1
|
Jannus F, Sainz J, Reyes-Zurita FJ. Principal Bioactive Properties of Oleanolic Acid, Its Derivatives, and Analogues. Molecules 2024; 29:3291. [PMID: 39064870 PMCID: PMC11279785 DOI: 10.3390/molecules29143291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 07/10/2024] [Accepted: 07/10/2024] [Indexed: 07/28/2024] Open
Abstract
Natural products have always played an important role in pharmacotherapy, helping to control pathophysiological processes associated with human disease. Thus, natural products such as oleanolic acid (OA), a pentacyclic triterpene that has demonstrated important activities in several disease models, are in high demand. The relevant properties of this compound have motivated re-searchers to search for new analogues and derivatives using the OA as a scaffold to which new functional groups have been added or modifications have been realized. OA and its derivatives have been shown to be effective in the treatment of inflammatory processes, triggered by chronic diseases or bacterial and viral infections. OA and its derivatives have also been found to be effective in diabetic disorders, a group of common endocrine diseases characterized by hyperglycemia that can affect several organs, including the liver and brain. This group of compounds has been reported to exhibit significant bioactivity against cancer processes in vitro and in vivo. In this review, we summarize the bioactive properties of OA and its derivatives as anti-inflammatory, anti-bacterial, antiviral, anti-diabetic, hepatoprotective, neuroprotective, and anticancer agents.
Collapse
Affiliation(s)
- Fatin Jannus
- Department of Biochemistry and Molecular Biology I, Faculty of Sciences, University of Granada, Av. Fuentenueva, 18071 Granada, Spain;
| | - Juan Sainz
- Department of Biochemistry and Molecular Biology I, Faculty of Sciences, University of Granada, Av. Fuentenueva, 18071 Granada, Spain;
- Genomic Oncology Area, GENYO, Centre for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Government, Av. de la Ilustración, 114, PTS, 18016 Granada, Spain
- Instituto de Investigación Biosanitaria IBs.Granada, 18010 Granada, Spain
- Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), University of Barcelona, 08908 Barcelona, Spain
| | - Fernando J. Reyes-Zurita
- Department of Biochemistry and Molecular Biology I, Faculty of Sciences, University of Granada, Av. Fuentenueva, 18071 Granada, Spain;
- Instituto de Investigación Biosanitaria IBs.Granada, 18010 Granada, Spain
| |
Collapse
|
2
|
Pang Q, You L, Meng X, Li Y, Deng T, Li D, Zhu B. Regulation of the JAK/STAT signaling pathway: The promising targets for cardiovascular disease. Biochem Pharmacol 2023; 213:115587. [PMID: 37187275 DOI: 10.1016/j.bcp.2023.115587] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 05/05/2023] [Accepted: 05/08/2023] [Indexed: 05/17/2023]
Abstract
Individuals have known that Janus kinase (JAK) signal transducer and activator of transcription (STAT) signaling pathway was involved in the growth of the cell, cell differentiation courses advancement, immune cellular survival, as well as hematopoietic system advancement. Researches in the animal models have already uncovered a JAK/STAT regulatory function in myocardial ischemia-reperfusion injury (MIRI), acute myocardial infarction (MI), hypertension, myocarditis, heart failure, angiogenesis and fibrosis. Evidences originating in these studies indicate a therapeutic JAK/STAT function in cardiovascular diseases (CVDs). In this retrospection, various JAK/STAT functions in the normal and ill hearts were described. Moreover, the latest figures about JAK/STAT were summarized under the background of CVDs. Finally, we discussed the clinical transformation prospects and technical limitations of JAK/STAT as the potential therapeutic targets for CVDs. This collection of evidences has essential meanings for the clinical application of JAK/STAT as medicinal agents for CVDs. In this retrospection, various JAK/STAT functions in the normal and ill hearts were described. Moreover, the latest figures about JAK/STAT were summarized under the background of CVDs. Finally, we discussed the clinical transformation prospects and toxicity of JAK/STAT inhibitors as potential therapeutic targets for CVDs. This collection of evidences has essential meanings for the clinical application of JAK/STAT as medicinal agents for CVDs.
Collapse
Affiliation(s)
- Qiuyu Pang
- Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, China
| | - Lu You
- Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, China
| | - Xiangmin Meng
- Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, China
| | - Yumeng Li
- Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, China
| | - Tian Deng
- Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, China
| | - Deyong Li
- Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, China
| | - Bingmei Zhu
- Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
3
|
Nayak M, Das D, Pradhan J, Ahmed R, Laureano-Melo R, Dandapat J. Epigenetic signature in neural plasticity: the journey so far and journey ahead. Heliyon 2022; 8:e12292. [PMID: 36590572 PMCID: PMC9798197 DOI: 10.1016/j.heliyon.2022.e12292] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 10/31/2022] [Accepted: 12/05/2022] [Indexed: 12/23/2022] Open
Abstract
Neural plasticity is a remarkable characteristic of the brain which allows neurons to rewire their structure in response to internal and external stimuli. Many external stimuli collectively referred to as 'epigenetic factors' strongly influence structural and functional reorganization of the brain, thereby acting as a potential driver of neural plasticity. DNA methylation and demethylation, histone acetylation, and deacetylation are some of the frontline epigenetic mechanisms behind neural plasticity. Epigenetic signature molecules (mostly proteins) play a pivotal role in epigenetic reprogramming. Though neuro-epigenetics is an incredibly important field of emerging research, the critical role of signature proteins associated with epigenetic alteration and their involvement in neural plasticity needs further attention. This study gives an integrated and systematic overview of the current state of knowledge with a clear idea of types of neural plasticity and the context-dependent role of epigenetic signature molecules and their modulation by some natural bioactive compounds.
Collapse
Affiliation(s)
- Madhusmita Nayak
- Post-Graduate Department of Biotechnology, Utkal University, Bhubaneswar 751004, Odisha, India,Centre of Excellence in Integrated Omics and Computational Biology, Utkal University, Bhubaneswar 751004, Odisha, India
| | - Diptimayee Das
- Post-Graduate Department of Biotechnology, Utkal University, Bhubaneswar 751004, Odisha, India,Faculty of Allied Health Science, Chettinad Academy of Research and Education, Chettinad Hospital and Research Institute, Chennai India
| | - Jyotsnarani Pradhan
- Post-Graduate Department of Biotechnology, Utkal University, Bhubaneswar 751004, Odisha, India,Corresponding author.
| | - R.G. Ahmed
- Division of Anatomy and Embryology, Zoology Department, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt
| | - Roberto Laureano-Melo
- Barra Mansa University Center, R. Ver. Pinho de Carvalho, 267, 27330-550, Barra Mansa, Rio de Janeiro, Brazil
| | - Jagneshwar Dandapat
- Post-Graduate Department of Biotechnology, Utkal University, Bhubaneswar 751004, Odisha, India,Centre of Excellence in Integrated Omics and Computational Biology, Utkal University, Bhubaneswar 751004, Odisha, India,Corresponding author.
| |
Collapse
|
4
|
The Use of Bioactive Compounds in Hyperglycemia- and Amyloid Fibrils-Induced Toxicity in Type 2 Diabetes and Alzheimer’s Disease. Pharmaceutics 2022; 14:pharmaceutics14020235. [PMID: 35213966 PMCID: PMC8879577 DOI: 10.3390/pharmaceutics14020235] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/14/2022] [Accepted: 01/19/2022] [Indexed: 12/29/2022] Open
Abstract
It has become increasingly apparent that defective insulin signaling may increase the risk for developing Alzheimer’s disease (AD), influence neurodegeneration through promotion of amyloid formation or by increasing inflammatory responses to intraneuronal β-amyloid. Recent work has demonstrated that hyperglycemia is linked to cognitive decline, with elevated levels of glucose causing oxidative stress in vulnerable tissues such as the brain. The ability of β-amyloid peptide to form β-sheet-rich aggregates and induce apoptosis has made amyloid fibrils a leading target for the development of novel pharmacotherapies used in managing and treatment of neuropathological conditions such as AD-related cognitive decline. Additionally, deposits of β-sheets folded amylin, a glucose homeostasis regulator, are also present in diabetic patients. Thus, therapeutic compounds capable of reducing intracellular protein aggregation in models of neurodegenerative disorders may prove useful in ameliorating type 2 diabetes mellitus symptoms. Furthermore, both diabetes and neurodegenerative conditions, such as AD, are characterized by chronic inflammatory responses accompanied by the presence of dysregulated inflammatory biomarkers. This review presents current evidence describing the role of various small bioactive molecules known to ameliorate amyloidosis and subsequent effects in prevention and development of diabetes and AD. It also highlights the potential efficacy of peptide–drug conjugates capable of targeting intracellular targets.
Collapse
|
5
|
Hu X, Li J, Fu M, Zhao X, Wang W. The JAK/STAT signaling pathway: from bench to clinic. Signal Transduct Target Ther 2021; 6:402. [PMID: 34824210 PMCID: PMC8617206 DOI: 10.1038/s41392-021-00791-1] [Citation(s) in RCA: 842] [Impact Index Per Article: 280.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 09/09/2021] [Accepted: 09/21/2021] [Indexed: 02/08/2023] Open
Abstract
The Janus kinase/signal transducer and activator of transcription (JAK/STAT) signaling pathway was discovered more than a quarter-century ago. As a fulcrum of many vital cellular processes, the JAK/STAT pathway constitutes a rapid membrane-to-nucleus signaling module and induces the expression of various critical mediators of cancer and inflammation. Growing evidence suggests that dysregulation of the JAK/STAT pathway is associated with various cancers and autoimmune diseases. In this review, we discuss the current knowledge about the composition, activation, and regulation of the JAK/STAT pathway. Moreover, we highlight the role of the JAK/STAT pathway and its inhibitors in various diseases.
Collapse
Affiliation(s)
- Xiaoyi Hu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy Chengdu, 610041, Sichuan, P. R. China
- Department of Gynecology and Obstetrics, Development and Related Disease of Women and Children Key Laboratory of Sichuan Province, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second Hospital, Sichuan University, 610041, Chengdu, P. R. China
| | - Jing Li
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy Chengdu, 610041, Sichuan, P. R. China
| | - Maorong Fu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy Chengdu, 610041, Sichuan, P. R. China
| | - Xia Zhao
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy Chengdu, 610041, Sichuan, P. R. China.
- Department of Gynecology and Obstetrics, Development and Related Disease of Women and Children Key Laboratory of Sichuan Province, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second Hospital, Sichuan University, 610041, Chengdu, P. R. China.
| | - Wei Wang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy Chengdu, 610041, Sichuan, P. R. China.
| |
Collapse
|
6
|
An J, Chen B, Tian D, Guo Y, Yan Y, Yang H. Regulation of Neurogenesis and Neuronal Differentiation by Natural Compounds. Curr Stem Cell Res Ther 2021; 17:756-771. [PMID: 34493197 DOI: 10.2174/1574888x16666210907141447] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 07/15/2021] [Accepted: 07/28/2021] [Indexed: 11/22/2022]
Abstract
Neuronal damage or degeneration is the main feature of neurological diseases. Regulation of neurogenesis and neuronal differentiation is important in developing therapies to promote neuronal regeneration or synaptic network reconstruction. Neurogenesis is a multistage process in which neurons are generated and integrated into existing neuronal circuits. Neuronal differentiation is extremely complex because it can occur in different cell types and can be caused by a variety of inducers. Recently, natural compounds that induce neurogenesis and neuronal differentiation have attracted extensive attention. In this paper, the potential neural induction effects of medicinal plant-derived natural compounds on neural stem/progenitor cells (NS/PCs), the cultured neuronal cells, and mesenchymal stem cells (MSCs) are reviewed. The natural compounds that are efficacious in inducing neurogenesis and neuronal differentiation include phenolic acids, polyphenols, flavonoids, glucosides, alkaloids, terpenoids, quinones, coumarins, and others. They exert neural induction effects by regulating signal factors and cell-specific genes involved in the process of neurogenesis and neuronal differentiation, including specific proteins (β-tubulin III, MAP-2, tau, nestin, neurofilaments, GFAP, GAP-43, NSE), related genes and proteins (STAT3, Hes1, Mash1, NeuroD1, notch, cyclin D1, SIRT1, reggie-1), transcription factors (CREB, Nkx-2.5, Ngn1), neurotrophins (BDNF, NGF, NT-3) and signaling pathways (JAK/STAT, Wnt/β-catenin, MAPK, PI3K/Akt, GSK-3β/β-catenin, Ca2+/CaMKII/ATF1, Nrf2/HO-1, BMP). The natural compounds with neural induction effects are of great value for neuronal regenerative medicine and provide promising prevention and treatment strategies for neurological diseases.
Collapse
Affiliation(s)
- Jing An
- Translational Medicine Centre, Honghui Hospital, Xi'an Jiaotong University, Xi'an. China
| | - Bo Chen
- Translational Medicine Centre, Honghui Hospital, Xi'an Jiaotong University, Xi'an. China
| | - Ding Tian
- Translational Medicine Centre, Honghui Hospital, Xi'an Jiaotong University, Xi'an. China
| | - Yunshan Guo
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an. China
| | - Yuzhu Yan
- Clinical Lab, Honghui Hospital, Xi'an Jiaotong University, Xi'an. China
| | - Hao Yang
- Translational Medicine Centre, Honghui Hospital, Xi'an Jiaotong University, Xi'an. China
| |
Collapse
|
7
|
Krishnan M, Kumar S, Kangale LJ, Ghigo E, Abnave P. The Act of Controlling Adult Stem Cell Dynamics: Insights from Animal Models. Biomolecules 2021; 11:biom11050667. [PMID: 33946143 PMCID: PMC8144950 DOI: 10.3390/biom11050667] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 04/02/2021] [Accepted: 04/09/2021] [Indexed: 12/12/2022] Open
Abstract
Adult stem cells (ASCs) are the undifferentiated cells that possess self-renewal and differentiation abilities. They are present in all major organ systems of the body and are uniquely reserved there during development for tissue maintenance during homeostasis, injury, and infection. They do so by promptly modulating the dynamics of proliferation, differentiation, survival, and migration. Any imbalance in these processes may result in regeneration failure or developing cancer. Hence, the dynamics of these various behaviors of ASCs need to always be precisely controlled. Several genetic and epigenetic factors have been demonstrated to be involved in tightly regulating the proliferation, differentiation, and self-renewal of ASCs. Understanding these mechanisms is of great importance, given the role of stem cells in regenerative medicine. Investigations on various animal models have played a significant part in enriching our knowledge and giving In Vivo in-sight into such ASCs regulatory mechanisms. In this review, we have discussed the recent In Vivo studies demonstrating the role of various genetic factors in regulating dynamics of different ASCs viz. intestinal stem cells (ISCs), neural stem cells (NSCs), hematopoietic stem cells (HSCs), and epidermal stem cells (Ep-SCs).
Collapse
Affiliation(s)
- Meera Krishnan
- Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone, Gurgaon-Faridabad Ex-pressway, Faridabad 121001, India; (M.K.); (S.K.)
| | - Sahil Kumar
- Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone, Gurgaon-Faridabad Ex-pressway, Faridabad 121001, India; (M.K.); (S.K.)
| | - Luis Johnson Kangale
- IRD, AP-HM, SSA, VITROME, Aix-Marseille University, 13385 Marseille, France;
- Institut Hospitalo Universitaire Méditerranée Infection, 13385 Marseille, France;
| | - Eric Ghigo
- Institut Hospitalo Universitaire Méditerranée Infection, 13385 Marseille, France;
- TechnoJouvence, 13385 Marseille, France
| | - Prasad Abnave
- Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone, Gurgaon-Faridabad Ex-pressway, Faridabad 121001, India; (M.K.); (S.K.)
- Correspondence:
| |
Collapse
|
8
|
Sen A. Prophylactic and therapeutic roles of oleanolic acid and its derivatives in several diseases. World J Clin Cases 2020; 8:1767-1792. [PMID: 32518769 PMCID: PMC7262697 DOI: 10.12998/wjcc.v8.i10.1767] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Revised: 03/27/2020] [Accepted: 04/30/2020] [Indexed: 02/05/2023] Open
Abstract
Oleanolic acid (OA) and its derivatives are widely found in diverse plants and are naturally effective pentacyclic triterpenoid compounds with broad prophylactic and therapeutic roles in various diseases such as ulcerative colitis, multiple sclerosis, metabolic disorders, diabetes, hepatitis and different cancers. This review assembles and presents the latest in vivo reports on the impacts of OA and OA derivatives from various plant sources and the biological mechanisms of OA activities. Thus, this review presents sufficient data proposing that OA and its derivatives are potential alternative and complementary therapies for the treatment and management of several diseases.
Collapse
Affiliation(s)
- Alaattin Sen
- Department of Molecular Biology and Genetics, Faculty of Life and Natural Sciences, Abdullah Gul University, Kayseri 38080, Turkey
| |
Collapse
|
9
|
Pan Z, Xiong F, Chen YL, Wan GG, Zhang Y, Chen ZW, Cao WF, Zhou GY. Traceability of Geographical Origin in Gentiana straminea by UPLC-Q Exactive Mass and Multivariate Analyses. Molecules 2019; 24:E4478. [PMID: 31817679 PMCID: PMC6943584 DOI: 10.3390/molecules24244478] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 12/03/2019] [Accepted: 12/04/2019] [Indexed: 12/31/2022] Open
Abstract
The root of Gentiana straminea Maxim. (Gentianaceae), is officially listed as "Qin-Jiao" in the Chinese Pharmacopoeia for the treatment of rheumatic arthritis, icteric hepatitis, constipation, pain, and hypertension. To establish the geographical origin traceability in G. straminea, its chemical profiles were determined by a UPLC-Q exactive mass spectrometer, from which 43 compounds were identified by comparing retention times and mass spectrometry. Meanwhile, a pair of isomers (loganin and secologanol) was identified by mass spectrometry based on their fragmentation pathway. A total of 42 samples from difference habitats were determined by an UPLC-Q exactive mass spectrometer and the data were assayed with multivariate statistical analysis. Eight characteristic compounds were identified to determine the geographical origin of the herb. To estimate the key characteristic markers associated with pharmacological function, the inhibiting activities of nitric oxide (NO) production in lipopolysaccharide (LPS)-induced macrophages were examined. This finding is crucial in realizing the determination of botanical origin and evaluating the quality of G. straminea.
Collapse
Affiliation(s)
- Zheng Pan
- College of Traditional Chinese Medicine, Chongqing Medical University, Chongqing 400016, China; (G.-G.W.); (W.-F.C.)
| | - Feng Xiong
- Qinghai Provincial Key Laboratory of Qinghai-Tibet Plateau Biological Resources, Northwest Institute of Plateau Biology, Chinese Academy of Science, Xining 810008, China;
| | - Yi-Long Chen
- Chongqing Academy of Chinese Materia Medica, Chongqing 404000, China;
| | - Guo-Guo Wan
- College of Traditional Chinese Medicine, Chongqing Medical University, Chongqing 400016, China; (G.-G.W.); (W.-F.C.)
| | - Yi Zhang
- Centre for Academic Inheritance and Innovation of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 611130, China;
| | - Zhi-Wei Chen
- Chongqing Key Laboratory of Traditional Chinese Medicine for Prevention and Cure of Metabolic Diseases, Chongqing 400016, China;
| | - Wen-Fu Cao
- College of Traditional Chinese Medicine, Chongqing Medical University, Chongqing 400016, China; (G.-G.W.); (W.-F.C.)
| | - Guo-Ying Zhou
- Qinghai Provincial Key Laboratory of Qinghai-Tibet Plateau Biological Resources, Northwest Institute of Plateau Biology, Chinese Academy of Science, Xining 810008, China;
| |
Collapse
|
10
|
Liu Y, Yu M, Jiang D. Downregulation of STAT1 induces the differentiation of neural stem cells through JNK pathway. Tissue Cell 2019; 61:61-66. [PMID: 31759408 DOI: 10.1016/j.tice.2019.09.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 09/10/2019] [Accepted: 09/13/2019] [Indexed: 01/13/2023]
Abstract
Neural stem cells (NSCs) generated neurons and glial cells. Thus, it is a preferable candidate to the cell replacement-based therapy against neural disorders. The signaling pathways that regulate differentiation of NSCs are widely studied. In the current study, we used in vitro culture system to elucidate the role of signal transducer and activator of transcription 1 (STAT1) in NSCs' differentiation. Downregulation of STAT1 inhibited the proliferation of NSCs. Meanwhile, we also found STAT1 regulation could control the differentiation of NSCs. More neurons and glia cells were generated from NSCs with STAT1 silencing. This process was mediated by the JNK/STAT1 signaling. STAT1 inhibitor promoted differentiation of NSCs. After transplantation, we observed more neurons generated from NSCs with shRNA-STAT1 treatment. Collectively, this work showed an efficient way to regulate neuronal differentiation of NSCs through regulating the STAT1 expression. This is likely to provide source and theoretical support to cell replacement based theory.
Collapse
Affiliation(s)
- Yigang Liu
- Department of Neurology, Shanghai Tongji Hospital, Tongji University School of Medicine, Shanghai, 200065, China
| | - Min Yu
- Department of Neurology, Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai, 200137, China
| | - Dudu Jiang
- Department of Neurology, Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai, 200137, China.
| |
Collapse
|
11
|
Li D, Liu X, Liu T, Liu H, Tong L, Jia S, Wang YF. Neurochemical regulation of the expression and function of glial fibrillary acidic protein in astrocytes. Glia 2019; 68:878-897. [PMID: 31626364 DOI: 10.1002/glia.23734] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 08/27/2019] [Accepted: 09/17/2019] [Indexed: 12/30/2022]
Abstract
Glial fibrillary acidic protein (GFAP), a type III intermediate filament, is a marker of mature astrocytes. The expression of GFAP gene is regulated by many transcription factors (TFs), mainly Janus kinase-2/signal transducer and activator of transcription 3 cascade and nuclear factor κ-light-chain-enhancer of activated B cell signaling. GFAP expression is also modulated by protein kinase and other signaling molecules that are elicited by neuronal activity and hormones. Abnormal expression of GFAP proteins occurs in neuroinflammation, neurodegeneration, brain edema-eliciting diseases, traumatic brain injury, psychiatric disorders and others. GFAP, mainly in α-isoform, is the major component of cytoskeleton and the scaffold of astrocytes, which is essential for the maintenance of astrocytic structure and shape. GFAP also has highly morphological plasticity because of its quick changes in assembling and polymerizing states in response to environmental challenges. This plasticity and its corresponding cellular morphological changes endow astrocytes the functions of physical barrier between adjacent neurons and stabilizer of extracellular environment. Moreover, GFAP colocalizes and even molecularly associates with many functional molecules. This feature allows GFAP to function as a platform for direct interactions between different molecules. Last, GFAP involves transportation and localization of other functional proteins and thus serves as a protein transport guide in astrocytes. This guiding role of GFAP involves an elastic retraction and extension cytoskeletal network that couples with GFAP reassembling, transporting, and membrane protein recycling machinery. This paper reviews our current understanding of the expression and functions of GFAP as well as their regulation.
Collapse
Affiliation(s)
- Dongyang Li
- Department of Physiology, Harbin Medical University, Harbin, China
| | - Xiaoyu Liu
- Department of Physiology, Harbin Medical University, Harbin, China
| | - Tianming Liu
- Department of Physiology, Harbin Medical University, Harbin, China
| | - Haitao Liu
- Department of Physiology, Harbin Medical University, Harbin, China
| | - Li Tong
- Department of Physiology, Harbin Medical University, Harbin, China
| | - Shuwei Jia
- Department of Physiology, Harbin Medical University, Harbin, China
| | - Yu-Feng Wang
- Department of Physiology, Harbin Medical University, Harbin, China
| |
Collapse
|
12
|
Yang D, Zhou Z, Zhang L. An overview of fungal glycan-based therapeutics. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2019; 163:135-163. [PMID: 31030746 DOI: 10.1016/bs.pmbts.2019.02.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Edible medicinal mushrooms have been traditionally used for health promotion and longevity in China and other East Asian countries for centuries. Structural and pharmacological studies revealed that fungal glycans show multiple physiological and healthy promoting effects including immunomodulation, anti-tumor, anti-aging, anti-oxidation, hypoglycemic, hypolipidemic, anti-radiation, and other effects. Fungal glycans isolated from different kinds of medicinal mushrooms are partially purified and clinically tested. Without serious safety concerns of mostly glycans from edible mushrooms and/or the cultured mycelium, eight of them are approved by Chinese Food and Drug Administration (SFDA) and used clinically in China since 1980s. In this chapter, 185 independent studies involving in biochemical, pharmacological and clinical studies of fungal glycans during the past four decades (1977-2019) from PubMed, CNKI (China National Knowledge Infrastructure) and Wanfang databases are summarized. In future, understanding the fungal glycan-based drugs at molecular biological level would be needed to comprehend the clinical efficacy of glycan-based drugs.
Collapse
Affiliation(s)
- Dandan Yang
- Systems Biology and Medicine Center for Complex Diseases, Affiliated Hospital of Qingdao University, Qingdao, China.
| | - Zijing Zhou
- Systems Biology and Medicine Center for Complex Diseases, Affiliated Hospital of Qingdao University, Qingdao, China; School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
| | - Lijuan Zhang
- Systems Biology and Medicine Center for Complex Diseases, Affiliated Hospital of Qingdao University, Qingdao, China.
| |
Collapse
|
13
|
Zhang X, Zhan G, Jin M, Zhang H, Dang J, Zhang Y, Guo Z, Ito Y. Botany, traditional use, phytochemistry, pharmacology, quality control, and authentication of Radix Gentianae Macrophyllae-A traditional medicine: A review. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2018; 46:142-163. [PMID: 30097114 DOI: 10.1016/j.phymed.2018.04.020] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Revised: 02/17/2018] [Accepted: 04/08/2018] [Indexed: 05/10/2023]
Abstract
BACKGROUND Radix Gentianae Macrophyllae, commonly known as Qinjiao (in Chinese), is dried roots of medicinal plants that belong to Gentianaceae family and Gentiana genus. It has medically been used for the treatment of various diseases such as arthritis, stroke, facial paralysis, and scapulohumeral periarthritis in China since ancient times. PURPOSE The aim of this paper is to provide a comprehensive and constructive overview of Qinjiao mainly containing Gentiana macrophylla Pall., Gentiana straminea Maxim., Gentiana crasicaulis Duthie ex Burk., and Gentiana daurica Fisch. in botany, traditional use, phytochemicals, pharmacology (biological activities and pharmacokinetics), quality control, and authentication according to the up-to-date data of available scientific literatures. MATERIALS AND METHODS All information regarding these four plants was collected from various academic search engines for example Google, Google Scholar, Web of Science, SciFinder, Pubmed, CNKI, and Wanfang. Additional information was obtained from botanical books, Chinese classic texts, and medical monographs. RESULTS So far 166 compounds have been isolated and identified from Qinjiao plants together with Gentiana tibetica King ex Hook. f., Gentiana siphonantha Maxim., Gentiana officinalis H. Smith, and Gentiana waltonii Burk. Their constituents are mainly classified into iridoid glycosides, triterpenes, flavones, sterols, benzene derivatives, etc. The pharmacological studies demonstrate that Qinjiao plants display a wide range of bioactivities e.g. anti-inflammatory, anti-oxidant, hepato-protective, cardio- and neuro-protective, insecticidal, and anti-influenza effects. The conventional quality control is performed by determination of the concentration of some compounds, e.g., gentiopicroside, or establishment of the fingerprint. In addition to seed propagation, tissue culture technology has been used to address the limited supplies and guarantee the sustainable development of Qinjiao in the experimental scale. CONCLUSIONS Although the identification of compounds from Qinjiao and demonstration of medicinal uses in vitro and in vivo have been carried out, various other studies on these plants should deserve our more attention. More efforts should be concentrated on the underlying mechanisms of their beneficial bioactivities. The proper toxic evaluation is indispensable to guarantee the safety, efficacy, and eligibility for medical use. To sum up, the summarized achievements could highlight the importance of Qinjiao and provide a solid foundation for scientists not only to further exploit the therapeutic potentials, but also possibly develop novel drugs in the subsequent research.
Collapse
Affiliation(s)
- Xinxin Zhang
- School of Pharmacy, Xi'an Jiaotong Univeristy, Xi'an 710061, China; Department of Medicine, Imperial College London, London, UK
| | - Guanqun Zhan
- School of Pharmacy, Xi'an Jiaotong Univeristy, Xi'an 710061, China
| | - Ming Jin
- School of Pharmacy, Xi'an Jiaotong Univeristy, Xi'an 710061, China
| | - Hui Zhang
- School of Pharmacy, Xi'an Jiaotong Univeristy, Xi'an 710061, China
| | - Jun Dang
- Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, Qinghai, China
| | - Yan Zhang
- Xi`an Medical University, Xi'an 710021, China
| | - Zengjun Guo
- School of Pharmacy, Xi'an Jiaotong Univeristy, Xi'an 710061, China.
| | - Yoichiro Ito
- Laboratory of Bioseparation Technologies, Biochemistry and Biophysics Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
14
|
Mao S, Li X, Wang J, Ding X, Zhang C, Li L. miR-17-92 facilitates neuronal differentiation of transplanted neural stem/precursor cells under neuroinflammatory conditions. J Neuroinflammation 2016; 13:208. [PMID: 27567678 PMCID: PMC5002215 DOI: 10.1186/s12974-016-0685-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2016] [Accepted: 08/18/2016] [Indexed: 12/18/2022] Open
Abstract
Background Neural stem/precursor cells (NSCs) are of particular interest because of their potential application in cell therapy for brain damage. However, most brain injury cases are followed with neuroinflammatory stress, which affects the lineage selection of grafted NSCs by promoting astrocytogenesis, thus hampering the potential for neural replacement. The present study investigated the role of miR-17-92 in protecting against detrimental effects of neuroinflammation on NSC differentiation in cell therapy. Methods NSCs were treated with conditioned medium from lesioned astrocytes with/without neutralizing antibodies of leukemia inhibitory factor (LIF) or/and ciliary neurotrophic factor (CNTF), respectively. Afterward, the levels of p-STAT3 and p-JAK2 were determined by western blotting while expression of glial fibrillary acidic protein (GFAP) and β-tubulin III was assessed by immunostaining. The activation of JAK-STAT pathway and cell differentiation were also evaluated after we overexpressed miR-17-92 in NSCs under different neuroinflammatory conditions. After the transplantation of miR-17-92-overexpressing NSCs into injured mouse cortex, PH3, nestin, GFAP, and NeuN were analyzed by immunostaining. In addition, motor coordination of mice was evaluated by rotarod test. Results Conditioned medium from lesioned astrocytes activated JAK-STAT pathway and facilitated astrocytic differentiation in NSCs while neutralizing antibodies of LIF and CNTF remarkably attenuated such effects. miR-17-92 cluster repressed the expression of multiple proteins including GP130, CNTFR, JAK2, and STAT3 in JAK-STAT pathway. Overexpression of miR-17-92 in NSCs systematically blocked the activation of JAK-STAT pathway mediated by LIF and CNTF, which facilitated neuronal differentiation in vitro. Furthermore, miR-17-92 increased neuronal generation of grafted NSCs and reduced astrogliosis, which resulted in the improvement of motor coordination of brain-injured mice. Conclusions Our results suggest that miR-17-92 promotes neuronal differentiation of grafted NSCs under neuroinflammatory condition via inhibition of multiple proteins in JAK-STAT pathway. Electronic supplementary material The online version of this article (doi:10.1186/s12974-016-0685-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Susu Mao
- State Key Laboratory of Pharmaceutical Biotechnology, Collaborative Innovation Center of Chemistry for Life Sciences, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, NJU Advanced Institute for Life Sciences (NAILS), School of Life Sciences, Nanjing University, 163 Xianlin Road, Nanjing, Jiangsu, 210023, China.,Jiangsu Key Laboratory of Neuroregeneration, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, China
| | - Xiuhua Li
- State Key Laboratory of Pharmaceutical Biotechnology, Collaborative Innovation Center of Chemistry for Life Sciences, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, NJU Advanced Institute for Life Sciences (NAILS), School of Life Sciences, Nanjing University, 163 Xianlin Road, Nanjing, Jiangsu, 210023, China
| | - Jin Wang
- State Key Laboratory of Pharmaceutical Biotechnology, Collaborative Innovation Center of Chemistry for Life Sciences, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, NJU Advanced Institute for Life Sciences (NAILS), School of Life Sciences, Nanjing University, 163 Xianlin Road, Nanjing, Jiangsu, 210023, China
| | - Xin Ding
- State Key Laboratory of Pharmaceutical Biotechnology, Collaborative Innovation Center of Chemistry for Life Sciences, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, NJU Advanced Institute for Life Sciences (NAILS), School of Life Sciences, Nanjing University, 163 Xianlin Road, Nanjing, Jiangsu, 210023, China
| | - Chenyu Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, Collaborative Innovation Center of Chemistry for Life Sciences, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, NJU Advanced Institute for Life Sciences (NAILS), School of Life Sciences, Nanjing University, 163 Xianlin Road, Nanjing, Jiangsu, 210023, China
| | - Liang Li
- State Key Laboratory of Pharmaceutical Biotechnology, Collaborative Innovation Center of Chemistry for Life Sciences, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, NJU Advanced Institute for Life Sciences (NAILS), School of Life Sciences, Nanjing University, 163 Xianlin Road, Nanjing, Jiangsu, 210023, China.
| |
Collapse
|