1
|
Suthanthiraraj PPA, Shreve AP, Graves SW. Essential Fluidics for a Flow Cytometer. Curr Protoc 2024; 4:e1124. [PMID: 39401000 PMCID: PMC11483160 DOI: 10.1002/cpz1.1124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
Flow cytometry is an inherently fluidic process that flows particles on a one-by-one basis through a sensing region to discretely measure their optical and physical properties. It can be used to analyze particles ranging in size from nanoparticles to whole organisms (e.g., zebrafish). It has particular value for blood analysis, and thus most instruments are fluidically optimized for particles that are comparable in size to a typical blood cell. The principles of fluid dynamics allow for particles of such size to be precisely positioned in flow as they pass through sensing regions that are tens of microns in length at linear velocities of meters per second. Such fluidic systems enable discrete analysis of cell-sized particles at rates approaching 100 kHz. For larger particles, the principles of fluidics greatly reduce the achievable rates, but such high rates of data acquisition for cell-sized particles allow rapid collection of information on many thousands to millions of cells and provides for research and clinical measurements of both rare and common cell populations with a high degree of statistical confidence. Additionally, flow cytometers can accurately count particles via the use of volumetric sample delivery and can be coupled with high-throughput sampling technologies to greatly increase the rate at which independent samples can be delivered to the system. Due to the combination of high analysis rates, sensitive multiparameter measurements, high-throughput sampling, and accurate counting, flow cytometry analysis is the gold standard for many critical applications in clinical, research, pharmaceutical, and environmental areas. Beyond the power of flow cytometry as an analytical technique, the fluidic pathway can be coupled with a sorting mechanism to collect particles based on desired properties. We present an overview of fluidic systems that enable flow cytometry-based analysis and sorting. We introduce historical approaches, explanations of commonly implemented fluidics, and brief discussions of potential future fluidics where appropriate. © 2024 Wiley Periodicals LLC.
Collapse
Affiliation(s)
| | - Andrew P. Shreve
- The University of New Mexico, Department of Chemical and Biological Engineering, Albuquerque, NM, US
| | - Steven W. Graves
- The University of New Mexico, Department of Chemical and Biological Engineering, Albuquerque, NM, US
| |
Collapse
|
2
|
Shayor AA, Kabir ME, Rifath MSA, Rashid AB, Oh KW. A Synergistic Overview between Microfluidics and Numerical Research for Vascular Flow and Pathological Investigations. SENSORS (BASEL, SWITZERLAND) 2024; 24:5872. [PMID: 39338617 PMCID: PMC11435959 DOI: 10.3390/s24185872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 08/20/2024] [Accepted: 09/02/2024] [Indexed: 09/30/2024]
Abstract
Vascular diseases are widespread, and sometimes such life-threatening medical disorders cause abnormal blood flow, blood particle damage, changes to flow dynamics, restricted blood flow, and other adverse effects. The study of vascular flow is crucial in clinical practice because it can shed light on the causes of stenosis, aneurysm, blood cancer, and many other such diseases, and guide the development of novel treatments and interventions. Microfluidics and computational fluid dynamics (CFDs) are two of the most promising new tools for investigating these phenomena. When compared to conventional experimental methods, microfluidics offers many benefits, including lower costs, smaller sample quantities, and increased control over fluid flow and parameters. In this paper, we address the strengths and weaknesses of computational and experimental approaches utilizing microfluidic devices to investigate the rheological properties of blood, the forces of action causing diseases related to cardiology, provide an overview of the models and methodologies of experiments, and the fabrication of devices utilized in these types of research, and portray the results achieved and their applications. We also discuss how these results can inform clinical practice and where future research should go. Overall, it provides insights into why a combination of both CFDs, and experimental methods can give even more detailed information on disease mechanisms recreated on a microfluidic platform, replicating the original biological system and aiding in developing the device or chip itself.
Collapse
Affiliation(s)
- Ahmed Abrar Shayor
- Department of Mechanical Engineering, Khulna University of Engineering & Technology, Khulna 9203, Bangladesh
| | - Md Emamul Kabir
- Department of Mechanical Engineering, Khulna University of Engineering & Technology, Khulna 9203, Bangladesh
- Sensors and MicroActuators Learning Lab (SMALL), Department of Electrical Engineering, The State University of New York at Buffalo, Buffalo, NY 14260, USA
| | - Md Sartaj Ahamed Rifath
- Department of Mechanical Engineering, Khulna University of Engineering & Technology, Khulna 9203, Bangladesh
| | - Adib Bin Rashid
- Department of Industrial and Production Engineering, Military Institute of Science and Technology, Dhaka 1216, Bangladesh
| | - Kwang W Oh
- Sensors and MicroActuators Learning Lab (SMALL), Department of Electrical Engineering, The State University of New York at Buffalo, Buffalo, NY 14260, USA
- Department of Biomedical Engineering, The State University of New York at Buffalo, Buffalo, NY 14260, USA
| |
Collapse
|
3
|
Teixeira A, Sousa-Silva M, Chícharo A, Oliveira K, Moura A, Carneiro A, Piairo P, Águas H, Sampaio-Marques B, Castro I, Mariz J, Ludovico P, Abalde-Cela S, Diéguez L. Isolation of acute myeloid leukemia blasts from blood using a microfluidic device. Analyst 2024; 149:2812-2825. [PMID: 38644740 DOI: 10.1039/d4an00158c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
Acute myeloid leukemia (AML) is the most common form of acute leukemia in adults and associated with poor prognosis. Unfortunately, most of the patients that achieve clinical complete remission after the treatment will ultimately relapse due to the persistence of minimal residual disease (MRD), that is not measurable using conventional technologies in the clinic. Microfluidics is a potential tool to improve the diagnosis by providing early detection of MRD. Herein, different designs of microfluidic devices were developed to promote lateral and vertical mixing of cells in microchannels to increase the contact area of the cells of interest with the inner surface of the device. Possible interactions between the cells and the surface were studied using fluid simulations. For the isolation of leukemic blasts, a positive selection strategy was used, targeting the cells of interest using a panel of specific biomarkers expressed in immature and aberrant blasts. Finally, once the optimisation was complete, the best conditions were used to process patient samples for downstream analysis and benchmarking, including phenotypic and genetic characterisation. The potential of these microfluidic devices to isolate and detect AML blasts may be exploited for the monitoring of AML patients at different stages of the disease.
Collapse
Affiliation(s)
- Alexandra Teixeira
- International Iberian Nanotechnology Laboratory (INL), Avda. Mestre José Veiga, 4715-310 Braga, Portugal.
- Life and Health Sciences Research Institute (ICVS), Escola de Medicina, Universidade do Minho, Campus Gualtar, 4710-057 Braga, Portugal
- ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Maria Sousa-Silva
- International Iberian Nanotechnology Laboratory (INL), Avda. Mestre José Veiga, 4715-310 Braga, Portugal.
- RUBYnanomed LDA, Praça Conde de Agrolongo, 4700-312 Braga, Portugal
| | - Alexandre Chícharo
- International Iberian Nanotechnology Laboratory (INL), Avda. Mestre José Veiga, 4715-310 Braga, Portugal.
| | - Kevin Oliveira
- International Iberian Nanotechnology Laboratory (INL), Avda. Mestre José Veiga, 4715-310 Braga, Portugal.
| | - André Moura
- CENIMAT|i3N, Department of Materials Science, NOVA School of Science and Technology, Campus de Caparica, NOVA University of Lisbon and CEMOP/UNINOVA, 2829-516 Caparica, Portugal
| | - Adriana Carneiro
- International Iberian Nanotechnology Laboratory (INL), Avda. Mestre José Veiga, 4715-310 Braga, Portugal.
- IPO Experimental Pathology and Therapeutics Group, Research Center of IPO Porto (CI-IPOP)/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto), Porto Comprehensive Cancer Center (Porto.CCC), 4200-072 Porto, Portugal
- Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto, Porto, Portugal
| | - Paulina Piairo
- International Iberian Nanotechnology Laboratory (INL), Avda. Mestre José Veiga, 4715-310 Braga, Portugal.
| | - Hugo Águas
- CENIMAT|i3N, Department of Materials Science, NOVA School of Science and Technology, Campus de Caparica, NOVA University of Lisbon and CEMOP/UNINOVA, 2829-516 Caparica, Portugal
| | - Belém Sampaio-Marques
- Life and Health Sciences Research Institute (ICVS), Escola de Medicina, Universidade do Minho, Campus Gualtar, 4710-057 Braga, Portugal
- ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Isabel Castro
- Life and Health Sciences Research Institute (ICVS), Escola de Medicina, Universidade do Minho, Campus Gualtar, 4710-057 Braga, Portugal
- ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - José Mariz
- Department of Oncohematology, Portuguese Institute of Oncology Francisco Gentil Porto, Portugal
| | - Paula Ludovico
- Life and Health Sciences Research Institute (ICVS), Escola de Medicina, Universidade do Minho, Campus Gualtar, 4710-057 Braga, Portugal
- ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Sara Abalde-Cela
- International Iberian Nanotechnology Laboratory (INL), Avda. Mestre José Veiga, 4715-310 Braga, Portugal.
| | - Lorena Diéguez
- International Iberian Nanotechnology Laboratory (INL), Avda. Mestre José Veiga, 4715-310 Braga, Portugal.
| |
Collapse
|
4
|
Aslan MK, Meng Y, Zhang Y, Weiss T, Stavrakis S, deMello AJ. Ultrahigh-Throughput, Real-Time Flow Cytometry for Rare Cell Quantification from Whole Blood. ACS Sens 2024; 9:474-482. [PMID: 38171016 DOI: 10.1021/acssensors.3c02268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
We present an ultrahigh-throughput, real-time fluorescence cytometer comprising a viscoelastic microfluidic system and a complementary metal-oxide-semiconductor (CMOS) linear image sensor-based detection system. The flow cytometer allows for real-time quantification of a variety of fluorescence species, including micrometer-sized particles and cells, at analytical throughputs in excess of 400,000 species per second. The platform integrates a custom C++ control program and graphical user interface (GUI) to allow for the processing of raw signals, adjustment of processing parameters, and display of fluorescence intensity histograms in real time. To demonstrate the efficacy of the platform for rare event detection and its utility as a basic clinical tool, we measure and quantify patient-derived circulating tumor cells (CTCs) in peripheral blood, realizing that detection has a sensitivity of 6 CTCs per million blood cells (0.000006%) with a volumetric throughput of over 3 mL/min.
Collapse
Affiliation(s)
- Mahmut Kamil Aslan
- Institute for Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 1, Zürich 8093, Switzerland
| | - Yingchao Meng
- Institute for Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 1, Zürich 8093, Switzerland
| | - Yanan Zhang
- Department of Neurology, University Hospital Zürich, 8091 Zürich, Switzerland
- Clinical Neuroscience Center, University of Zürich, 8091 Zürich, Switzerland
| | - Tobias Weiss
- Department of Neurology, University Hospital Zürich, 8091 Zürich, Switzerland
- Clinical Neuroscience Center, University of Zürich, 8091 Zürich, Switzerland
| | - Stavros Stavrakis
- Institute for Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 1, Zürich 8093, Switzerland
| | - Andrew J deMello
- Institute for Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 1, Zürich 8093, Switzerland
| |
Collapse
|
5
|
Mermans F, Mattelin V, Van den Eeckhoudt R, García-Timermans C, Van Landuyt J, Guo Y, Taurino I, Tavernier F, Kraft M, Khan H, Boon N. Opportunities in optical and electrical single-cell technologies to study microbial ecosystems. Front Microbiol 2023; 14:1233705. [PMID: 37692384 PMCID: PMC10486927 DOI: 10.3389/fmicb.2023.1233705] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 08/03/2023] [Indexed: 09/12/2023] Open
Abstract
New techniques are revolutionizing single-cell research, allowing us to study microbes at unprecedented scales and in unparalleled depth. This review highlights the state-of-the-art technologies in single-cell analysis in microbial ecology applications, with particular attention to both optical tools, i.e., specialized use of flow cytometry and Raman spectroscopy and emerging electrical techniques. The objectives of this review include showcasing the diversity of single-cell optical approaches for studying microbiological phenomena, highlighting successful applications in understanding microbial systems, discussing emerging techniques, and encouraging the combination of established and novel approaches to address research questions. The review aims to answer key questions such as how single-cell approaches have advanced our understanding of individual and interacting cells, how they have been used to study uncultured microbes, which new analysis tools will become widespread, and how they contribute to our knowledge of ecological interactions.
Collapse
Affiliation(s)
- Fabian Mermans
- Center for Microbial Ecology and Technology (CMET), Department of Biotechnology, Ghent University, Ghent, Belgium
- Department of Oral Health Sciences, KU Leuven, Leuven, Belgium
| | - Valérie Mattelin
- Center for Microbial Ecology and Technology (CMET), Department of Biotechnology, Ghent University, Ghent, Belgium
| | - Ruben Van den Eeckhoudt
- Micro- and Nanosystems (MNS), Department of Electrical Engineering (ESAT), KU Leuven, Leuven, Belgium
| | - Cristina García-Timermans
- Center for Microbial Ecology and Technology (CMET), Department of Biotechnology, Ghent University, Ghent, Belgium
| | - Josefien Van Landuyt
- Center for Microbial Ecology and Technology (CMET), Department of Biotechnology, Ghent University, Ghent, Belgium
| | - Yuting Guo
- Center for Microbial Ecology and Technology (CMET), Department of Biotechnology, Ghent University, Ghent, Belgium
| | - Irene Taurino
- Micro- and Nanosystems (MNS), Department of Electrical Engineering (ESAT), KU Leuven, Leuven, Belgium
- Semiconductor Physics, Department of Physics and Astronomy, KU Leuven, Leuven, Belgium
| | - Filip Tavernier
- MICAS, Department of Electrical Engineering (ESAT), KU Leuven, Leuven, Belgium
| | - Michael Kraft
- Micro- and Nanosystems (MNS), Department of Electrical Engineering (ESAT), KU Leuven, Leuven, Belgium
- Leuven Institute of Micro- and Nanoscale Integration (LIMNI), KU Leuven, Leuven, Belgium
| | - Hira Khan
- Center for Microbial Ecology and Technology (CMET), Department of Biotechnology, Ghent University, Ghent, Belgium
| | - Nico Boon
- Center for Microbial Ecology and Technology (CMET), Department of Biotechnology, Ghent University, Ghent, Belgium
| |
Collapse
|
6
|
Shan Y, Guo Y, Jiao W, Zeng P. Single-Cell Techniques in Environmental Microbiology. Processes (Basel) 2023. [DOI: 10.3390/pr11041109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2023] Open
Abstract
Environmental microbiology has been an essential part of environmental research because it provides effective solutions to most pollutants. Hence, there is an interest in investigating microorganism behavior, such as observation, identification, isolation of pollutant degraders, and interactions between microbial species. To comprehensively understand cell heterogeneity, diverse approaches at the single-cell level are demanded. Thus far, the traditional bulk biological tools such as petri dishes are technically challenging for single cells, which could mask the heterogeneity. Single-cell technologies can reveal complex and rare cell populations by detecting heterogeneity among individual cells, which offers advantages of higher resolution, higher throughput, more accurate analysis, etc. Here, we overviewed several single-cell techniques on observation, isolation, and identification from aspects of methods and applications. Microscopic observation, sequencing identification, flow cytometric identification and isolation, Raman spectroscopy-based identification and isolation, and their applications are mainly discussed. Further development on multi-technique integrations at the single-cell level may highly advance the research progress of environmental microbiology, thereby giving more indication in the environmental microbial ecology.
Collapse
Affiliation(s)
- Yongping Shan
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Yuting Guo
- Flow Cytometry Center, National Institute of Biological Sciences, Beijing 102206, China
| | - Wentao Jiao
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Ping Zeng
- Department of Urban Water Environmental Research, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| |
Collapse
|
7
|
Rey Gomez LM, Hirani R, Care A, Inglis DW, Wang Y. Emerging Microfluidic Devices for Sample Preparation of Undiluted Whole Blood to Enable the Detection of Biomarkers. ACS Sens 2023; 8:1404-1421. [PMID: 37011238 DOI: 10.1021/acssensors.2c02696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
Abstract
Blood testing allows for diagnosis and monitoring of numerous conditions and illnesses; it forms an essential pillar of the health industry that continues to grow in market value. Due to the complex physical and biological nature of blood, samples must be carefully collected and prepared to obtain accurate and reliable analysis results with minimal background signal. Examples of common sample preparation steps include dilutions, plasma separation, cell lysis, and nucleic acid extraction and isolation, which are time-consuming and can introduce risks of sample cross-contamination or pathogen exposure to laboratory staff. Moreover, the reagents and equipment needed can be costly and difficult to obtain in point-of-care or resource-limited settings. Microfluidic devices can perform sample preparation steps in a simpler, faster, and more affordable manner. Devices can be carried to areas that are difficult to access or that do not have the resources necessary. Although many microfluidic devices have been developed in the last 5 years, few were designed for the use of undiluted whole blood as a starting point, which eliminates the need for blood dilution and minimizes blood sample preparation. This review will first provide a short summary on blood properties and blood samples typically used for analysis, before delving into innovative advances in microfluidic devices over the last 5 years that address the hurdles of blood sample preparation. The devices will be categorized by application and the type of blood sample used. The final section focuses on devices for the detection of intracellular nucleic acids, because these require more extensive sample preparation steps, and the challenges involved in adapting this technology and potential improvements are discussed.
Collapse
Affiliation(s)
| | - Rena Hirani
- Australian Red Cross Lifeblood, Sydney, New South Wales 2015, Australia
| | - Andrew Care
- School of Life Sciences, University of Technology Sydney, Ultimo, New South Wales 2007, Australia
| | - David W Inglis
- School of Engineering, Faculty of Science and Engineering and △School of Natural Sciences, Faculty of Science and Engineering, Macquarie University, Sydney, New South Wales 2109, Australia
| | | |
Collapse
|
8
|
Li J, Cui Y, Xie Q, Jiang T, Xin S, Liu P, Zhou T, Li Q. Ultraportable Flow Cytometer Based on an All-Glass Microfluidic Chip. Anal Chem 2023; 95:2294-2302. [PMID: 36654498 DOI: 10.1021/acs.analchem.2c03984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The flow cytometer has become a powerful and widely accepted measurement device in both biological studies and clinical diagnostics. The application of the flow cytometer in emerging point-of-care scenarios, such as instant detection in remote areas and emergency diagnosis, requires a significant reduction in physical dimension, cost, and power consumption. This requirement promotes studies to develop portable flow cytometers, mostly based on the utilization of polymer microfluidic chips. However, due to the relatively poor optical performance of polymer materials, existing microfluidic flow cytometers are incapable of accurate blood analysis, such as the four-part leukocyte differential count, which is necessary to monitor the immune system and to assess the risk of allergic inflammation or viral infection. To address this issue, an ultraportable flow cytometer based on an all-glass microfluidic chip (AG-UFCM) has been developed in this study. Compared with that of a typical commercial flow cytometer (BD FACSAria III), the volume of the AG-UFCM was reduced by 90 times (from 720 to 8 L). A two-step laser processing was employed to fabricate an all-glass microfluidic chip with a surface roughness of less than 1 nm, significantly improving the optical performance of on-chip micro-lens. The signal-to-noise ratio was enhanced by 3 dB, compared with that of polymer materials. For the first time, a four-part leukocyte differential count based on single fluorescence staining was realized using a miniaturized flow cytometer, laying a foundation for the point-of-care testing of miniaturized flow cytometers.
Collapse
Affiliation(s)
- Jiayu Li
- School of Life Science, Beijing Institute of Technology, Beijing100081, China
| | - Yuhan Cui
- School of Medical Technology, Beijing Institute of Technology, Beijing100081, China
| | - Qiucheng Xie
- School of Medical Technology, Beijing Institute of Technology, Beijing100081, China
| | - Tao Jiang
- Shandong QianQianRuo Medical Technology Limited Company, Jinan250022, China
| | - Siyuan Xin
- Shandong QianQianRuo Medical Technology Limited Company, Jinan250022, China
| | - Peng Liu
- School of Medical Technology, Beijing Institute of Technology, Beijing100081, China.,Chongqing Innovation Center, Beijing Institute of Technology, Chongqing401120, China
| | - Tianfeng Zhou
- School of Medical Technology, Beijing Institute of Technology, Beijing100081, China
| | - Qin Li
- School of Life Science, Beijing Institute of Technology, Beijing100081, China
| |
Collapse
|
9
|
Ortega-Sanchez FG, Teresa V, Widmann T, Regiart M, Jerez-Salcedo MT, Fernández-Baldo MA, de Miguel-Perez D. Microfluidic systems in extracellular vesicles single analysis. A systematic review. Trends Analyt Chem 2023. [DOI: 10.1016/j.trac.2023.116920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
10
|
Feng Y, Huang L, Zhao P, Liang F, Wang W. High-Efficiency Single-Cell Electrical Impedance Spectroscopy. Methods Mol Biol 2023; 2644:81-97. [PMID: 37142917 DOI: 10.1007/978-1-0716-3052-5_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Single-cell impedance measurement is label free and noninvasive in characterizing the electrical properties of single cells. At present, though widely used for impedance measurement, electrical impedance flow cytometry (IFC) and electrical impedance spectroscopy (EIS) are used alone for most microfluidic chips. Here, we describe high-efficiency single-cell electrical impedance spectroscopy, which combines in one chip the IFC and EIS techniques for high-efficiency single-cell electrical property measurement. We envision that the strategy of combining IFC and EIS provides a new thought in the efforts to enhance the efficiency of electrical property measurement for single cells.
Collapse
Affiliation(s)
- Yongxiang Feng
- State Key Laboratory of Precision Measurement Technology and Instrument, Department of Precision Instrument, Tsinghua University, Beijing, China
| | - Liang Huang
- Anhui Province Key Laboratory of Measuring Theory and Precision Instrument, School of Instrument Science and Optoelectronics Engineering, Hefei University of Technology, Hefei, Anhui, China
| | - Peng Zhao
- State Key Laboratory of Precision Measurement Technology and Instrument, Department of Precision Instrument, Tsinghua University, Beijing, China
| | - Fei Liang
- State Key Laboratory of Precision Measurement Technology and Instrument, Department of Precision Instrument, Tsinghua University, Beijing, China
| | - Wenhui Wang
- State Key Laboratory of Precision Measurement Technology and Instrument, Department of Precision Instrument, Tsinghua University, Beijing, China.
| |
Collapse
|
11
|
Iakovlev AP, Erofeev AS, Gorelkin PV. Novel Pumping Methods for Microfluidic Devices: A Comprehensive Review. BIOSENSORS 2022; 12:956. [PMID: 36354465 PMCID: PMC9688261 DOI: 10.3390/bios12110956] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 10/26/2022] [Accepted: 10/28/2022] [Indexed: 06/02/2023]
Abstract
This review is an account of methods that use various strategies to control microfluidic flow control with high accuracy. The reviewed systems are divided into two large groups based on the way they create flow: passive systems (non-mechanical systems) and active (mechanical) systems. Each group is presented by a number of device fabrications. We try to explain the main principles of operation, and we list advantages and disadvantages of the presented systems. Mechanical systems are considered in more detail, as they are currently an area of increased interest due to their unique precision flow control and "multitasking". These systems are often applied as mini-laboratories, working autonomously without any additional operations, provided by humans, which is very important under complicated conditions. We also reviewed the integration of autonomous microfluidic systems with a smartphone or single-board computer when all data are retrieved and processed without using a personal computer. In addition, we discuss future trends and possible solutions for further development of this area of technology.
Collapse
Affiliation(s)
| | | | - Petr V. Gorelkin
- Research Laboratory of Biophysics, National University of Science and Technology «MISiS», 119049 Moscow, Russia
| |
Collapse
|
12
|
Zenhausern R, Day AS, Safavinia B, Han S, Rudy PE, Won YW, Yoon JY. Natural killer cell detection, quantification, and subpopulation identification on paper microfluidic cell chromatography using smartphone-based machine learning classification. Biosens Bioelectron 2022; 200:113916. [PMID: 34974261 PMCID: PMC8766938 DOI: 10.1016/j.bios.2021.113916] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 12/22/2021] [Indexed: 12/30/2022]
Abstract
Natural killer (NK) cells are immune cells that defend against viral infections and cancer and are used in cancer immunotherapies. Subpopulations of NK cells include CD56dim and CD56bright which either produce cytokines or cytotoxically kill cells directly. The absolute number and proportion of these cells in peripheral blood are tied to proper immune function. Current methods of cytokine detection and proportion of NK cell subpopulations require fluorescent dyes and highly specialized equipment, e.g., flow cytometry, thus rapid cell quantification and subpopulation analysis are needed in the clinical setting. Here, a smartphone-based device and a two-component paper microfluidic chip were used towards identifying NK cell subpopulation and inflammatory markers. One unit measured flow velocity via smartphone-captured video, determining cytokine (IL-2) and total NK cell concentrations in undiluted buffy coat blood samples. The other, single flow lane unit performs spatial separation of CD56dim and CD56bright and cells over its length using differential binding of anti-CD56 nanoparticles. A smartphone microscope combined with cloud-based machine learning predictive modeling (utilizing a random forest classification algorithm) analyzed both flow data and NK cell subpopulation differentiation. Limits of detection for cytokine and cell concentrations were 98 IU/mL and 68 cells/mL, respectively, and cell subpopulation analysis showed 89% accuracy.
Collapse
Affiliation(s)
- Ryan Zenhausern
- Department of Biomedical Engineering, The University of Arizona, Tucson, AZ, 85721, United States
| | - Alexander S Day
- Department of Biomedical Engineering, The University of Arizona, Tucson, AZ, 85721, United States
| | - Babak Safavinia
- Department of Biomedical Engineering, The University of Arizona, Tucson, AZ, 85721, United States
| | - Seungmin Han
- Department of Surgery, The University of Arizona College of Medicine, Tucson, AZ, 85721, United States
| | - Paige E Rudy
- Department of Biomedical Engineering, The University of Arizona, Tucson, AZ, 85721, United States
| | - Young-Wook Won
- Department of Surgery, The University of Arizona College of Medicine, Tucson, AZ, 85721, United States
| | - Jeong-Yeol Yoon
- Department of Biomedical Engineering, The University of Arizona, Tucson, AZ, 85721, United States.
| |
Collapse
|
13
|
Xu Y, Yu G, Nie R, Wu Z. Microfluidic systems toward blood hemostasis monitoring and thrombosis diagnosis: From design principles to micro/nano fabrication technologies. VIEW 2022. [DOI: 10.1002/viw.20200183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Affiliation(s)
- Yi Xu
- Soft Intelligence Lab State Key Laboratory of Digital Manufacturing Equipment and Technology School of Mechanical Science and Engineering Huazhong University of Science and Technology Wuhan China
| | - Guang Yu
- Experimental Medicine Center Tongji Hospital Tongji Medical College Huazhong University of Science and Technology Wuhan China
| | - Ruqiong Nie
- Department of Cardiology Sun Yat‐Sen Memorial Hospital Sun Yat‐Sen University Guangzhou China
| | - Zhigang Wu
- Soft Intelligence Lab State Key Laboratory of Digital Manufacturing Equipment and Technology School of Mechanical Science and Engineering Huazhong University of Science and Technology Wuhan China
| |
Collapse
|
14
|
Teixeira A, Carneiro A, Piairo P, Xavier M, Ainla A, Lopes C, Sousa-Silva M, Dias A, Martins AS, Rodrigues C, Pereira R, Pires LR, Abalde-Cela S, Diéguez L. Advances in Microfluidics for the Implementation of Liquid Biopsy in Clinical Routine. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1379:553-590. [DOI: 10.1007/978-3-031-04039-9_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
15
|
Lee CH, Seok H, Jang W, Kim JT, Park G, Kim HU, Rho J, Kim T, Chung TD. Bioaerosol monitoring by integrating DC impedance microfluidic cytometer with wet-cyclone air sampler. Biosens Bioelectron 2021; 192:113499. [PMID: 34311208 PMCID: PMC8275843 DOI: 10.1016/j.bios.2021.113499] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 06/27/2021] [Accepted: 07/08/2021] [Indexed: 12/17/2022]
Abstract
The recent outbreak of COVID-19 has highlighted the seriousness of airborne diseases and the need for a proper pathogen detection system. Compared to the ample amount of research on biological detection, work on integrated devices for air monitoring is rare. In this work, we integrated a wet-cyclone air sampler and a DC impedance microfluidic cytometer to build a cyclone-cytometer integrated air monitor (CCAM). The wet-cyclone air sampler sucks the air and concentrates the bioaerosols into 10 mL of aqueous solvent. After 5 min of air sampling, the bioaerosol-containing solution was conveyed to the microfluidic cytometer for detection. The device was tested with aerosolized microbeads, dust, and Escherichia coli (E. coli). CCAM is shown to differentiate particles from 0.96 to 2.95 μm with high accuracy. The wet cyclone air-sampler showed a 28.04% sampling efficiency, and the DC impedance cytometer showed 87.68% detection efficiency, giving a total of 24.59% overall CCAM efficiency. After validation of the device performance, CCAM was used to detect bacterial aerosols and their viability without any separate pretreatment step. Differentiation of dust, live E. coli, and dead E. coli was successfully performed by the addition of BacLight bacterial viability reagent in the sampling solvent. The usage could be further extended to detection of specific species with proper antibody fluorescent label. A promising strategy for aerosol detection is proposed through the constructive integration of a DC impedance microfluidic cytometer and a wet-cyclone air sampler.
Collapse
Affiliation(s)
- Chang Heon Lee
- Department of Chemistry, Seoul National University, Seoul, 08826, Republic of Korea
| | - Hyunho Seok
- SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Woohyuk Jang
- Department of Chemistry, Seoul National University, Seoul, 08826, Republic of Korea
| | - Ji Tae Kim
- Department of Chemistry, Seoul National University, Seoul, 08826, Republic of Korea
| | - Geunsang Park
- School of Mechanical Engineering, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Hyeong-U Kim
- Plasma Engineering Laboratory, Korea Institute of Machinery and Materials, Daejeon, 32103, Republic of Korea
| | - Jihun Rho
- Department of Chemistry, Seoul National University, Seoul, 08826, Republic of Korea
| | - Taesung Kim
- SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, Suwon, 16419, Republic of Korea; School of Mechanical Engineering, Sungkyunkwan University, Suwon, 16419, Republic of Korea.
| | - Taek Dong Chung
- Department of Chemistry, Seoul National University, Seoul, 08826, Republic of Korea.
| |
Collapse
|
16
|
Aureille J, Pezet M, Pernet L, Mazzega J, Grichine A, Guilluy C, Dolega ME. Cell fluorescence photoactivation as a method to select and study cellular subpopulations grown in mechanically heterogeneous environments. Mol Biol Cell 2021; 32:1409-1416. [PMID: 34133212 PMCID: PMC8351743 DOI: 10.1091/mbc.e20-10-0676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A central challenge to the biology of development and disease is deciphering how individual cells process and respond to numerous biochemical and mechanical signals originating from the environment. Recent advances in genomic studies enabled the acquisition of information about population heterogeneity; however, these so far are poorly linked with the spatial heterogeneity of biochemical and mechanical cues. Whereas in vitro models offer superior control over spatiotemporal distribution of numerous mechanical parameters, researchers are limited by the lack of methods to select subpopulations of cells in order to understand how environmental heterogeneity directs the functional collective response. To circumvent these limitations, we present a method based on the use of photo convertible proteins, which when expressed within cells and activated with light, gives a stable fluorescence fingerprint enabling subsequent sorting and lysis for genomics analysis. Using this technique, we study the spatial distribution of genetic alterations on well-characterized local mechanical stimulation within the epithelial monolayer. Our method is an in vitro alternative to laser microdissection, which so far has found a broad application in ex vivo studies.
Collapse
Affiliation(s)
- Julien Aureille
- Institute for Advanced Biosciences, University Grenoble Alpes, Inserm U1209, CNRS UMR 5309 Grenoble, France
| | - Mylène Pezet
- Institute for Advanced Biosciences, University Grenoble Alpes, Inserm U1209, CNRS UMR 5309 Grenoble, France
| | - Lydia Pernet
- Institute for Advanced Biosciences, University Grenoble Alpes, Inserm U1209, CNRS UMR 5309 Grenoble, France
| | - Jacques Mazzega
- Institute for Advanced Biosciences, University Grenoble Alpes, Inserm U1209, CNRS UMR 5309 Grenoble, France
| | - Alexei Grichine
- Institute for Advanced Biosciences, University Grenoble Alpes, Inserm U1209, CNRS UMR 5309 Grenoble, France
| | - Christophe Guilluy
- Institute for Advanced Biosciences, University Grenoble Alpes, Inserm U1209, CNRS UMR 5309 Grenoble, France
| | - Monika Elzbieta Dolega
- Institute for Advanced Biosciences, University Grenoble Alpes, Inserm U1209, CNRS UMR 5309 Grenoble, France
| |
Collapse
|
17
|
Zhu S, Zhang X, Zhou Z, Han Y, Xiang N, Ni Z. Microfluidic impedance cytometry for single-cell sensing: Review on electrode configurations. Talanta 2021; 233:122571. [PMID: 34215067 DOI: 10.1016/j.talanta.2021.122571] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 05/25/2021] [Accepted: 05/27/2021] [Indexed: 10/21/2022]
Abstract
Single-cell analysis has gained considerable attention for disease diagnosis, drug screening, and differentiation monitoring. Compared to the well-established flow cytometry, which uses fluorescent-labeled antibodies, microfluidic impedance cytometry (MIC) offers a simple, label-free, and noninvasive method for counting, classifying, and monitoring cells. Superior features including a small footprint, low reagent consumption, and ease of use have also been reported. The MIC device detects changes in the impedance signal caused by cells passing through the sensing/electric field zone, which can extract information regarding the size, shape, and dielectric properties of these cells. According to recent studies, electrode configuration has a remarkable effect on detection accuracy, sensitivity, and throughput. With the improvement in microfabrication technology, various electrode configurations have been reported for improving detection accuracy and throughput. However, the various electrode configurations of MIC devices have not been reviewed. In this review, the theoretical background of the impedance technique for single-cell analysis is introduced. Then, two-dimensional, three-dimensional, and liquid electrode configurations are discussed separately; their sensing mechanisms, fabrication processes, advantages, disadvantages, and applications are also described in detail. Finally, the current limitations and future perspectives of these electrode configurations are summarized. The main aim of this review is to offer a guide for researchers on the ongoing advancement in electrode configuration designs.
Collapse
Affiliation(s)
- Shu Zhu
- School of Mechanical Engineering, And Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, Southeast University, Nanjing, 211189, China
| | - Xiaozhe Zhang
- School of Mechanical Engineering, And Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, Southeast University, Nanjing, 211189, China
| | - Zheng Zhou
- School of Mechanical Engineering, And Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, Southeast University, Nanjing, 211189, China
| | - Yu Han
- School of Mechanical Engineering, And Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, Southeast University, Nanjing, 211189, China
| | - Nan Xiang
- School of Mechanical Engineering, And Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, Southeast University, Nanjing, 211189, China.
| | - Zhonghua Ni
- School of Mechanical Engineering, And Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, Southeast University, Nanjing, 211189, China.
| |
Collapse
|
18
|
Gurung JP, Navvab Kashani M, Agarwal S, Peralta G, Gel M, Baker MAB. Separation and enrichment of sodium-motile bacteria using cost-effective microfluidics. BIOMICROFLUIDICS 2021; 15:034108. [PMID: 34084258 PMCID: PMC8163512 DOI: 10.1063/5.0046941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 05/10/2021] [Indexed: 06/12/2023]
Abstract
Many motile bacteria are propelled by the rotation of flagellar filaments. This rotation is driven by a membrane protein known as the stator-complex, which drives the rotor of the bacterial flagellar motor. Torque generation is powered in most cases by proton transit through membrane protein complexes known as stators, with the next most common ionic power source being sodium. Sodium-powered stators can be studied through the use of synthetic chimeric stators that combine parts of sodium- and proton-powered stator proteins. The most well studied example is the use of the sodium-powered PomA-PotB chimeric stator unit in the naturally proton-powered Escherichia coli. Here we designed a fluidics system at low cost for rapid prototyping to separate motile and non-motile populations of bacteria while varying the ionic composition of the media and thus the sodium-motive force available to drive this chimeric flagellar motor. We measured separation efficiencies at varying ionic concentrations and confirmed using fluorescence that our device delivered eightfold enrichment of the motile proportion of a mixed population. Furthermore, our results showed that we could select bacteria from reservoirs where sodium was not initially present. Overall, this technique can be used to implement the selection of highly motile fractions from mixed liquid cultures, with applications in directed evolution to investigate the adaptation of motility in bacterial ecosystems.
Collapse
Affiliation(s)
- Jyoti P. Gurung
- School of Biotechnology and Biomolecular Science, UNSW Sydney, Sydney, NSW 2052, Australia
| | | | - Sanaz Agarwal
- School of Biotechnology and Biomolecular Science, UNSW Sydney, Sydney, NSW 2052, Australia
| | - Gonzalo Peralta
- School of Biotechnology and Biomolecular Science, UNSW Sydney, Sydney, NSW 2052, Australia
| | | | | |
Collapse
|
19
|
Pärnamets K, Pardy T, Koel A, Rang T, Scheler O, Le Moullec Y, Afrin F. Optical Detection Methods for High-Throughput Fluorescent Droplet Microflow Cytometry. MICROMACHINES 2021; 12:mi12030345. [PMID: 33807031 PMCID: PMC8004903 DOI: 10.3390/mi12030345] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 03/18/2021] [Accepted: 03/19/2021] [Indexed: 11/16/2022]
Abstract
High-throughput microflow cytometry has become a focal point of research in recent years. In particular, droplet microflow cytometry (DMFC) enables the analysis of cells reacting to different stimuli in chemical isolation due to each droplet acting as an isolated microreactor. Furthermore, at high flow rates, the droplets allow massive parallelization, further increasing the throughput of droplets. However, this novel methodology poses unique challenges related to commonly used fluorometry and fluorescent microscopy techniques. We review the optical sensor technology and light sources applicable to DMFC, as well as analyze the challenges and advantages of each option, primarily focusing on electronics. An analysis of low-cost and/or sufficiently compact systems that can be incorporated into portable devices is also presented.
Collapse
Affiliation(s)
- Kaiser Pärnamets
- Thomas Johann Seebeck Department of Electronics, Tallinn University of Technology, 19086 Tallinn, Estonia; (A.K.); (T.R.); (Y.L.M.); (F.A.)
- Correspondence:
| | - Tamas Pardy
- Department of Chemistry and Biotechnology, Tallinn University of Technology, 19086 Tallinn, Estonia; (T.P.); (O.S.)
| | - Ants Koel
- Thomas Johann Seebeck Department of Electronics, Tallinn University of Technology, 19086 Tallinn, Estonia; (A.K.); (T.R.); (Y.L.M.); (F.A.)
| | - Toomas Rang
- Thomas Johann Seebeck Department of Electronics, Tallinn University of Technology, 19086 Tallinn, Estonia; (A.K.); (T.R.); (Y.L.M.); (F.A.)
| | - Ott Scheler
- Department of Chemistry and Biotechnology, Tallinn University of Technology, 19086 Tallinn, Estonia; (T.P.); (O.S.)
| | - Yannick Le Moullec
- Thomas Johann Seebeck Department of Electronics, Tallinn University of Technology, 19086 Tallinn, Estonia; (A.K.); (T.R.); (Y.L.M.); (F.A.)
| | - Fariha Afrin
- Thomas Johann Seebeck Department of Electronics, Tallinn University of Technology, 19086 Tallinn, Estonia; (A.K.); (T.R.); (Y.L.M.); (F.A.)
| |
Collapse
|
20
|
Visualization and Measurements of Blood Cells Flowing in Microfluidic Systems and Blood Rheology: A Personalized Medicine Perspective. J Pers Med 2020; 10:jpm10040249. [PMID: 33256123 PMCID: PMC7712771 DOI: 10.3390/jpm10040249] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 11/21/2020] [Accepted: 11/23/2020] [Indexed: 02/08/2023] Open
Abstract
Hemorheological alterations in the majority of metabolic diseases are always connected with blood rheology disturbances, such as the increase of blood and plasma viscosity, cell aggregation enhancement, and reduction of the red blood cells (RBCs) deformability. Thus, the visualizations and measurements of blood cells deformability flowing in microfluidic devices (point-of-care devices) can provide vital information to diagnose early symptoms of blood diseases and consequently to be used as a fast clinical tool for early detection of biomarkers. For instance, RBCs rigidity has been correlated with myocardial infarction, diabetes mellitus, hypertension, among other blood diseases. In order to better understand the blood cells behavior in microfluidic devices, rheological properties analysis is gaining interest by the biomedical committee, since it is strongly dependent on the interactions and mechanical cells proprieties. In addition, the development of blood analogue fluids capable of reproducing the rheological properties of blood and mimic the RBCs behavior at in vitro conditions is crucial for the design, performance and optimization of the microfluidic devices frequently used for personalized medicine. By combining the unique features of the hemorheology and microfluidic technology for single-cell analysis, valuable advances in personalized medicine for new treatments and diagnosis approach can be achieved.
Collapse
|
21
|
Yuan X, Garg S, Haan KD, Fellouse FA, Gopalsamy A, Tykvart J, Sidhu SS, Varma MM, Pal P, Hillan EM, Dou JJ, Aitchison JS. Bead-based multiplex detection of dengue biomarkers in a portable imaging device. BIOMEDICAL OPTICS EXPRESS 2020; 11:6154-6167. [PMID: 33282481 PMCID: PMC7687939 DOI: 10.1364/boe.403803] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 09/28/2020] [Accepted: 09/28/2020] [Indexed: 05/04/2023]
Abstract
Dengue is one of the most rapidly spreading mosquito-borne viral diseases in the world. Differential diagnosis is a crucial step for the management of the disease and its epidemiology. Point-of-care testing of blood-borne dengue biomarkers provides an advantageous approach in many health care settings, and the ability to follow more than one biomarker at once could significantly improve the management of the disease. Bead-based multiplex technologies (suspension array) can measure multiple biomarker targets simultaneously by using recognition molecules immobilized on microsphere beads. The overarching objective of our work is to develop a portable detection device for the simultaneous measurement of multiple biomarkers important in dengue diagnosis, monitoring and treatment. Here, we present a bead-based assay for the detection of one of the four serotypes of dengue virus non-structural protein (DENV-NS1) as well as its cognate human IgG. In this system, the fluorescent microspheres containing the classification fluorophore and detection fluorophore are imaged through a microfluidic chip using an infinity-corrected microscope system. Calibration curves were plotted for median fluorescence intensity against known concentrations of DENV-NS1 protein and anti-NS1 human IgG. The limit of quantitation was 7.8 ng/mL and 15.6 ng/mL, respectively. The results of this study demonstrate the feasibility of the multiplex detection of dengue biomarkers and present its analytical performance parameters. The proposed imaging device holds potential for point-of-care testing of biomarkers on a highly portable system, and it may facilitate the diagnosis and prevention of dengue as well as other infectious diseases.
Collapse
Affiliation(s)
- Xilong Yuan
- Department of Electrical and Computer Engineering, University of Toronto, ON, Canada
| | - Srishti Garg
- Department of Electrical and Computer Engineering, University of Toronto, ON, Canada
| | - Kevin De Haan
- Department of Electrical and Computer Engineering, University of Toronto, ON, Canada
- Electrical and Computer Engineering Department, University of California at Los Angeles, Los Angeles, CA 90095, USA
| | - Frederic A. Fellouse
- Donnelly Centre and Department of Medical Genetics, University of Toronto, ON, Canada
| | - Anupriya Gopalsamy
- Donnelly Centre and Department of Medical Genetics, University of Toronto, ON, Canada
| | - Jan Tykvart
- Donnelly Centre and Department of Medical Genetics, University of Toronto, ON, Canada
- DIANA Biotechnologies s.r.o., Vestec 252 50, Czech Republic
| | - Sachdev S. Sidhu
- Donnelly Centre and Department of Medical Genetics, University of Toronto, ON, Canada
| | - Manoj M. Varma
- Centre for Nano Science and Engineering, Indian Institute of Science, Bengaluru, Karnataka, India
| | - Parama Pal
- TCS Research and Innovation, Tata Consultancy Services, Bengaluru, Karnataka, India
| | - Edith M. Hillan
- Lawrence S. Bloomberg Faculty of Nursing, University of Toronto, ON, Canada
| | | | - J. Stewart Aitchison
- Department of Electrical and Computer Engineering, University of Toronto, ON, Canada
| |
Collapse
|
22
|
Vafaei S, Roudi R, Madjd Z, Aref AR, Ebrahimi M. Potential theranostics of circulating tumor cells and tumor-derived exosomes application in colorectal cancer. Cancer Cell Int 2020; 20:288. [PMID: 32655320 PMCID: PMC7339440 DOI: 10.1186/s12935-020-01389-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 06/27/2020] [Indexed: 02/07/2023] Open
Abstract
Background At the present time, colorectal cancer (CRC) is still known as a disease with a high mortality rate. Theranostics are flawless scenarios that link diagnosis with therapy, including precision medicine as a critical platform that relies on the development of biomarkers particularly “liquid biopsy”. Circulating tumor cells (CTCs) and tumor-derived exosomes (TDEs) in a liquid biopsy approach are of substantial importance in comparison with traditional ones, which cannot generally be performed to determine the dynamics of the tumor due to its wide restriction of range. Thus, recent attempts has shifted towards minimally noninvasive methods. Main text CTCs and TDEs, as significant signals emitted from the tumor microenvironment, which are also detectable in the blood, prove themselves to be promising novel biomarkers for cancer diagnosis, prognosis, and treatment response prediction. The therapeutic potential of them is still limited, and studies are at its infancy. One of the major challenges for the implementation of CTCs and TDEs which are new trends in translational medicine is the development of isolation and characterization; a standardizable approach. This review highlights and discusses the current challenges to find the bio fluids application in CRC early detection and clinical management. Conclusion Taken together, CTCs and TDEs as silent drivers of metastasis can serve in the management of cancer patient treatment and it is of the upmost importance to expand our insight into this subject. However, due to the limited data available from clinical trials, further validations are required before addressing their putative application in oncology.![]()
Collapse
Affiliation(s)
- Somayeh Vafaei
- Oncopathology Research Center, Iran University of Medical Sciences (IUMS), Hemmat Street (Highway), Next to Milad Tower, Tehran, Iran.,Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran.,Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Raheleh Roudi
- Oncopathology Research Center, Iran University of Medical Sciences (IUMS), Hemmat Street (Highway), Next to Milad Tower, Tehran, Iran
| | - Zahra Madjd
- Oncopathology Research Center, Iran University of Medical Sciences (IUMS), Hemmat Street (Highway), Next to Milad Tower, Tehran, Iran.,Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Amir Reza Aref
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, USA
| | - Marzieh Ebrahimi
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| |
Collapse
|
23
|
Passive Dielectrophoretic Focusing of Particles and Cells in Ratchet Microchannels. MICROMACHINES 2020; 11:mi11050451. [PMID: 32344887 PMCID: PMC7281238 DOI: 10.3390/mi11050451] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 04/09/2020] [Accepted: 04/23/2020] [Indexed: 12/19/2022]
Abstract
Focusing particles into a tight stream is critical for many microfluidic particle-handling devices such as flow cytometers and particle sorters. This work presents a fundamental study of the passive focusing of polystyrene particles in ratchet microchannels via direct current dielectrophoresis (DC DEP). We demonstrate using both experiments and simulation that particles achieve better focusing in a symmetric ratchet microchannel than in an asymmetric one, regardless of the particle movement direction in the latter. The particle focusing ratio, which is defined as the microchannel width over the particle stream width, is found to increase with an increase in particle size or electric field in the symmetric ratchet microchannel. Moreover, it exhibits an almost linear correlation with the number of ratchets, which can be explained by a theoretical formula that is obtained from a scaling analysis. In addition, we have demonstrated a DC dielectrophoretic focusing of yeast cells in the symmetric ratchet microchannel with minimal impact on the cell viability.
Collapse
|
24
|
Gurung JP, Gel M, Baker MAB. Microfluidic techniques for separation of bacterial cells via taxis. MICROBIAL CELL (GRAZ, AUSTRIA) 2020; 7:66-79. [PMID: 32161767 PMCID: PMC7052948 DOI: 10.15698/mic2020.03.710] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 12/24/2019] [Accepted: 01/10/2020] [Indexed: 12/22/2022]
Abstract
The microbial environment is typically within a fluid and the key processes happen at the microscopic scale where viscosity dominates over inertial forces. Microfluidic tools are thus well suited to study microbial motility because they offer precise control of spatial structures and are ideal for the generation of laminar fluid flows with low Reynolds numbers at microbial lengthscales. These tools have been used in combination with microscopy platforms to visualise and study various microbial taxes. These include establishing concentration and temperature gradients to influence motility via chemotaxis and thermotaxis, or controlling the surrounding microenvironment to influence rheotaxis, magnetotaxis, and phototaxis. Improvements in microfluidic technology have allowed fine separation of cells based on subtle differences in motility traits and have applications in synthetic biology, directed evolution, and applied medical microbiology.
Collapse
Affiliation(s)
- Jyoti P. Gurung
- School of Biotechnology and Biomolecular Science, UNSW Sydney
| | - Murat Gel
- CSIRO Manufacturing, Clayton
- CSIRO Future Science Platform for Synthetic Biology
| | - Matthew A. B. Baker
- School of Biotechnology and Biomolecular Science, UNSW Sydney
- CSIRO Future Science Platform for Synthetic Biology
| |
Collapse
|
25
|
Feng Y, Huang L, Zhao P, Liang F, Wang W. A Microfluidic Device Integrating Impedance Flow Cytometry and Electric Impedance Spectroscopy for High-Efficiency Single-Cell Electrical Property Measurement. Anal Chem 2019; 91:15204-15212. [PMID: 31702127 DOI: 10.1021/acs.analchem.9b04083] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Single-cell impedance measurement is a label-free, noninvasive method for characterizing the electrical properties of single cells. At present, though widely used for impedance measurement, electric impedance flow cytometry (IFC) and electric impedance spectroscopy (EIS) are used alone for most microfluidic chips. In this paper, we present a microfluidic device combining the IFC and EIS techniques for single-cell electrical property measurement. The device uses hydrodynamic constriction to passively trap single cells and uses coplanar electrodes to obtain the impedance spectrum of the trapped cell via EIS and discrete impedance data points of the passing cells via IFC. Through experiment, we verified the individual functionality of IFC and EIS respectively, by revealing through IFC the impedance magnitude difference and quantifying through EIS the area-specific membrane capacitance and cytoplasm conductivity of the three types of cancer cells. We also demonstrated the complementarity of IFC and EIS, which holds for a wide range of the flow rate. We envision that the strategy of combining IFC and EIS provides a new thought in the efforts to enhancing the efficiency of electrical property measurement for single cells.
Collapse
Affiliation(s)
- Yongxiang Feng
- Department of Precision Instrument , Tsinghua University , Beijing , China
| | - Liang Huang
- School of Instrument Science and Optoelectronics Engineering , Hefei University of Technology , Hefei , China
| | - Peng Zhao
- Department of Precision Instrument , Tsinghua University , Beijing , China
| | - Fei Liang
- Department of Precision Instrument , Tsinghua University , Beijing , China
| | - Wenhui Wang
- Department of Precision Instrument , Tsinghua University , Beijing , China
| |
Collapse
|
26
|
Vembadi A, Menachery A, Qasaimeh MA. Cell Cytometry: Review and Perspective on Biotechnological Advances. Front Bioeng Biotechnol 2019; 7:147. [PMID: 31275933 PMCID: PMC6591278 DOI: 10.3389/fbioe.2019.00147] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Accepted: 05/31/2019] [Indexed: 12/20/2022] Open
Abstract
Cell identification and enumeration are essential procedures within clinical and research laboratories. For over 150 years, quantitative investigation of body fluids such as counts of various blood cells has been an important tool for diagnostic analysis. With the current evolution of point-of-care diagnostics and precision medicine, cheap and precise cell counting technologies are in demand. This article reviews the timeline and recent notable advancements in cell counting that have occurred as a result of improvements in sensing including optical and electrical technology, enhancements in image processing capabilities, and contributions of micro and nanotechnologies. Cell enumeration methods have evolved from the use of manual counting using a hemocytometer to automated cell counters capable of providing reliable counts with high precision and throughput. These developments have been enabled by the use of precision engineering, micro and nanotechnology approaches, automation and multivariate data analysis. Commercially available automated cell counters can be broadly classified into three categories based on the principle of detection namely, electrical impedance, optical analysis and image analysis. These technologies have many common scientific uses, such as hematological analysis, urine analysis and bacterial enumeration. In addition to commercially available technologies, future technological trends using lab-on-a-chip devices have been discussed in detail. Lab-on-a-chip platforms utilize the existing three detection technologies with innovative design changes utilizing advanced nano/microfabrication to produce customized devices suited to specific applications.
Collapse
Affiliation(s)
- Abhishek Vembadi
- Division of Engineering, New York University, Abu Dhabi, United Arab Emirates
| | - Anoop Menachery
- Division of Engineering, New York University, Abu Dhabi, United Arab Emirates
| | - Mohammad A. Qasaimeh
- Division of Engineering, New York University, Abu Dhabi, United Arab Emirates
- Department of Mechanical and Aerospace Engineering, New York University Tandon School of Engineering, Brooklyn, NY, United States
| |
Collapse
|
27
|
Chattopadhyay PK, Winters AF, Lomas WE, Laino AS, Woods DM. High-Parameter Single-Cell Analysis. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2019; 12:411-430. [PMID: 30699035 DOI: 10.1146/annurev-anchem-061417-125927] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Thousands of transcripts and proteins confer function and discriminate cell types in the body. Using high-parameter technologies, we can now measure many of these markers at once, and multiple platforms are now capable of analysis on a cell-by-cell basis. Three high-parameter single-cell technologies have particular potential for discovering new biomarkers, revealing disease mechanisms, and increasing our fundamental understanding of cell biology. We review these three platforms (high-parameter flow cytometry, mass cytometry, and a new class of technologies called integrated molecular cytometry platforms) in this article. We describe the underlying hardware and instrumentation, the reagents involved, and the limitations and advantages of each platform. We also highlight the emerging field of high-parameter single-cell data analysis, providing an accessible overview of the data analysis process and choice of tools.
Collapse
Affiliation(s)
- Pratip K Chattopadhyay
- Precision Immunology Laboratory, Perlmutter Cancer Center, NYU Langone Health, New York, NY 10016, USA;
| | - Aidan F Winters
- Precision Immunology Laboratory, Perlmutter Cancer Center, NYU Langone Health, New York, NY 10016, USA;
| | - Woodrow E Lomas
- Precision Immunology Laboratory, Perlmutter Cancer Center, NYU Langone Health, New York, NY 10016, USA;
| | - Andressa S Laino
- Precision Immunology Laboratory, Perlmutter Cancer Center, NYU Langone Health, New York, NY 10016, USA;
| | - David M Woods
- Precision Immunology Laboratory, Perlmutter Cancer Center, NYU Langone Health, New York, NY 10016, USA;
| |
Collapse
|
28
|
Highly sensitive amperometric detection of glutamate by glutamic oxidase immobilized Pt nanoparticle decorated multiwalled carbon nanotubes(MWCNTs)/polypyrrole composite. Biosens Bioelectron 2019; 130:307-314. [PMID: 30780080 DOI: 10.1016/j.bios.2019.02.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 01/20/2019] [Accepted: 02/03/2019] [Indexed: 01/05/2023]
Abstract
A highly sensitive and selective glutamate biosensor using glutamate Oxidase (GlUtOx) immobilized platinum nanoparticle (PtNP) decorated multiwall carbon nanotube (MWCNTs)/polypyrrole (PPy) composite on glassy carbon electrodes (GC) is demonstrated. PtNP decorated MWCNTs (Pt-MWCNTs), PPy and Pt-MWCNTs/PPy composite were characterized by Field Emission Scanning Electron Microscope (FESEM), X-ray diffraction (XRD) and Raman analysis to confirm the formation of the nanocomposite. The glutamate Oxidase (GlUtOx) was immobilized on a GC/Pt-MWCNTs/PPy and characterized by the cyclic voltammetry (CV) and impedance spectroscopy (EIS) analysis. The fabricated L-glutamate biosensor exhibited high sensitivity (723.08 µA cm-2 mM-1) with less response time (3 s) with a detection limit of 0.88 µM. The dynamic range from 10 to 100 µM with a correlation coefficient (R2) of 0.985 was observed for the L-glutamate biosensor. The analytical recovery of added L-glutamate acid (50 and 100 μM) in human serum soup were 96.1% and 97.5% respectively. The enzyme immobilized GC/Pt-MWCNTs/PPy/GlUtOx bioelectrode lost 12.6% and 23.8% of its initial activity after 30 days when stored at - 20 °C and 4 °C respectively.
Collapse
|
29
|
Zahn JD. Microdevice Development and Artificial Organs. Artif Organs 2018; 43:17-20. [PMID: 30260017 DOI: 10.1111/aor.13288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Jeffrey D Zahn
- Department of Biomedical Engineering, Rutgers University, 599 Taylor Road, Piscataway, NJ, 08854, USA
| |
Collapse
|