]
Abstract
The temperature of the rivers in the Qilian Mountains, China varies widely from day to night, and Gymnocypris chilianensis living in these rivers may experience a change of 10 °C to 20 °C within a day. To explore the mechanisms underlying G. chilianensis responses to heat stress, we conducted an acute temperature stress experiment. In response to heat stress, levels of antioxidant enzymes (SOD\CAT\MDA) first increased and then decreased with time, but T-AOC levels only decreased. The activities of key glycolytic enzymes HK and PFK in the liver also first increased and then decreased and transaminase (AST/ALT) activity increased significantly. We obtained 5350 significantly different genes through transcriptome sequencing with enrichment pathways including primarily glycine, serine and threonine metabolism, cysteine and methionine metabolism, tryptophan metabolism, fructose and mannose metabolism, steroid hormone biosynthesis, and fatty acid degradation. A total of 457 differential metabolites were identified in the liver under thermal stress, most of which are involved in biochemical pathways of amino acid metabolism. Biosynthesis of amino acids indicated that G. chilianensis maintained physiological homeostasis by enhancing glucose metabolism and regulating lipid and amino acid metabolism pathways under thermal stress. We also randomly selected 12 key response genes for validation using qRT-PCR. This is the first study describing the mechanisms underlying responses to thermal stress in G. chilianensis, and may also provide reference data for the study of environmental mutations in indigenous fish in the Qinghai-Tibet Plateau and Qilian Mountains.
Collapse
Affiliation(s)
- Han Zhao
- Fisheries Institute, Sichuan Academy of Agricultural Sciences, Chengdu 611731, Sichuan, China
| | - Hongyu Ke
- Fisheries Institute, Sichuan Academy of Agricultural Sciences, Chengdu 611731, Sichuan, China
| | - Lu Zhang
- Fisheries Institute, Sichuan Academy of Agricultural Sciences, Chengdu 611731, Sichuan, China
| | - Zhongmeng Zhao
- Fisheries Institute, Sichuan Academy of Agricultural Sciences, Chengdu 611731, Sichuan, China
| | - Jiansheng Lai
- Fisheries Institute, Sichuan Academy of Agricultural Sciences, Chengdu 611731, Sichuan, China
| | - Jian Zhou
- Fisheries Institute, Sichuan Academy of Agricultural Sciences, Chengdu 611731, Sichuan, China
| | - Zhipeng Huang
- Fisheries Institute, Sichuan Academy of Agricultural Sciences, Chengdu 611731, Sichuan, China
| | - Huadong Li
- Fisheries Institute, Sichuan Academy of Agricultural Sciences, Chengdu 611731, Sichuan, China
| | - Jun Du
- Fisheries Institute, Sichuan Academy of Agricultural Sciences, Chengdu 611731, Sichuan, China
| | - Qiang Li
- Fisheries Institute, Sichuan Academy of Agricultural Sciences, Chengdu 611731, Sichuan, China.
| |
Collapse
|
8
|
The Hsp70 Gene Family in Boleophthalmus pectinirostris: Genome-Wide Identification and Expression Analysis under High Ammonia Stress. Animals (Basel) 2019; 9:ani9020036. [PMID: 30691127 PMCID: PMC6406738 DOI: 10.3390/ani9020036] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 01/21/2019] [Accepted: 01/23/2019] [Indexed: 01/02/2023] Open
Abstract
Simple Summary Heat shock proteins 70 is a family of proteins, which were expressed in response to a wide range of biotic and abiotic stressors. The development of genomic resources and transcriptome sequences makes it practical to conduct a systematic analysis of these genes. In this study, exhaustive searches of all genomic resources for Boleophthalmus pectinirostris Hsp70 genes were performed and their responses to high environmental ammonia stress were investigated. Besides, selection test was implemented on those duplicated genes, and the phylogenetic tree, gene structure, and motif analysis were also constructed to assign names of them. The result showed that there were 20 Hsp70 genes within the genome of Boleophthalmus pectinirostris, and some sites in the duplicated genes may experience positive selection, and most of Hsp70 genes were downregulated after exposure to high concentration ammonia. The present results of this study can be used as a reference for further biological studies on mudskippers. Abstract Heat shock proteins 70 have triggered a remarkable large body of research in various fishes; however, no genome-wide identification and expression analysis has been performed on the Hsp70 gene family of Boleophthalmus pectinirostris. In this study, we identified 20 Hsp70 genes within the genome of B. pectinirostris and provided insights into their response to high environmental ammonia (HEA) stress. Positive selection on stress response genes and expansion of hspa1a and hspa1a-like genes might be related to terrestrial adaptations in this species. The expression patterns of the Hsp70 gene family in the gill and liver of B. pectinirostris under HEA stress were studied by examining transcriptome data. The results showed that most Hsp70 genes were downregulated after high concentration ammonia exposure. The downregulation may be related to the hypoxic condition of the tissues.
Collapse
|
9
|
Liu Y, Liu J, Ye S, Bureau DP, Liu H, Yin J, Mou Z, Lin H, Hao F. Global metabolic responses of the lenok (Brachymystax lenok) to thermal stress. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2019; 29:308-319. [PMID: 30669055 DOI: 10.1016/j.cbd.2019.01.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 12/17/2018] [Accepted: 01/09/2019] [Indexed: 11/29/2022]
Abstract
High temperature is a powerful stressor for fish living in natural and artificial environments, especially for cold water species. Understanding the impact of thermal stress on physiological processes of fish is crucial for better cultivation and fisheries management. However, the metabolic mechanism of cold water fish to thermal stress is still not completely clear. In this study, a NMR-based metabonomic strategy in combination with high-throughput RNA-Seq was employed to investigate global metabolic changes of plasma and liver in a typical cold water fish species lenok (Brachymystax lenok) subjected to a sub-lethal high temperature. Our results showed that thermal stress caused multiple dynamic metabolic alterations of the lenok with prolonged stress, including repression of energy metabolism, shifts in lipid metabolism, alterations in amino acid metabolism, changes in choline and nucleotide metabolisms. Specifically, thermal stress induced an activation of glutamate metabolism, indicating that glutamate could be an important biomarker associated with thermal stress. Evidence from Hsp 70 gene expression, blood biochemistry and histology confirmed that high temperature exposure had negative effects on health of the lenok. These findings imply that thermal stress has a severe adverse effect on fish health and demonstrate that the integrated analyses combining NMR-based metabonomics and transcriptome strategy is a powerful approach to enhance our understanding of metabolic mechanisms of fish to thermal stress.
Collapse
Affiliation(s)
- Yang Liu
- Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin 150070, China
| | - Jiashou Liu
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Shaowen Ye
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Dominique P Bureau
- Fish Nutrition Research Laboratory, Department of Animal Biosciences, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Hongbai Liu
- Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin 150070, China
| | - Jiasheng Yin
- Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin 150070, China
| | - Zhenbo Mou
- Institute of Fisheries Science, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa 850002, China
| | - Hong Lin
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Centre for Magnetic Resonance, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, China
| | - Fuhua Hao
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Centre for Magnetic Resonance, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, China.
| |
Collapse
|
10
|
Abstract
During water-land transition, ancient fishes acquired the ability to breathe air, but air-breathing engendered problems in nitrogenous waste excretion. Nitrogen is a fundamental component of amino acids, proteins, and nucleic acids, and the degradation of these nitrogen-containing compounds releases ammonia. Ammonia is toxic and must be removed. Fishes in water excrete ammonia as the major nitrogenous waste through gills, but gills of air-breathing fishes are modified for air-breathing or largely replaced by air-breathing organs. Notably, fishes emerged from water can no longer excrete ammonia effectively because of a lack of water to flush the gills. Hence, ancient fishes that participated in water-land transition must have developed means to deal with ammonia toxicity. Extant air-breathing fishes, particularly amphibious ones, can serve as models to examine adaptations which might have facilitated the emergence of ancient fishes from water. Some of these fishes can actively emerge from water and display complex behaviors on land, while a few can burrow into mud and survive for years during drought. Many of them are equipped with mechanisms to ameliorate ammonia toxicity during emersion. In this review, the mechanisms adopted by air-breathing fishes to deal with ammonia toxicity during emersion were organized into seven disparate strategies. In addition, eight extant air-breathing fishes with distinctive terrestrial behaviors and peculiar natural habitats were selected to describe in detail how these seven strategies could be adopted in disparate combinations to ameliorate ammonia toxicity during emersion.
Collapse
|
11
|
Sehr M, Keckeis H. Habitat use of the European mudminnow Umbra krameri and association with other fish species in a disconnected Danube side arm. JOURNAL OF FISH BIOLOGY 2017; 91:1072-1093. [PMID: 28901010 DOI: 10.1111/jfb.13402] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Accepted: 07/31/2017] [Indexed: 06/07/2023]
Abstract
Fish assemblages along the longitudinal course of an old, disconnected and modified side arm of the Danube floodplain downstream of Vienna, Austria, as well as habitat structure, hydro-morphological and hydro-chemical factors, were investigated in order to analyse the key environmental determinants of the European mudminnow Umbra krameri. Generally, U. krameri was the most abundant species in the system. It occurred in disconnected ditches, ponds and pools with dense reed belts and comparatively low nutrient content, indicating its natural association with marsh habitats. At infrequently disturbed sites it was associated with a small group of stagnophilious and highly specialized species with adaptations to strong oxygen fluctuations. At frequently flooded sites, the species was absent or occurred in low abundances, indicating its adaptation to water bodies in older successional stages and its low competitive power in permanently connected floodplain habitats.
Collapse
Affiliation(s)
- M Sehr
- University of Vienna, Department of Limnology and Bio-Oceanography, Althanstrasse 14, 1090 Vienna, Austria
| | - H Keckeis
- University of Vienna, Department of Limnology and Bio-Oceanography, Althanstrasse 14, 1090 Vienna, Austria
| |
Collapse
|
12
|
Wright PA, Turko AJ. Amphibious fishes: evolution and phenotypic plasticity. ACTA ACUST UNITED AC 2017; 219:2245-59. [PMID: 27489213 DOI: 10.1242/jeb.126649] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2016] [Accepted: 06/29/2016] [Indexed: 12/25/2022]
Abstract
Amphibious fishes spend part of their life in terrestrial habitats. The ability to tolerate life on land has evolved independently many times, with more than 200 extant species of amphibious fishes spanning 17 orders now reported. Many adaptations for life out of water have been described in the literature, and adaptive phenotypic plasticity may play an equally important role in promoting favourable matches between the terrestrial habitat and behavioural, physiological, biochemical and morphological characteristics. Amphibious fishes living at the interface of two very different environments must respond to issues relating to buoyancy/gravity, hydration/desiccation, low/high O2 availability, low/high CO2 accumulation and high/low NH3 solubility each time they traverse the air-water interface. Here, we review the literature for examples of plastic traits associated with the response to each of these challenges. Because there is evidence that phenotypic plasticity can facilitate the evolution of fixed traits in general, we summarize the types of investigations needed to more fully determine whether plasticity in extant amphibious fishes can provide indications of the strategies used during the evolution of terrestriality in tetrapods.
Collapse
Affiliation(s)
- Patricia A Wright
- Department of Integrative Biology, University of Guelph, Guelph, Ontario, Canada N1G 2W1
| | - Andy J Turko
- Department of Integrative Biology, University of Guelph, Guelph, Ontario, Canada N1G 2W1
| |
Collapse
|
13
|
Hangzo H, Banerjee B, Saha S, Saha N. Ammonia stress under high environmental ammonia induces Hsp70 and Hsp90 in the mud eel, Monopterus cuchia. FISH PHYSIOLOGY AND BIOCHEMISTRY 2017; 43:77-88. [PMID: 27492114 DOI: 10.1007/s10695-016-0269-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Accepted: 08/01/2016] [Indexed: 06/06/2023]
Abstract
The obligatory air-breathing mud eel (Monopterus cuchia) is frequently being challenged with high environmental ammonia (HEA) exposure in its natural habitats. The present study investigated the possible induction of heat shock protein 70 and 90 (hsp70, hsc70, hsp90α and hsp90β) genes and more expression of Hsp70 and Hsp90 proteins under ammonia stress in different tissues of the mud eel after exposure to HEA (50 mM NH4Cl) for 14 days. HEA resulted in significant accumulation of toxic ammonia in different body tissues and plasma, which was accompanied with the stimulation of oxidative stress in the mud eel as evidenced by more accumulation of malondialdehyde (MDA) and hydrogen peroxide (H2O2) during exposure to HEA. Further, hyper-ammonia stress led to significant increase in the levels of mRNA transcripts for inducible hsp70 and hsp90α genes and also their translated proteins in different tissues probably as a consequence of induction of hsp70 and hsp90α genes in the mud eel. However, hyper-ammonia stress was neither associated with any significant alterations in the levels of mRNA transcripts for constitutive hsc70 and hsp90β genes nor their translated proteins in any of the tissues studied. More abundance of Hsp70 and Hsp90α proteins might be one of the strategies adopted by the mud eel to defend itself from the ammonia-induced cellular damages under ammonia stress. Further, this is the first report of ammonia-induced induction of hsp70 and hsp90α genes under hyper-ammonia stress in any freshwater air-breathing teleost.
Collapse
Affiliation(s)
- Hnunlalliani Hangzo
- Biochemical Adaptation Laboratory, Department of Zoology, North-Eastern Hill University, Shillong, 793022, India
| | - Bodhisattwa Banerjee
- Biochemical Adaptation Laboratory, Department of Zoology, North-Eastern Hill University, Shillong, 793022, India
| | - Shrabani Saha
- Institute of Biotechnology, Amity University, Sector 125, Noida, 201303, India
| | - Nirmalendu Saha
- Biochemical Adaptation Laboratory, Department of Zoology, North-Eastern Hill University, Shillong, 793022, India.
| |
Collapse
|
14
|
Lewis M, Götting M, Anttila K, Kanerva M, Prokkola JM, Seppänen E, Kolari I, Nikinmaa M. Different Relationship between hsp70 mRNA and hsp70 Levels in the Heat Shock Response of Two Salmonids with Dissimilar Temperature Preference. Front Physiol 2016; 7:511. [PMID: 27872596 PMCID: PMC5098114 DOI: 10.3389/fphys.2016.00511] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Accepted: 10/19/2016] [Indexed: 11/13/2022] Open
Abstract
The heat shock response (HSR) refers to the rapid production of heat shock proteins (hsps) in response to a sudden increase in temperature. Its regulation by heat shock factors is a good example of how gene expression is transcriptionally regulated by environmental stresses. In contrast, little is known about post-transcriptional regulation of the response. The heat shock response is often used to characterize the temperature tolerance of species with the rationale that whenever the response sets on, a species is approaching its lethal temperature. It has commonly been considered that an increase in hsp mRNA gives an accurate indication that the same happens to the protein level, but this need not be the case. With climate change, understanding the effects of temperature on gene expression of especially polar organisms has become imperative to evaluate how both biodiversity and commercially important species respond, since temperature increases are expected to be largest in polar areas. Here we studied the HSR of two phylogenetically related Arctic species, which differ in their temperature tolerance with Arctic charr having lower maximally tolerated temperature than Atlantic salmon. Arctic charr acclimated to 15°C and exposed to 7°C temperature increase for 30 min showed both an increase in hsp70 mRNA and hsp70 whereas in salmon only hsp70 mRNA increased. Our results indicate that the temperature for transcriptional induction of hsp can be different from the one required for a measurable change in inducible hsp level. The species with lower temperature tolerance, Arctic charr, are experiencing temperature stress already at the higher acclimation temperature, 15°C, as their hsp70 mRNA and hsp70 levels were higher, and they grow less than fish at 8°C (whereas for salmon the opposite is true). Consequently, charr experience more drastic heat shock than salmon. Although further studies are needed to establish the temperature range and length of exposure where hsp mRNA and hsp level are disconnected, the observation suggests that by measuring both hsp mRNA and hsp level, one can evaluate if a species is approaching the higher end of its temperature tolerance, and thus evaluate the vulnerability of an organism to the challenges imposed by elevated water temperature.
Collapse
Affiliation(s)
- Mario Lewis
- Laboratory of Animal Physiology, Department of Biology, University of Turku Turku, Finland
| | - Miriam Götting
- Laboratory of Animal Physiology, Department of Biology, University of Turku Turku, Finland
| | - Katja Anttila
- Laboratory of Animal Physiology, Department of Biology, University of Turku Turku, Finland
| | - Mirella Kanerva
- Laboratory of Animal Physiology, Department of Biology, University of Turku Turku, Finland
| | - Jenni M Prokkola
- Laboratory of Animal Physiology, Department of Biology, University of Turku Turku, Finland
| | - Eila Seppänen
- Natural Resources Institute Finland (Luke) Enonkoski, Finland
| | - Irma Kolari
- Natural Resources Institute Finland (Luke) Enonkoski, Finland
| | - Mikko Nikinmaa
- Laboratory of Animal Physiology, Department of Biology, University of Turku Turku, Finland
| |
Collapse
|
15
|
Lu Y, Wu Z, Song Z, Xiao P, Liu Y, Zhang P, You F. Insight into the heat resistance of fish via blood: Effects of heat stress on metabolism, oxidative stress and antioxidant response of olive flounder Paralichthys olivaceus and turbot Scophthalmus maximus. FISH & SHELLFISH IMMUNOLOGY 2016; 58:125-135. [PMID: 27633671 DOI: 10.1016/j.fsi.2016.09.008] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Revised: 09/02/2016] [Accepted: 09/10/2016] [Indexed: 06/06/2023]
Abstract
High temperature has direct confinement on fish survival and growth, especially under the background of global warming. Selection of fish line with heat resistance is an important means to address this problem. In the present study, we analyzed the difference in heat resistance between families of olive flounder Paralichthys olivaceus and turbot Scophthalmus maximus, two flatfish species occupying slightly different thermal niches. Then the chosen families were tested to determine their differential response to heat stress (ΔT = +8 °C and +12 °C) in blood, including anaerobic metabolism (lactate), oxidative stress (lipid peroxidation and protein carbonylation) and antioxidant enzymes. Results showed a difference in heat resistance between families of the two species. Among the chosen parameters, growth traits had a significant effect on contents of lactate and malondialdehyd (MDA), and activities of catalase (CAT) and glutathione S-transferase in flounder (P < 0.05), and on MDA content and CAT activity in turbot (P < 0.05). In comparison with heat-sensitive family of each species, levels of all studied parameters were lower and more stable in heat-resistant families after heat stress. What's more, heat resistance of fish significantly influenced contents of lactate and MDA and activity of CAT in flounder (P < 0.05), as well as contents of lactate, MDA and carbonyl and activity of superoxide dismutate (SOD) in turbot (P < 0.05). These results demonstrated that such physiological phenotypes as anaerobic metabolism, oxidative stress and antioxidant enzymes are good biomarkers of fish heat-resistance, being potentially valuable in fish breeding. However, these markers should be applied with more caution when there is a growth discrepancy between fish families.
Collapse
Affiliation(s)
- Yunliang Lu
- Key Laboratory of Experimental Marine Biology, National & Local Joint Engineering Laboratory of Ecological Mariculture, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, PR China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, PR China
| | - Zhihao Wu
- Key Laboratory of Experimental Marine Biology, National & Local Joint Engineering Laboratory of Ecological Mariculture, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, PR China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, PR China
| | - Zongcheng Song
- Shenghang Aquatic Science and Technology Co. Ltd., Weihai 264200, PR China
| | - Peng Xiao
- Key Laboratory of Experimental Marine Biology, National & Local Joint Engineering Laboratory of Ecological Mariculture, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, PR China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, PR China
| | - Ying Liu
- School of Marine Science and Environment Engineering, Dalian Ocean University, Dalian 116023, PR China
| | - Peijun Zhang
- Key Laboratory of Experimental Marine Biology, National & Local Joint Engineering Laboratory of Ecological Mariculture, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, PR China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, PR China
| | - Feng You
- Key Laboratory of Experimental Marine Biology, National & Local Joint Engineering Laboratory of Ecological Mariculture, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, PR China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, PR China.
| |
Collapse
|
16
|
Lefevre S, Bayley M, McKenzie DJ. Measuring oxygen uptake in fishes with bimodal respiration. JOURNAL OF FISH BIOLOGY 2016; 88:206-231. [PMID: 26358224 DOI: 10.1111/jfb.12698] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Accepted: 03/17/2015] [Indexed: 06/05/2023]
Abstract
Respirometry is a robust method for measurement of oxygen uptake as a proxy for metabolic rate in fishes, and how species with bimodal respiration might meet their demands from water v. air has interested researchers for over a century. The challenges of measuring oxygen uptake from both water and air, preferably simultaneously, have been addressed in a variety of ways, which are briefly reviewed. These methods are not well-suited for the long-term measurements necessary to be certain of obtaining undisturbed patterns of respiratory partitioning, for example, to estimate traits such as standard metabolic rate. Such measurements require automated intermittent-closed respirometry that, for bimodal fishes, has only recently been developed. This paper describes two approaches in enough detail to be replicated by the interested researcher. These methods are for static respirometry. Measuring oxygen uptake by bimodal fishes during exercise poses specific challenges, which are described to aid the reader in designing experiments. The respiratory physiology and behaviour of air-breathing fishes is very complex and can easily be influenced by experimental conditions, and some general considerations are listed to facilitate the design of experiments. Air breathing is believed to have evolved in response to aquatic hypoxia and, probably, associated hypercapnia. The review ends by considering what realistic hypercapnia is, how hypercapnic tropical waters can become and how this might influence bimodal animals' gas exchange.
Collapse
Affiliation(s)
- S Lefevre
- Department of Biosciences, The Faculty of Mathematics and Natural Sciences, University of Oslo, P. O. Box 1066, 0316 Oslo, Norway
| | - M Bayley
- Zoophysiology, Aarhus University, Department of Bioscience, C. F. Møllers Allé 3, 8000 Aarhus C, Denmark
| | - D J McKenzie
- UMR 9190 Centre for Marine Biodiversity Exploitation and Conservation, Université Montpellier 2, Place Eugène Bataillon, 34095 Montpellier cedex 5, France
- Department of Physiological Sciences, Federal University of São Carlos, SP, Brazil
| |
Collapse
|
17
|
Lines GK, Blume A, Ferry LA. The Effect of Food Type on Prey Capture Kinematics in the Mudminnow,Umbra limi. ACTA ACUST UNITED AC 2015. [DOI: 10.2181/036.046.0102] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
18
|
Lefevre S, Damsgaard C, Pascale DR, Nilsson GE, Stecyk JAW. Air breathing in the Arctic: influence of temperature, hypoxia, activity and restricted air access on respiratory physiology of the Alaska blackfish Dallia pectoralis. J Exp Biol 2014; 217:4387-98. [PMID: 25394628 PMCID: PMC4375840 DOI: 10.1242/jeb.105023] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2014] [Accepted: 10/28/2014] [Indexed: 01/21/2023]
Abstract
The Alaska blackfish (Dallia pectoralis) is an air-breathing fish native to Alaska and the Bering Sea islands, where it inhabits lakes that are ice-covered in the winter, but enters warm and hypoxic waters in the summer to forage and reproduce. To understand the respiratory physiology of this species under these conditions and the selective pressures that maintain the ability to breathe air, we acclimated fish to 5°C and 15°C and used respirometry to measure: standard oxygen uptake (Ṁ(O₂)) in normoxia (19.8 kPa P(O₂)) and hypoxia (2.5 kPa), with and without access to air; partitioning of standard Ṁ(O₂) in normoxia and hypoxia; maximum Ṁ(O₂) and partitioning after exercise; and critical oxygen tension (P(crit)). Additionally, the effects of temperature acclimation on haematocrit, haemoglobin oxygen affinity and gill morphology were assessed. Standard Ṁ(O₂) was higher, but air breathing was not increased, at 15°C or after exercise at both temperatures. Fish acclimated to 5°C or 15°C increased air breathing to compensate and fully maintain standard Ṁ(O₂) in hypoxia. Fish were able to maintain Ṁ(O₂) through aquatic respiration when air was denied in normoxia, but when air was denied in hypoxia, standard Ṁ(O₂) was reduced by ∼30-50%. P(crit) was relatively high (5 kPa) and there were no differences in P(crit), gill morphology, haematocrit or haemoglobin oxygen affinity at the two temperatures. Therefore, Alaska blackfish depends on air breathing in hypoxia and additional mechanisms must thus be utilised to survive hypoxic submergence during the winter, such as hypoxia-induced enhancement in the capacities for carrying and binding blood oxygen, behavioural avoidance of hypoxia and suppression of metabolic rate.
Collapse
Affiliation(s)
- Sjannie Lefevre
- Department of Biosciences, University of Oslo, Oslo 0316, Norway.
| | | | - Desirae R Pascale
- Department of Biological Sciences, University of Alaska Anchorage, AK 99508, USA
| | - Göran E Nilsson
- Department of Biosciences, University of Oslo, Oslo 0316, Norway
| | - Jonathan A W Stecyk
- Department of Biological Sciences, University of Alaska Anchorage, AK 99508, USA
| |
Collapse
|
19
|
Urbina MA, Walsh PJ, Hill JV, Glover CN. Physiological and biochemical strategies for withstanding emersion in two galaxiid fishes. Comp Biochem Physiol A Mol Integr Physiol 2014; 176:49-58. [DOI: 10.1016/j.cbpa.2014.07.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2014] [Revised: 06/30/2014] [Accepted: 07/03/2014] [Indexed: 11/28/2022]
|
20
|
Polymeropoulos ET, Plouffe D, LeBlanc S, Elliott NG, Currie S, Frappell PB. Growth hormone transgenesis and polyploidy increase metabolic rate, alter the cardiorespiratory response and influence HSP expression in response to acute hypoxia in Atlantic salmon (Salmo salar) yolk-sac alevins. ACTA ACUST UNITED AC 2014; 217:2268-76. [PMID: 24675560 DOI: 10.1242/jeb.098913] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Growth hormone (GH)-transgenic Atlantic salmon display accelerated growth rates compared with non-transgenics. GH-transgenic fish also display cardiorespiratory and metabolic modifications that accompany the increased growth rate. An elevated routine metabolic rate has been described for pre- and post-smolt GH-transgenic salmon that also display improvements in oxygen delivery to support the increased aerobic demand. The early ontogenic effects of GH transgenesis on the respiratory and cellular physiology of fish, especially during adverse environmental conditions, and the effect of polyploidy are unclear. Here, we investigated the effects of GH transgenesis and polyploidy on metabolic, heart and ventilation rates and heat shock protein (HSP) levels after exposure to acute hypoxia in post-hatch Atlantic salmon yolk-sac alevins. Metabolic rate decreased with decreasing partial pressures of oxygen in all genotypes. In normoxia, triploid transgenics displayed the highest mass-specific metabolic rates in comparison to diploid transgenics and non-transgenic triploids, which, in contrast, had higher rates than diploid non-transgenics. In hypoxia, we observed a lower mass-specific metabolic rate in diploid non-transgenics compared with all other genotypes. However, no evidence for improved O2 uptake through heart or ventilation rate was found. Heart rate decreased in diploid non-transgenics while ventilation rate decreased in both diploid non-transgenics and triploid transgenics in severe hypoxia. Regardless of genotype or treatment, inducible HSP70 was not expressed in alevins. Following hypoxia, the constitutive isoform of HSP70, HSC70, decreased in transgenics and HSP90 expression decreased in all genotypes. These data suggest that physiological changes through GH transgenesis and polyploidy are manifested during early ontogeny in Atlantic salmon.
Collapse
Affiliation(s)
- Elias T Polymeropoulos
- CSIRO National Food Futures Flagship, CSIRO Marine and Atmospheric Research, GPO Box 1538, Hobart, TAS 7001, Australia
| | | | - Sacha LeBlanc
- Department of Biology, Mount Allison University, Sackville, NB, Canada E4L 1G7
| | - Nick G Elliott
- CSIRO National Food Futures Flagship, CSIRO Marine and Atmospheric Research, GPO Box 1538, Hobart, TAS 7001, Australia
| | - Suzie Currie
- Department of Biology, Mount Allison University, Sackville, NB, Canada E4L 1G7
| | | |
Collapse
|
21
|
Chew SF, Ip YK. Excretory nitrogen metabolism and defence against ammonia toxicity in air-breathing fishes. JOURNAL OF FISH BIOLOGY 2014; 84:603-38. [PMID: 24438022 DOI: 10.1111/jfb.12279] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
With the development of air-breathing capabilities, some fishes can emerge from water, make excursions onto land or even burrow into mud during droughts. Air-breathing fishes have modified gill morphology and morphometry and accessory breathing organs, which would tend to reduce branchial ammonia excretion. As ammonia is toxic, air-breathing fishes, especially amphibious ones, are equipped with various strategies to ameliorate ammonia toxicity during emersion or ammonia exposure. These strategies can be categorized into (1) enhancement of ammonia excretion and reduction of ammonia entry, (2) conversion of ammonia to a less toxic product for accumulation and subsequent excretion, (3) reduction of ammonia production and avoidance of ammonia accumulation and (4) tolerance of ammonia at cellular and tissue levels. Active ammonia excretion, operating in conjunction with lowering of ambient pH and reduction in branchial and cutaneous NH₃ permeability, is theoretically the most effective strategy to maintain low internal ammonia concentrations. NH₃ volatilization involves the alkalization of certain epithelial surfaces and requires mechanisms to prevent NH₃ back flux. Urea synthesis is an energy-intensive process and hence uncommon among air-breathing teleosts. Aestivating African lungfishes detoxify ammonia to urea and the accumulated urea is excreted following arousal. Reduction in ammonia production is achieved in some air-breathing fishes through suppression of amino acid catabolism and proteolysis, or through partial amino acid catabolism leading to alanine formation. Others can slow down ammonia accumulation through increased glutamine synthesis in the liver and muscle. Yet, some others develop high tolerance of ammonia at cellular and tissue levels, including tissues in the brain. In summary, the responses of air-breathing fishes to ameliorate ammonia toxicity are many and varied, determined by the behaviour of the species and the nature of the environment in which it lives.
Collapse
Affiliation(s)
- S F Chew
- Natural Sciences and Science Education, National Institute of Education, Nanyang Technological University, 1 Nanyang Walk, Singapore 637616, Republic of Singapore
| | | |
Collapse
|