1
|
Köse GG, Erdoğmuş A. Dual effect of light and ultrasound for efficient singlet oxygen generation with novel diaxial silicon phthalocyanine sensitizer. Photochem Photobiol 2024; 100:52-66. [PMID: 37431229 DOI: 10.1111/php.13834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 06/22/2023] [Accepted: 06/25/2023] [Indexed: 07/12/2023]
Abstract
To treat a life-threatening disease like cancer, photodynamic therapy (PDT) and sonodynamic therapy (SDT) methods were combined into sono-photodynamic therapy (SPDT) as an effective therapeutic solution. Each day, the usage of phthalocyanine sensitizers increases in the therapeutic applications as they have the ability to produce more reactive oxygen species. In this context, a new diaxially silicon phthalocyanine sensitizer, containing triazole and tert-butyl groups, was synthesized. After elucidating the structure of the complex with elemental analysis, FT-IR, UV-Vis, MALDI-TOF MS and 1 H NMR, its photophysical, photochemical and sono-photochemical properties were examined. When singlet oxygen generation capacity of the new synthesized silicon phthalocyanine complex was determined and compared among photochemical (PDT; ФΔ = 0.59 in DMSO, 0.44 in THF, 0.47 in toluene) and sonophotochemical (SPDT; ФΔ = 0.88 in dimethyl sulfoxide (DMSO), 0.60 in tetrahydrofuran (THF), 0.65 in toluene) methods, it can be said that the complex is a successful sono-photosensitizer that can be used as a good SPDT agent in vitro or in vivo future studies.
Collapse
Affiliation(s)
| | - Ali Erdoğmuş
- Department of Chemistry, Yildiz Technical University, Istanbul, Turkey
| |
Collapse
|
2
|
Khan SU, Trashin S, Beltran V, Korostei YS, Pelmus M, Gorun SM, Dubinina TV, Verbruggen SW, De Wael K. Photoelectrochemical Behavior of Phthalocyanine-Sensitized TiO 2 in the Presence of Electron-Shuttling Mediators. Anal Chem 2022; 94:12723-12731. [PMID: 36094164 DOI: 10.1021/acs.analchem.2c02210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Dye-sensitized TiO2 has found many applications for dye-sensitized solar cells (DSSC), solar-to-chemical energy conversion, water/air purification systems, and (electro)chemical sensors. We report an electrochemical system for testing dye-sensitized materials that can be utilized in photoelectrochemical (PEC) sensors and energy conversion. Unlike related systems, the reported system does not require a direct electron transfer from semiconductors to electrodes. Rather, it relies on electron shuttling by redox mediators. A range of model photocatalytic materials were prepared using three different TiO2 materials (P25, P90, and PC500) and three sterically hindered phthalocyanines (Pcs) with electron-rich tert-butyl substituents (t-Bu4PcZn, t-Bu4PcAlCl, and t-Bu4PcH2). The materials were compared with previously developed TiO2 modified by electron-deficient, also sterically hindered fluorinated phthalocyanine F64PcZn, a singlet oxygen (1O2) producer, as well as its metal-free derivative, F64PcH2. The PEC activity depended on the redox mediator, as well as the type of TiO2 and Pc. By comparing the responses of one-electron shuttles, such as K4Fe(CN)4, and 1O2-reactive electron shuttles, such as phenol, it is possible to reveal the action mechanism of the supported photosensitizers, while the overall activity can be assessed using hydroquinone. t-Bu4PcAlCl showed significantly lower blank responses and higher specific responses toward chlorophenols compared to t-Bu4PcZn due to the electron-withdrawing effect of the Al3+ metal center. The combination of reactivity insights and the need for only microgram amounts of sensing materials renders the reported system advantageous for practical applications.
Collapse
Affiliation(s)
- Shahid Ullah Khan
- A-Sense Lab, Department of Bioscience Engineering, University of Antwerp, Antwerp 2020, Belgium.,NANOlab Center of Excellence, University of Antwerp, Antwerp 2020, Belgium.,DuEL Research Group, Department of Bioscience Engineering, University of Antwerp, Antwerp 2020, Belgium
| | - Stanislav Trashin
- A-Sense Lab, Department of Bioscience Engineering, University of Antwerp, Antwerp 2020, Belgium.,NANOlab Center of Excellence, University of Antwerp, Antwerp 2020, Belgium
| | - Victoria Beltran
- A-Sense Lab, Department of Bioscience Engineering, University of Antwerp, Antwerp 2020, Belgium.,NANOlab Center of Excellence, University of Antwerp, Antwerp 2020, Belgium
| | - Yuliya S Korostei
- Institiute of Physiologically Active Compounds, Russian Academy of Science, Chernogolovka, Moscow Region 14243, Russian Federation
| | - Marius Pelmus
- Department of Chemistry and Biochemistry and the Center for Functional Materials, Seton Hall University, South Orange, New Jersey 07079, United States
| | - Sergiu M Gorun
- Department of Chemistry and Biochemistry and the Center for Functional Materials, Seton Hall University, South Orange, New Jersey 07079, United States
| | - Tatiana V Dubinina
- Institiute of Physiologically Active Compounds, Russian Academy of Science, Chernogolovka, Moscow Region 14243, Russian Federation.,Department of Chemistry, Lomonosov Moscow State University, Moscow 119991, Russian Federation
| | - Sammy W Verbruggen
- NANOlab Center of Excellence, University of Antwerp, Antwerp 2020, Belgium.,DuEL Research Group, Department of Bioscience Engineering, University of Antwerp, Antwerp 2020, Belgium
| | - Karolien De Wael
- A-Sense Lab, Department of Bioscience Engineering, University of Antwerp, Antwerp 2020, Belgium.,NANOlab Center of Excellence, University of Antwerp, Antwerp 2020, Belgium
| |
Collapse
|
3
|
Malyasova AS, Kostrova EA, Abramov IG, Maizlish VE, Koifman OI. Synthesis, acid-base interactions, and photostability of copper(ii) tetrakis(3,5-di-tert-butylbenzoyloxy)phthalocyanine. Russ Chem Bull 2022. [DOI: 10.1007/s11172-021-3360-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
4
|
Tasso TT, Baptista MS. Photosensitized Oxidation of Intracellular Targets: Understanding the Mechanisms to Improve the Efficiency of Photodynamic Therapy. Methods Mol Biol 2022; 2451:261-283. [PMID: 35505023 DOI: 10.1007/978-1-0716-2099-1_18] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The development of improved photosensitizers is a key aspect in the establishment of photodynamic therapy (PDT) as a reliable treatment modality. In this chapter, we discuss how molecular design can lead to photosensitizers with higher selectivity and better efficiency, with focus on the importance of specific intracellular targeting in determining the cell death mechanism and, consequently, the PDT outcome.
Collapse
Affiliation(s)
- Thiago Teixeira Tasso
- Chemistry Department, Institute of Exact Sciences, Universidade Federal de Minas Gerais, Minas Gerais, Brazil
| | - Maurício S Baptista
- Biochemistry Department, Institute of Chemistry, Universidade de São Paulo, São Paulo, Brazil.
| |
Collapse
|
5
|
Mlynarczyk DT, Ziental D, Kolasinski E, Sobotta L, Koczorowski T, Mielcarek J, Goslinski T. Nipagin-Functionalized Porphyrazine and Phthalocyanine-Synthesis, Physicochemical Characterization and Toxicity Study after Deposition on Titanium Dioxide Nanoparticles P25. Molecules 2021; 26:2657. [PMID: 34062815 PMCID: PMC8124671 DOI: 10.3390/molecules26092657] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 04/26/2021] [Accepted: 04/28/2021] [Indexed: 11/16/2022] Open
Abstract
Aza-porphyrinoids exhibit distinct spectral properties in UV-Vis, and they are studied in applications such as photosensitizers in medicine and catalysts in technology. The use of appropriate peripheral substituents allows the modulation of their physicochemical properties. Phthalocyanine and sulfanyl porphyrazine octa-substituted with 4-(butoxycarbonyl)phenyloxy moieties were synthesized and characterized using UV-Vis and NMR spectroscopy, as well as mass spectrometry. A comparison of porphyrazine with phthalocyanine aza-porphyrinoids revealed that phthalocyanine macrocycle exhibits higher singlet oxygen generation quantum yields, reaching the value of 0.29 in DMF. After both macrocycles had been deposited on titanium dioxide nanoparticles P25, the cytotoxicities and photocytotoxicities of the prepared materials were studied using a Microtox® acute toxicity test. The highest cytotoxicity occurred after irradiation with a red light for the material composed of phthalocyanine deposited on titania nanoparticles.
Collapse
Affiliation(s)
- Dariusz T. Mlynarczyk
- Chair and Department of Chemical Technology of Drugs, Poznan University of Medical Sciences, Grunwaldzka 6, 60-780 Poznań, Poland; (E.K.); (T.K.); (T.G.)
| | - Daniel Ziental
- Chair and Department of Inorganic and Analytical Chemistry, Poznan University of Medical Sciences, Grunwaldzka 6, 60-780 Poznań, Poland; (D.Z.); (L.S.); (J.M.)
| | - Emil Kolasinski
- Chair and Department of Chemical Technology of Drugs, Poznan University of Medical Sciences, Grunwaldzka 6, 60-780 Poznań, Poland; (E.K.); (T.K.); (T.G.)
| | - Lukasz Sobotta
- Chair and Department of Inorganic and Analytical Chemistry, Poznan University of Medical Sciences, Grunwaldzka 6, 60-780 Poznań, Poland; (D.Z.); (L.S.); (J.M.)
| | - Tomasz Koczorowski
- Chair and Department of Chemical Technology of Drugs, Poznan University of Medical Sciences, Grunwaldzka 6, 60-780 Poznań, Poland; (E.K.); (T.K.); (T.G.)
| | - Jadwiga Mielcarek
- Chair and Department of Inorganic and Analytical Chemistry, Poznan University of Medical Sciences, Grunwaldzka 6, 60-780 Poznań, Poland; (D.Z.); (L.S.); (J.M.)
| | - Tomasz Goslinski
- Chair and Department of Chemical Technology of Drugs, Poznan University of Medical Sciences, Grunwaldzka 6, 60-780 Poznań, Poland; (E.K.); (T.K.); (T.G.)
| |
Collapse
|
6
|
Çapkın A, Pişkin M, Durmuş M, Bulut M. Spectroscopic, photophysical and photochemical properties of newly metallo-phthalocyanines containing coumarin derivative. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2020.128145] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
7
|
Childress KK, Kim K, Glugla DJ, Musgrave CB, Bowman CN, Stansbury JW. Independent Control of Singlet Oxygen and Radical Generation via Irradiation of a Two-Color Photosensitive Molecule. Macromolecules 2019. [DOI: 10.1021/acs.macromol.9b00424] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Kimberly K. Childress
- Department of Chemical and Biological Engineering, University of Colorado Boulder, 3415 Colorado Avenue, Boulder, Colorado 80303, United States
| | - Kangmin Kim
- Department of Chemistry, University of Colorado Boulder, 215 UCB, Boulder, Colorado 80309, United States
| | - David J. Glugla
- Department of Electrical, Computer, and Energy Engineering, University of Colorado Boulder, 425 UCB, Boulder, Colorado 80303, United States
| | - Charles B. Musgrave
- Department of Chemical and Biological Engineering, University of Colorado Boulder, 3415 Colorado Avenue, Boulder, Colorado 80303, United States
- Department of Chemistry, University of Colorado Boulder, 215 UCB, Boulder, Colorado 80309, United States
- Materials Science and Engineering Program, University of Colorado Boulder, 596 UCB, Boulder, Colorado 80309, United States
- National Renewable Energy Laboratory, Golden, Colorado 80401, United States
| | - Christopher N. Bowman
- Department of Chemical and Biological Engineering, University of Colorado Boulder, 3415 Colorado Avenue, Boulder, Colorado 80303, United States
- Materials Science and Engineering Program, University of Colorado Boulder, 596 UCB, Boulder, Colorado 80309, United States
| | - Jeffrey W. Stansbury
- Department of Chemical and Biological Engineering, University of Colorado Boulder, 3415 Colorado Avenue, Boulder, Colorado 80303, United States
- Department of Craniofacial Biology, School of Dental Medicine, University of Colorado Denver, 12800 East 19th Avenue, Aurora, Colorado 80045, United States
| |
Collapse
|
8
|
Sobotta L, Lijewski S, Dlugaszewska J, Nowicka J, Mielcarek J, Goslinski T. Photodynamic inactivation of Enterococcus faecalis by conjugates of zinc(II) phthalocyanines with thymol and carvacrol loaded into lipid vesicles. Inorganica Chim Acta 2019. [DOI: 10.1016/j.ica.2019.02.031] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
9
|
Chełminiak-Dudkiewicz D, Ziegler-Borowska M, Stolarska M, Sobotta L, Falkowski M, Mielcarek J, Goslinski T, Kowalonek J, Węgrzynowska-Drzymalska K, Kaczmarek H. The chitosan - Porphyrazine hybrid materials and their photochemical properties. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2018; 181:1-13. [PMID: 29482031 DOI: 10.1016/j.jphotobiol.2018.02.021] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Revised: 02/16/2018] [Accepted: 02/18/2018] [Indexed: 10/18/2022]
Abstract
Three magnesium sulfanyl porphyrazines differing in the size of peripheral substituents (3,5-dimethoxybenzylsulfanyl, (3,5-dimethoxybenzyloxy)benzylsulfanyl, 3,5-bis[(3,5-bis[(3,5-dimethoxybenzyloxy)benzyloxy]benzylsulfanyl) were exposed to visible and ultraviolet radiation (UV A + B + C) in order to determine their photochemical properties. The course of photochemical reactions in dimethylformamide solutions and the ability of the systems to generate singlet oxygen were studied by UV-Vis spectroscopy, which additionally gave information on aggregation processes. The porphyrazines were found to be stable upon visible light irradiation conditions, but when exposed to high energy UV radiation, the efficient photodegradation of these macrocycles was observed. Therefore, these three magnesium sulfanyl porphyrazines were incorporated into chitosan matrix. The obtained thin films of chitosan doped with porphyrazines were subjected to polychromatic UV-radiation and studied by spectroscopic methods (UV-Vis, FTIR), scanning electron microscopy (SEM) and atomic force microscopy (AFM). Application of chitosan as a polymer matrix for porphyrazines was found to be successful method that effectively stopped the unwelcome degradation of macrocycles, thus worth considering for their photoprotection. In addition, the surface properties of the hybrid material were determined by contact angle measurements and calculation of surface free energy. Intermolecular interactions between these novel porphyrazines and chitosan were detected. The mechanism of photochemical reactions occurring in studied systems has been discussed.
Collapse
Affiliation(s)
| | - Marta Ziegler-Borowska
- Faculty of Chemistry, Nicolaus Copernicus University in Toruń, Gagarina 7, 87-100 Toruń, Poland
| | - Magdalena Stolarska
- Department of Chemical Technology of Drugs, Poznan University of Medical Sciences, Grunwaldzka 6, 60-780 Poznan, Poland
| | - Lukasz Sobotta
- Department of Inorganic and Analytical Chemistry, Poznan University of Medical Sciences, Grunwaldzka 6, 60-780 Poznan, Poland
| | - Michal Falkowski
- Department of Chemical Technology of Drugs, Poznan University of Medical Sciences, Grunwaldzka 6, 60-780 Poznan, Poland
| | - Jadwiga Mielcarek
- Department of Inorganic and Analytical Chemistry, Poznan University of Medical Sciences, Grunwaldzka 6, 60-780 Poznan, Poland
| | - Tomasz Goslinski
- Department of Chemical Technology of Drugs, Poznan University of Medical Sciences, Grunwaldzka 6, 60-780 Poznan, Poland
| | - Jolanta Kowalonek
- Faculty of Chemistry, Nicolaus Copernicus University in Toruń, Gagarina 7, 87-100 Toruń, Poland
| | | | - Halina Kaczmarek
- Faculty of Chemistry, Nicolaus Copernicus University in Toruń, Gagarina 7, 87-100 Toruń, Poland.
| |
Collapse
|
10
|
Skupin-Mrugalska P, Szczolko W, Gierlich P, Konopka K, Goslinski T, Mielcarek J, Düzgüneş N. Physicochemical properties of liposome-incorporated 2-(morpholin-4-yl)ethoxy phthalocyanines and their photodynamic activity against oral cancer cells. J Photochem Photobiol A Chem 2018. [DOI: 10.1016/j.jphotochem.2017.12.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
11
|
Antimicrobial and anticancer photodynamic activity of a phthalocyanine photosensitizer with N -methyl morpholiniumethoxy substituents in non-peripheral positions. J Inorg Biochem 2017; 172:67-79. [DOI: 10.1016/j.jinorgbio.2017.04.009] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Revised: 03/06/2017] [Accepted: 04/08/2017] [Indexed: 12/29/2022]
|
12
|
Photochemical studies and nanomolar photodynamic activities of phthalocyanines functionalized with 1,4,7-trioxanonyl moieties at their non-peripheral positions. J Inorg Biochem 2016; 155:76-81. [DOI: 10.1016/j.jinorgbio.2015.11.006] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Revised: 09/18/2015] [Accepted: 11/10/2015] [Indexed: 01/10/2023]
|
13
|
Kucinska M, Skupin-Mrugalska P, Szczolko W, Sobotta L, Sciepura M, Tykarska E, Wierzchowski M, Teubert A, Fedoruk-Wyszomirska A, Wyszko E, Gdaniec M, Kaczmarek M, Goslinski T, Mielcarek J, Murias M. Phthalocyanine derivatives possessing 2-(morpholin-4-yl)ethoxy groups as potential agents for photodynamic therapy. J Med Chem 2015; 58:2240-55. [PMID: 25700089 DOI: 10.1021/acs.jmedchem.5b00052] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Three 2-(morpholin-4-yl)ethoxy substituted phthalocyanines were synthesized and characterized. Phthalocyanine derivatives revealed moderate to high quantum yields of singlet oxygen production depending on the solvent applied (e.g., in DMF ranging from 0.25 to 0.53). Their photosensitizing potential for photodynamic therapy was investigated in an in vitro model using cancer cell lines. Biological test results were found particularly encouraging for the zinc(II) phthalocyanine derivative possessing two 2-(morpholin-4-yl)ethoxy substituents in nonperipheral positions. Cells irradiated for 20 min at 2 mW/cm(2) revealed the lowest IC50 value at 0.25 μM for prostate cell line (PC3), whereas 1.47 μM was observed for human malignant melanoma (A375) cells. The cytotoxic activity in nonirradiated cells of novel phthalocyanine was found to be very low. Moreover, the cellular uptake, localization, cell cycle, apoptosis through an ELISA assay, and immunochemistry method were investigated in LNCaP cells. Our results showed that the tested photosensitizer possesses very interesting biological activity, depending on experimental conditions.
Collapse
Affiliation(s)
- Malgorzata Kucinska
- Department of Toxicology, Poznan University of Medical Sciences , Dojazd 30, 60-631 Poznan, Poland
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Bulgakov RA, Kuznetsova NA, Dolotova OV, Solovieva LI, Mack J, Chidawanyika WJU, Kaliya OL, Nyokong T. Synthesis and photophysical properties of covalent conjugates of aqua platinum(II) and octacarboxy-substituted zinc phthalocyanine. J PORPHYR PHTHALOCYA 2012. [DOI: 10.1142/s1088424612501209] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
New covalent conjugates of aqua platinum(II) and octacarboxy-substituted zinc phthalocyanine, bearing one, two, three and four aqua platinum moieties on the periphery of the Pc ligand have been synthesized and characterized. The effect of the stepwise introduction of the aqua platinums on the photophysical and photochemical properties of these compounds has been investigated in dimethylsulfoxide solution. It has been found that aqua platinum moieties have only a limited effect on the dynamics of the singlet and triplet excited states, on the ability to sensitize singlet oxygen formation and on the photostability. Each conjugate has a high singlet oxygen quantum yield (ΦΔ 0.51–0.62) and thus retains potential for use as a dual action anticancer drugs by acting as a sensitizer for PDT in addition to the likely chemotherapeutic effects of the Pt(II) complexes.
Collapse
Affiliation(s)
- Roman A. Bulgakov
- Organic Intermediates and Dyes Institute, B. Sadovaya ¼, Moscow 123995, Russia
| | - Nina A. Kuznetsova
- Organic Intermediates and Dyes Institute, B. Sadovaya ¼, Moscow 123995, Russia
| | - Olga V. Dolotova
- Organic Intermediates and Dyes Institute, B. Sadovaya ¼, Moscow 123995, Russia
| | | | - John Mack
- Department of Chemistry, Rhodes University, Grahamstown 6140, South Africa
| | | | - Oleg L. Kaliya
- Organic Intermediates and Dyes Institute, B. Sadovaya ¼, Moscow 123995, Russia
| | - Tebello Nyokong
- Department of Chemistry, Rhodes University, Grahamstown 6140, South Africa
| |
Collapse
|
15
|
Abstract
Metallophthalocyanines form a very important class of commercial dyes and have achieved significant success in a variety of applications, in which their photostability is of fundamental importance. On this ground, considerable data on phthalocyanine photobleaching were published over recent years. We do not intend to give exhaustive compilation of the photobleaching quantum yields, which are known for wide circle of phthalocyanines in different solvents. This review begins by discussing pertinent background information about processes following phthalocyanine excitation. Then using selected examples of the recent literature, including authors' works, we survey a variety of photobleaching effects from the fundamental origins to specific for phthalocyanine chromophore. Finally, the mechanisms of phthalocyanine oxidative photobleaching are discussed.
Collapse
Affiliation(s)
- Nina A. Kuznetsova
- Organic Intermediates and Dyes Institute, B. Sadovaya ¼, 123995 Moscow, Russia
| | - Oleg L. Kaliya
- Organic Intermediates and Dyes Institute, B. Sadovaya ¼, 123995 Moscow, Russia
| |
Collapse
|
16
|
Kuznetsova NA, Makarov DA, Yuzhakova OA, Solovieva LI, L. Kaliya O. Study on the photostability of water-soluble Zn(II) and Al(III) phthalocyanines in aqueous solution. J PORPHYR PHTHALOCYA 2012. [DOI: 10.1142/s1088424610002835] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The photodegradation of a series of water-soluble Zn(II) and Al(III) phthalocyanines has been studied in aerobic aqueous solutions. The photobleaching quantum yields of zinc phthalocyanine derivatives range from 2.2 × 10-4 for octacarboxy- to 1.5 × 10-5 for ZnPc , bearing 16 positively charged groups on periphery. Their aluminum counterparts are more photostable and photobleach with quantum yields in the narrow range (0.75 ÷ 2 × 10-6). The pH dependences of the photobleaching quantum yields for aluminum phthalocyanines show enhanced photodegradation for molecules with deprotonated axial H2O ligand. Some aspects of the mechanism of dyes photodegradation were studied and discussed. It was found that contribution to photooxidation of type II pathways depends upon a particular dye structure. Thus, no contribution of singlet oxygen to the photooxidation of cationic phthalocyanines has been found, even though singlet oxygen is involved in the photodegradation of negatively charged phthalocyanines.
Collapse
Affiliation(s)
- Nina A. Kuznetsova
- Organic Intermediates and Dyes Institute, B. Sadovaya str. 1/4, Moscow 123995, Russia
| | - Dmitry A. Makarov
- Organic Intermediates and Dyes Institute, B. Sadovaya str. 1/4, Moscow 123995, Russia
| | - Olga A. Yuzhakova
- Organic Intermediates and Dyes Institute, B. Sadovaya str. 1/4, Moscow 123995, Russia
| | - Ludmila I. Solovieva
- Organic Intermediates and Dyes Institute, B. Sadovaya str. 1/4, Moscow 123995, Russia
| | - Oleg L. Kaliya
- Organic Intermediates and Dyes Institute, B. Sadovaya str. 1/4, Moscow 123995, Russia
| |
Collapse
|
17
|
Chidawanyika W, Nyokong T. Spectroscopic and photophysicochemical behaviour of novel cadmium phthalocyanine derivatives tetra-substituted at the alpha and beta positions. J Photochem Photobiol A Chem 2009. [DOI: 10.1016/j.jphotochem.2008.11.014] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
18
|
Kuznetsova N, Makarov D, Derkacheva V, Savvina L, Alekseeva V, Marinina L, Slivka L, Kaliya O, Lukyanets E. Intramolecular energy transfer in rhodamine–phthalocyanine conjugates. J Photochem Photobiol A Chem 2008. [DOI: 10.1016/j.jphotochem.2008.07.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
19
|
Valicsek Z, Lendvay G, Horváth O. Equilibrium, photophysical, photochemical, and quantum chemical examination of anionic mercury(II) mono- and bisporphyrins. J Phys Chem B 2008; 112:14509-24. [PMID: 18954102 DOI: 10.1021/jp804039s] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Mercury(II) ion and 5,10,15,20-tetrakis(parasulfonato-phenyl)porphyrin anion can form 1:1, 2:2, and 3:2 (metal ion/porphyrin) out-of-plane (OOP) complexes, from which Hg2P2(8-) has not been identified until now. Identification of this species significantly promoted the confirmation of the composition and the precise elucidation of the equilibrium of Hg3P2(6-). Since the formation of each complex is too fast, their kinetic behavior was studied from the side of dissociation. The rate-determining step in dissociations, as well as in the formation of the 2:2 complex, that is, the dimerization of 1:1 complex, proved to be virtually first-order under these conditions, while the consecutive formations of HgP(4-) and Hg3P2(6-) are second-order reactions. The equilibria can be spectrophotometrically investigated because the Soret- as well as the Q-absorption bands of the free-base ligand are more and more red-shifted in the series of 1:1, 2:2, and 3:2 complexes, and the split of Q-bands disappears as the singlet-1 excited states become degenerate; in the case of bisporphyrins, the bands broaden, especially in the longer-wavelength region of the spectra. The quantum yield and the lifetime of S1-fluorescence from the macrocycle is decreased by the insertion of a mercury(II) ion due to distortion, and in bisporphyrins the luminescence totally ceases because their more complicated structure promotes other ways of energy dissipation. The lifetime of the triplet excited-state is also reduced by metalation. The transient absorption measured upon excitation of Hg3P2(6-) probably originates from Hg2P2(8-) formed by efficient photodissocation during the laser pulse. This photoinduced dissociation is characteristic to out-of-plane complexes, but in metallo-monoporphyrins it needs the energetically higher Soret-excitation; in bisporphyrins, it can take place during irradiation at the longer Q-wavelengths. Investigation of the intramolecular photoredox reactions has proved that for the increased efficiency of the indirect photoinduced LMCT, not the redox potential, but the position of the metal center is responsible. The two orders of magnitude higher photoredux quantum yield for the 3:2 complex, compared to that of the 2:2 species, can be explained by the repulsive effect of the inner mercury(II) ion pushing the other two farther out of the ligand cavity. In bisporphyrins the second excited states are photochemically more reactive than the first ones, while most of the photochemical processes of HgP(4-) originate from the first excited state. According to our quantum chemical calculations, the mercury(II) ion causes the expansion of the porphyrin-cavity; therefore its out-of-plane position is smaller than the value expected based on its ionic radius. In the hitherto unknown 2:2 dimer two 1:1 saucer-shaped monomers are kept together by secondary forces, mostly by pi-pi interaction, but their relative arrangement was not unequivocally determined by the two DFT functionals used. The arrangements with a symmetry axis or plane perpendicular to both rings are not favored; instead, the two monomers are shifted along the porphyrin planes, either in a Hg-P-Hg-P or a Hg-P-P-Hg order. Our time-dependent density functional theory (TD-DFT) calculations indicate that the electronic spectra are not very sensitive to the structure of the dimer, even though the environment of the porphyrin rings is quite different if one of the metal ions is between or outside of both macrocycles. The calculated spectral shifts agree only partially with the experimental data. The TD-DFT calculations suggest that the chromophores are not fully independent in the bisporphyrins and that the observed spectral shift cannot be uniquely assigned to the geometrical distortion of the porphyrin macrocyle.
Collapse
Affiliation(s)
- Zsolt Valicsek
- Department of General and Inorganic Chemistry, Institute of Chemistry, University of Pannonia, H-8201 Veszprem, P.O. Box 158, Hungary.
| | | | | |
Collapse
|
20
|
Synthesis and solvent effects on the photophysicochemical properties of novel cadmium phenoxy phthalocyanines. J Photochem Photobiol A Chem 2008. [DOI: 10.1016/j.jphotochem.2007.09.020] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
21
|
Nemykin VN, Hadt RG, Belosludov RV, Mizuseki H, Kawazoe Y. Influence of Molecular Geometry, Exchange-Correlation Functional, and Solvent Effects in the Modeling of Vertical Excitation Energies in Phthalocyanines Using Time-Dependent Density Functional Theory (TDDFT) and Polarized Continuum Model TDDFT Methods: Can Modern Computational Chemistry Methods Explain Experimental Controversies? J Phys Chem A 2007; 111:12901-13. [DOI: 10.1021/jp0759731] [Citation(s) in RCA: 134] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Victor N. Nemykin
- Department of Chemistry and Biochemistry, University of Minnesota Duluth, Duluth, Minnesota 55812, and Institute for Materials Research, Tohoku University, Sendai 980-8577, Japan
| | - Ryan G. Hadt
- Department of Chemistry and Biochemistry, University of Minnesota Duluth, Duluth, Minnesota 55812, and Institute for Materials Research, Tohoku University, Sendai 980-8577, Japan
| | - Rodion V. Belosludov
- Department of Chemistry and Biochemistry, University of Minnesota Duluth, Duluth, Minnesota 55812, and Institute for Materials Research, Tohoku University, Sendai 980-8577, Japan
| | - Hiroshi Mizuseki
- Department of Chemistry and Biochemistry, University of Minnesota Duluth, Duluth, Minnesota 55812, and Institute for Materials Research, Tohoku University, Sendai 980-8577, Japan
| | - Yoshiyuki Kawazoe
- Department of Chemistry and Biochemistry, University of Minnesota Duluth, Duluth, Minnesota 55812, and Institute for Materials Research, Tohoku University, Sendai 980-8577, Japan
| |
Collapse
|
22
|
Chauke V, Ogunsipe A, Durmuş M, Nyokong T. Novel gallium(III) phthalocyanine derivatives – Synthesis, photophysics and photochemistry. Polyhedron 2007. [DOI: 10.1016/j.poly.2007.01.016] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|