1
|
Zegers J, Peters M, Albada B. DNA G-quadruplex-stabilizing metal complexes as anticancer drugs. J Biol Inorg Chem 2023; 28:117-138. [PMID: 36456886 PMCID: PMC9981530 DOI: 10.1007/s00775-022-01973-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 11/17/2022] [Indexed: 12/04/2022]
Abstract
Guanine quadruplexes (G4s) are important targets for cancer treatments as their stabilization has been associated with a reduction of telomere ends or a lower oncogene expression. Although less abundant than purely organic ligands, metal complexes have shown remarkable abilities to stabilize G4s, and a wide variety of techniques have been used to characterize the interaction between ligands and G4s. However, improper alignment between the large variety of experimental techniques and biological activities can lead to improper identification of top candidates, which hampers progress of this important class of G4 stabilizers. To address this, we first review the different techniques for their strengths and weaknesses to determine the interaction of the complexes with G4s, and provide a checklist to guide future developments towards comparable data. Then, we surveyed 74 metal-based ligands for G4s that have been characterized to the in vitro level. Of these complexes, we assessed which methods were used to characterize their G4-stabilizing capacity, their selectivity for G4s over double-stranded DNA (dsDNA), and how this correlated to bioactivity data. For the biological activity data, we compared activities of the G4-stabilizing metal complexes with that of cisplatin. Lastly, we formulated guidelines for future studies on G4-stabilizing metal complexes to further enable maturation of this field.
Collapse
Affiliation(s)
- Jaccoline Zegers
- grid.4818.50000 0001 0791 5666Laboratory of Organic Chemistry, Wageningen University and Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands
| | - Maartje Peters
- grid.4818.50000 0001 0791 5666Laboratory of Organic Chemistry, Wageningen University and Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands
| | - Bauke Albada
- Laboratory of Organic Chemistry, Wageningen University and Research, Stippeneng 4, 6708 WE, Wageningen, The Netherlands.
| |
Collapse
|
2
|
Dong J, O'Hagan MP, Willner I. Switchable and dynamic G-quadruplexes and their applications. Chem Soc Rev 2022; 51:7631-7661. [PMID: 35975685 DOI: 10.1039/d2cs00317a] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
G-Quadruplexes attract growing interest as functional constituents in biology, chemistry, nanotechnology, and material science. In particular, the reversible dynamic reconfiguration of G-quadruplexes provides versatile means to switch DNA nanostructures, reversibly control catalytic functions of DNA assemblies, and switch material properties and functions. The present review article discusses the switchable dynamic reconfiguration of G-quadruplexes as central functional and structural motifs that enable diverse applications in DNA nanotechnology and material science. The dynamic reconfiguration of G-quadruplexes has a major impact on the development of DNA switches and DNA machines. The integration of G-quadruplexes with enzymes yields supramolecular assemblies exhibiting switchable catalytic functions guided by dynamic G-quadruplex topologies. In addition, G-quadruplexes act as important building blocks to operate constitutional dynamic networks and transient dissipative networks mimicking complex biological dynamic circuitries. Furthermore, the integration of G-quadruplexes with DNA nanostructures, such as origami tiles, introduces dynamic and mechanical features into these static frameworks. Beyond the dynamic operation of G-quadruplex structures in solution, the assembly of G-quadruplexes on bulk surfaces such as electrodes or nanoparticles provides versatile means to engineer diverse electrochemical and photoelectrochemical devices and to switch the dynamic aggregation/deaggregation of nanoparticles, leading to nanoparticle assemblies that reveal switchable optical properties. Finally, the functionalization of hydrogels, hydrogel microcapsules, or nanoparticle carriers, such as SiO2 nanoparticles or metal-organic framework nanoparticles, yields stimuli-responsive materials exhibiting shape-memory, self-healing, and controlled drug release properties. Indeed, G-quadruplex-modified nanomaterials find growing interest in the area of nanomedicine. Beyond the impressive G-quadruplex-based scientific advances achieved to date, exciting future developments are still anticipated. The review addresses these goals by identifying the potential opportunities and challenges ahead of the field in the coming years.
Collapse
Affiliation(s)
- Jiantong Dong
- Institute of Chemistry, The Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem 91904, Israel.
| | - Michael P O'Hagan
- Institute of Chemistry, The Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem 91904, Israel.
| | - Itamar Willner
- Institute of Chemistry, The Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem 91904, Israel.
| |
Collapse
|
3
|
Keijzer JF, Albada B. Site-Specific and Trigger-Activated Modification of Proteins by Means of Catalytic Hemin/G-quadruplex DNAzyme Nanostructures. Bioconjug Chem 2020; 31:2283-2287. [PMID: 32909740 PMCID: PMC7581286 DOI: 10.1021/acs.bioconjchem.0c00422] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
![]()
Catalytic
nanostructures have the potency to mimic enzymatic features.
In this paper, we show that the complex between hemin and G-quadruplex
DNA efficiently catalyzes the modification of proteins with N-methyl luminol derivatives. Final conversions are reached
within 15–30 min, and LC-MS analysis of tryptic digests of
the proteins shows that the reaction proceeds with chemoselectivity
for electron-rich aromatic residues (Tyr ≫ Trp), and the site-specificity
of the modification depends on the sequence and secondary structure
folding of the G-quadruplex nanostructure. Furthermore, the modification
can be applied on proteins with different biomedical functions, and
the nanostructure can be designed to contain a regulatory element
in order to regulate protein modification by an external stimulus.
Collapse
Affiliation(s)
- Jordi F Keijzer
- Laboratory of Organic Chemistry, Wageningen University & Research, Stippeneng 4, Wageningen 6807 WE, The Netherlands
| | - Bauke Albada
- Laboratory of Organic Chemistry, Wageningen University & Research, Stippeneng 4, Wageningen 6807 WE, The Netherlands
| |
Collapse
|
4
|
Luo G, Biniuri Y, Chen W, Wang J, Neumann E, Marjault H, Nechushtai R, Winkler M, Happe T, Willner I. Modelling Photosynthesis with Zn
II
‐Protoporphyrin All‐DNA G‐Quadruplex/Aptamer Scaffolds. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202002915] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Guo‐Feng Luo
- Institute of Chemistry and Center for Nanoscience and Nanotechnology The Hebrew University of Jerusalem Jerusalem 91904 Israel
| | - Yonatan Biniuri
- Institute of Chemistry and Center for Nanoscience and Nanotechnology The Hebrew University of Jerusalem Jerusalem 91904 Israel
| | - Wei‐Hai Chen
- Institute of Chemistry and Center for Nanoscience and Nanotechnology The Hebrew University of Jerusalem Jerusalem 91904 Israel
| | - Jianbang Wang
- Institute of Chemistry and Center for Nanoscience and Nanotechnology The Hebrew University of Jerusalem Jerusalem 91904 Israel
| | - Ehud Neumann
- Institute of Life Science The Hebrew University of Jerusalem Jerusalem 91904 Israel
| | | | - Rachel Nechushtai
- Institute of Life Science The Hebrew University of Jerusalem Jerusalem 91904 Israel
| | - Martin Winkler
- Department of Biochemistry of Plants Ruhr-University Bochum Germany
| | - Thomas Happe
- Department of Biochemistry of Plants Ruhr-University Bochum Germany
| | - Itamar Willner
- Institute of Chemistry and Center for Nanoscience and Nanotechnology The Hebrew University of Jerusalem Jerusalem 91904 Israel
| |
Collapse
|
5
|
Luo GF, Biniuri Y, Chen WH, Wang J, Neumann E, Marjault HB, Nechushtai R, Winkler M, Happe T, Willner I. Modelling Photosynthesis with Zn II -Protoporphyrin All-DNA G-Quadruplex/Aptamer Scaffolds. Angew Chem Int Ed Engl 2020; 59:9163-9170. [PMID: 32125762 DOI: 10.1002/anie.202002915] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Indexed: 01/03/2023]
Abstract
All-DNA scaffolds act as templates for the organization of photosystem I model systems. A series of DNA templates composed of ZnII -protoporphyrin IX (ZnII PPIX)-functionalized G-quadruplex conjugated to the 3'- or 5'-end of the tyrosinamide (TA) aptamer and ZnII PPIX/G-quadruplex linked to the 3'- and 5'-ends of the TA aptamer through a four-thymidine bridge. Effective photoinduced electron transfer (ET) from ZnII PPIX/G-quadruplex to bipyridinium-functionalized tyrosinamide, TA-MV2+ , bound to the TA aptamer units is demonstrated. The effectiveness of the primary ET quenching of ZnII PPIX/G-quadruplex by TA-MV2+ controls the efficiency of the generation of TA-MV+. . The photosystem-controlled formation of TA-MV+. by the different photosystems dictates the secondary activation of the ET cascade corresponding to the ferredoxin-NADP+ reductase (FNR)-catalysed reduction of NADP+ to NADPH by TA-MV+. , and the sequestered alcohol dehydrogenase catalysed reduction of acetophenone to 1-phenylethanol by NADPH.
Collapse
Affiliation(s)
- Guo-Feng Luo
- Institute of Chemistry and Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem, 91904, Israel
| | - Yonatan Biniuri
- Institute of Chemistry and Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem, 91904, Israel
| | - Wei-Hai Chen
- Institute of Chemistry and Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem, 91904, Israel
| | - Jianbang Wang
- Institute of Chemistry and Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem, 91904, Israel
| | - Ehud Neumann
- Institute of Life Science, The Hebrew University of Jerusalem, Jerusalem, 91904, Israel
| | | | - Rachel Nechushtai
- Institute of Life Science, The Hebrew University of Jerusalem, Jerusalem, 91904, Israel
| | - Martin Winkler
- Department of Biochemistry of Plants, Ruhr-University Bochum, Germany
| | - Thomas Happe
- Department of Biochemistry of Plants, Ruhr-University Bochum, Germany
| | - Itamar Willner
- Institute of Chemistry and Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem, 91904, Israel
| |
Collapse
|
6
|
Mao X, Li Q, Zuo X, Fan C. Catalytic Nucleic Acids for Bioanalysis. ACS APPLIED BIO MATERIALS 2019; 3:2674-2685. [PMID: 35025402 DOI: 10.1021/acsabm.9b00928] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Xiuhai Mao
- Institute of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Qian Li
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xiaolei Zuo
- Institute of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Chunhai Fan
- Institute of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
7
|
Nucleoapzymes: catalyst-aptamer conjugates as enzyme-mimicking structures. Emerg Top Life Sci 2019; 3:493-499. [PMID: 33523165 DOI: 10.1042/etls20190054] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 08/06/2019] [Accepted: 08/07/2019] [Indexed: 12/31/2022]
Abstract
The conjugation of catalytic sites to sequence-specific, ligand-binding nucleic acid aptamers yields functional catalytic ensembles mimicking the catalytic/binding properties of native enzymes. These catalyst-aptamer conjugates termed 'nucleoapzymes' reveal structural diversity, and thus, vary in their catalytic activity, due to the different modes of conjugation of the catalytic units to the nucleic acid aptamer scaffold. The concept of nucleoapzymes is introduced with the assembly of a set of catalysts consisting of the hemin/G-quadruplex DNAzyme (hGQ) conjugated to the dopamine aptamer. The nucleoapzymes catalyze the oxidation of dopamine by H2O2 to yield aminochrome. The catalytic processes are controlled by the structures of the nucleoapzymes, and chiroselective oxidation of l-DOPA and d-DOPA by the nucleoapzymes is demonstrated. In addition, the conjugation of a Fe(III)-terpyridine complex to the dopamine aptamer and of a bis-Zn(II)-pyridyl-salen-type complex to the ATP-aptamer yields hybrid nucleoapzymes (conjugates where the catalytic site is not a biomolecule) that catalyze the oxidation of dopamine to aminochrome by H2O2 and the hydrolysis of ATP to ADP, respectively. Variable, structure-controlled catalytic activities of the different nucleoapzymes are demonstrated. Molecular dynamic simulations are applied to rationalize the structure-catalytic function relationships of the different nucleoapzymes. The challenges and perspectives of the research field are discussed.
Collapse
|
8
|
|
9
|
Wang Z, Li Y, Wang H, Wan K, Liu Q, Shi X, Ding B. Enzyme Mimic Based on a Self‐Assembled Chitosan/DNA Hybrid Exhibits Superior Activity and Tolerance. Chemistry 2019; 25:12576-12582. [DOI: 10.1002/chem.201902509] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 07/15/2019] [Indexed: 01/08/2023]
Affiliation(s)
- Zhen‐Gang Wang
- CAS Key Laboratory of Nanosystem and Hierarchical FabricationLaboratory of Theoretical and Computational NanoscienceCAS Center for Excellence in NanoscienceNational Center for Nanoscience and Technology 11 BeiYiTiao, ZhongGuanCun Beijing 100190 China
- State Key Laboratory of Organic-Inorganic CompositesBeijing University of Chemical Technology Beijing 100029 China
| | - Yunzhe Li
- CAS Key Laboratory of Nanosystem and Hierarchical FabricationLaboratory of Theoretical and Computational NanoscienceCAS Center for Excellence in NanoscienceNational Center for Nanoscience and Technology 11 BeiYiTiao, ZhongGuanCun Beijing 100190 China
| | - Hui Wang
- CAS Key Laboratory of Nanosystem and Hierarchical FabricationLaboratory of Theoretical and Computational NanoscienceCAS Center for Excellence in NanoscienceNational Center for Nanoscience and Technology 11 BeiYiTiao, ZhongGuanCun Beijing 100190 China
| | - Kaiwei Wan
- CAS Key Laboratory of Nanosystem and Hierarchical FabricationLaboratory of Theoretical and Computational NanoscienceCAS Center for Excellence in NanoscienceNational Center for Nanoscience and Technology 11 BeiYiTiao, ZhongGuanCun Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Qing Liu
- CAS Key Laboratory of Nanosystem and Hierarchical FabricationLaboratory of Theoretical and Computational NanoscienceCAS Center for Excellence in NanoscienceNational Center for Nanoscience and Technology 11 BeiYiTiao, ZhongGuanCun Beijing 100190 China
| | - Xinghua Shi
- CAS Key Laboratory of Nanosystem and Hierarchical FabricationLaboratory of Theoretical and Computational NanoscienceCAS Center for Excellence in NanoscienceNational Center for Nanoscience and Technology 11 BeiYiTiao, ZhongGuanCun Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Baoquan Ding
- CAS Key Laboratory of Nanosystem and Hierarchical FabricationLaboratory of Theoretical and Computational NanoscienceCAS Center for Excellence in NanoscienceNational Center for Nanoscience and Technology 11 BeiYiTiao, ZhongGuanCun Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| |
Collapse
|
10
|
Kotras C, Fossépré M, Roger M, Gervais V, Richeter S, Gerbier P, Ulrich S, Surin M, Clément S. A Cationic Tetraphenylethene as a Light-Up Supramolecular Probe for DNA G-Quadruplexes. Front Chem 2019; 7:493. [PMID: 31355185 PMCID: PMC6637260 DOI: 10.3389/fchem.2019.00493] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2019] [Accepted: 06/26/2019] [Indexed: 11/13/2022] Open
Abstract
Guanine-quadruplexes (G4s) are targets for anticancer therapeutics. In this context, human telomeric DNA (HT-DNA) that can fold into G4s sequences are of particular interest, and their stabilization with small molecules through a visualizable process has become a challenge. As a new type of ligand for HT-G4, we designed a tetraimidazolium tetraphenylethene (TPE-Im) as a water-soluble light-up G4 probe. We study its G4-binding properties with HT-DNA by UV-Visible absorption, circular dichroism and fluorescence spectroscopies, which provide insights into the interactions between TPE-Im and G4-DNA. Remarkably, TPE-Im shows a strong fluorescence enhancement and large shifts upon binding to G4, which is valuable for detecting G4s. The association constants for the TPE-Im/G4 complex were evaluated in different solution conditions via isothermal titration calorimetry (ITC), and its binding modes were explored by molecular modeling showing a groove-binding mechanism. The stabilization of G4 by TPE-Im has been assessed by Fluorescence Resonance Energy Transfer (FRET) melting assays, which show a strong stabilization (ΔT 1/2 around +20°C), together with a specificity toward G4 with respect to double-stranded DNA.
Collapse
Affiliation(s)
- Clément Kotras
- ICGM Institut Charles Gerhardt Montpellier, UMR 5253, CNRS, Université de Montpellier, ENSCM, Montpellier, France.,Laboratory for Chemistry of Novel Materials, Center of Innovation and Research in Materials and Polymers, University of Mons-UMONS, Mons, Belgium
| | - Mathieu Fossépré
- Laboratory for Chemistry of Novel Materials, Center of Innovation and Research in Materials and Polymers, University of Mons-UMONS, Mons, Belgium
| | - Maxime Roger
- ICGM Institut Charles Gerhardt Montpellier, UMR 5253, CNRS, Université de Montpellier, ENSCM, Montpellier, France
| | - Virginie Gervais
- Institut de Pharmacologie et de Biologie Structurale, CNRS, IPBS, Université de Toulouse, Toulouse, France
| | - Sébastien Richeter
- ICGM Institut Charles Gerhardt Montpellier, UMR 5253, CNRS, Université de Montpellier, ENSCM, Montpellier, France
| | - Philippe Gerbier
- ICGM Institut Charles Gerhardt Montpellier, UMR 5253, CNRS, Université de Montpellier, ENSCM, Montpellier, France
| | - Sébastien Ulrich
- Institut des Biomolécules Max Mousseron, IBMM, UMR 5247, CNRS, Université de Montpellier, ENSCM, Montpellier, France
| | - Mathieu Surin
- Laboratory for Chemistry of Novel Materials, Center of Innovation and Research in Materials and Polymers, University of Mons-UMONS, Mons, Belgium
| | - Sébastien Clément
- ICGM Institut Charles Gerhardt Montpellier, UMR 5253, CNRS, Université de Montpellier, ENSCM, Montpellier, France
| |
Collapse
|
11
|
Zhou Z, Liu X, Yue L, Willner I. Controlling the Catalytic and Optical Properties of Aggregated Nanoparticles or Semiconductor Quantum Dots Using DNA-Based Constitutional Dynamic Networks. ACS NANO 2018; 12:10725-10735. [PMID: 30256615 DOI: 10.1021/acsnano.8b05452] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Nucleic acid-based constitutional dynamic networks (CDNs) attract growing interest as a means to mimic complex biological networks. The triggered stabilization of the CDNs allows the dictated guided reversible reconfiguration and re-equilibration of the CDNs to other CDN configurations, where some of the constituents are up-regulated, while other constituents are down-regulated. Although substantial progress in controlling the adaptive dynamic control of the compositions of networks by means of auxiliary triggers was demonstrated, the use of CDNs as active ensembles for controlling chemical functionalities is still a challenge. We report on the assembly of signal-triggered CDN systems that guide the switchable aggregation of Au nanoparticles (NPs), thereby controlling their plasmonic properties and their catalytic functions (Au NPs-catalyzed oxidation of l-DOPA to dopachrome). In addition, we demonstrate that the triggered and orthogonal up-regulation and down-regulation of the constituents of the CDNs leads to the dictated aggregation of different-sized CdSe/ZnS quantum dots (QDs), cross-linked by K+-ion-stabilized G-quadruplex units. The incorporation of hemin into the G-quadruplex cross-linking units yields horseradish peroxidase-mimicking DNAzyme units that catalyze the generation of chemiluminescence via the oxidation of luminol by H2O2. The resulting chemiluminescence stimulates the chemiluminescence resonance energy transfer (CRET) process to the QDs, resulting in the luminescence of the two-sized QDs. By the application of appropriate triggers, the CDN-dictated up-regulation and down-regulation of the different-sized QDs aggregates are demonstrated, and the control over the photophysical functions of the different-sized QDs, by means of the CDNs, is highlighted.
Collapse
Affiliation(s)
- Zhixin Zhou
- Institute of Chemistry , The Hebrew University of Jerusalem , Jerusalem 91904 , Israel
| | - Xia Liu
- Institute of Chemistry , The Hebrew University of Jerusalem , Jerusalem 91904 , Israel
| | - Liang Yue
- Institute of Chemistry , The Hebrew University of Jerusalem , Jerusalem 91904 , Israel
| | - Itamar Willner
- Institute of Chemistry , The Hebrew University of Jerusalem , Jerusalem 91904 , Israel
| |
Collapse
|
12
|
Wang S, Yue L, Li Z, Zhang J, Tian H, Willner I. Light‐Induced Reversible Reconfiguration of DNA‐Based Constitutional Dynamic Networks: Application to Switchable Catalysis. Angew Chem Int Ed Engl 2018; 57:8105-8109. [DOI: 10.1002/anie.201803371] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Indexed: 12/18/2022]
Affiliation(s)
- Shan Wang
- Institute of ChemistryThe Center for Nanoscience and NanotechnologyThe Hebrew University of Jerusalem Jerusalem 91904 Israel
| | - Liang Yue
- Institute of ChemistryThe Center for Nanoscience and NanotechnologyThe Hebrew University of Jerusalem Jerusalem 91904 Israel
| | - Zi‐Yuan Li
- Key Laboratory for Advanced MaterialsSchool of Chemistry and Molecular EngineeringEast China University of Science and Technology Shanghai China
| | - Junji Zhang
- Key Laboratory for Advanced MaterialsSchool of Chemistry and Molecular EngineeringEast China University of Science and Technology Shanghai China
| | - He Tian
- Key Laboratory for Advanced MaterialsSchool of Chemistry and Molecular EngineeringEast China University of Science and Technology Shanghai China
| | - Itamar Willner
- Institute of ChemistryThe Center for Nanoscience and NanotechnologyThe Hebrew University of Jerusalem Jerusalem 91904 Israel
| |
Collapse
|
13
|
Wang S, Yue L, Li Z, Zhang J, Tian H, Willner I. Light‐Induced Reversible Reconfiguration of DNA‐Based Constitutional Dynamic Networks: Application to Switchable Catalysis. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201803371] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Shan Wang
- Institute of ChemistryThe Center for Nanoscience and NanotechnologyThe Hebrew University of Jerusalem Jerusalem 91904 Israel
| | - Liang Yue
- Institute of ChemistryThe Center for Nanoscience and NanotechnologyThe Hebrew University of Jerusalem Jerusalem 91904 Israel
| | - Zi‐Yuan Li
- Key Laboratory for Advanced MaterialsSchool of Chemistry and Molecular EngineeringEast China University of Science and Technology Shanghai China
| | - Junji Zhang
- Key Laboratory for Advanced MaterialsSchool of Chemistry and Molecular EngineeringEast China University of Science and Technology Shanghai China
| | - He Tian
- Key Laboratory for Advanced MaterialsSchool of Chemistry and Molecular EngineeringEast China University of Science and Technology Shanghai China
| | - Itamar Willner
- Institute of ChemistryThe Center for Nanoscience and NanotechnologyThe Hebrew University of Jerusalem Jerusalem 91904 Israel
| |
Collapse
|
14
|
Biniuri Y, Albada B, Wolff M, Golub E, Gelman D, Willner I. Cu2+ or Fe3+ Terpyridine/Aptamer Conjugates: Nucleoapzymes Catalyzing the Oxidation of Dopamine to Aminochrome. ACS Catal 2018. [DOI: 10.1021/acscatal.7b03454] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Yonatan Biniuri
- Institute
of Chemistry, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Bauke Albada
- Institute
of Chemistry, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
- Laboratory of Organic Chemistry, Wageningen University & Research, 6708 PB Wageningen, The Netherlands
| | - Mariusz Wolff
- Institute
of Chemistry, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Eyal Golub
- Institute
of Chemistry, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Dmitri Gelman
- Institute
of Chemistry, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Itamar Willner
- Institute
of Chemistry, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| |
Collapse
|
15
|
Wang S, Yue L, Shpilt Z, Cecconello A, Kahn JS, Lehn JM, Willner I. Controlling the Catalytic Functions of DNAzymes within Constitutional Dynamic Networks of DNA Nanostructures. J Am Chem Soc 2017. [DOI: 10.1021/jacs.7b04531] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Shan Wang
- Institute
of Chemistry, The Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Liang Yue
- Institute
of Chemistry, The Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Zohar Shpilt
- Institute
of Chemistry, The Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Alessandro Cecconello
- Institute
of Chemistry, The Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Jason S. Kahn
- Institute
of Chemistry, The Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Jean-Marie Lehn
- Institut
de Science et d’Ingénierie Supramoléculaires
(ISIS), University of Strasbourg, 8 Rue Gaspard Monge, Strasbourg 67000, France
| | - Itamar Willner
- Institute
of Chemistry, The Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| |
Collapse
|
16
|
Cai N, Tan L, Li Y, Xia T, Hu T, Su X. Biosensing platform for the detection of uric acid based on graphene quantum dots and G-quadruplex/hemin DNAzyme. Anal Chim Acta 2017; 965:96-102. [DOI: 10.1016/j.aca.2017.01.067] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Revised: 01/27/2017] [Accepted: 01/31/2017] [Indexed: 12/22/2022]
|
17
|
Vázquez-González M, Liao WC, Cazelles R, Wang S, Yu X, Gutkin V, Willner I. Mimicking Horseradish Peroxidase Functions Using Cu 2+-Modified Carbon Nitride Nanoparticles or Cu 2+-Modified Carbon Dots as Heterogeneous Catalysts. ACS NANO 2017; 11:3247-3253. [PMID: 28234445 DOI: 10.1021/acsnano.7b00352] [Citation(s) in RCA: 189] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Cu2+-functionalized carbon nitride nanoparticles (Cu2+-g-C3N4 NPs), ∼200 nm, and Cu2+-carbon dots (Cu2+-C-dots), ∼8 nm, act as horseradish peroxidase-mimicking catalysts. The nanoparticles catalyze the generation of chemiluminescence in the presence of luminol/H2O2 and catalyze the oxidation of dopamine by H2O2 to form aminochrome. The Cu2+-g-C3N4-driven generation of chemiluminescence is used to develop a H2O2 sensor and is implemented to develop a glucose detection platform and a sensor for probing glucose oxidase. Also, the Cu2+-C-dots are functionalized with the β-cyclodextrin (β-CD) receptor units. The concentration of dopamine, at the Cu2+-C-dots' surface, by means of the β-CD receptor sites, leads to a 4-fold enhancement in the oxidation of dopamine by H2O2 to yield aminochrome compared to that of the unmodified C-dots.
Collapse
Affiliation(s)
- Margarita Vázquez-González
- Institute of Chemistry, Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem , Jerusalem 91904, Israel
| | - Wei-Ching Liao
- Institute of Chemistry, Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem , Jerusalem 91904, Israel
| | - Rémi Cazelles
- Institute of Chemistry, Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem , Jerusalem 91904, Israel
| | - Shan Wang
- Institute of Chemistry, Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem , Jerusalem 91904, Israel
| | - Xu Yu
- Institute of Chemistry, Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem , Jerusalem 91904, Israel
| | - Vitaly Gutkin
- Institute of Chemistry, Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem , Jerusalem 91904, Israel
| | - Itamar Willner
- Institute of Chemistry, Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem , Jerusalem 91904, Israel
| |
Collapse
|
18
|
Wang S, Cazelles R, Liao WC, Vázquez-González M, Zoabi A, Abu-Reziq R, Willner I. Mimicking Horseradish Peroxidase and NADH Peroxidase by Heterogeneous Cu 2+-Modified Graphene Oxide Nanoparticles. NANO LETTERS 2017; 17:2043-2048. [PMID: 28183178 DOI: 10.1021/acs.nanolett.7b00093] [Citation(s) in RCA: 143] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Cu2+-ion-modified graphene oxide nanoparticles, Cu2+-GO NPs, act as a heterogeneous catalyst mimicking functions of horseradish peroxidase, HRP, and of NADH peroxidase. The Cu2+-GO NPs catalyze the oxidation of dopamine to aminochrome by H2O2 and catalyze the generation of chemiluminescence in the presence of luminol and H2O2. The Cu2+-GO NPs provide an active material for the chemiluminescence detection of H2O2 and allow the probing of the activity of H2O2-generating oxidases and the detection of their substrates. This is exemplified with detecting glucose by the aerobic oxidation of glucose by glucose oxidase and the Cu2+-GO NP-stimulated chemiluminescence intensity generated by the H2O2 product. Similarly, the Cu2+-GO NPs catalyze the H2O2 oxidation of NADH to the biologically active NAD+ cofactor. This catalytic system allows its conjugation to biocatalytic transformations involving NAD+-dependent enzyme, as exemplified for the alcohol dehydrogenase-catalyzed oxidation of benzyl alcohol to benzoic acid through the Cu2+-GO NPs-catalyzed regeneration of NAD+.
Collapse
Affiliation(s)
- Shan Wang
- Institute of Chemistry, The Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem , Jerusalem 91904, Israel
| | - Rémi Cazelles
- Institute of Chemistry, The Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem , Jerusalem 91904, Israel
| | - Wei-Ching Liao
- Institute of Chemistry, The Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem , Jerusalem 91904, Israel
| | - Margarita Vázquez-González
- Institute of Chemistry, The Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem , Jerusalem 91904, Israel
| | - Amani Zoabi
- Institute of Chemistry, The Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem , Jerusalem 91904, Israel
| | - Raed Abu-Reziq
- Institute of Chemistry, The Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem , Jerusalem 91904, Israel
| | - Itamar Willner
- Institute of Chemistry, The Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem , Jerusalem 91904, Israel
| |
Collapse
|
19
|
Kahn JS, Freage L, Enkin N, Garcia MAA, Willner I. Stimuli-Responsive DNA-Functionalized Metal-Organic Frameworks (MOFs). ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2017; 29:1602782. [PMID: 27922207 DOI: 10.1002/adma.201602782] [Citation(s) in RCA: 163] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Revised: 09/30/2016] [Indexed: 05/21/2023]
Abstract
The synthesis of nucleic acid-functionalized metal-organic frameworks (MOFs) is described. The metal-organic frameworks are loaded with a dye being locked in the structures by means of stimuli-responsive nucleic acid caps. The pH and K+ -ion-triggered release, and switchable release, are demonstrated.
Collapse
Affiliation(s)
- Jason S Kahn
- Institute of Chemistry and the Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem, 91904, Israel
| | - Lina Freage
- Institute of Chemistry and the Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem, 91904, Israel
| | - Natalie Enkin
- Institute of Chemistry and the Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem, 91904, Israel
| | - Miguel Angel Aleman Garcia
- Institute of Chemistry and the Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem, 91904, Israel
| | - Itamar Willner
- Institute of Chemistry and the Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem, 91904, Israel
| |
Collapse
|
20
|
Tsuji G, Sintim HO. Cyclic dinucleotide detection with riboswitch-G-quadruplex hybrid. MOLECULAR BIOSYSTEMS 2016; 12:773-7. [PMID: 26739090 DOI: 10.1039/c5mb00751h] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A cyclic dinucleotide riboswitch has been fused with a G-quadruplex motif to produce a conditional riboswitch-peroxidase-mimicking sensor that oxidizes both colorimetric and fluorogenic substrates in the presence of c-di-GMP. We find that signal-to-noise ratio could be improved by using a two-, not three-, floor split G-quadruplex for this conditional peroxidase-mimicking riboswitch.
Collapse
Affiliation(s)
- Genichiro Tsuji
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742, USA
| | - Herman O Sintim
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742, USA and Center for Drug Discovery, Purdue University, West Lafayette, IN 47907, USA.
| |
Collapse
|
21
|
Abstract
A DNA enzyme with peroxidase activity is a G-quadruplex-based DNAzyme formed by hemin and G-quadruplex DNA. Activity of peroxide DNAzymes can be influenced by the structure of quadruplex DNA. In this investigation, the interaction of hemin with T30695 G-quadruplex DNA is evaluated. Molecular dynamic simulation indicates that the binding mode of hemin to G-quadruplex DNA is end-stacking, which is consistent with absorption spectroscopy. Based on fluorescence spectroscopy, hemin ejects thiazole orange from bases of four-strand DNA. Circular dichroism spectra showed that no alteration occurs in this type of DNA structure. Graphical Abstract Peroxidase DNAzyme is formed by hemin and G-quadruplex DNA.
Collapse
|
22
|
Albada HB, Golub E, Willner I. Rational design of supramolecular hemin/G-quadruplex-dopamine aptamer nucleoapzyme systems with superior catalytic performance. Chem Sci 2016; 7:3092-3101. [PMID: 29997801 PMCID: PMC6005209 DOI: 10.1039/c5sc04832j] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Accepted: 01/23/2016] [Indexed: 11/21/2022] Open
Abstract
The rational design of a set of hemin/G-quadruplex (hGQ)-dopamine binding aptamer (DBA) conjugates, acting as nucleoapzymes, is described. The nucleoapzyme constructs consist of a hGQ DNAzyme as a catalytic unit and DBA as a substrate binding unit that are brought into spatial proximity by a duplex scaffold composed of complementary oligonucleotide strands. When the hGQ unit is linked to the duplex scaffold via a single-strand DNA tether of variable length, the resulting nucleoapzymes reveal a moderate catalytic enhancement toward the H2O2-mediated oxidation of dopamine to aminochrome as compared to the process stimulated by the separated hGQ and DBA units (5-7 fold enhancement). This limited enhancement is attributed to inappropriate spatial positioning of the hGQ in respect to the dopamine binding site, and/or to the flexibility of the tether that links the hGQ catalytic site to the double-stranded scaffold. To solve this, rigidification of the hGQ/DBA conjugates by triplex oligonucleotide structures that anchor the hGQ to a duplex domain associated with the DBA units was achieved. By the sequential, programmed, triplex-controlled rigidification of the hGQ/DBA structure, a nucleoapzyme with superior catalytic activity toward the oxidation of dopamine to aminochrome is identified (30-fold catalytic enhancement). Molecular dynamics simulations reveal that in the resulting highly active rigidified nucleoapzyme structure, the hGQ catalytic site is positioned in spatial proximity to the opening of the DBA substrate binding site, thus rationalizing and supporting the enhanced catalytic functions of the system. Finally, the most active nucleoapzyme system was subjected to fuel- and anti-fuel strands that separate and re-assemble the nucleoapzyme structure, allowing "ON" and "OFF" switching of the nucleoapzyme catalytic functions.
Collapse
Affiliation(s)
- H Bauke Albada
- Institute of Chemistry , The Minerva Center for Biohybrid Complex Systems , The Hebrew University of Jerusalem , Jerusalem , 91904 , Israel . ; ; Tel: +972-2-6585272
| | - Eyal Golub
- Institute of Chemistry , The Minerva Center for Biohybrid Complex Systems , The Hebrew University of Jerusalem , Jerusalem , 91904 , Israel . ; ; Tel: +972-2-6585272
| | - Itamar Willner
- Institute of Chemistry , The Minerva Center for Biohybrid Complex Systems , The Hebrew University of Jerusalem , Jerusalem , 91904 , Israel . ; ; Tel: +972-2-6585272
| |
Collapse
|
23
|
Lu CH, Cecconello A, Willner I. Recent Advances in the Synthesis and Functions of Reconfigurable Interlocked DNA Nanostructures. J Am Chem Soc 2016; 138:5172-85. [DOI: 10.1021/jacs.6b00694] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Chun-Hua Lu
- The Institute
of Chemistry, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Alessandro Cecconello
- The Institute
of Chemistry, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Itamar Willner
- The Institute
of Chemistry, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| |
Collapse
|
24
|
Albada HB, de Vries JW, Liu Q, Golub E, Klement N, Herrmann A, Willner I. Supramolecular micelle-based nucleoapzymes for the catalytic oxidation of dopamine to aminochrome. Chem Commun (Camb) 2016; 52:5561-4. [DOI: 10.1039/c6cc01115b] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Lipidated DNAzymes or a lipidated Cu(ii)-complex and lipidated aptamer sequences form supramolecular assemblies of micellar nucleoapzymes for the enhanced oxidation of dopamine to aminochrome.
Collapse
Affiliation(s)
- H. Bauke Albada
- Institute of Chemistry
- The Minerva Center for Biohybrid Complex Systems
- The Hebrew University of Jerusalem
- Jerusalem 91904
- Israel
| | - Jan Willem de Vries
- Zernike Institute for Advanced Materials
- University of Groningen
- Groningen
- The Netherlands
| | - Qing Liu
- Zernike Institute for Advanced Materials
- University of Groningen
- Groningen
- The Netherlands
| | - Eyal Golub
- Institute of Chemistry
- The Minerva Center for Biohybrid Complex Systems
- The Hebrew University of Jerusalem
- Jerusalem 91904
- Israel
| | - Niels Klement
- Zernike Institute for Advanced Materials
- University of Groningen
- Groningen
- The Netherlands
| | - Andreas Herrmann
- Zernike Institute for Advanced Materials
- University of Groningen
- Groningen
- The Netherlands
| | - Itamar Willner
- Institute of Chemistry
- The Minerva Center for Biohybrid Complex Systems
- The Hebrew University of Jerusalem
- Jerusalem 91904
- Israel
| |
Collapse
|