1
|
Sánchez-Rivera UÁ, Cruz-Cano NB, Medrano A, Álvarez-Rodríguez C, Martínez-Torres M. Sperm Incubation in Biggers-Whitten-Whittingham Medium Induces Capacitation-Related Changes in the Lizard Sceloporus torquatus. Animals (Basel) 2024; 14:1388. [PMID: 38731392 PMCID: PMC11083041 DOI: 10.3390/ani14091388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 04/19/2024] [Accepted: 04/22/2024] [Indexed: 05/13/2024] Open
Abstract
Sperm capacitation involves biochemical and physiological changes that enable sperm to fertilize the oocyte. It can be induced in vitro under controlled conditions that simulate the environment of the oviduct. While extensively studied in mammals, its approach in lizards remains absent. Understanding the mechanisms that ensure reproduction is essential for advancing the implementation of assisted reproductive technologies in this group. We aimed to perform a sperm analysis to determine if capacitation-related changes were induced after incubation with capacitating media. Fifteen males of Sceloporus torquatus were collected during the early stage of the reproductive season. The sperm were isolated from the seminal plasma and then diluted up to a volume of 150 μL using BWW medium to incubate with 5% CO2 at 30 °C for a maximum duration of 3 h. A fraction was retrieved hourly for ongoing sperm assessment. The sperm analysis included assessments of its motility, viability, the capacitation status using the chlortetracycline (CTC) assay, and the acrosome integrity with the lectin binding assay to detect changes during incubation. We found that total motility was maintained up to 2 h post incubation, after which it decreased. However, sperm viability remained constant. From that moment on, we observed a transition to a deeper and less symmetrical flagellar bending in many spermatozoa. The CTC assay indicated a reduction in the percentage of sperm showing the full (F) pattern and an increase in those exhibiting the capacitated (B) and reactive (RA) patterns, accompanied by an elevation in the percentage of damaged acrosomes as revealed by the lectin binding assay. In mammals, these changes are often associated with sperm capacitation. Our observations support the notion that this process may also occur in saurian. While sperm analysis is a valuable method for assessing certain functional changes, additional approaches are required to validate this process.
Collapse
Affiliation(s)
- Uriel Ángel Sánchez-Rivera
- Laboratorio de Biología de la Reproducción, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Mexico City 54090, Mexico; (N.B.C.-C.)
- Laboratorio de Reproducción, Facultad de Estudios Superiores Cuautitlán, Universidad Nacional Autónoma de México, Mexico City 54714, Mexico;
- Posgrado en Ciencias de la Producción y de la Salud Animal, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| | - Norma Berenice Cruz-Cano
- Laboratorio de Biología de la Reproducción, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Mexico City 54090, Mexico; (N.B.C.-C.)
| | - Alfredo Medrano
- Laboratorio de Reproducción, Facultad de Estudios Superiores Cuautitlán, Universidad Nacional Autónoma de México, Mexico City 54714, Mexico;
| | - Carmen Álvarez-Rodríguez
- Laboratorio de Biología de la Reproducción, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Mexico City 54090, Mexico; (N.B.C.-C.)
| | - Martín Martínez-Torres
- Laboratorio de Biología de la Reproducción, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Mexico City 54090, Mexico; (N.B.C.-C.)
| |
Collapse
|
2
|
Agudo-Rios C, Sanchez-Rodriguez A, Idrovo IID, Laborda-Gomariz JÁ, Soler AJ, Teves ME, Roldan ERS. Sperm Chromatin Status and DNA Fragmentation in Mouse Species with Divergent Mating Systems. Int J Mol Sci 2023; 24:15954. [PMID: 37958937 PMCID: PMC10648696 DOI: 10.3390/ijms242115954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 10/30/2023] [Accepted: 10/31/2023] [Indexed: 11/15/2023] Open
Abstract
Sperm DNA integrity and chromatin status serve as pivotal indicators of sperm quality, given their intricate link to sperm function, embryo development, and overall fertility. Defects in chromatin compaction, which are often associated with compromised protamine content, can lead to damaged DNA strands. In this study, the chromatin status and possible correlation with DNA damage was assessed in males of three mouse species: Mus musculus, M. spretus, and M. spicilegus. We employed various staining methods, including aniline blue, methylene blue (Diff-Quik), toluidine blue, and chromomycin A3, to assess chromatin compaction in cauda epididymal sperm. Samples were also analyzed by the sperm chromatin structure assay (SCSA) to estimate DNA fragmentation (%tDFI, %HDS). Analyses were carried out on freshly collected sperm and cells incubated for 3 h in a HEPES-buffered modified Tyrode's medium simulating conditions of the female reproductive tract. Notably, the analysis of chromatin status yielded minimal abnormal values across all three species employing diverse methodologies. SCSA analyses revealed distinct variations in %tDFI between species. Following sperm incubation, the percentages of sperm stained with methylene blue exhibited differences among the species and were significantly correlated to the DNA fragmentation index. HDS demonstrated correlations with the percentages of sperm stained by aniline blue, methylene blue, and chromomycin A3. Overall, chromatin compaction was high across all species, with limited differences among them. The relationship between chromatin status and DNA integrity appeared to be related to levels of sperm competition among species.
Collapse
Affiliation(s)
- Clara Agudo-Rios
- Department of Biodiversity and Evolutionary Biology, Museo Nacional de Ciencias Naturales (CSIC), 28006 Madrid, Spain
| | - Ana Sanchez-Rodriguez
- Department of Biodiversity and Evolutionary Biology, Museo Nacional de Ciencias Naturales (CSIC), 28006 Madrid, Spain
| | - Ingrid I. D. Idrovo
- Department of Biodiversity and Evolutionary Biology, Museo Nacional de Ciencias Naturales (CSIC), 28006 Madrid, Spain
| | | | - Ana J. Soler
- SaBio IREC (CSIC-UCLM-JCCM), ETSIAM, Campus Universitario, 02071 Albacete, Spain
| | - Maria E. Teves
- Department of Obstetrics and Gynecology, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Eduardo R. S. Roldan
- Department of Biodiversity and Evolutionary Biology, Museo Nacional de Ciencias Naturales (CSIC), 28006 Madrid, Spain
| |
Collapse
|
3
|
Hirst MA, Rodas-Martínez AZ, Milich KM, Cortés-Ortiz L. Differences in sperm morphology between Alouatta palliata and Alouatta pigra are consistent with the intensity of sperm competition in each species. Am J Primatol 2023; 85:e23538. [PMID: 37487624 PMCID: PMC10528854 DOI: 10.1002/ajp.23538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 07/03/2023] [Accepted: 07/08/2023] [Indexed: 07/26/2023]
Abstract
The intensity of sperm competition, in which sperm compete within the female reproductive tract to reach and fertilize her eggs, varies in species with different mating systems. Sperm competition is more intense in species where males cannot monopolize access to reproductive females and females mate with multiple males. In this scenario, a morphological change that increases the ability of sperm to reach and fertilize eggs should rapidly spread in the population, leading to sperm morphological differences between closely related species. Differences in sperm morphology have been reported among primate species with different mating systems. However, due to the inherent logistical and ethical difficulties to sample sperm from wild primates, the extent of variation in sperm morphology within species and among closely related species remains understudied. Here, we compared sperm morphological traits from two sister howler monkey species (Alouatta palliata and Alouatta pigra) that have different mating systems to investigate the effect of sperm competition on sperm morphological traits. We predicted that sperm from A. palliata, where females have more opportunities to mate with multiple males, would show differences in traits associated with increase sperm competitiveness compared to A. pigra where females mostly mate with the central male. We used linear mixed models to determine species differences in sperm morphology, controlling for individual variation. We found that midpieces and heads in A. palliata sperm were on average 26.2% and 11.0% longer, respectively, than those of A. pigra. Differences in these traits are important for sperm speed and hydrodynamic movement in other species and can affect fertilization success. This study provides empirical evidence of sperm morphological traits that evolved through sexual selection in sister primate species with different mating systems.
Collapse
Affiliation(s)
- Molly A. Hirst
- Department of Ecology and Evolutionary Biology, University of Michigan, 1105 N. University Ave., Ann Arbor, MI, USA 48109
| | - Alba Z. Rodas-Martínez
- División Académica de Ciencias Biológicas, Universidad Juárez Autónoma de Tabasco, km 0.5 Carr. Villahermosa-Cárdenas S/N, entroque a Bosques de Saloya, 86039 Villahermosa, Tabasco, México
| | - Krista M. Milich
- Department of Anthropology, Washington University in St. Louis, One Brookings Drive, St. Louis, MO, USA 63130
| | - Liliana Cortés-Ortiz
- Department of Ecology and Evolutionary Biology, University of Michigan, 1105 N. University Ave., Ann Arbor, MI, USA 48109
| |
Collapse
|
4
|
Holt WV. Biobanks, offspring fitness and the influence of developmental plasticity in conservation biology. Anim Reprod 2023; 20:e20230026. [PMID: 37700907 PMCID: PMC10494884 DOI: 10.1590/1984-3143-ar2023-0026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Accepted: 07/05/2023] [Indexed: 09/14/2023] Open
Abstract
Mitigation of the widely known threats to the world's biodiversity is difficult, despite the strategies and actions proposed by international agreements such as the United Nations Framework Convention on Climate Change (UNFCCC) and the Convention on Biological Diversity (CBD). Nevertheless, many scientists devote their time and effort to finding and implementing various solutions to the problem. One potential way forward that is gaining popularity involves the establishment of biobank programs aimed at preserving and storing germplasm from threatened species, and then using it to support the future viability and health of threatened populations. This involves developing and using assisted reproductive technologies to achieve their goals. Despite considerable advances in the effectiveness of reproductive technologies, differences between the reproductive behavior and physiology of widely differing taxonomic groups mean that this approach cannot be applied with equal success to many species. Moreover, evidence that epigenetic influences and developmental plasticity, whereby it is now understood that embryonic development, and subsequent health in later life, can be affected by peri-conceptional environmental conditions, is raising the possibility that cryopreservation methods themselves may have to be reviewed and revised when planning the biobanks. Here, I describe the benefits and problems associated with germplasm biobanking across various species, but also offer some realistic assessments of current progress and applications.
Collapse
Affiliation(s)
- William Vincent Holt
- Academic Unit of Reproductive and Developmental Medicine, University of Sheffield, Sheffield, United Kingdom
| |
Collapse
|
5
|
Anastas ZM, Byrne PG, O'Brien JK, Hobbs RJ, Upton R, Silla AJ. The Increasing Role of Short-Term Sperm Storage and Cryopreservation in Conserving Threatened Amphibian Species. Animals (Basel) 2023; 13:2094. [PMID: 37443891 DOI: 10.3390/ani13132094] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 06/15/2023] [Accepted: 06/19/2023] [Indexed: 07/15/2023] Open
Abstract
Multidisciplinary approaches to conserve threatened species are required to curb biodiversity loss. Globally, amphibians are facing the most severe declines of any vertebrate class. In response, conservation breeding programs have been established in a growing number of amphibian species as a safeguard against further extinction. One of the main challenges to the long-term success of conservation breeding programs is the maintenance of genetic diversity, which, if lost, poses threats to the viability and adaptive potential of at-risk populations. Integrating reproductive technologies into conservation breeding programs can greatly assist genetic management and facilitate genetic exchange between captive and wild populations, as well as reinvigorate genetic diversity from expired genotypes. The generation of offspring produced via assisted fertilisation using frozen-thawed sperm has been achieved in a small but growing number of amphibian species and is poised to be a valuable tool for the genetic management of many more threatened species globally. This review discusses the role of sperm storage in amphibian conservation, presents the state of current technologies for the short-term cold storage and cryopreservation of amphibian sperm, and discusses the generation of cryo-derived offspring.
Collapse
Affiliation(s)
- Zara M Anastas
- School of Earth, Atmospheric and Life Sciences, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Phillip G Byrne
- School of Earth, Atmospheric and Life Sciences, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Justine K O'Brien
- Taronga Institute of Science and Learning, Taronga Conservation Society Australia, Mosman, NSW 2088, Australia
| | - Rebecca J Hobbs
- Taronga Institute of Science and Learning, Taronga Conservation Society Australia, Mosman, NSW 2088, Australia
| | - Rose Upton
- Conservation Science Research Group, School of Environmental and Life Sciences, University of Newcastle, Callaghan, NSW 2308, Australia
| | - Aimee J Silla
- School of Earth, Atmospheric and Life Sciences, University of Wollongong, Wollongong, NSW 2522, Australia
| |
Collapse
|
6
|
Horvath-Pereira BDO, Almeida GHDR, da Silva Júnior LN, do Nascimento PG, Horvath Pereira BDO, Fireman JVBT, Pereira MLDRF, Carreira ACO, Miglino MA. Biomaterials for Testicular Bioengineering: How far have we come and where do we have to go? Front Endocrinol (Lausanne) 2023; 14:1085872. [PMID: 37008920 PMCID: PMC10060902 DOI: 10.3389/fendo.2023.1085872] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 02/24/2023] [Indexed: 03/18/2023] Open
Abstract
Traditional therapeutic interventions aim to restore male fertile potential or preserve sperm viability in severe cases, such as semen cryopreservation, testicular tissue, germ cell transplantation and testicular graft. However, these techniques demonstrate several methodological, clinical, and biological limitations, that impact in their results. In this scenario, reproductive medicine has sought biotechnological alternatives applied for infertility treatment, or to improve gamete preservation and thus increase reproductive rates in vitro and in vivo. One of the main approaches employed is the biomimetic testicular tissue reconstruction, which uses tissue-engineering principles and methodologies. This strategy pursues to mimic the testicular microenvironment, simulating physiological conditions. Such approach allows male gametes maintenance in culture or produce viable grafts that can be transplanted and restore reproductive functions. In this context, the application of several biomaterials have been proposed to be used in artificial biological systems. From synthetic polymers to decellularized matrixes, each biomaterial has advantages and disadvantages regarding its application in cell culture and tissue reconstruction. Therefore, the present review aims to list the progress that has been made and the continued challenges facing testicular regenerative medicine and the preservation of male reproductive capacity, based on the development of tissue bioengineering approaches for testicular tissue microenvironment reconstruction.
Collapse
Affiliation(s)
| | | | | | - Pedro Gabriel do Nascimento
- Department of Surgery, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil
| | | | | | | | - Ana Claudia Oliveira Carreira
- Department of Surgery, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil
- Centre for Natural and Human Sciences, Federal University of ABC, São Paulo, Brazil
| | - Maria Angelica Miglino
- Department of Surgery, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
7
|
Holt WV, Comizzoli P. Conservation Biology and Reproduction in a Time of Developmental Plasticity. Biomolecules 2022; 12:1297. [PMID: 36139136 PMCID: PMC9496186 DOI: 10.3390/biom12091297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 09/11/2022] [Accepted: 09/12/2022] [Indexed: 11/24/2022] Open
Abstract
The objective of this review is to ask whether, and how, principles in conservation biology may need to be revisited in light of new knowledge about the power of epigenetics to alter developmental pathways. Importantly, conservation breeding programmes, used widely by zoological parks and aquariums, may appear in some cases to reduce fitness by decreasing animals' abilities to cope when confronted with the 'wild side' of their natural habitats. Would less comfortable captive conditions lead to the selection of individuals that, despite being adapted to life in a captive environment, be better able to thrive if relocated to a more natural environment? While threatened populations may benefit from advanced reproductive technologies, these may actually induce undesirable epigenetic changes. Thus, there may be inherent risks to the health and welfare of offspring (as is suspected in humans). Advanced breeding technologies, especially those that aim to regenerate the rarest species using stem cell reprogramming and artificial gametes, may also lead to unwanted epigenetic modifications. Current knowledge is still incomplete, and therefore ethical decisions about novel breeding methods remain controversial and difficult to resolve.
Collapse
Affiliation(s)
- William V. Holt
- Department of Oncology & Metabolism, The Medical School Beech Hill Road, Sheffield S10 2RX, UK
| | - Pierre Comizzoli
- Smithsonian’s National Zoo and Conservation Biology Institute, Washington, DC 20008, USA
| |
Collapse
|