1
|
Hadi H, Aouled Dlala N, Cherif I, Gassoumi B, Abdelaziz B, Safari R, Caccamo MT, Magazù S, Patanè S, Ghalla H, Ayachi S. Exploring Nano-optical Molecular Switch Systems for Potential Electronic Devices: Understanding Electric and Electronic Properties through DFT-QTAIM Assembly. ACS OMEGA 2024; 9:37702-37715. [PMID: 39281953 PMCID: PMC11391465 DOI: 10.1021/acsomega.4c03045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 08/15/2024] [Accepted: 08/22/2024] [Indexed: 09/18/2024]
Abstract
The design and synthesis of molecular nanoswitches using organic molecules represent a crucial research field within molecular electronics. To understand the switching mechanisms, it is essential to investigate various factors, such as charge/energy transfer, electron transfer, nonlinear optical properties (NLO), current-voltage (I-V) curves, Joule-like (LJL) and Peltier-like (LPL) intramolecular phenomenological coefficients, as well as the energy levels of the highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) boundary orbitals. In this Article, a novel approach to designing a molecular nanoswitch and understanding its ON/OFF mechanism is presented, utilizing the quantum theory of atoms in molecules (QTAIM), density functional theory (DFT), and Landauer theory (LT). These analyses contribute significantly to a deep understanding of switching effects within molecular electronic systems.
Collapse
Affiliation(s)
- Hamid Hadi
- Department of Chemistry, Physical Chemistry Group, Lorestan University, Khorramabad 6815144316, Iran
| | - Najet Aouled Dlala
- Quantum and Statistical Physics Laboratory, Faculty of Sciences, University of Monastir, Avenue of the Environment, 5019 Monastir, Tunisia
| | - Imen Cherif
- Laboratory of Physico-Chemistry of Materials (LR01ES19), Faculty of Sciences, University of Monastir, Avenue of the Environment, 5019 Monastir, Tunisia
- Department of Industrial Chemistry and Engineering of Materials and CASPE-INSTM, University of Messina, V. le F. Stagno d' Alcontres 31, 98166 Messina, Italy
| | - Bouzid Gassoumi
- Laboratory of Advanced Materials and Interfaces (LIMA), Faculty of Sciences of Monastir, University of Monastir, Avenue of Environment, 5000 Monastir, Tunisia
| | - Balkis Abdelaziz
- Laboratory of Physico-Chemistry of Materials (LR01ES19), Faculty of Sciences, University of Monastir, Avenue of the Environment, 5019 Monastir, Tunisia
- Department of Mathematical and Computer Sciences, Physical Sciences and Earth Sciences, University of Messina, I-98166 Messina, Italy
| | - Reza Safari
- Department of Chemistry, Physical Chemistry Group, University of Qom, Qom 3716146611, Iran
| | - Maria Teresa Caccamo
- Department of Mathematical and Computer Sciences, Physical Sciences and Earth Sciences, University of Messina, I-98166 Messina, Italy
| | - Salvatore Magazù
- Department of Mathematical and Computer Sciences, Physical Sciences and Earth Sciences, University of Messina, I-98166 Messina, Italy
| | - Salvatore Patanè
- Department of Mathematical and Computer Sciences, Physical Sciences and Earth Sciences, University of Messina, I-98166 Messina, Italy
| | - Houcine Ghalla
- Quantum and Statistical Physics Laboratory, Faculty of Sciences, University of Monastir, Avenue of the Environment, 5019 Monastir, Tunisia
| | - Sahbi Ayachi
- Laboratory of Physico-Chemistry of Materials (LR01ES19), Faculty of Sciences, University of Monastir, Avenue of the Environment, 5019 Monastir, Tunisia
| |
Collapse
|
2
|
Kunjumol VS, Jeyavijayan S, Sumathi S, Karthik N. Spectroscopic, computational, cytotoxicity, and docking studies of 6-bromobenzimidazole as anti-breast cancer agent. J Mol Recognit 2024; 37:e3074. [PMID: 38168749 DOI: 10.1002/jmr.3074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 11/25/2023] [Accepted: 12/05/2023] [Indexed: 01/05/2024]
Abstract
6-Bromobenzimidazole (6BBZ) has been calculated in this study utilizing the 6-311++G(d,p) basis set and the Becke-3-Lee-Yang-Parr density functional approaches. The basic frequencies and geometric optimization are known. FTIR, FT-Raman, and UV-Vis spectra of the substance are compared between its computed and observed values. The energy gap between highest occupied molecular orbital-lowest unoccupied molecular orbital and molecule electrostatic potentials has been represented by charge density distributions that may be associated with the biological response. Time-dependent density functional theory calculations in the gas phase and dimethyl sulfoxide were carried out to ascertain the electronic properties and energy gap values using the same basis set. Molecular orbital contributions are investigated using the overlap population, partial, and total densities of states. Natural bond analysis was found to have strong electron delocalization by means of π(C4-C9) → π*(C5-C6), LP (N1) → π*(C7-C8), and LP(Br12) → π*(C5-C6) interactions. The Fukui function and Mulliken analysis have been explored on the atomic charges of the molecule. The nuclear magnetic resonance chemical shifts for 1 H and 13 C have been computed using the gauge-independent atomic orbital technique. With the highest binding affinity (-6.2 kcal mol-1 ) against estrogen sulfotransferase receptor (PDB ID: 1AQU) and low IC50 value of 17.23 μg/mL, 6BBZ demonstrated potent action against the MCF-7 breast cancer cell line. Studies on the antibacterial activity and ADMET prediction of the molecule have also been carried out.
Collapse
Affiliation(s)
- V S Kunjumol
- Department of Engineering, University of Technology and Applied Science, Shinas, Oman
| | - S Jeyavijayan
- Department of Physics, Kalasalingam Academy of Research and Education, Krishnankoil, Tamil Nadu, India
| | - S Sumathi
- Department of Physics, Kalasalingam Academy of Research and Education, Krishnankoil, Tamil Nadu, India
| | - N Karthik
- Department of Physics, Kalasalingam Academy of Research and Education, Krishnankoil, Tamil Nadu, India
| |
Collapse
|
3
|
Duraisamy PD, S PMP, Gopalan P, Angamuthu A. Enhanced hydrogen storage of alkaline earth metal-decorated B n (n = 3-14) nanoclusters: a DFT study. J Mol Model 2024; 30:55. [PMID: 38291281 DOI: 10.1007/s00894-024-05847-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 01/16/2024] [Indexed: 02/01/2024]
Abstract
CONTEXT Boron-based nanostructures hold significant promise for revolutionizing hydrogen storage technologies due to their exceptional properties and potential in efficiently accommodating and interacting with hydrogen molecules. In this paper, boron-based Bn (n = 3-14) nanoclusters decorated with alkaline earth metals (AEM = Ca and Be) were investigated for hydrogen storage applications based on density function theory (DFT) calculations. To evaluate H2 adsorption capability, the adsorption energies, frontier molecular orbitals (FMOs), natural bond orbital (NBO), and quantum theory of atoms in molecule (QTAIM) analysis are performed. The primary aim of this research work is to achieve targeted value of 5.5 wt% set by the US Department of Energy (DOE) for the year 2025. The results revealed that B5Ca2, B6Ca2, and B10Ca2 structures have the ability to hold up to 12H2 molecules with gravimetric capacities of 15.20, 14.21, and 8.60 wt%, respectively, when compared to other boron structures decorated with calcium. Similarly, for Be-decorated structure, B3Be2 structure can accommodate 3H2 molecules with gravimetric capacity of 10.59 wt%. The result of this study indicates that AEM-decorated Bn nanoclusters hold great promise as potential materials for hydrogen storage. METHODS Density functional theory (DFT) approach at ωB97XD/6-311++G(d,p) level of theory is employed to investigate the possibility of storing H2 molecules on alkaline earth metal (AEM = Ca and Be)-decorated Bn (n = 3-14) nanoclusters. All DFT computations were performed using Gaussian 09 software. To calculate frontier molecular orbitals (FMOs) and quantum theory of atoms in molecule (QTAIM) analysis, we have used GaussView and Multiwfn software, respectively.
Collapse
Affiliation(s)
- Parimala Devi Duraisamy
- Department of Physical Sciences, Karunya Institute of Technology and Sciences, Coimbatore, Tamil Nadu, 641114, India
| | - Prince Makarios Paul S
- Department of Physical Sciences, Karunya Institute of Technology and Sciences, Coimbatore, Tamil Nadu, 641114, India
| | - Praveena Gopalan
- Department of Physics, PSGR Krishnammal College for Women, Coimbatore, Tamil Nadu, 641004, India
| | - Abiram Angamuthu
- Department of Physical Sciences, Karunya Institute of Technology and Sciences, Coimbatore, Tamil Nadu, 641114, India.
| |
Collapse
|
4
|
Abdulla HM, Gangwar P, Sajith PK, Ramachandran CN. Probing the Interaction of NO with C 60: Comparison between Endohedral and Exohedral Complexes. J Phys Chem A 2023; 127:3598-3607. [PMID: 37051864 DOI: 10.1021/acs.jpca.3c00381] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/14/2023]
Abstract
Recent advances in synthetic methodologies have opened new strategies for synthesizing stable metal-free electron spin systems based on fullerenes. Introducing nitric oxide (NO) inside a fullerene cage is one of the methods to attain this goal. In the present study, dispersion corrected density functional theory (B3LYP-D3) has been used to evaluate the structure, stability, and electronic properties of NO encapsulated fullerene NO@C60 and compared those with its exohedral fullerene NO.C60 analog. The calculated stabilization energy for NO@C60 is appreciably higher than NO.C60, and this difference is comprehended via the Quantum theory of atoms in molecules (QTAIM) and noncovalent interaction (NCI) topological analyses. The delocalization of electron density of NO and the C60 cage in NO@C60 is discussed using electrostatic potential analysis. In addition, an attempt has been made to understand the different locations and orientations involving the interaction of two NO radicals and the fullerene C60. It is shown that the encapsulation of the NO dimer inside the C60 cage is an energetically unfavorable process. On the other hand, stable structures are obtained upon the physisorption of other NO on the surface of NO@C60 and NO.C60. The present work provides an in-depth understanding of the interaction of NO and C60 fullerene, its preferable position, and its orientation in both endohedral and exohedral complexes.
Collapse
Affiliation(s)
| | - Peaush Gangwar
- Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand 247667, India
| | - Pookkottu K Sajith
- Department of Chemistry, Farook College, Kozhikode, Kerala 673632, India
| | - C N Ramachandran
- Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand 247667, India
| |
Collapse
|
5
|
Basma REMOUGUI C, BRAHIMI N, MOUMENI H, NEMAMCHA A. Structural, electronic, nonlinear optical properties and spectroscopic study of noble metals doped C60 fullerene using M06-2X. COMPUT THEOR CHEM 2023. [DOI: 10.1016/j.comptc.2023.114114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
|
6
|
Apebende CG, Louis H, Owen AE, Benjamin I, Amodu IO, Gber TE, Asogwa FC. Adsorption properties of metal functionalized fullerene (C 59Au, C 59Hf, C 59Ag, and C 59Ir) nanoclusters for application as a biosensor for hydroxyurea (HXU): insight from theoretical computation. Z PHYS CHEM 2022. [DOI: 10.1515/zpch-2022-0126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Abstract
This theoretical study was conducted to evaluate the efficiency of fullerene C60 and its metal functionalized nano clusters (C59Au, C59Hf, C59Ag and C59Ir) as a sensor for hydroxyurea (HXU). The various conclusions concerning the adsorption and sensing properties of the studied nano surfaces were achieved using density functional theory (DFT) at the M062X-D3/gen/LanL2DZ/def2svp level of theory. Among the nano clusters studied for this interaction, analysis of the HOMO–LUMO energy differences (E
g) showed that HXU@C59Hg (H2) reflects the least energy gap of 3.042 eV, indicating its greater reactivity, sensitivity and conductivity. Also, the adsorption phenomenon in this current study is best described as chemisorptions owing to the negative adsorption enthalpies observed. Thus, the adsorption energy (E
Ad) follows an increasing pattern of: HXU@C60 (C1) (−0.218 eV) < HXU@C59Ir (I1) (−1.361 eV) < HXU@C59Au (A1) (−1.986 eV) < HXU@C59Hf (H1) (−2.640 eV) < HXU@C59Hg (H2) (−3.347 eV). Least E
g, highest E
Ad and non-covalent nature of interaction attributed to C59Hg surface are sufficient to show that, among all studied surfaces, C59Hg surface emerged as the most suitable adsorbent for the adsorption of HXU. Hence, it can be used in modeling future adsorbent material for hydroxyurea.
Collapse
Affiliation(s)
- Chioma G. Apebende
- Computational and Bio-Simulation Research Group , University of Calabar , Calabar , Nigeria
- Department of Pure and Applied Chemistry, Faculty of Physical Sciences , University of Calabar , Calabar , Nigeria
| | - Hitler Louis
- Computational and Bio-Simulation Research Group , University of Calabar , Calabar , Nigeria
- Department of Pure and Applied Chemistry, Faculty of Physical Sciences , University of Calabar , Calabar , Nigeria
| | - Aniekan E. Owen
- Computational and Bio-Simulation Research Group , University of Calabar , Calabar , Nigeria
| | - Innocent Benjamin
- Computational and Bio-Simulation Research Group , University of Calabar , Calabar , Nigeria
- Department of Microbiology, Faculty of Biological Sciences , University of Calabar , Calabar , Nigeria
| | - Ismail O. Amodu
- Computational and Bio-Simulation Research Group , University of Calabar , Calabar , Nigeria
- Department of Mathematics, Faculty of Physical Sciences , University of Calabar , Calabar , Nigeria
| | - Terkumbur E. Gber
- Computational and Bio-Simulation Research Group , University of Calabar , Calabar , Nigeria
- Department of Pure and Applied Chemistry, Faculty of Physical Sciences , University of Calabar , Calabar , Nigeria
| | - Fredrick C. Asogwa
- Computational and Bio-Simulation Research Group , University of Calabar , Calabar , Nigeria
- Department of Pure and Applied Chemistry, Faculty of Physical Sciences , University of Calabar , Calabar , Nigeria
| |
Collapse
|
7
|
Chakraborty J. An account of noncovalent interactions in homoleptic palladium(II) and platinum(II) complexes within the DFT framework: A correlation between geometries, energy components of symmetry-adapted perturbation theory and NCI descriptors. Heliyon 2022; 8:e11408. [DOI: 10.1016/j.heliyon.2022.e11408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 09/26/2022] [Accepted: 10/31/2022] [Indexed: 11/10/2022] Open
|
8
|
Lemos Silva RA, Scalabrini Machado DF, de Oliveira HCB, Ribeiro L, da Silva Filho DA. Theoretical study of the interaction of fullerenes with the emerging contaminant carbamazepine for detection in aqueous environments. Sci Rep 2022; 12:15848. [PMID: 36151225 PMCID: PMC9508123 DOI: 10.1038/s41598-022-19258-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 08/26/2022] [Indexed: 11/16/2022] Open
Abstract
The global increase in drug consumption exposes the growing need to develop new systems for the detection, capture, and treatment of bioactive molecules. Carbamazepine is one instance of such contaminants at the top of the ranking commonly found in sewage treatment systems. This work, therefore, presents a theoretical study of fullerene C60 and its derivatives with substitutional doping with B, Al, Ga, Si, Ge, N and P, for the detection and capture of carbamazepine is aqueous medium. Solvation effects were included by means of the Polarizable Continuum Solvent method. The results indicate that doped fullerenes are sensitive for the detection of carbamazepine both in gaseous and aquatic environments. Investigation on the intermolecular interactions between the drug and the fullerene molecule were carried out, allowing the characterization of the interactions responsible for stabilizing the adsorption of carbamazepine to the fullerenes. The theoretical survey revealed that fullerenes doped with Al, Ga, Si and Ge chemically adsorb carbamazepine whereas for the case of fullerenes doped with other heteroatoms physisorption is responsible for the molecular recognition. Relying on DFT calculations, the fullerene derivatives C59Al, C59Si and C59Ga are the most suitable to act both as a sensor and to uptake carbamazepine in aquatic environments.
Collapse
Affiliation(s)
| | - Daniel F Scalabrini Machado
- Laboratório de Modelagem de Sistemas Complexos (LMSC), Instituto de Química, Universidade de Brasília, Brasília, 70919-970, Brazil
| | - Heibbe C B de Oliveira
- Laboratório de Estrutura Eletrônica e Dinâmica Molecular (LEEDMOL), Instituto de Química, Universidade Federal de Goiás, Goiânia, Brazil
| | - Luciano Ribeiro
- Grupo de Química Teórica e Estrutural de Anápolis, Campus de Ciências Exatas de Anápolis, Universidade Estadual de Goiás, Anápolis, Brazil
| | | |
Collapse
|
9
|
Interaction of the Serine Amino Acid with BNNT, BNAlNT, and BC2NNT. ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING 2022. [DOI: 10.1007/s13369-022-06916-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
10
|
Mohammadi MD, Abdullah HY, Kalamse V, Chaudhari A. Interaction of Fluorouracil drug with boron nitride nanotube, Al doped boron nitride nanotube and BC2N nanotube. COMPUT THEOR CHEM 2022. [DOI: 10.1016/j.comptc.2022.113699] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
11
|
Ramuthai M, Jeyavijayan S, Premkumar R, Uma Priya M, Jayram ND. Structure, Spectroscopic Investigation, Molecular Docking and In vitro Cytotoxicity Studies on 4,7-dihydroxycoumarin: A Breast Cancer Drug. JOURNAL OF COMPUTATIONAL BIOPHYSICS AND CHEMISTRY 2022. [DOI: 10.1142/s2737416522500119] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Coumarin derivatives are broadly used as anti-inflammatory, antioxidants, anticancer, and antiviral drugs in recent years. In particular, hydroxy coumarins have great importance because of their various biological and pharmacological purposes. The quantum chemical studies of 4,7-dihydroxycoumarin (DHC) have been performed using the cc-pVTZ level of basis set. The DHC molecular structure has been optimized and the computed frequency assignments have been correlated well with the experimental results. The experimental [Formula: see text]C NMR shifts of DHC have been compared with the computed [Formula: see text]C NMR in the dimethyl sulfoxide (DMSO) solution using the Gauge-invariant atomic orbital (GIAO) method. The electron delocalization within the DHC is shown by highest occupied molecular orbitals (HOMO)-lowest unoccupied molecular orbitals (LUMO) energy analysis, and the resulting small energy gap value reveal the molecule’s bioactive characteristics. The natural bond orbital (NBO) analysis approves the bioactive property of the DHC molecule. The DHC compound has a cytotoxic impact on the MCF-7 breast cancer cell line, according to in vitro cytotoxicity studies. The docking study approves that the DHC works as a new inhibitor of breast cancer targeted proteins such as epidermal growth factor receptor (EGFR), estrogen receptor (ER), and progesterone receptor (PR). Thus, this work covers the approach for the evolution of new drugs against breast cancer.
Collapse
Affiliation(s)
- M. Ramuthai
- Department of Physics, Kalasalingam Academy of Research and Education Krishnankoil, 626126 Tamil Nadu, India
| | - S. Jeyavijayan
- Department of Physics, Kalasalingam Academy of Research and Education Krishnankoil, 626126 Tamil Nadu, India
| | - R. Premkumar
- PG and Research Department of Physics, N.M.S.S.V.N. College Madurai, 625019 Tamil Nadu, India
| | - M. Uma Priya
- Department of Biotechnology, Kalasalingam Academy of Research and Education Krishnankoil 626126 Tamil Nadu, India
| | - Naidu Dhanpal Jayram
- Department of Physics, Kalasalingam Academy of Research and Education Krishnankoil, 626126 Tamil Nadu, India
| |
Collapse
|
12
|
Mohammadi MD, Abdullah HY. DFT Study for Adsorbing of Bromine Monochloride onto BNNT (5,5), BNNT (7,0), BC 2NNT (5,5), and BC 2NNT (7,0). JOURNAL OF COMPUTATIONAL BIOPHYSICS AND CHEMISTRY 2021. [DOI: 10.1142/s2737416521500472] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The study of intermolecular interactions is of great importance. This study attempted to quantitatively examine the interactions between bromine monochloride (BrCl) with pristine boron nitride nanotube (BNNT) armchair (5,5) and zigzag (7,0) as well as armchair (5,5) BC2NNT and zigzag (7,0) BC2NNT in vacuum. Quantum mechanical studies of such systems are possible in the density functional theory (DFT) framework. For this purpose, various functionals, such as B3LYP-D3, [Formula: see text]B97XD, and M062X, have been used. One of the most suitable basis functionals for the systems studied in this research is 6-311G (d), which has been used in both optimization calculations and calculations related to wave function analyses. The main part of this work is the study of various analyses that reveal the nature of the intermolecular interactions between the two components introduced above. The results of conceptual DFT, natural bond orbital, non-covalent interactions, and quantum theory of atoms in molecules (QTAIM) were consistent and in favor of physical adsorption in all systems. Gallium had more adsorption energy than other dopants. The HOMO–LUMO energy gaps were as follows: BNNT (5,5): 10.296, BNNT (7,0): 9.015, BC2NNT (5,5): 7.022, and BC2NNT (7,0): 5.979[Formula: see text]eV at B3LYP-D3/6-311G (d) model chemistry. The strongest interaction is related to the BC2NNT (7,0)/BrCl cluster: [Formula: see text][Formula: see text]eV. The results of QTAIM and NCI analysis identified the intermolecular interactions of the type of strong van der Waals interaction for these nanotubes. The sensitivity of the adsorption increased when a gas molecule interacted with carbon-doped BNNT, and the change in the frontier orbital gap could be used to design nanosensors to detect BrCl gas.
Collapse
Affiliation(s)
| | - Hewa Y. Abdullah
- Physics Education Department, Faculty of Education, Tishk International University, Erbil 44001, Kurdistan Region, Iraq
| |
Collapse
|
13
|
Non-covalent interactions of cysteine onto C 60, C 59Si, and C 59Ge: a DFT study. J Mol Model 2021; 27:330. [PMID: 34709483 DOI: 10.1007/s00894-021-04960-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 10/20/2021] [Indexed: 10/20/2022]
Abstract
The study of intermolecular interactions is of great importance. This study attempted to quantitatively examine the interactions between cysteine (C3H7NO2S) and fullerene nanocages, C60, in vacuum. As the frequent introduction of elements as impurities into the structure of nanomaterials can increase the intensity of intermolecular interactions, nanocages doped with silicon and germanium have also been studied as adsorbents, C59Si and C59Ge. Quantum mechanical studies of such systems are possible in the density functional theory (DFT) framework. For this purpose, various functionals, such as B3LYP-D3, ωB97XD, and M062X, have been used. One of the most suitable basis functionals for the systems studied in this research is 6-311G (d), which has been used in both optimization calculations and calculations related to wave function analyses. The main part of this work is the study of various analyses that reveal the nature of the intermolecular interactions between the two components introduced above. The results of conceptual DFT, natural bond orbital, non-covalent interactions, and quantum theory of atoms in molecules were consistent and in favor of physical adsorption in all systems. Germanium had more adsorption energy than other dopants. The HOMO-LUMO energy gaps were as follows: C60: 5.996, C59Si: 5.309, and C59Ge: 5.188 eV at B3LYP-D3/6-311 G (d) model chemistry. The sensitivity of the adsorption increased when an amino acid molecule interacted with doped C60, and this capability could be used to design nanocarrier to carry cysteine amino acid.
Collapse
|
14
|
Ab initio investigation for the adsorption of acrolein onto the surface of C60, C59Si, and C59Ge: NBO, QTAIM, and NCI analyses. Struct Chem 2021. [DOI: 10.1007/s11224-021-01847-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
15
|
Mohammadi MD, Abdullah HY, Kalamse V, Chaudhari A. Adsorption of alkali and alkaline earth ions on nanocages using density functional theory. COMPUT THEOR CHEM 2021. [DOI: 10.1016/j.comptc.2021.113391] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
16
|
Mohammadi MD, Abdullah HY, Suvitha A. The Adsorption of 1-Chloro-1,2,2,2-Tetrafluoroethane Onto the Pristine, Al-, and Ga-Doped Boron Nitride Nanosheet. IRANIAN JOURNAL OF SCIENCE AND TECHNOLOGY, TRANSACTIONS A: SCIENCE 2021. [DOI: 10.1007/s40995-021-01117-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|