1
|
Han M, Chen Z, Sun G, Feng Y, Guo Y, Bai S, Yan X. Nano-Fe 3O 4: Enhancing the tolerance of Elymus nutans to Cd stress through regulating programmed cell death. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 360:124711. [PMID: 39128602 DOI: 10.1016/j.envpol.2024.124711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 07/29/2024] [Accepted: 08/09/2024] [Indexed: 08/13/2024]
Abstract
Cadmium (Cd) poses a significant threat to plant growth and the environment. Nano-Fe3O4 is effective in alleviating Cd stress in plants. Elymus nutans Griseb. is an important fodder crop on the Qinghai-Tibetan Plateau (QTP). However, the potential mechanism by which nano-Fe3O4 alleviates Cd stress in E. nutans is not well understood. E. nutans were subjected to single Cd, single nano-Fe3O4, and co-treatment with nano-Fe3O4 and Cd, and the effects on morphology, Cd uptake, antioxidant enzyme activity, reactive oxygen species (ROS) levels and programmed cell death (PCD) were studied to clarify the regulatory mechanism of nano-Fe3O4. The results showed that Cd stress significantly decreased the germination percentage and biomass of E. nutans. The photosynthetic pigment content decreased significantly under Cd stress. Cd stress also caused oxidative stress and lipid peroxidation, accumulation of excessive ROS, resulting in PCD, but the effect of nano-Fe3O4 was different. Seed germination, seedling growth, and physiological processes were analyzed to elucidate the regulatory role of nano-Fe3O4 nanoparticles in promoting photosynthesis, reducing Cd accumulation, scavenging ROS, and regulating PCD, to promote seed germination and seedling growth in E. nutans. This report provides a scientific basis for improving the tolerance of Elymus to Cd stress by using nano-Fe3O4.
Collapse
Affiliation(s)
- Mengli Han
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - Zhao Chen
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, 225009, China
| | - Genlou Sun
- Department of Biology, Saint Mary's University, Halifax, Nova Scotia, Canada
| | - Yuxi Feng
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - Yuxia Guo
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450046, China
| | - Shiqie Bai
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, China.
| | - Xuebing Yan
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China.
| |
Collapse
|
2
|
Cohen ZP, Perkin LC, Wagner TA, Liu J, Bell AA, Arick MA, Grover CE, Yu JZ, Udall JA, Suh CPC. Nematode-resistance loci in upland cotton genomes are associated with structural differences. G3 (BETHESDA, MD.) 2024; 14:jkae140. [PMID: 38934790 PMCID: PMC11373641 DOI: 10.1093/g3journal/jkae140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 03/22/2024] [Accepted: 06/11/2024] [Indexed: 06/28/2024]
Abstract
Reniform and root-knot nematode are two of the most destructive pests of conventional upland cotton, Gossypium hirsutum L., and continue to be a major threat to cotton fiber production in semiarid regions of the Southern United States and Central America. Fortunately, naturally occurring tolerance to these nematodes has been identified in the Pima cotton species (Gossypium barbadense) and several upland cotton varieties (G. hirsutum), which has led to a robust breeding program that has successfully introgressed and stacked these independent resistant traits into several upland cotton lineages with superior agronomic traits, e.g. BAR 32-30 and BARBREN-713. This work identifies the genomic variations of these nematode-tolerant accessions by comparing their respective genomes to the susceptible, high-quality fiber-producing parental line of this lineage: Phytogen 355 (PSC355). We discover several large genomic differences within marker regions that harbor putative resistance genes as well as expression mechanisms shared by the two resistant lines, with respect to the susceptible PSC355 parental line. This work emphasizes the utility of whole-genome comparisons as a means of elucidating large and small nuclear differences by lineage and phenotype.
Collapse
Affiliation(s)
- Zachary P Cohen
- USDA Agricultural Research Service, Insect Control and Cotton Disease Research Unit, College Station, TX 77845, USA
| | - Lindsey C Perkin
- USDA Agricultural Research Service, Insect Control and Cotton Disease Research Unit, College Station, TX 77845, USA
| | - Tanya A Wagner
- USDA Agricultural Research Service, Insect Control and Cotton Disease Research Unit, College Station, TX 77845, USA
| | - Jinggao Liu
- USDA Agricultural Research Service, Insect Control and Cotton Disease Research Unit, College Station, TX 77845, USA
| | - Alois A Bell
- USDA Agricultural Research Service, Insect Control and Cotton Disease Research Unit, College Station, TX 77845, USA
| | - Mark A Arick
- Biocomputing & Biotechnology, Institute for Genomics, Mississippi State University, Mississippi State, MS 39762, USA
| | | | - John Z Yu
- USDA Agricultural Research Service, Crop Germplasm Research Unit, College Station, TX 77845, USA
| | - Joshua A Udall
- USDA Agricultural Research Service, Crop Germplasm Research Unit, College Station, TX 77845, USA
| | - Charles P C Suh
- USDA Agricultural Research Service, Insect Control and Cotton Disease Research Unit, College Station, TX 77845, USA
| |
Collapse
|
3
|
Eckardt NA, Avin-Wittenberg T, Bassham DC, Chen P, Chen Q, Fang J, Genschik P, Ghifari AS, Guercio AM, Gibbs DJ, Heese M, Jarvis RP, Michaeli S, Murcha MW, Mursalimov S, Noir S, Palayam M, Peixoto B, Rodriguez PL, Schaller A, Schnittger A, Serino G, Shabek N, Stintzi A, Theodoulou FL, Üstün S, van Wijk KJ, Wei N, Xie Q, Yu F, Zhang H. The lowdown on breakdown: Open questions in plant proteolysis. THE PLANT CELL 2024; 36:2931-2975. [PMID: 38980154 PMCID: PMC11371169 DOI: 10.1093/plcell/koae193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 05/16/2024] [Accepted: 06/19/2024] [Indexed: 07/10/2024]
Abstract
Proteolysis, including post-translational proteolytic processing as well as protein degradation and amino acid recycling, is an essential component of the growth and development of living organisms. In this article, experts in plant proteolysis pose and discuss compelling open questions in their areas of research. Topics covered include the role of proteolysis in the cell cycle, DNA damage response, mitochondrial function, the generation of N-terminal signals (degrons) that mark many proteins for degradation (N-terminal acetylation, the Arg/N-degron pathway, and the chloroplast N-degron pathway), developmental and metabolic signaling (photomorphogenesis, abscisic acid and strigolactone signaling, sugar metabolism, and postharvest regulation), plant responses to environmental signals (endoplasmic-reticulum-associated degradation, chloroplast-associated degradation, drought tolerance, and the growth-defense trade-off), and the functional diversification of peptidases. We hope these thought-provoking discussions help to stimulate further research.
Collapse
Affiliation(s)
| | - Tamar Avin-Wittenberg
- Department of Plant and Environmental Sciences, Alexander Silberman Institute of Life Sciences, Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - Diane C Bassham
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA 50011, USA
| | - Poyu Chen
- School of Biological Science and Technology, College of Science and Engineering, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Qian Chen
- Ministry of Agriculture and Rural Affairs Key Laboratory for Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Jun Fang
- Section of Molecular Plant Biology, Department of Biology, University of Oxford, Oxford OX1 3RB, UK
| | - Pascal Genschik
- Institut de Biologie Moléculaire des Plantes, CNRS, Université de Strasbourg, 12, rue du Général Zimmer, Strasbourg 67084, France
| | - Abi S Ghifari
- School of Molecular Sciences, The University of Western Australia, Crawley, Western Australia 6009, Australia
| | - Angelica M Guercio
- Department of Plant Biology, College of Biological Sciences, University of California-Davis, Davis, CA 95616, USA
| | - Daniel J Gibbs
- School of Biosciences, University of Birmingham, Edgbaston B1 2RU, UK
| | - Maren Heese
- Department of Developmental Biology, University of Hamburg, Ohnhorststr. 18, Hamburg 22609, Germany
| | - R Paul Jarvis
- Section of Molecular Plant Biology, Department of Biology, University of Oxford, Oxford OX1 3RB, UK
| | - Simon Michaeli
- Department of Postharvest Sciences, Agricultural Research Organization (ARO), Volcani Institute, Rishon LeZion 7505101, Israel
| | - Monika W Murcha
- School of Molecular Sciences, The University of Western Australia, Crawley, Western Australia 6009, Australia
| | - Sergey Mursalimov
- Department of Postharvest Sciences, Agricultural Research Organization (ARO), Volcani Institute, Rishon LeZion 7505101, Israel
| | - Sandra Noir
- Institut de Biologie Moléculaire des Plantes, CNRS, Université de Strasbourg, 12, rue du Général Zimmer, Strasbourg 67084, France
| | - Malathy Palayam
- Department of Plant Biology, College of Biological Sciences, University of California-Davis, Davis, CA 95616, USA
| | - Bruno Peixoto
- Section of Molecular Plant Biology, Department of Biology, University of Oxford, Oxford OX1 3RB, UK
| | - Pedro L Rodriguez
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Consejo Superior de Investigaciones Cientificas-Universidad Politecnica de Valencia, Valencia ES-46022, Spain
| | - Andreas Schaller
- Department of Plant Physiology and Biochemistry, Institute of Biology, University of Hohenheim, Stuttgart 70599, Germany
| | - Arp Schnittger
- Department of Developmental Biology, University of Hamburg, Ohnhorststr. 18, Hamburg 22609, Germany
| | - Giovanna Serino
- Department of Biology and Biotechnology, Sapienza Universita’ di Roma, p.le A. Moro 5, Rome 00185, Italy
| | - Nitzan Shabek
- Department of Plant Biology, College of Biological Sciences, University of California-Davis, Davis, CA 95616, USA
| | - Annick Stintzi
- Department of Plant Physiology and Biochemistry, Institute of Biology, University of Hohenheim, Stuttgart 70599, Germany
| | | | - Suayib Üstün
- Faculty of Biology and Biotechnology, Ruhr-University of Bochum, Bochum 44780, Germany
| | - Klaas J van Wijk
- Section of Plant Biology, School of Integrative Plant Sciences (SIPS), Cornell University, Ithaca, NY 14853, USA
| | - Ning Wei
- School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Qi Xie
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, the Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Feifei Yu
- College of Grassland Science and Technology, China Agricultural University, Beijing 100083, China
| | - Hongtao Zhang
- Plant Sciences and the Bioeconomy, Rothamsted Research, Harpenden AL5 2JQ, UK
| |
Collapse
|
4
|
Liu X, Guo N, Li S, Duan M, Wang G, Zong M, Han S, Wu Z, Liu F, Zhang J. Characterization of the Bax Inhibitor-1 Family in Cauliflower and Functional Analysis of BobBIL4. Int J Mol Sci 2024; 25:9562. [PMID: 39273509 PMCID: PMC11395134 DOI: 10.3390/ijms25179562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/22/2024] [Accepted: 08/26/2024] [Indexed: 09/15/2024] Open
Abstract
The Bax inhibitor-1 (BI-1) gene family, which is important for plant growth, development, and stress tolerance, remains largely unexplored in cauliflower. In this study, we identified and characterized cauliflower BI-1 family genes. Based on aligned homologous sequences and collinearity with Arabidopsis genes, we identified nine cauliflower BI-1 genes, which encode proteins that varied in length, molecular weight, isoelectric point, and predicted subcellular localization, including the Golgi apparatus, plasma membrane, and various compartments within the chloroplast. Phylogenetic analyses detected evolutionary conservation and divergence among these genes. Ten structural motifs were identified, with Motif 5 found to be crucial for inhibiting apoptosis. According to the cis-regulatory elements in their promoters, these genes likely influence hormone signaling and stress responses. Expression profiles among tissues highlighted the functional diversity of these genes, with particularly high expression levels observed in the silique and root. Focusing on BobBIL4, we investigated its role in brassinosteroid (BR)-mediated root development and salt stress tolerance. BobBIL4 expression levels increased in response to BR and salt treatments. The functional characterization of this gene in Arabidopsis revealed that it enhances root growth and salinity tolerance. These findings provide insights into BI-1 gene functions in cauliflower while also highlighting the potential utility of BobBIL4 for improving crop stress resistance.
Collapse
Affiliation(s)
- Xin Liu
- College of Life Science, Sichuan Agricultural University, No. 46, Xinkang Road, Ya'an 625014, China
- State Key Laboratory of Vegetable Biobreeding, National Engineering Research Center for Vegetables, Beijing Key Laboratory of Vegetable Germplasms Improvement, Key Laboratory of Biology and Genetics Improvement of Horticultural Crops (North China), Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Science, Beijing 100097, China
| | - Ning Guo
- State Key Laboratory of Vegetable Biobreeding, National Engineering Research Center for Vegetables, Beijing Key Laboratory of Vegetable Germplasms Improvement, Key Laboratory of Biology and Genetics Improvement of Horticultural Crops (North China), Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Science, Beijing 100097, China
| | - Shasha Li
- College of Life Science, Sichuan Agricultural University, No. 46, Xinkang Road, Ya'an 625014, China
- State Key Laboratory of Vegetable Biobreeding, National Engineering Research Center for Vegetables, Beijing Key Laboratory of Vegetable Germplasms Improvement, Key Laboratory of Biology and Genetics Improvement of Horticultural Crops (North China), Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Science, Beijing 100097, China
| | - Mengmeng Duan
- State Key Laboratory of Vegetable Biobreeding, National Engineering Research Center for Vegetables, Beijing Key Laboratory of Vegetable Germplasms Improvement, Key Laboratory of Biology and Genetics Improvement of Horticultural Crops (North China), Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Science, Beijing 100097, China
| | - Guixiang Wang
- State Key Laboratory of Vegetable Biobreeding, National Engineering Research Center for Vegetables, Beijing Key Laboratory of Vegetable Germplasms Improvement, Key Laboratory of Biology and Genetics Improvement of Horticultural Crops (North China), Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Science, Beijing 100097, China
| | - Mei Zong
- State Key Laboratory of Vegetable Biobreeding, National Engineering Research Center for Vegetables, Beijing Key Laboratory of Vegetable Germplasms Improvement, Key Laboratory of Biology and Genetics Improvement of Horticultural Crops (North China), Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Science, Beijing 100097, China
| | - Shuo Han
- State Key Laboratory of Vegetable Biobreeding, National Engineering Research Center for Vegetables, Beijing Key Laboratory of Vegetable Germplasms Improvement, Key Laboratory of Biology and Genetics Improvement of Horticultural Crops (North China), Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Science, Beijing 100097, China
| | - Zihan Wu
- State Key Laboratory of Vegetable Biobreeding, National Engineering Research Center for Vegetables, Beijing Key Laboratory of Vegetable Germplasms Improvement, Key Laboratory of Biology and Genetics Improvement of Horticultural Crops (North China), Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Science, Beijing 100097, China
| | - Fan Liu
- State Key Laboratory of Vegetable Biobreeding, National Engineering Research Center for Vegetables, Beijing Key Laboratory of Vegetable Germplasms Improvement, Key Laboratory of Biology and Genetics Improvement of Horticultural Crops (North China), Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Science, Beijing 100097, China
| | - Junjie Zhang
- College of Life Science, Sichuan Agricultural University, No. 46, Xinkang Road, Ya'an 625014, China
| |
Collapse
|
5
|
Réthoré E, Pelletier S, Balliau T, Zivy M, Avelange-Macherel MH, Macherel D. Multi-scale analysis of heat stress acclimation in Arabidopsis seedlings highlights the primordial contribution of energy-transducing organelles. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 119:300-331. [PMID: 38613336 DOI: 10.1111/tpj.16763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 03/08/2024] [Accepted: 03/14/2024] [Indexed: 04/14/2024]
Abstract
Much progress has been made in understanding the molecular mechanisms of plant adaptation to heat stress. However, the great diversity of models and stress conditions, and the fact that analyses are often limited to a small number of approaches, complicate the picture. We took advantage of a liquid culture system in which Arabidopsis seedlings are arrested in their development, thus avoiding interference with development and drought stress responses, to investigate through an integrative approach seedlings' global response to heat stress and acclimation. Seedlings perfectly tolerate a noxious heat shock (43°C) when subjected to a heat priming treatment at a lower temperature (38°C) the day before, displaying a thermotolerance comparable to that previously observed for Arabidopsis. A major effect of the pre-treatment was to partially protect energy metabolism under heat shock and favor its subsequent rapid recovery, which was correlated with the survival of seedlings. Rapid recovery of actin cytoskeleton and mitochondrial dynamics were another landmark of heat shock tolerance. The omics confirmed the role of the ubiquitous heat shock response actors but also revealed specific or overlapping responses to priming, heat shock, and their combination. Since only a few components or functions of chloroplast and mitochondria were highlighted in these analyses, the preservation and rapid recovery of their bioenergetic roles upon acute heat stress do not require extensive remodeling of the organelles. Protection of these organelles is rather integrated into the overall heat shock response, thus allowing them to provide the energy required to elaborate other cellular responses toward acclimation.
Collapse
Affiliation(s)
- Elise Réthoré
- Univ Angers, Institut Agro Rennes-Angers, INRAE, IRHS-UMR 1345, F-49000, Angers, France
| | - Sandra Pelletier
- Univ Angers, Institut Agro Rennes-Angers, INRAE, IRHS-UMR 1345, F-49000, Angers, France
| | - Thierry Balliau
- INRAE, PAPPSO, UMR/UMR Génétique Végétale, Gif sur Yvette, France
| | - Michel Zivy
- INRAE, PAPPSO, UMR/UMR Génétique Végétale, Gif sur Yvette, France
| | | | - David Macherel
- Univ Angers, Institut Agro Rennes-Angers, INRAE, IRHS-UMR 1345, F-49000, Angers, France
| |
Collapse
|
6
|
Zhang B, Wu H, Zhang J, Cong C, Zhang L. The study of the mechanism of non-coding RNA regulation of programmed cell death in diabetic cardiomyopathy. Mol Cell Biochem 2024; 479:1673-1696. [PMID: 38189880 DOI: 10.1007/s11010-023-04909-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 11/25/2023] [Indexed: 01/09/2024]
Abstract
Diabetic cardiomyopathy (DCM) represents a distinct myocardial disorder elicited by diabetes mellitus, characterized by aberrations in myocardial function and structural integrity. This pathological condition predominantly manifests in individuals with diabetes who do not have concurrent coronary artery disease or hypertension. An escalating body of scientific evidence substantiates the pivotal role of programmed cell death (PCD)-encompassing apoptosis, autophagy, pyroptosis, ferroptosis, and necroptosis-in the pathogenic progression of DCM, thereby emerging as a prospective therapeutic target. Additionally, numerous non-coding RNAs (ncRNAs) have been empirically verified to modulate the biological processes underlying programmed cell death, consequently influencing the evolution of DCM. This review systematically encapsulates prevalent types of PCD manifest in DCM as well as nascent discoveries regarding the regulatory influence of ncRNAs on programmed cell death in the pathogenesis of DCM, with the aim of furnishing novel insights for the furtherance of research in PCD-associated disorders relevant to DCM.
Collapse
Affiliation(s)
- Bingrui Zhang
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine Cardiovascular Department Cardiovascular Disease Research, Jinan, 250014, Shandong, China
| | - Hua Wu
- Tai'an Special Care Hospital Clinical Laboratory Medical Laboratory Direction, Tai'an, 271000, Shandong, China
| | - Jingwen Zhang
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine Cardiovascular Department Cardiovascular Disease Research, Jinan, 250014, Shandong, China
| | - Cong Cong
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine Cardiovascular Department Cardiovascular Disease Research, Jinan, 250014, Shandong, China
| | - Lin Zhang
- Tai'an Hospital of Chinese Medicine Cardiovascular Department Cardiovascular Disease Research, No.216, Yingxuan Street, Tai'an, 271000, Shandong, China.
| |
Collapse
|
7
|
Guo Y, Jiang Y, Wu M, Tu A, Yin J, Yang J. TaWRKY50-TaSARK7 module-mediated cysteine-rich protein phosphorylation suppresses the programmed cell death response to Chinese wheat mosaic virus infection. Virology 2024; 595:110071. [PMID: 38593594 DOI: 10.1016/j.virol.2024.110071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 03/20/2024] [Accepted: 03/28/2024] [Indexed: 04/11/2024]
Abstract
WRKY transcription factors are widely involved in plant responses to biotic and abiotic stresses. However, there is currently a limited understanding of the regulation of viral infection by WRKY transcription factors in wheat (Triticum aestivum). The WRKY transcription factor TaWRKY50 in group IIb wheat exhibited a significant response to Chinese wheat mosaic virus infection. TaWRKY50 is localized in the nucleus and is an activating transcription factor. Interestingly, we found that silencing TaWRKY50 induces cell death following inoculation with CWMV. The protein kinase TaSAPK7 is specific to plants, whereas NbSRK is a closely related kinase with high homology to TaSAPK7. The transcriptional activities of both TaSAPK7 and NbSRK can be enhanced by TaWRKY50 binding to their promoters. CRP is an RNA silencing suppressor. Furthermore, TaWRKY50 may regulate CWMV infection by regulating the expression of TaSAPK7 and NbSRK to increase CRP phosphorylation and reduce the amount of programmed cell death (PCD).
Collapse
Affiliation(s)
- Yunfei Guo
- State Key Laboratory for Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Rural Affairs and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
| | - Yaoyao Jiang
- State Key Laboratory for Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Rural Affairs and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
| | - Mila Wu
- State Key Laboratory for Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Rural Affairs and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
| | - Aizhu Tu
- State Key Laboratory for Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Rural Affairs and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
| | - Jingliang Yin
- State Key Laboratory for Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Rural Affairs and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
| | - Jian Yang
- State Key Laboratory for Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Rural Affairs and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China.
| |
Collapse
|
8
|
Cao MX, Li SZ, Li HJ. MpMLO1 controls sperm discharge in liverwort. NATURE PLANTS 2024; 10:1027-1038. [PMID: 38831045 DOI: 10.1038/s41477-024-01703-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 04/18/2024] [Indexed: 06/05/2024]
Abstract
In bryophytes, sexual reproduction necessitates the release of motile sperm cells from a gametophyte into the environment. Since 1856, this process, particularly in liverworts, has been known to depend on water. However, the molecular mechanism underlying this phenomenon has remained elusive. Here we identify the plasma membrane protein MpMLO1 in Marchantia polymorpha, a model liverwort, as critical for sperm discharge from antheridia. The MpMLO1-expressing tip cells among the sperm-wrapping jacket cells undergo programmed cell death upon antheridium maturation to facilitate sperm discharge after the application of water and even hypertonic solutions. The absence of MpMLO1 leads to reduced cytoplasmic Ca2+ levels in tip cells, preventing cell death and consequently sperm discharge. Our findings reveal that MpMLO1-mediated programmed cell death in antheridial tip cells, regulated by cytosolic Ca2+ dynamics, is essential for sperm release, elucidating a key mechanism in bryophyte sexual reproduction and providing insights into terrestrial plant evolution.
Collapse
Affiliation(s)
- Meng-Xing Cao
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- Center for Molecular Agrobiology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Shi-Zhen Li
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- Center for Molecular Agrobiology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Hong-Ju Li
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China.
- Center for Molecular Agrobiology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China.
- University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
9
|
Hohenfeld CS, de Oliveira SAS, Ferreira CF, Mello VH, Margarido GRA, Passos AR, de Oliveira EJ. Comparative analysis of infected cassava root transcriptomics reveals candidate genes for root rot disease resistance. Sci Rep 2024; 14:10587. [PMID: 38719851 PMCID: PMC11078935 DOI: 10.1038/s41598-024-60847-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 04/29/2024] [Indexed: 05/12/2024] Open
Abstract
Cassava root-rot incited by soil-borne pathogens is one of the major diseases that reduces root yield. Although the use of resistant cultivars is the most effective method of management, the genetic basis for root-rot resistance remains poorly understood. Therefore, our work analyzed the transcriptome of two contrasting genotypes (BRS Kiriris/resistant and BGM-1345/susceptible) using RNA-Seq to understand the molecular response and identify candidate genes for resistance. Cassava seedlings (resistant and susceptible to root-rot) were both planted in infested and sterilized soil and samples from Initial-time and Final-time periods, pooled. Two controls were used: (i) seedlings collected before planting in infested soil (absolute control) and, (ii) plants grown in sterilized soil (mock treatments). For the differentially expressed genes (DEGs) analysis 23.912 were expressed in the resistant genotype, where 10.307 were differentially expressed in the control treatment, 15 DEGs in the Initial Time-period and 366 DEGs in the Final Time-period. Eighteen candidate genes from the resistant genotype were related to plant defense, such as the MLP-like protein 31 and the peroxidase A2-like gene. This is the first model of resistance at the transcriptional level proposed for the cassava × root-rot pathosystem. Gene validation will contribute to screening for resistance of germplasm, segregating populations and/or use in gene editing in the pursuit to develop most promising cassava clones with resistance to root-rot.
Collapse
Affiliation(s)
- Camila Santiago Hohenfeld
- Universidade Estadual de Feira de Santana, Av. Transnordestina, S/N - 44036-900, Novo Horizonte, Feira de Santana, BA, Brazil
| | | | - Claudia Fortes Ferreira
- Embrapa Mandioca e Fruticultura, Rua da Embrapa, Caixa Postal 007, Cruz das Almas, BA, 44380-000, Brazil
| | - Victor Hugo Mello
- Departamento de Genética, Escola Superior de Agricultura "Luiz de Queiroz", Universidade de São Paulo, Avenida Pádua Dias, 11, Piracicaba, SP, 13418-900, Brazil
| | - Gabriel Rodrigues Alves Margarido
- Departamento de Genética, Escola Superior de Agricultura "Luiz de Queiroz", Universidade de São Paulo, Avenida Pádua Dias, 11, Piracicaba, SP, 13418-900, Brazil
| | - Adriana Rodrigues Passos
- Universidade Estadual de Feira de Santana, Av. Transnordestina, S/N - 44036-900, Novo Horizonte, Feira de Santana, BA, Brazil
| | - Eder Jorge de Oliveira
- Embrapa Mandioca e Fruticultura, Rua da Embrapa, Caixa Postal 007, Cruz das Almas, BA, 44380-000, Brazil.
| |
Collapse
|
10
|
Wang J, Bollier N, Buono RA, Vahldick H, Lin Z, Feng Q, Hudecek R, Jiang Q, Mylle E, Van Damme D, Nowack MK. A developmentally controlled cellular decompartmentalization process executes programmed cell death in the Arabidopsis root cap. THE PLANT CELL 2024; 36:941-962. [PMID: 38085063 PMCID: PMC7615778 DOI: 10.1093/plcell/koad308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 11/14/2023] [Accepted: 11/15/2023] [Indexed: 01/12/2024]
Abstract
Programmed cell death (PCD) is a fundamental cellular process crucial to development, homeostasis, and immunity in multicellular eukaryotes. In contrast to our knowledge on the regulation of diverse animal cell death subroutines, information on execution of PCD in plants remains fragmentary. Here, we make use of the accessibility of the Arabidopsis (Arabidopsis thaliana) root cap to visualize the execution process of developmentally controlled PCD. We identify a succession of selective decompartmentalization events and ion fluxes as part of the terminal differentiation program that is orchestrated by the NO APICAL MERISTEM, ARABIDOPSIS THALIANA ACTIVATING FACTOR, CUP-SHAPED COTYLEDON (NAC) transcription factor SOMBRERO. Surprisingly, the breakdown of the large central vacuole is a relatively late and variable event, preceded by an increase of intracellular calcium levels and acidification, release of mitochondrial matrix proteins, leakage of nuclear and endoplasmic reticulum lumina, and release of fluorescent membrane reporters into the cytosol. In analogy to animal apoptosis, the plasma membrane remains impermeable for proteins during and after PCD execution. Elevated intracellular calcium levels and acidification are sufficient to trigger cell death execution specifically in terminally differentiated root cap cells, suggesting that these ion fluxes act as PCD-triggering signals. This detailed information on the cellular processes occurring during developmental PCD in plants is a pivotal prerequisite for future research into the molecular mechanisms of cell death execution.
Collapse
Affiliation(s)
- Jie Wang
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, Technologiepark 71, 9052 Ghent, Belgium
| | - Norbert Bollier
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, Technologiepark 71, 9052 Ghent, Belgium
| | - Rafael Andrade Buono
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, Technologiepark 71, 9052 Ghent, Belgium
| | - Hannah Vahldick
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, Technologiepark 71, 9052 Ghent, Belgium
| | - Zongcheng Lin
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, Technologiepark 71, 9052 Ghent, Belgium
| | - Qiangnan Feng
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, Technologiepark 71, 9052 Ghent, Belgium
| | - Roman Hudecek
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, Technologiepark 71, 9052 Ghent, Belgium
| | - Qihang Jiang
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, Technologiepark 71, 9052 Ghent, Belgium
| | - Evelien Mylle
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, Technologiepark 71, 9052 Ghent, Belgium
| | - Daniel Van Damme
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, Technologiepark 71, 9052 Ghent, Belgium
| | - Moritz K. Nowack
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, Technologiepark 71, 9052 Ghent, Belgium
| |
Collapse
|
11
|
Yang G, Chen T, Fan TT, Lin XY, Cui YQ, Dong WC, An LZ, Zhang H. Cathepsin B degrades RbcL during freezing-induced programmed cell death in Arabidopsis. PLANT CELL REPORTS 2024; 43:81. [PMID: 38418607 DOI: 10.1007/s00299-023-03099-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 10/20/2023] [Indexed: 03/01/2024]
Abstract
KEY MESSAGE Cathepsin B plays an important role that degrades the Rubisco large subunit RbcL in freezing stress. Programmed cell death (PCD) has been well documented in both development and in response to environmental stresses in plants, however, PCD induced by freezing stress and its molecular mechanisms remain poorly understood. In the present study, we characterized freezing-induced PCD and explored its mechanisms in Arabidopsis. PCD induced by freezing stress was similar to that induced by other stresses and senescence in Arabidopsis plants with cold acclimation. Inhibitor treatment assays and immunoblotting indicated that cathepsin B mainly contributed to increased caspase-3-like activity during freezing-induced PCD. Cathepsin B was involved in freezing-induced PCD and degraded the large subunit, RbcL, of Rubisco. Our results demonstrate an essential regulatory mechanism of cathepsin B for Rubisco degradation in freezing-induced PCD, improving our understanding of freezing-induced cell death and nitrogen and carbohydrate remobilisation in plants.
Collapse
Affiliation(s)
- Gang Yang
- Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
- State Key Laboratory of Aridland Crop Science, College of Agronomy, Gansu Agricultural University, Lanzhou, 730070, China
| | - Tao Chen
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China
| | - Ting-Ting Fan
- Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
- State Key Laboratory of Aridland Crop Science, College of Agronomy, Gansu Agricultural University, Lanzhou, 730070, China
| | - Xiang-Yu Lin
- Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Yu-Qiong Cui
- Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Wei-Chao Dong
- Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Li-Zhe An
- Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China.
- School of Forestry, Beijing Forestry University, Beijing, 100083, China.
| | - Hua Zhang
- Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China.
| |
Collapse
|
12
|
Zakharova EV, Demyanchuk IS, Sobolev DS, Golivanov YY, Baranova EN, Khaliluev MR. Ac-DEVD-CHO (caspase-3/DEVDase inhibitor) suppresses self-incompatibility-induced programmed cell death in the pollen tubes of petunia (Petunia hybrida E. Vilm.). Cell Death Discov 2024; 10:59. [PMID: 38287001 PMCID: PMC10825214 DOI: 10.1038/s41420-024-01821-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 01/11/2024] [Accepted: 01/15/2024] [Indexed: 01/31/2024] Open
Abstract
Programmed cell death (PCD) is relevant to many aspects in the growth and development of a plant organism. In their reproduction, many flowering plant species possess self-incompatibility (SI), that is an intraspecific reproductive barrier, which is a genetic mechanism ensuring the avoidance of inbreeding depression by preventing self-pollination. This phenomenon enhances intraspecific variation; however, SI is rather a hindrance for some fruit plant species (such as plum, cherry, and peer trees) rather than an advantage in farming. PCD is a factor of the S-RNase-based SI in Petunia hybrida E. Vilm. The growth of self-incompatible pollen tubes (PTs) is arrested with an increase in the activity of caspase-like proteases during the first hours after pollination so that all traits of PCD-plasma membrane integrity damage, DNA degradation/disintegration, and damage of PT structural organization (absence of vacuoles, turgor disturbance, and separation of cell plasma membrane from the cell wall)-are observable by the moment of PT growth arrest. We succeeded in discovering an additional cytological PCD marker, namely, the formation of ricinosomes in self-incompatible PTs at early stages of PCD. SI is removable by treating petunia stigmas with Acetyl-Asp-Glu-Val-Asp-aldehyde (Ac-DEVD-CHO), an inhibitor of caspase-3/DEVDase, 2 h before a self-incompatible pollination. In this process, the level of caspase-3-like protease activity was low, DNA degradation was absent, PTs grew to the ovary, fertilization was successful, and full-fledged seeds were formed.
Collapse
Affiliation(s)
| | - Ilya Sergeevich Demyanchuk
- Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, 127276, Botanicheskaya 35, Moscow, Russia
| | - Denis Sergeevich Sobolev
- Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, 127276, Botanicheskaya 35, Moscow, Russia
| | | | | | | |
Collapse
|
13
|
Wang J, Ao M, Ma A, Yu J, Guo P, Huang S, Peng X, Yun DJ, Xu ZY. A Mitochondrial Localized Chaperone Regulator OsBAG6 Functions in Saline-Alkaline Stress Tolerance in Rice. RICE (NEW YORK, N.Y.) 2024; 17:10. [PMID: 38252225 PMCID: PMC10803725 DOI: 10.1186/s12284-024-00686-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 01/09/2024] [Indexed: 01/23/2024]
Abstract
B-cell lymphoma 2 (Bcl-2)-associated athanogene (BAG) family genes play prominent roles in regulating plant growth, development, and stress response. Although the molecular mechanism underlying BAG's response to abiotic stress has been studied in Arabidopsis, the function of OsBAG underlying saline-alkaline stress tolerance in rice remains unclear. In this study, OsBAG6, a chaperone regulator localized to mitochondria, was identified as a novel negative regulator of saline-alkaline stress tolerance in rice. The expression level of OsBAG6 was induced by high concentration of salt, high pH, heat and abscisic acid treatments. Overexpression of OsBAG6 in rice resulted in significantly reduced plant heights, grain size, grain weight, as well as higher sensitivity to saline-alkaline stress. By contrast, the osbag6 loss-of-function mutants exhibited decreased sensitivity to saline-alkaline stress. The transcriptomic analysis uncovered differentially expressed genes related to the function of "response to oxidative stress", "defense response", and "secondary metabolite biosynthetic process" in the shoots and roots of OsBAG6-overexpressing transgenic lines. Furthermore, cytoplasmic levels of Ca2+ increase rapidly in plants exposed to saline-alkaline stress. OsBAG6 bound to calcium sensor OsCaM1-1 under normal conditions, which was identified by comparative interactomics, but not in the presence of elevated Ca2+. Released OsCaM1-1 saturated with Ca2+ is then able to regulate downstream stress-responsive genes as part of the response to saline-alkaline stress. OsBAG6 also interacted with energy biosynthesis and metabolic pathway proteins that are involved in plant growth and saline-alkaline stress response mechanisms. This study reveals a novel function for mitochondrial localized OsBAG6 proteins in the saline-alkaline stress response alongside OsCaM1-1.
Collapse
Affiliation(s)
- Jie Wang
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Min Ao
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Ao Ma
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Jinlei Yu
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Peng Guo
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Shuangzhan Huang
- Jilin Province Engineering Laboratory of Plant Genetic Improvement, College of Plant Science, Jilin University, Changchun, 130062, China
| | - Xiaoyuan Peng
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Dae-Jin Yun
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
- Department of Biomedical Science and Engineering, Konkuk University, Seoul, 132-798, South Korea
| | - Zheng-Yi Xu
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China.
| |
Collapse
|
14
|
Aksenova MA, Nechaeva TL, Goncharuk EA, Zubova MY, Kazantseva VV, Lapshin PV, Frolov A, Zagoskina NV. Changes in the Antioxidant Potential of Camellia sinensis Cultures under the Influence of Phenolic Precursors. Molecules 2024; 29:474. [PMID: 38257387 PMCID: PMC10820049 DOI: 10.3390/molecules29020474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 12/29/2023] [Accepted: 01/15/2024] [Indexed: 01/24/2024] Open
Abstract
The viability, productivity and survival of higher plants under the adverse factors influence are largely determined by the functional activity of the antioxidant system. The aim of our work was to investigate changes in formation of high-molecular (superoxide dismutase and peroxidase) and low-molecular (phenolics, including flavanols and proanthocyanidins) antioxidants in callus culture of Camellia sinensis under influence of phenolic precursors (L-phenylalanine-3 mM, trans-cinnamic acid-1 mM, naringenin-0.5 mM). According to the data obtained, the effect of precursors on tea callus cultures did not lead to significant increasing of superoxide dismutase and peroxidase activity in most cases. However, it led to the increased accumulation of the total phenolics content, as well as flavanols and proanthocyanidins contents. For C. sinensis callus cultures, the most promising regulator of phenolic compounds was L-phenylalanine, in the presence of which its content increased almost twice. Thus, the exogenous effect of various precursors is possible to use for the targeted regulation of certain phenolics classes accumulation in plant cells.
Collapse
Affiliation(s)
- Maria A. Aksenova
- K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, 127276 Moscow, Russia; (T.L.N.); (M.Y.Z.); k.v.- (V.V.K.); (P.V.L.); (A.F.); (N.V.Z.)
| | | | - Evgenia A. Goncharuk
- K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, 127276 Moscow, Russia; (T.L.N.); (M.Y.Z.); k.v.- (V.V.K.); (P.V.L.); (A.F.); (N.V.Z.)
| | | | | | | | | | | |
Collapse
|
15
|
Lou X, Zhang Y, Guo J, Gao L, Ding Y, Zhuo X, Lei Q, Bian J, Lei R, Gong W, Zhang X, Jiao Q. What is the impact of ferroptosis on diabetic cardiomyopathy: a systematic review. Heart Fail Rev 2024; 29:1-11. [PMID: 37555989 DOI: 10.1007/s10741-023-10336-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/17/2023] [Indexed: 08/10/2023]
Abstract
Iron overload increases the production of harmful reactive oxygen species in the Fenton reaction, which causes oxidative stress in the body and lipid peroxidation in the cell membrane, and eventually leads to ferroptosis. Diabetes is associated with increased intracellular oxidative stress, inflammation, autophagy, microRNA alterations, and advanced glycation end products (AGEs), which cause cardiac remodeling and cardiac diastolic contractile dysfunction, leading to the development of diabetic cardiomyopathy (DCM). While these factors are also closely associated with ferroptosis, more and more studies have shown that iron-mediated ferroptosis is an important causative factor in DCM. In order to gain fresh insights into the functions of ferroptosis in DCM, this review methodically summarizes the traits and mechanisms connected with ferroptosis and DCM.
Collapse
Affiliation(s)
- Xiaokun Lou
- Department of Clinical Medicine, Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Wenzhou Road, Gongshu District, Hangzhou, 310000, Zhejiang Province, China
| | - Yuanyuan Zhang
- Department of Cardiovascular Ultrasonic Center, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Junfeng Guo
- Department of Clinical Medicine, Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Wenzhou Road, Gongshu District, Hangzhou, 310000, Zhejiang Province, China
| | - Lina Gao
- Department of Clinical Medicine, Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Wenzhou Road, Gongshu District, Hangzhou, 310000, Zhejiang Province, China
| | - Yingying Ding
- Department of Clinical Medicine, Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Wenzhou Road, Gongshu District, Hangzhou, 310000, Zhejiang Province, China
| | - Xinyu Zhuo
- Department of Clinical Medicine, Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Wenzhou Road, Gongshu District, Hangzhou, 310000, Zhejiang Province, China
| | - Qingqing Lei
- Department of Clinical Medicine, Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Wenzhou Road, Gongshu District, Hangzhou, 310000, Zhejiang Province, China
| | - Jing Bian
- Department of Clinical Medicine, Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Wenzhou Road, Gongshu District, Hangzhou, 310000, Zhejiang Province, China
| | - Rumei Lei
- Department of Clinical Medicine, Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Wenzhou Road, Gongshu District, Hangzhou, 310000, Zhejiang Province, China
| | - Wenyan Gong
- Department of Clinical Medicine, Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Wenzhou Road, Gongshu District, Hangzhou, 310000, Zhejiang Province, China.
- Hangzhou Institute of Cardiovascular Disease, Hangzhou, 310000, China.
| | - Xingwei Zhang
- Department of Clinical Medicine, Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Wenzhou Road, Gongshu District, Hangzhou, 310000, Zhejiang Province, China.
- Hangzhou Institute of Cardiovascular Disease, Hangzhou, 310000, China.
| | - Qibin Jiao
- Department of Clinical Medicine, Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Wenzhou Road, Gongshu District, Hangzhou, 310000, Zhejiang Province, China.
| |
Collapse
|
16
|
Guo M, Li Z, Wang L, Xu T, Huang H, Kanwar MK, Yang P, Zhou J. BAG8 positively regulates cold stress tolerance by modulating photosystem, antioxidant system and protein protection in Solanum lycopersicum. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 206:108267. [PMID: 38091937 DOI: 10.1016/j.plaphy.2023.108267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 11/22/2023] [Accepted: 12/06/2023] [Indexed: 02/15/2024]
Abstract
The B-cell lymphoma 2 (Bcl-2)-associated athanogene (BAG) family is a relatively conserved and multifunctional co-chaperones in animals and plants, which can flexibly interact with a variety of proteins and regulate various processes from growth and development to stress response. However, compared with animals, the function of BAG family in plant remains largely unknown, especially in response to cold stress. In this study, we have found that the expression of BAG8 was significantly induced in tomato under cold stress. Results showed that bag8 mutants exhibit significantly reduced tolerance towards cold stress, while BAG8 overexpressing lines were relatively resistant as reflected by the phenotype and membrane peroxidation. Measuring of gas exchange parameters, photosystem I (PSI) and photosystem II (PSII) of tomato leaves under cold stress further revealed that BAG8 mitigated cold-induced damage in photosynthetic system. Additionally, bag8 mutants exhibited more cold-induced reactive oxygen species, which were substantially normalized in BAG8 overexpressing plants. Nevertheless, the activities of antioxidant enzymes which were compromised in bag8 mutants were improved in BAG8 overexpressing plants facing cold stress. Additionally, BAG8 interacted with heat shock protein Hsp70 and protein phosphatase PP2A both in vitro and in vivo. Our results demonstrate that BAG8 plays a positive role in cold tolerance in tomato probably by the improvement of photosystems and antioxidant systems, and by interacting with Hsp70 involved in photosynthesis and PP2A involved in stomatal development.
Collapse
Affiliation(s)
- Mingyue Guo
- Department of Horticulture, Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Yuhangtang Road 866, Hangzhou, 310058, China
| | - Zhichao Li
- Department of Horticulture, Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Yuhangtang Road 866, Hangzhou, 310058, China
| | - Leilei Wang
- Department of Horticulture, Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Yuhangtang Road 866, Hangzhou, 310058, China
| | - Tong Xu
- Department of Horticulture, Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Yuhangtang Road 866, Hangzhou, 310058, China; Hainan Institute, Zhejiang University, Sanya, China
| | - Huamin Huang
- Department of Horticulture, Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Yuhangtang Road 866, Hangzhou, 310058, China
| | - Mukesh Kumar Kanwar
- Department of Horticulture, Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Yuhangtang Road 866, Hangzhou, 310058, China; Department of Environmental Sciences, Dr Harisingh Gour Vishwavidyalaya, Sagar, Madhya Pradesh, India
| | - Ping Yang
- Agricultural Experiment Station, Zhejiang University, Hangzhou, 310058, China
| | - Jie Zhou
- Department of Horticulture, Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Yuhangtang Road 866, Hangzhou, 310058, China; Hainan Institute, Zhejiang University, Sanya, China; Key Laboratory of Horticultural Plants Growth, Development and Quality Improvement, Ministry of Agriculture and Rural Affairs of China, Yuhangtang Road 866, Hangzhou, 310058, China.
| |
Collapse
|
17
|
Ai G, Si J, Cheng Y, Meng R, Wu Z, Xu R, Wang X, Zhai Y, Peng H, Li Y, Dou D, Jing M. The oomycete-specific BAG subfamily maintains protein homeostasis and promotes pathogenicity in an atypical HSP70-independent manner. Cell Rep 2023; 42:113391. [PMID: 37930886 DOI: 10.1016/j.celrep.2023.113391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 09/08/2023] [Accepted: 10/20/2023] [Indexed: 11/08/2023] Open
Abstract
Protein homeostasis is vital for organisms and requires chaperones like the conserved Bcl-2-associated athanogene (BAG) co-chaperones that bind to the heat shock protein 70 (HSP70) through their C-terminal BAG domain (BD). Here, we show an unconventional BAG subfamily exclusively found in oomycetes. Oomycete BAGs feature an atypical N-terminal BD with a short and oomycete-specific α1 helix (α1'), plus a C-terminal small heat shock protein (sHSP) domain. In oomycete pathogen Phytophthora sojae, both BD-α1' and sHSP domains are required for P. sojae BAG (PsBAG) function in cyst germination, pathogenicity, and unfolded protein response assisting in 26S proteasome-mediated degradation of misfolded proteins. PsBAGs form homo- and heterodimers through their unique BD-α1' to function properly, with no recruitment of HSP70s to form the common BAG-HSP70 complex found in other eukaryotes. Our study highlights an oomycete-exclusive protein homeostasis mechanism mediated by atypical BAGs, which provides a potential target for oomycete disease control.
Collapse
Affiliation(s)
- Gan Ai
- Department of Plant Pathology, Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Nanjing Agricultural University, Nanjing 210095, China
| | - Jierui Si
- Department of Plant Pathology, Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Nanjing Agricultural University, Nanjing 210095, China
| | - Yang Cheng
- Department of Plant Pathology, Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Nanjing Agricultural University, Nanjing 210095, China
| | - Rui Meng
- Department of Plant Pathology, Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Nanjing Agricultural University, Nanjing 210095, China
| | - Zishan Wu
- Department of Plant Pathology, Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Nanjing Agricultural University, Nanjing 210095, China
| | - Ruofei Xu
- Department of Plant Pathology, Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Nanjing Agricultural University, Nanjing 210095, China
| | - Xiaodan Wang
- Department of Plant Pathology, China Agricultural University, Beijing 100091, China
| | - Ying Zhai
- USDA-ARS, Crop Diseases, Pests and Genetics Research Unit, Parlier, CA 93648, USA
| | - Hao Peng
- USDA-ARS, Crop Diseases, Pests and Genetics Research Unit, Parlier, CA 93648, USA
| | - Yurong Li
- Corteva Agriscience, Johnston, IA 50131, USA
| | - Daolong Dou
- Department of Plant Pathology, Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Nanjing Agricultural University, Nanjing 210095, China
| | - Maofeng Jing
- Department of Plant Pathology, Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
18
|
Okemo PA, Njaci I, Kim YM, McClure RS, Peterson MJ, Beliaev AS, Hixson KK, Mundree S, Williams B. Tripogon loliiformis tolerates rapid desiccation after metabolic and transcriptional priming during initial drying. Sci Rep 2023; 13:20613. [PMID: 37996547 PMCID: PMC10667271 DOI: 10.1038/s41598-023-47456-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 11/14/2023] [Indexed: 11/25/2023] Open
Abstract
Crop plants and undomesticated resilient species employ different strategies to regulate their energy resources and growth. Most crop species are sensitive to stress and prioritise rapid growth to maximise yield or biomass production. In contrast, resilient plants grow slowly, are small, and allocate their resources for survival in challenging environments. One small group of plants, termed resurrection plants, survive desiccation of their vegetative tissue and regain full metabolic activity upon watering. However, the precise molecular mechanisms underlying this extreme tolerance remain unknown. In this study, we employed a transcriptomics and metabolomics approach, to investigate the mechanisms of desiccation tolerance in Tripogon loliiformis, a modified desiccation-tolerant plant, that survives gradual but not rapid drying. We show that T. loliiformis can survive rapid desiccation if it is gradually dried to 60% relative water content (RWC). Furthermore, the gene expression data showed that T. loliiformis is genetically predisposed for desiccation in the hydrated state, as evidenced by the accumulation of MYB, NAC, bZIP, WRKY transcription factors along with the phytohormones, abscisic acid, salicylic acid, amino acids (e.g., proline) and TCA cycle sugars during initial drying. Through network analysis of co-expressed genes, we observed differential responses to desiccation between T. loliiformis shoots and roots. Dehydrating shoots displayed global transcriptional changes across broad functional categories, although no enrichment was observed during drying. In contrast, dehydrating roots showed distinct network changes with the most significant differences occurring at 40% RWC. The cumulative effects of the early stress responses may indicate the minimum requirements of desiccation tolerance and enable T. loliiformis to survive rapid drying. These findings potentially hold promise for identifying biotechnological solutions aimed at developing drought-tolerant crops without growth and yield penalties.
Collapse
Affiliation(s)
- Pauline A Okemo
- School of Biology and Environmental Science, Queensland University of Technology, Brisbane, QLD, Australia
- Centre for Agriculture and the Bioeconomy, Queensland University of Technology, Brisbane, QLD, Australia
- Queensland Alliance for Agriculture and Food Innovation, University of Queensland, Brisbane, QLD, Australia
| | - Isaac Njaci
- School of Biology and Environmental Science, Queensland University of Technology, Brisbane, QLD, Australia
- Centre for Agriculture and the Bioeconomy, Queensland University of Technology, Brisbane, QLD, Australia
| | - Young-Mo Kim
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Ryan S McClure
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, USA
| | | | - Alexander S Beliaev
- Centre for Agriculture and the Bioeconomy, Queensland University of Technology, Brisbane, QLD, Australia
- Physical and Chemical Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Kim K Hixson
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, USA
- Physical and Chemical Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Sagadevan Mundree
- School of Biology and Environmental Science, Queensland University of Technology, Brisbane, QLD, Australia
- Centre for Agriculture and the Bioeconomy, Queensland University of Technology, Brisbane, QLD, Australia
| | - Brett Williams
- School of Biology and Environmental Science, Queensland University of Technology, Brisbane, QLD, Australia.
- Centre for Agriculture and the Bioeconomy, Queensland University of Technology, Brisbane, QLD, Australia.
| |
Collapse
|
19
|
Shanmugaraj N, Rajaraman J, Kale S, Kamal R, Huang Y, Thirulogachandar V, Garibay-Hernández A, Budhagatapalli N, Tandron Moya YA, Hajirezaei MR, Rutten T, Hensel G, Melzer M, Kumlehn J, von Wirén N, Mock HP, Schnurbusch T. Multilayered regulation of developmentally programmed pre-anthesis tip degeneration of the barley inflorescence. THE PLANT CELL 2023; 35:3973-4001. [PMID: 37282730 PMCID: PMC10615218 DOI: 10.1093/plcell/koad164] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 04/17/2023] [Accepted: 06/04/2023] [Indexed: 06/08/2023]
Abstract
Leaf and floral tissue degeneration is a common feature in plants. In cereal crops such as barley (Hordeum vulgare L.), pre-anthesis tip degeneration (PTD) starts with growth arrest of the inflorescence meristem dome, which is followed basipetally by the degeneration of floral primordia and the central axis. Due to its quantitative nature and environmental sensitivity, inflorescence PTD constitutes a complex, multilayered trait affecting final grain number. This trait appears to be highly predictable and heritable under standardized growth conditions, consistent with a developmentally programmed mechanism. To elucidate the molecular underpinnings of inflorescence PTD, we combined metabolomic, transcriptomic, and genetic approaches to show that barley inflorescence PTD is accompanied by sugar depletion, amino acid degradation, and abscisic acid responses involving transcriptional regulators of senescence, defense, and light signaling. Based on transcriptome analyses, we identified GRASSY TILLERS1 (HvGT1), encoding an HD-ZIP transcription factor, as an important modulator of inflorescence PTD. A gene-edited knockout mutant of HvGT1 delayed PTD and increased differentiated apical spikelets and final spikelet number, suggesting a possible strategy to increase grain number in cereals. We propose a molecular framework that leads to barley PTD, the manipulation of which may increase yield potential in barley and other related cereals.
Collapse
Affiliation(s)
- Nandhakumar Shanmugaraj
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstr. 3, OT Gatersleben, Seeland 06466,Germany
| | - Jeyaraman Rajaraman
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstr. 3, OT Gatersleben, Seeland 06466,Germany
| | - Sandip Kale
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstr. 3, OT Gatersleben, Seeland 06466,Germany
| | - Roop Kamal
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstr. 3, OT Gatersleben, Seeland 06466,Germany
| | - Yongyu Huang
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstr. 3, OT Gatersleben, Seeland 06466,Germany
| | - Venkatasubbu Thirulogachandar
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstr. 3, OT Gatersleben, Seeland 06466,Germany
| | - Adriana Garibay-Hernández
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstr. 3, OT Gatersleben, Seeland 06466,Germany
| | - Nagaveni Budhagatapalli
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstr. 3, OT Gatersleben, Seeland 06466,Germany
| | - Yudelsy Antonia Tandron Moya
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstr. 3, OT Gatersleben, Seeland 06466,Germany
| | - Mohammed R Hajirezaei
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstr. 3, OT Gatersleben, Seeland 06466,Germany
| | - Twan Rutten
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstr. 3, OT Gatersleben, Seeland 06466,Germany
| | - Götz Hensel
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstr. 3, OT Gatersleben, Seeland 06466,Germany
| | - Michael Melzer
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstr. 3, OT Gatersleben, Seeland 06466,Germany
| | - Jochen Kumlehn
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstr. 3, OT Gatersleben, Seeland 06466,Germany
| | - Nicolaus von Wirén
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstr. 3, OT Gatersleben, Seeland 06466,Germany
| | - Hans-Peter Mock
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstr. 3, OT Gatersleben, Seeland 06466,Germany
| | - Thorsten Schnurbusch
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstr. 3, OT Gatersleben, Seeland 06466,Germany
- Faculty of Natural Sciences III, Martin Luther University Halle-Wittenberg, Institute of Agricultural and Nutritional Sciences, Halle 06120,Germany
| |
Collapse
|
20
|
Thanthrige N, Weston-Olliver G, Das Bhowmik S, Friedl J, Rowlings D, Kabbage M, Ferguson BJ, Mundree S, Williams B. The cytoprotective co-chaperone, AtBAG4, supports increased nodulation and seed protein content in chickpea without yield penalty. Sci Rep 2023; 13:18553. [PMID: 37899486 PMCID: PMC10613627 DOI: 10.1038/s41598-023-45771-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 10/24/2023] [Indexed: 10/31/2023] Open
Abstract
Drought and extreme temperatures significantly limit chickpea productivity worldwide. The regulation of plant programmed cell death pathways is emerging as a key component of plant stress responses to maintain homeostasis at the cellular-level and a potential target for crop improvement against environmental stresses. Arabidopsis thaliana Bcl-2 associated athanogene 4 (AtBAG4) is a cytoprotective co-chaperone that is linked to plant responses to environmental stress. Here, we investigate whether exogenous expression of AtBAG4 impacts nodulation and nitrogen fixation. Transgenic chickpea lines expressing AtBAG4 are more drought tolerant and produce higher yields under drought stress. Furthermore, AtBAG4 expression supports higher nodulation, photosynthetic levels, nitrogen fixation and seed nitrogen content under well-watered conditions when the plants were inoculated with Mesorhizobium ciceri. Together, our findings illustrate the potential use of cytoprotective chaperones to improve crop performance at least in the greenhouse in future uncertain climates with little to no risk to yield under well-watered and water-deficient conditions.
Collapse
Affiliation(s)
- Nipuni Thanthrige
- Centre for Agriculture and the Bioeconomy, Queensland University of Technology, Brisbane, QLD, Australia
- School of Biology and Environmental Science, Queensland University of Technology, Brisbane, QLD, Australia
| | - Grace Weston-Olliver
- Centre for Agriculture and the Bioeconomy, Queensland University of Technology, Brisbane, QLD, Australia
| | - Sudipta Das Bhowmik
- Centre for Agriculture and the Bioeconomy, Queensland University of Technology, Brisbane, QLD, Australia
| | - Johannes Friedl
- Centre for Agriculture and the Bioeconomy, Queensland University of Technology, Brisbane, QLD, Australia
- Department of Forest and Soil Sciences, Institute of Soil Research, University of Natural Resources and Life Sciences Vienna, Vienna, Austria
| | - David Rowlings
- Centre for Agriculture and the Bioeconomy, Queensland University of Technology, Brisbane, QLD, Australia
| | - Mehdi Kabbage
- Department of Plant Pathology, University of Wisconsin-Madison, Madison, WI, USA
| | - Brett J Ferguson
- School of Agriculture and Food Sciences, University of Queensland, Brisbane, QLD, Australia
| | - Sagadevan Mundree
- Centre for Agriculture and the Bioeconomy, Queensland University of Technology, Brisbane, QLD, Australia
- School of Biology and Environmental Science, Queensland University of Technology, Brisbane, QLD, Australia
| | - Brett Williams
- Centre for Agriculture and the Bioeconomy, Queensland University of Technology, Brisbane, QLD, Australia.
- School of Biology and Environmental Science, Queensland University of Technology, Brisbane, QLD, Australia.
| |
Collapse
|
21
|
Dace HJ, Adetunji AE, Moore JP, Farrant JM, Hilhorst HW. A review of the role of metabolites in vegetative desiccation tolerance of angiosperms. CURRENT OPINION IN PLANT BIOLOGY 2023; 75:102410. [PMID: 37413962 DOI: 10.1016/j.pbi.2023.102410] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 05/25/2023] [Accepted: 06/05/2023] [Indexed: 07/08/2023]
Abstract
The survival of extreme water deficit stress by tolerant organisms requires a coordinated series of responses, including those at cellular, transcriptional, translational and metabolic levels. Small molecules play a pivotal role in creating the proper chemical environment for the preservation of cellular integrity and homeostasis during dehydration. This review surveys recent insights in the importance of primary and specialised metabolites in the response to drying of angiosperms with vegetative desiccation tolerance, i.e. the ability to survive near total loss of water. Important metabolites include sugars such as sucrose, trehalose and raffinose family of oligosaccharides, amino acids and organic acids, as well as antioxidants, representing a common core mechanism of desiccation tolerance. Additional metabolites are discussed in the context of species specificity and adaptation.
Collapse
Affiliation(s)
- Halford Jw Dace
- Laboratory of Plant Physiology, Wageningen University and Research, The Netherlands
| | - Ademola E Adetunji
- Department of Molecular and Cell Biology, University of Cape Town, South Africa
| | - John P Moore
- South African Grape and Wine Research Institute, Department of Viticulture and Oenology, Stellenbosch University, South Africa
| | - Jill M Farrant
- Department of Molecular and Cell Biology, University of Cape Town, South Africa.
| | - Henk Wm Hilhorst
- Laboratory of Plant Physiology, Wageningen University and Research, The Netherlands; Department of Molecular and Cell Biology, University of Cape Town, South Africa.
| |
Collapse
|
22
|
Schwarze J, Carolan JC, Stewart GS, McCabe PF, Kacprzyk J. The boundary of life and death: changes in mitochondrial and cytosolic proteomes associated with programmed cell death of Arabidopsis thaliana suspension culture cells. FRONTIERS IN PLANT SCIENCE 2023; 14:1194866. [PMID: 37593044 PMCID: PMC10431908 DOI: 10.3389/fpls.2023.1194866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 06/22/2023] [Indexed: 08/19/2023]
Abstract
Introduction Despite the critical role of programmed cell death (PCD) in plant development and defense responses, its regulation is not fully understood. It has been proposed that mitochondria may be important in the control of the early stages of plant PCD, but the details of this regulation are currently unknown. Methods We used Arabidopsis thaliana cell suspension culture, a model system that enables induction and precise monitoring of PCD rates, as well as chemical manipulation of this process to generate a quantitative profile of the alterations in mitochondrial and cytosolic proteomes associated with early stages of plant PCD induced by heat stress. The cells were subjected to PCD-inducing heat levels (10 min, 54°C), with/without the calcium channel inhibitor and PCD blocker LaCl3. The stress treatment was followed by separation of cytosolic and mitochondrial fractions and mass spectrometry-based proteome analysis. Results Heat stress induced rapid and extensive changes in protein abundance in both fractions, with release of mitochondrial proteins into the cytosol upon PCD induction. In our system, LaCl3 appeared to act downstream of cell death initiation signal, as it did not affect the release of mitochondrial proteins, but instead partially inhibited changes occurring in the cytosolic fraction, including upregulation of proteins with hydrolytic activity. Discussion We characterized changes in protein abundance and localization associated with the early stages of heat stress-induced PCD. Collectively, the generated data provide new insights into the regulation of cell death and survival decisions in plant cells.
Collapse
Affiliation(s)
- Johanna Schwarze
- School of Biology and Environmental Science, University College Dublin, Dublin, Ireland
| | | | - Gavin S. Stewart
- School of Biology and Environmental Science, University College Dublin, Dublin, Ireland
| | - Paul F. McCabe
- School of Biology and Environmental Science, University College Dublin, Dublin, Ireland
| | - Joanna Kacprzyk
- School of Biology and Environmental Science, University College Dublin, Dublin, Ireland
| |
Collapse
|
23
|
Li T, Liu R, Liu Z, Chang J, Li J. Effects of Intermittent Temperature and Humidity Regulation on Tomato Gray Mold. PLANT DISEASE 2023; 107:2335-2345. [PMID: 36627805 DOI: 10.1094/pdis-10-22-2339-re] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Temperature and humidity play an important role in plant-pathogen interactions. However, regulating the temperature and humidity specifically to inhibit the development of plant diseases remains unclear. In this study, we explored the influence of intermittent temperature and humidity variation on tomato gray mold. Intermittent regulation of temperature and humidity (increasing temperature with decreasing humidity for different periods within 24 h) inhibited the disease severity of plants and the infection process of Botrytis cinerea. The 4-h treatment (increasing temperature accompanied by decreasing humidity for 4 h and recovering for 4 h, and so on) effectively inhibited the development of tomato gray mold, reduced the biomass of B. cinerea, delayed the differentiation time of mycelia, and inhibited the accumulation of hydrogen peroxide in tomato leaves at the later stage of infection. The increased expressions of heat-shock protein (HSP) genes HSP20, HSP70, HSP90, BAG6, and BAG7 in tomato were mainly caused by environmental changes and environment-plant-pathogen interactions, and the increased expression of the latter was greater than that of the former in the 2-h (increasing temperature accompanied by decreasing humidity for 2 h and recovering for 2 h, and so on) and 4-h treatments. Pathogen infection induced the expression of defense-related genes in tomato, and the increase in the expressions of FLS2, FEI1, PI2, Pti5, and WRKY75 induced by B. cinerea in the 4-h treatment was greater than that under unregulated temperature and humidity conditions. In general, intermittent temperature and humidity variation can effectively inhibit the development of tomato gray mold, and the 4-h treatment had the best inhibitory effect.
Collapse
Affiliation(s)
- Tianzhu Li
- College of Horticulture, Northwest Agricultural and Forestry University, Yangling 712100, China
| | - Ruyi Liu
- College of Horticulture, Northwest Agricultural and Forestry University, Yangling 712100, China
| | - Zhaoyu Liu
- College of Horticulture, Northwest Agricultural and Forestry University, Yangling 712100, China
| | - Jiayue Chang
- College of Horticulture, Northwest Agricultural and Forestry University, Yangling 712100, China
| | - Jianming Li
- College of Horticulture, Northwest Agricultural and Forestry University, Yangling 712100, China
| |
Collapse
|
24
|
Zhao F, Liu L, Du J, Zhao X, Song Y, Zhou H, Qiao Y. BAG6-A from Fragaria viridis pollen modulates gametophyte development in diploid strawberry. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2023; 330:111667. [PMID: 36858208 DOI: 10.1016/j.plantsci.2023.111667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 02/19/2023] [Accepted: 02/24/2023] [Indexed: 06/18/2023]
Abstract
Male and female gametophyte development processes are essential steps in the life cycles of all land plants. Here, we characterized a gene, FviBAG6-A, screened from the Fragaria viridis (2 n = 2x=14) pollen cDNA library and physically interacted with S-RNase. Ubiquitinated of Sa-RNase might be determined by the interaction of FviBAG6-A in the ubiquitin-proteasome system during fertilization. We found that overexpression of FviBAG6-A in Arabidopsis caused shorter silique length, and decreased silique number. Moreover, overexpression of FviBAG6-A in Fragaria vesca (2 n = 2x=14) led to a greatly reduced seed number, with nearly 80% of the seeds aborted. Analyses of paraffin sections and reactive oxygen species (ROS) content revealed that the majority of severe pollen defects were likely due to the early degradation of the tapetum and middle layer as a result of ROS accumulation and abnormal development of the uninucleate megaspore mother. Moreover, the FviBAG6-A interact with the E3 ligase SIZ1 and contribute to the SUMOylation of FviBAG6-A , which may be induced by the high level of ROS content, further promoting gametophyte abortion in strawberry transgenic lines. This study characterized the FviBAG6-A and reveals its novel function in gametophyte development.
Collapse
Affiliation(s)
- Fengli Zhao
- Laboratory of Fruit Crop Biotechnology, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China; Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, Henan, China
| | - Lifeng Liu
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, Henan, China
| | - Jianke Du
- Laboratory of Fruit Crop Biotechnology, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China
| | - Xia Zhao
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, Henan, China
| | - Yanhong Song
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, Henan, China
| | - Houcheng Zhou
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, Henan, China.
| | - Yushan Qiao
- Laboratory of Fruit Crop Biotechnology, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China; Institute of Pomology, Jiangsu Academy of Agricultural Sciences/Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Nanjing 210014, Jiangsu, China.
| |
Collapse
|
25
|
Seoane M, Conde-Pérez K, Esperanza M, Cid Á, Rioboo C. Unravelling joint cytotoxicity of ibuprofen and oxytetracycline on Chlamydomonas reinhardtii using a programmed cell death-related biomarkers panel. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2023; 257:106455. [PMID: 36841069 DOI: 10.1016/j.aquatox.2023.106455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 02/16/2023] [Accepted: 02/19/2023] [Indexed: 06/18/2023]
Abstract
Pharmaceutical active compounds (PhACs) are emerging contaminants that pose a growing concern due to their ubiquitous presence and harmful impact on aquatic ecosystems. Among PhACs, the anti-inflammatory ibuprofen (IBU) and the antibiotic oxytetracycline (OTC) are two of the most used compounds whose presence has been reported in different aquatic environments worldwide. However, there is still scarce information about the cellular and molecular alterations provoked by IBU and OTC on aquatic photosynthetic microorganisms as microalgae, even more if we refer to their potential combined toxicity. To test the cyto- and genotoxicity provoked by IBU, OTC and their binary combination on Chlamydomonas reinhardtii, a flow cytometric panel was performed after 24 h of single and co-exposure to both contaminants. Assayed parameters were cell vitality, metabolic activity, intracellular ROS levels, and other programmed cell death (PCD)-related biomarkers as cytoplasmic and mitochondrial membrane potentials and caspase-like and endonuclease activities. In addition, a nuclear DNA fragmentation analysis by comet assay was carried out. For most of the parameters analysed (vitality, metabolic activity, cytoplasmic and mitochondrial membrane potentials, and DNA fragmentation) the most severe damages were observed in the cultures exposed to the binary mixture (IBU+OTC), showing a joint cyto- and genotoxicity effect. Both PhACs and their mixture caused a remarkable decrease in cell proliferation and metabolic activity and markedly increased intracellular ROS levels, parallel to a noticeable depolarization of cytoplasmic and mitochondrial membranes. Moreover, a strong increase in both caspase and endonuclease activities as well as a PCD-related loss of nuclear DNA integrity was observed in all treatments. Results analysis showed that the PhACs caused cell death on this non-target organism, involving mitochondrial membrane depolarization, enhanced ROS production and activation of PCD process. Thus, PCD should be an applicable toxicological target for unraveling the harmful effects of co-exposure to PhACs in aquatic organisms as microalgae.
Collapse
Affiliation(s)
- Marta Seoane
- Laboratorio de Microbiología, Facultad de Ciencias, Universidade da Coruña, Campus da Zapateira s/n, A Coruña 15071, Spain
| | - Kelly Conde-Pérez
- Laboratorio de Microbiología, Facultad de Ciencias, Universidade da Coruña, Campus da Zapateira s/n, A Coruña 15071, Spain
| | - Marta Esperanza
- Laboratorio de Microbiología, Facultad de Ciencias, Universidade da Coruña, Campus da Zapateira s/n, A Coruña 15071, Spain
| | - Ángeles Cid
- Laboratorio de Microbiología, Facultad de Ciencias, Universidade da Coruña, Campus da Zapateira s/n, A Coruña 15071, Spain
| | - Carmen Rioboo
- Laboratorio de Microbiología, Facultad de Ciencias, Universidade da Coruña, Campus da Zapateira s/n, A Coruña 15071, Spain.
| |
Collapse
|
26
|
Gu L, Hou B, Chen X, Wang Y, Chang P, He X, Gong D, Sun Q. The Bcl-2-associated athanogene gene family in tobacco ( Nicotiana tabacum) and the function of NtBAG5 in leaf senescence. FRONTIERS IN PLANT SCIENCE 2023; 14:1108588. [PMID: 36844065 PMCID: PMC9947661 DOI: 10.3389/fpls.2023.1108588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Accepted: 01/30/2023] [Indexed: 06/18/2023]
Abstract
Leaf senescence in tobacco is closely related to leaf maturation and secondary metabolites. Bcl-2-associated athanogene (BAG) family members are highly conserved proteins and play key roles in senescence, growth and development, and resistance to biotic and abiotic stresses. Herein, the BAG family of tobacco was identified and characterized. In total, 19 tobacco BAG protein candidate genes were identified and divided into two classes, class I comprising NtBAG1a-e, NtBAG3a-b, and NtBAG4a-c and class II including NtBAG5a-e, NtBAG6a-b, and NtBAG7. Genes in the same subfamily or branch of the phylogenetic tree exhibited similarities in gene structure and the cis-element on promoters. RNA-seq and real-time quantitative reverse transcription polymerase chain reaction (qRT-PCR) revealed that the expression of NtBAG5c-f and NtBAG6a-b was upregulated in senescent leaves, implying that they play a role in regulating leaf senescence. NtBAG5c was localized in the nucleus and cell wall as a homology of leaf senescence related gene AtBAG5. Further, the interaction of NtBAG5c with heat-shock protein 70 (HSP70) and sHSP20 was demonstrated using yeast two-hybrid experiment. Virus-induced gene silencing indicated that NtBAG5c reduced the lignin content and increased superoxide dismutase (SOD) activity and hydrogen peroxide (H2O2) accumulation. In NtBAG5c-silenced plants, the expression of multiple senescence-related genes cysteine proteinase (NtCP1), SENESCENCE 4 (SEN4) and SENESCENCE-ASSOCIATED GENE 12 (SAG12) was downregulated. In conclusion, tobacco BAG protein candidate genes were identified and characterized for the first time.
Collapse
Affiliation(s)
- Linxin Gu
- Chongqing Key Laboratory of Big Data for Bio Intelligence, College of Bioinformation, Chongqing University of Posts and Telecommunications, Nan'an, Chongqing, China
| | - Bing Hou
- Chongqing Key Laboratory of Big Data for Bio Intelligence, College of Bioinformation, Chongqing University of Posts and Telecommunications, Nan'an, Chongqing, China
| | - Xiao Chen
- Chongqing Key Laboratory of Big Data for Bio Intelligence, College of Bioinformation, Chongqing University of Posts and Telecommunications, Nan'an, Chongqing, China
| | - Yu Wang
- Chongqing Key Laboratory of Big Data for Bio Intelligence, College of Bioinformation, Chongqing University of Posts and Telecommunications, Nan'an, Chongqing, China
| | - Pingan Chang
- Chongqing Key Laboratory of Big Data for Bio Intelligence, College of Bioinformation, Chongqing University of Posts and Telecommunications, Nan'an, Chongqing, China
| | - Xiaohong He
- Chongqing Key Laboratory of Big Data for Bio Intelligence, College of Bioinformation, Chongqing University of Posts and Telecommunications, Nan'an, Chongqing, China
| | - Daping Gong
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, China
| | - Quan Sun
- Chongqing Key Laboratory of Big Data for Bio Intelligence, College of Bioinformation, Chongqing University of Posts and Telecommunications, Nan'an, Chongqing, China
| |
Collapse
|
27
|
Wang P, Siao W, Zhao X, Arora D, Wang R, Eeckhout D, Van Leene J, Kumar R, Houbaert A, De Winne N, Mylle E, Vandorpe M, Korver RA, Testerink C, Gevaert K, Vanneste S, De Jaeger G, Van Damme D, Russinova E. Adaptor protein complex interaction map in Arabidopsis identifies P34 as a common stability regulator. NATURE PLANTS 2023; 9:355-371. [PMID: 36635451 PMCID: PMC7615410 DOI: 10.1038/s41477-022-01328-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 12/05/2022] [Indexed: 06/17/2023]
Abstract
Adaptor protein (AP) complexes are evolutionarily conserved vesicle transport regulators that recruit coat proteins, membrane cargoes and coated vesicle accessory proteins. As in plants endocytic and post-Golgi trafficking intersect at the trans-Golgi network, unique mechanisms for sorting cargoes of overlapping vesicular routes are anticipated. The plant AP complexes are part of the sorting machinery, but despite some functional information, their cargoes, accessory proteins and regulation remain largely unknown. Here, by means of various proteomics approaches, we generated the overall interactome of the five AP and the TPLATE complexes in Arabidopsis thaliana. The interactome converged on a number of hub proteins, including the thus far unknown adaptin binding-like protein, designated P34. P34 interacted with the clathrin-associated AP complexes, controlled their stability and, subsequently, influenced clathrin-mediated endocytosis and various post-Golgi trafficking routes. Altogether, the AP interactome network offers substantial resources for further discoveries of unknown endomembrane trafficking regulators in plant cells.
Collapse
Affiliation(s)
- Peng Wang
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Center for Plant Systems Biology, VIB, Ghent, Belgium
| | - Wei Siao
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium.
- Center for Plant Systems Biology, VIB, Ghent, Belgium.
| | - Xiuyang Zhao
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Center for Plant Systems Biology, VIB, Ghent, Belgium
| | - Deepanksha Arora
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Center for Plant Systems Biology, VIB, Ghent, Belgium
| | - Ren Wang
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Center for Plant Systems Biology, VIB, Ghent, Belgium
| | - Dominique Eeckhout
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Center for Plant Systems Biology, VIB, Ghent, Belgium
| | - Jelle Van Leene
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Center for Plant Systems Biology, VIB, Ghent, Belgium
| | - Rahul Kumar
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Center for Plant Systems Biology, VIB, Ghent, Belgium
- Department of Plant Sciences, University of Hyderabad, Hyderabad, India
| | - Anaxi Houbaert
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Center for Plant Systems Biology, VIB, Ghent, Belgium
- Department of Plant Molecular Biology, University of Lausanne, Lausanne, Switzerland
| | - Nancy De Winne
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Center for Plant Systems Biology, VIB, Ghent, Belgium
| | - Evelien Mylle
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Center for Plant Systems Biology, VIB, Ghent, Belgium
| | - Michael Vandorpe
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Center for Plant Systems Biology, VIB, Ghent, Belgium
| | - Ruud A Korver
- Plant Physiology and Cell Biology, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, the Netherlands
| | - Christa Testerink
- Plant Physiology and Cell Biology, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, the Netherlands
- Laboratory of Plant Physiology, Wageningen University & Research, Wageningen, the Netherlands
| | - Kris Gevaert
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
- Center for Medical Biotechnology, VIB, Ghent, Belgium
| | - Steffen Vanneste
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Center for Plant Systems Biology, VIB, Ghent, Belgium
| | - Geert De Jaeger
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Center for Plant Systems Biology, VIB, Ghent, Belgium
| | - Daniël Van Damme
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Center for Plant Systems Biology, VIB, Ghent, Belgium
| | - Eugenia Russinova
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium.
- Center for Plant Systems Biology, VIB, Ghent, Belgium.
| |
Collapse
|
28
|
Kushalappa AC, Hegde NG, Gunnaiah R, Sathe A, Yogendra KN, Ajjamada L. Apoptotic-like PCD inducing HRC gene when silenced enhances multiple disease resistance in plants. Sci Rep 2022; 12:20402. [PMID: 36437285 PMCID: PMC9701806 DOI: 10.1038/s41598-022-24831-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Accepted: 11/21/2022] [Indexed: 11/29/2022] Open
Abstract
Programmed cell death (PCD) plays an important role in plant environmental stress and has the potential to be manipulated to enhance disease resistance. Plants have innate immunity and, following pathogen perception, the host induces a Hypersensitive Response PCD (HR-PCD), leading to pattern (PTI) or effector triggered immunity (ETI). Here we report a non-HR type or Apoptotic-Like PCD (AL-PCD) in pathogen infected wheat and potato based on apoptotic-like DNA fragmentation. A deletion mutation in the gene encoding histidine rich calcium binding protein (TaHRC) in FHB-resistant wheat (R-NIL) failed to induce AL-PCD. Similarly, the CRISPR-Cas9 based silencing of StHRC gene in Russet Burbank potato failed to induce apoptotic-like DNA fragmentation, proved based on DNA laddering and TUNEL assays. The absence of AL-PCD in wheat R-NIL reduced pathogen biomass and mycotoxins, increasing the accumulation of resistance metabolites and FHB-resistance, and in potato it enhanced resistance to multiple pathogens. In addition, the reduced expressions of metacaspase (StMC7) and Ca2+ dependent endonuclease 2 (StCaN2) genes in potato with Sthrc indicated an involvement of a hierarchy of genes in the induction of AL-PCD. The HRC in commercial varieties of different crops, if functional, can be silenced by genome editing possibly to enhance resistance to multiple pathogens.
Collapse
Affiliation(s)
- A. C. Kushalappa
- grid.14709.3b0000 0004 1936 8649Plant Science Department, McGill University, Ste. Anne de Bellevue, Quebec, H9X3V9 Canada
| | - N. G. Hegde
- grid.14709.3b0000 0004 1936 8649Plant Science Department, McGill University, Ste. Anne de Bellevue, Quebec, H9X3V9 Canada
| | - R. Gunnaiah
- grid.14709.3b0000 0004 1936 8649Plant Science Department, McGill University, Ste. Anne de Bellevue, Quebec, H9X3V9 Canada ,grid.449749.30000 0004 1772 7097Present Address: University of Horticultural Sciences, Bagalkot, Karnataka India
| | - A. Sathe
- grid.14709.3b0000 0004 1936 8649Plant Science Department, McGill University, Ste. Anne de Bellevue, Quebec, H9X3V9 Canada
| | - K. N. Yogendra
- grid.419337.b0000 0000 9323 1772International Crops Research Institute for the Semi-Arid Tropics, Hyderabad, Telangana India
| | - L. Ajjamada
- grid.14709.3b0000 0004 1936 8649Division of Hematology-OncologyJewish General Hospital, McGill University, Montreal, QC Canada
| |
Collapse
|
29
|
Cao S, Guo M, Cheng J, Cheng H, Liu X, Ji H, Liu G, Cheng Y, Yang C. Aspartic proteases modulate programmed cell death and secondary cell wall synthesis during wood formation in poplar. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:6876-6890. [PMID: 36040843 PMCID: PMC9629783 DOI: 10.1093/jxb/erac347] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Accepted: 08/25/2022] [Indexed: 06/15/2023]
Abstract
Programmed cell death (PCD) is essential for wood development in trees. However, the determination of crucial factors involved in xylem PCD of wood development is still lacking. Here, two Populus trichocarpa typical aspartic protease (AP) genes, AP17 and AP45, modulate xylem maturation, especially fibre PCD, during wood formation. AP17 and AP45 were dominantly expressed in the fibres of secondary xylem, as suggested by GUS expression in APpro::GUS transgenic plants. Cas9/gRNA-induced AP17 or AP45 mutants delayed secondary xylem fibre PCD, and ap17ap45 double mutants showed more serious defects. Conversely, AP17 overexpression caused premature PCD in secondary xylem fibres, indicating a positive modulation in wood fibre PCD. Loss of AP17 and AP45 did not alter wood fibre wall thickness, whereas the ap17ap45 mutants showed a low lignin content in wood. However, AP17 overexpression led to a significant decrease in wood fibre wall thickness and lignin content, revealing the involvement in secondary cell wall synthesis during wood formation. In addition, the ap17ap45 mutant and AP17 overexpression plants resulted in a significant increase in saccharification yield in wood. Overall, AP17 and AP45 are crucial modulators in xylem maturation during wood development, providing potential candidate genes for engineering lignocellulosic wood for biofuel utilization.
Collapse
Affiliation(s)
- Shenquan Cao
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China
| | - Mengjie Guo
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China
| | - Jiyao Cheng
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China
| | - Hao Cheng
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China
| | - Xiaomeng Liu
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China
| | - Huanhuan Ji
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China
| | - Guanjun Liu
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China
| | | | | |
Collapse
|
30
|
Liu F, Ma Z, Cai S, Dai L, Gao J, Zhou B. ATP-citrate lyase B (ACLB) negatively affects cell death and resistance to Verticillium wilt. BMC PLANT BIOLOGY 2022; 22:443. [PMID: 36114469 PMCID: PMC9479425 DOI: 10.1186/s12870-022-03834-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 09/09/2022] [Indexed: 06/01/2023]
Abstract
BACKGROUND ATP-citrate lyase (ACL) plays a pivotal role in histone acetylation and aerobic glycolysis. In plant, ACL is a heteromeric enzyme composed of ACLA (45 kD) and ACLB (65 kD). So far, the function of ACL genes in cotton still remains unknown. RESULTS Here, we identified three ACLA homologous sequences and two ACLB homologous in each genome/sub-genome of cotton species. Silencing ACLB in cotton led to cell death at newly-grown leaves and stem apexes. Simultaneously, in ACLB-silenced plants, transcription factors related to senescence including SGR, WRKY23 and Osl57 were observed to be activated. Further investigation showed that excessive H2O2 was accumulated, salicylic acid-dependent defense response and pathogenesis-related gene expressions were evidently enhanced in ACLB-silenced plants, implying that knockdown of ACLB genes leads to hypersensitive response-like cell death in cotton seedlings. However, as noted, serious cell death happened in newly-grown leaves and stem apexes in ACLB-silenced plants, which led to the failure of subsequent fungal pathogenicity assays. To confirm the role of ACLB gene in regulating plant immune response, the dicotyledonous model plant Arabidopsis was selected for functional verification of ACLB gene. Our results indicate the resistance to Verticillium dahliae infection in the Arabidopsis mutant aclb-2 were enhanced without causing strong cell death. Ectopic expression of GausACLB-2 in Arabidopsis weakened its resistance to V. dahliae either in Col-0 or in aclb-2 background, in which the expression level of ACLB is negatively correlated with the resistance to V. dahliae. CONCLUSIONS These results indicate that ACLB has a new function in negatively affecting the induction of plant defense response and cell death in cotton, which provides theoretical guidance for developing cotton varieties with resistance against Verticillium wilt.
Collapse
Affiliation(s)
- Fujie Liu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, MOE Cotton Germplasm Enhancement Engineering Research Center, and Collaborative Innovation Center for Modern Crop Production co-sponsored by Province and Ministry, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, People's Republic of China
| | - Zhifeng Ma
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, MOE Cotton Germplasm Enhancement Engineering Research Center, and Collaborative Innovation Center for Modern Crop Production co-sponsored by Province and Ministry, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, People's Republic of China
| | - Sheng Cai
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, MOE Cotton Germplasm Enhancement Engineering Research Center, and Collaborative Innovation Center for Modern Crop Production co-sponsored by Province and Ministry, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, People's Republic of China
| | - Lingjun Dai
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, MOE Cotton Germplasm Enhancement Engineering Research Center, and Collaborative Innovation Center for Modern Crop Production co-sponsored by Province and Ministry, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, People's Republic of China
| | - Jianbo Gao
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, MOE Cotton Germplasm Enhancement Engineering Research Center, and Collaborative Innovation Center for Modern Crop Production co-sponsored by Province and Ministry, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, People's Republic of China
| | - Baoliang Zhou
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, MOE Cotton Germplasm Enhancement Engineering Research Center, and Collaborative Innovation Center for Modern Crop Production co-sponsored by Province and Ministry, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, People's Republic of China.
| |
Collapse
|
31
|
Gebreegziabher Amare M, Westrick NM, Keller NP, Kabbage M. The conservation of IAP-like proteins in fungi, and their potential role in fungal programmed cell death. Fungal Genet Biol 2022; 162:103730. [PMID: 35998750 DOI: 10.1016/j.fgb.2022.103730] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 08/07/2022] [Indexed: 11/30/2022]
Abstract
Programmed cell death (PCD) is a tightly regulated process which is required for survival and proper development of all cellular life. Despite this ubiquity, the precise molecular underpinnings of PCD have been primarily characterized in animals. Attempts to expand our understanding of this process in fungi have proven difficult as core regulators of animal PCD are apparently absent in fungal genomes, with the notable exception of a class of proteins referred to as inhibitors of apoptosis proteins (IAPs). These proteins are characterized by the conservation of a distinct Baculovirus IAP Repeat (BIR) domain and animal IAPs are known to regulate a number of processes, including cellular death, development, organogenesis, immune system maturation, host-pathogen interactions and more. IAP homologs are broadly conserved throughout the fungal kingdom, but our understanding of both their mechanism and role in fungal development/virulence is still unclear. In this review, we provide a broad and comparative overview of IAP function across taxa, with a particular focus on fungal processes regulated by IAPs. Furthermore, their putative modes of action in the absence of canonical interactors will be discussed.
Collapse
Affiliation(s)
| | - Nathaniel M Westrick
- Department of Plant Pathology, University of Wisconsin - Madison, Madison, WI, USA
| | - Nancy P Keller
- Department of Plant Pathology, University of Wisconsin - Madison, Madison, WI, USA
| | - Mehdi Kabbage
- Department of Plant Pathology, University of Wisconsin - Madison, Madison, WI, USA.
| |
Collapse
|
32
|
A Single Amino Acid Substitution in MIL1 Leads to Activation of Programmed Cell Death and Defense Responses in Rice. Int J Mol Sci 2022; 23:ijms23168853. [PMID: 36012116 PMCID: PMC9408282 DOI: 10.3390/ijms23168853] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 07/26/2022] [Accepted: 07/31/2022] [Indexed: 11/25/2022] Open
Abstract
Lesion mimic mutants are an ideal model system for elucidating the molecular mechanisms of programmed cell death and defense responses in rice. In this study, we identified a lesion mimic mutant termed miner infection like 1-1 (mil1-1). The mil1-1 exhibited lesions on the leaves during development, and the chloroplasts of mil1-1 leaves were disrupted. Reactive oxygen species were found to accumulate in mil1-1 leaves. Cell death and DNA fragmentation were observed in mil1-1 leaves, indicating that the cells in the spots of mil1-1 leaves experienced programmed cell death. Most agronomic traits decreased in mil1-1, suggesting that the growth retardation in mil1-1 caused reduced per-plant grain yield. However, the mutation of MIL1 activated the expression of pathogen response genes and enhanced resistance to bacterial blight. The MIL1 gene was cloned using the positional cloning approach. A missense mutation 751 bp downstream of ATG was found in mil1-1. The defects of mil1-1 were able to be rescued by delivering a wild-type MIL1 gene into mil1-1. MIL1 encoded hydroperoxide lyase 3 (OsHPL3), and the expression of OsHPL3 was induced via hormone and abiotic stresses. Our findings provide insights into the roles of MIL1 in regulating programmed cell death, development, yield, and defense responses in rice.
Collapse
|
33
|
Li D, Pi W, Sun Z, Liu X, Jiang J. Ferroptosis and its role in cardiomyopathy. Biomed Pharmacother 2022; 153:113279. [PMID: 35738177 DOI: 10.1016/j.biopha.2022.113279] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 06/03/2022] [Accepted: 06/08/2022] [Indexed: 12/09/2022] Open
Abstract
Heart disease is the leading cause of death worldwide. Cardiomyopathy is a disease characterized by the heart muscle damage, resulting heart in a structurally and functionally change, as well as heart failure and sudden cardiac death. The key pathogenic factor of cardiomyopathy is the loss of cardiomyocytes, but the related molecular mechanisms remain unclear. Ferroptosis is a newly discovered regulated form of cell death, characterized by iron accumulation and lipid peroxidation during cell death. Recent studies have shown that ferroptosis plays an important regulatory roles in the occurrence and development of many heart diseases such as myocardial ischemia/reperfusion injury, cardiomyopathy and heart failure. However, the systemic association of ferroptosis and cardiomyopathy remains largely unknown and needs to be elucidated. In this review, we provide an overview of the molecular mechanisms of ferroptosis and its role in individual cardiomyopathies, highlight that targeting ferroptosis maybe a potential therapeutic strategy for cardiomyopathy therapy in the future.
Collapse
Affiliation(s)
- Danlei Li
- Department of Cardiology, Taizhou Hospital of Wenzhou Medical University, Linhai 317000, Zhejiang Province, China
| | - Wenhu Pi
- Key Laboratory of Radiation Oncology of Taizhou, Radiation Oncology Institute of Enze Medical Health Academy, Department of Radiation Oncology, Affiliated Taizhou hospital of Wenzhou Medical University, Linhai 317000, Zhejiang Province, China
| | - Zhenzhu Sun
- Department of Cardiology, Taizhou Hospital of Wenzhou Medical University, Linhai 317000, Zhejiang Province, China
| | - Xiaoman Liu
- Department of Cardiology, Taizhou Hospital of Wenzhou Medical University, Linhai 317000, Zhejiang Province, China
| | - Jianjun Jiang
- Department of Cardiology, Taizhou Hospital of Wenzhou Medical University, Linhai 317000, Zhejiang Province, China.
| |
Collapse
|
34
|
The Rice Malectin Regulates Plant Cell Death and Disease Resistance by Participating in Glycoprotein Quality Control. Int J Mol Sci 2022; 23:ijms23105819. [PMID: 35628631 PMCID: PMC9144812 DOI: 10.3390/ijms23105819] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 05/19/2022] [Accepted: 05/20/2022] [Indexed: 11/16/2022] Open
Abstract
In animals, malectin is well known to play an essential role in endoplasmic reticulum quality control (ERQC) by interacting with ribophorin I, one unit of the oligosaccharyltransferase (OST) complex. However, the functions of malectin in plants remain largely unknown. Here, we demonstrate the rice OsMLD1 is an ER- and Golgi-associated malectin protein and physically interacts with rice homolog of ribophorin I (OsRpn1), and its disruption leads to spontaneous lesion mimic lesions, enhanced disease resistance, and prolonged ER stress. In addition, there are many more N-glycosites and N-glycoproteins identified from the mld1 mutant than wildtype. Furthermore, OsSERK1 and OsSERK2, which have more N-glycosites in mld1, were demonstrated to interact with OsMLD1. OsMLD1 can suppress OsSERK1- or OsSERK2-induced cell death. Thus, OsMLD1 may play a similar role to its mammalian homologs in glycoprotein quality control, thereby regulating cell death and immunity of rice, which uncovers the function of malectin in plants.
Collapse
|
35
|
Dawson J, Pandey S, Yu Q, Schaub P, Wüst F, Moradi AB, Dovzhenko O, Palme K, Welsch R. Determination of protoplast growth properties using quantitative single-cell tracking analysis. PLANT METHODS 2022; 18:64. [PMID: 35585602 PMCID: PMC9118701 DOI: 10.1186/s13007-022-00895-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 05/01/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Although quantitative single-cell analysis is frequently applied in animal systems, e.g. to identify novel drugs, similar applications on plant single cells are largely missing. We have exploited the applicability of high-throughput microscopic image analysis on plant single cells using tobacco leaf protoplasts, cell-wall free single cells isolated by lytic digestion. Protoplasts regenerate their cell wall within several days after isolation and have the potential to expand and proliferate, generating microcalli and finally whole plants after the application of suitable regeneration conditions. RESULTS High-throughput automated microscopy coupled with the development of image processing pipelines allowed to quantify various developmental properties of thousands of protoplasts during the initial days following cultivation by immobilization in multi-well-plates. The focus on early protoplast responses allowed to study cell expansion prior to the initiation of proliferation and without the effects of shape-compromising cell walls. We compared growth parameters of wild-type tobacco cells with cells expressing the antiapoptotic protein Bcl2-associated athanogene 4 from Arabidopsis (AtBAG4). CONCLUSIONS AtBAG4-expressing protoplasts showed a higher proportion of cells responding with positive area increases than the wild type and showed increased growth rates as well as increased proliferation rates upon continued cultivation. These features are associated with reported observations on a BAG4-mediated increased resilience to various stress responses and improved cellular survival rates following transformation approaches. Moreover, our single-cell expansion results suggest a BAG4-mediated, cell-independent increase of potassium channel abundance which was hitherto reported for guard cells only. The possibility to explain plant phenotypes with single-cell properties, extracted with the single-cell processing and analysis pipeline developed, allows to envision novel biotechnological screening strategies able to determine improved plant properties via single-cell analysis.
Collapse
Affiliation(s)
- Jonathan Dawson
- Institute of Biology II, Faculty of Biology, Albert-Ludwigs-University of Freiburg, Schänzlestrasse 1, 79104, Freiburg, Germany
- Institute of General Electrical Engineering, University of Rostock, Albert-Einstein-Str. 2, 18059, Rostock, Germany
- Augusta University, 1201 Goss Ln, Augusta, GA, 30912, USA
| | - Saurabh Pandey
- Institute of Biology II, Faculty of Biology, Albert-Ludwigs-University of Freiburg, Schänzlestrasse 1, 79104, Freiburg, Germany
| | - Qiuju Yu
- Institute of Biology II, Faculty of Biology, Albert-Ludwigs-University of Freiburg, Schänzlestrasse 1, 79104, Freiburg, Germany
- ScreenSYS GmbH, Engesserstr. 4, 79108, Freiburg, Germany
| | - Patrick Schaub
- Institute of Biology II, Faculty of Biology, Albert-Ludwigs-University of Freiburg, Schänzlestrasse 1, 79104, Freiburg, Germany
- ScreenSYS GmbH, Engesserstr. 4, 79108, Freiburg, Germany
| | - Florian Wüst
- Institute of Biology II, Faculty of Biology, Albert-Ludwigs-University of Freiburg, Schänzlestrasse 1, 79104, Freiburg, Germany
- ScreenSYS GmbH, Engesserstr. 4, 79108, Freiburg, Germany
| | - Amir Bahram Moradi
- Institute of Biology II, Faculty of Biology, Albert-Ludwigs-University of Freiburg, Schänzlestrasse 1, 79104, Freiburg, Germany
| | - Oleksandr Dovzhenko
- Institute of Biology II, Faculty of Biology, Albert-Ludwigs-University of Freiburg, Schänzlestrasse 1, 79104, Freiburg, Germany
- ScreenSYS GmbH, Engesserstr. 4, 79108, Freiburg, Germany
| | - Klaus Palme
- Institute of Biology II, Faculty of Biology, Albert-Ludwigs-University of Freiburg, Schänzlestrasse 1, 79104, Freiburg, Germany
- ScreenSYS GmbH, Engesserstr. 4, 79108, Freiburg, Germany
- BIOSS Center for Biological Signaling Studies, Albert-Ludwigs-University of Freiburg, Schänzlestrasse 1, 79104, Freiburg, Germany
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Daizong Street 61, Tai'an, 271018, China
| | - Ralf Welsch
- Institute of Biology II, Faculty of Biology, Albert-Ludwigs-University of Freiburg, Schänzlestrasse 1, 79104, Freiburg, Germany.
- ScreenSYS GmbH, Engesserstr. 4, 79108, Freiburg, Germany.
| |
Collapse
|
36
|
Zhuang J, Xie L, Zheng L. A Glimpse of Programmed Cell Death Among Bacteria, Animals, and Plants. Front Cell Dev Biol 2022; 9:790117. [PMID: 35223864 PMCID: PMC8866957 DOI: 10.3389/fcell.2021.790117] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 11/24/2021] [Indexed: 12/15/2022] Open
Abstract
Programmed cell death (PCD) in animals mainly refers to lytic and non-lytic forms. Disruption and integrity of the plasma membrane are considered as hallmarks of lytic and apoptotic cell death, respectively. These lytic cell death programs can prevent the hosts from microbial pathogens. The key to our understanding of these cases is pattern recognition receptors, such as TLRs in animals and LRR-RLKs in plants, and nod-like receptors (NLRs). Herein, we emphatically discuss the biochemical and structural studies that have clarified the anti-apoptotic and pro-apoptotic functions of Bcl-2 family proteins during intrinsic apoptosis and how caspase-8 among apoptosis, necroptosis, and pyroptosis sets the switchable threshold and integrates innate immune signaling, and that have compared the similarity and distinctness of the apoptosome, necroptosome, and inflammasome. We recapitulate that the necroptotic MLKL pore, pyroptotic gasdermin pore, HR-inducing resistosome, and mitochondrial Bcl-2 family all can form ion channels, which all directly boost membrane disruption. Comparing the conservation and unique aspects of PCD including ferrroptosis among bacteria, animals, and plants, the commonly shared immune domains including TIR-like, gasdermin-like, caspase-like, and MLKL/CC-like domains act as arsenal modules to restructure the diverse architecture to commit PCD suicide upon stresses/stimuli for host community.
Collapse
Affiliation(s)
- Jun Zhuang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, China
- Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, China
- *Correspondence: Jun Zhuang,
| | - Li Xie
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, China
- Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Luping Zheng
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, China
- Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
37
|
Kaur S, Barakat R, Kaur J, Epstein L. The Effect of Temperature on Disease Severity and Growth of Fusarium oxysporum f. sp. apii Races 2 and 4 in Celery. PHYTOPATHOLOGY 2022; 112:364-372. [PMID: 34152209 DOI: 10.1094/phyto-11-20-0519-r] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Fusarium oxysporum f. sp. apii race 4, which is in F. oxysporum species complex (FOSC) Clade 2, causes a new Fusarium wilt of celery. We compared F. oxysporum f. sp. apii race 4 with race 2, which causes Fusarium yellows of celery and is in FOSC Clade 3. Optimal temperatures for celery yield are 16 to 18°C. Soil temperatures in California celery production areas can range up to 26°C, and the maximal rate of hyphal extension of F. oxysporum f. sp. apii races 2 and 4 in culture are 25 and 28°C, respectively. Here, we compared the effect of temperatures from 16 to 26°C on growth of F. oxysporum f. sp. apii races 4 and 2 in two celery cultivars: Challenger, which is resistant to F. oxysporum f. sp. apii race 2 and susceptible to race 4; and Sonora, which is susceptible to both F. oxysporum f. sp. apii races 2 and 4. Based on linear regressions, as temperature increases, there is an increase in the log of F. oxysporum f. sp. apii race 4 DNA concentration in celery crowns and in the reduction in plant height. Based on logistic regressions, as temperature increases, the incidence of vascular discoloration increases in celery with either F. oxysporum f. sp. apii race 2 or 4 infection. In both cultivars, temperatures of 22°C and above resulted in a significantly (α = 0.05) greater concentration of F. oxysporum f. sp. apii race 4 than race 2 in planta. The concentration of F. oxysporum f. sp. apii race 2 in crowns in 'Challenger' is temperature-independent and comparatively low; consequently, 'Challenger' is, at least partly, resistant rather than tolerant to F. oxysporum f. sp. apii race 2.
Collapse
Affiliation(s)
- Sukhwinder Kaur
- Department of Plant Pathology, University of California, Davis, CA 95616-8680, U.S.A
| | - Radwan Barakat
- Department of Plant Production & Protection, College of Agriculture, Hebron University, Hebron, Palestine
| | - Jaskirat Kaur
- Department of Plant Pathology, University of California, Davis, CA 95616-8680, U.S.A
| | - Lynn Epstein
- Department of Plant Pathology, University of California, Davis, CA 95616-8680, U.S.A
| |
Collapse
|
38
|
Huang F, Wu F, Yu M, Shabala S. Nucleotide-binding leucine-rich repeat proteins: a missing link in controlling cell fate and plant adaptation to hostile environment? JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:631-635. [PMID: 34661650 DOI: 10.1093/jxb/erab458] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Programmed cell death is a tightly regulated genetically controlled process that leads to cell suicide and eliminates cells that are either no longer needed or damaged/harmful. Nucleotide-binding leucine-rich repeat proteins have recently emerged as a novel class of Ca2+-permeable channels that operate in plant immune responses. This viewpoint argues that the unique structure of this channel, its permeability to other cations, and specificity of its operation make it an ideal candidate to mediate cell signaling and adaptive responses not only to pathogens but also to a broad range of abiotic stress factors.
Collapse
Affiliation(s)
- Feifei Huang
- College of Life and Oceanography Sciences, Shenzhen University, Shenzhen, Guangdong 518060, China
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen, Guangdong 518060, China
| | - Feihua Wu
- International Research Center for Environmental Membrane Biology & Department of Horticulture, Foshan University, Foshan Guangdong 528000, China
| | - Min Yu
- International Research Center for Environmental Membrane Biology & Department of Horticulture, Foshan University, Foshan Guangdong 528000, China
| | - Sergey Shabala
- International Research Center for Environmental Membrane Biology & Department of Horticulture, Foshan University, Foshan Guangdong 528000, China
- Tasmanian Institute of Agriculture, University of Tasmania, Hobart, Tas 7005, Australia
| |
Collapse
|
39
|
Li YB, Yan M, Cui DZ, Huang C, Sui XX, Guo FZ, Fan QQ, Chu XS. Programmed Degradation of Pericarp Cells in Wheat Grains Depends on Autophagy. Front Genet 2021; 12:784545. [PMID: 34966414 PMCID: PMC8710714 DOI: 10.3389/fgene.2021.784545] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 11/19/2021] [Indexed: 11/25/2022] Open
Abstract
Wheat is one of the most important food crops in the world, with development of the grains directly determining yield and quality. Understanding grain development and the underlying regulatory mechanisms is therefore essential in improving the yield and quality of wheat. In this study, the developmental characteristics of the pericarp was examined in developing wheat grains of the new variety Jimai 70. As a result, pericarp thickness was found to be thinnest in grains at the top of the spike, followed by those in the middle and thickest at the bottom. Moreover, this difference corresponded to the number of cell layers in the pericarp, which decreased as a result of programmed cell death (PCD). A number of autophagy-related genes (ATGs) are involved in the process of PCD in the pericarp, and in this study, an increase in ATG8-PE expression was observed followed by the appearance of autophagy structures. Meanwhile, following interference of the key autophagy gene ATG8, PCD was inhibited and the thickness of the pericarp increased, resulting in small premature grains. These findings suggest that autophagy and PCD coexist in the pericarp during early development of wheat grains, with both processes increasing from the bottom to the top of the spike. Moreover, PCD was also found to rely on ATG8-mediated autophagy. The results of this study therefore provide a theoretical basis for in-depth studies of the regulatory mechanisms of wheat grain development.
Collapse
Affiliation(s)
- Yong-Bo Li
- Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Mei Yan
- Shandong Luyan Seed Company, Jinan, China
| | - De-Zhou Cui
- Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Chen Huang
- Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Xin-Xia Sui
- Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Feng Zhi Guo
- Heze Academy of Agricultural Sciences, Heze, China
| | - Qing-Qi Fan
- Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Xiu-Sheng Chu
- Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan, China.,School of Life Science, Shandong Normal University, Jinan, China
| |
Collapse
|
40
|
Transcriptomics View over the Germination Landscape in Biofortified Rice. Genes (Basel) 2021; 12:genes12122013. [PMID: 34946962 PMCID: PMC8700799 DOI: 10.3390/genes12122013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/14/2021] [Accepted: 12/15/2021] [Indexed: 12/29/2022] Open
Abstract
Hidden hunger, or micronutrient deficiency, is a worldwide problem. Several approaches are employed to alleviate its effects (e.g., promoting diet diversity, use of dietary supplements, chemical fortification of processed food), and among these, biofortification is considered as one of the most cost-effective and highly sustainable. Rice is one of the best targets for biofortification since it is a staple food for almost half of the world’s population as a high-energy source but with low nutritional value. Multiple biofortified rice lines have been produced during the past decades, while few studies also reported modifications in germination behavior (in terms of enhanced or decreased germination percentage or speed). It is important to underline that rapid, uniform germination, and seedling establishment are essential prerequisites for crop productivity. Combining the two traits, biofortified, highly-nutritious seeds with improved germination behavior can be envisaged as a highly-desired target for rice breeding. To this purpose, information gathered from transcriptomics studies can reveal useful insights to unveil the molecular players governing both traits. The present review aims to provide an overview of transcriptomics studies applied at the crossroad between biofortification and seed germination, pointing out potential candidates for trait pyramiding.
Collapse
|
41
|
Ye C, Zheng S, Jiang D, Lu J, Huang Z, Liu Z, Zhou H, Zhuang C, Li J. Initiation and Execution of Programmed Cell Death and Regulation of Reactive Oxygen Species in Plants. Int J Mol Sci 2021; 22:ijms222312942. [PMID: 34884747 PMCID: PMC8657872 DOI: 10.3390/ijms222312942] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 11/19/2021] [Accepted: 11/24/2021] [Indexed: 12/21/2022] Open
Abstract
Programmed cell death (PCD) plays crucial roles in plant development and defence response. Reactive oxygen species (ROS) are produced during normal plant growth, and high ROS concentrations can change the antioxidant status of cells, leading to spontaneous cell death. In addition, ROS function as signalling molecules to improve plant stress tolerance, and they induce PCD under different conditions. This review describes the mechanisms underlying plant PCD, the key functions of mitochondria and chloroplasts in PCD, and the relationship between mitochondria and chloroplasts during PCD. Additionally, the review discusses the factors that regulate PCD. Most importantly, in this review, we summarise the sites of production of ROS and discuss the roles of ROS that not only trigger multiple signalling pathways leading to PCD but also participate in the execution of PCD, highlighting the importance of ROS in PCD.
Collapse
Affiliation(s)
- Chanjuan Ye
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China; (C.Y.); (S.Z.); (D.J.); (J.L.); (Z.H.); (Z.L.); (H.Z.); (C.Z.)
- Key Laboratory of Plant Functional Genomics and Biotechnology of Guangdong Provincial Higher Education Institutions, South China Agricultural University, Guangzhou 510642, China
- College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Shaoyan Zheng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China; (C.Y.); (S.Z.); (D.J.); (J.L.); (Z.H.); (Z.L.); (H.Z.); (C.Z.)
- Key Laboratory of Plant Functional Genomics and Biotechnology of Guangdong Provincial Higher Education Institutions, South China Agricultural University, Guangzhou 510642, China
- College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Dagang Jiang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China; (C.Y.); (S.Z.); (D.J.); (J.L.); (Z.H.); (Z.L.); (H.Z.); (C.Z.)
- Key Laboratory of Plant Functional Genomics and Biotechnology of Guangdong Provincial Higher Education Institutions, South China Agricultural University, Guangzhou 510642, China
- College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Jingqin Lu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China; (C.Y.); (S.Z.); (D.J.); (J.L.); (Z.H.); (Z.L.); (H.Z.); (C.Z.)
- Key Laboratory of Plant Functional Genomics and Biotechnology of Guangdong Provincial Higher Education Institutions, South China Agricultural University, Guangzhou 510642, China
- College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Zongna Huang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China; (C.Y.); (S.Z.); (D.J.); (J.L.); (Z.H.); (Z.L.); (H.Z.); (C.Z.)
- Key Laboratory of Plant Functional Genomics and Biotechnology of Guangdong Provincial Higher Education Institutions, South China Agricultural University, Guangzhou 510642, China
- College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Zhenlan Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China; (C.Y.); (S.Z.); (D.J.); (J.L.); (Z.H.); (Z.L.); (H.Z.); (C.Z.)
- Key Laboratory of Plant Functional Genomics and Biotechnology of Guangdong Provincial Higher Education Institutions, South China Agricultural University, Guangzhou 510642, China
- College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Hai Zhou
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China; (C.Y.); (S.Z.); (D.J.); (J.L.); (Z.H.); (Z.L.); (H.Z.); (C.Z.)
- Key Laboratory of Plant Functional Genomics and Biotechnology of Guangdong Provincial Higher Education Institutions, South China Agricultural University, Guangzhou 510642, China
- College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Chuxiong Zhuang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China; (C.Y.); (S.Z.); (D.J.); (J.L.); (Z.H.); (Z.L.); (H.Z.); (C.Z.)
- Key Laboratory of Plant Functional Genomics and Biotechnology of Guangdong Provincial Higher Education Institutions, South China Agricultural University, Guangzhou 510642, China
- College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Jing Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China; (C.Y.); (S.Z.); (D.J.); (J.L.); (Z.H.); (Z.L.); (H.Z.); (C.Z.)
- Key Laboratory of Plant Functional Genomics and Biotechnology of Guangdong Provincial Higher Education Institutions, South China Agricultural University, Guangzhou 510642, China
- College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
- Correspondence:
| |
Collapse
|
42
|
Irfan M, Kumar P, Ahmad I, Datta A. Unraveling the role of tomato Bcl-2-associated athanogene (BAG) proteins during abiotic stress response and fruit ripening. Sci Rep 2021; 11:21734. [PMID: 34741097 PMCID: PMC8571320 DOI: 10.1038/s41598-021-01185-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 10/20/2021] [Indexed: 11/22/2022] Open
Abstract
B-cell lymphoma2 (Bcl-2)-associated athanogene (BAG) family proteins are evolutionary conserved across all eukaryotes. These proteins interact with HSP70/HSC70 and function as co-chaperones during stress response and developmental pathways. Compared to the animal counterpart, the BAG proteins in plants are much less studied and primarily Arabidopsis BAG proteins have been identified and characterized for their role in programmed cell death, homeostasis, growth and development, abiotic and biotic stress response. Here, we have identified BAG protein family (SlBAGs) in tomato, an economically important and a model fruit crop using genome-wide scanning. We have performed phylogenetic analysis, genes architecture assessment, chromosomal location and in silico promoter analysis. Our data suggest that SlBAGs show differential tissue specific expression pattern during plant development particularly fruit development and ripening. Furthermore, we reported that expression of SlBAGs is modulated during abiotic stresses and is regulated by stress hormones ABA and ethylene. In planta subcellular localization reveals their diverse subcellular localization, and many members are localized in nucleus and cytoplasm. Like previous reports, our protein-protein interaction network and yeast two-hybrid analysis uncover that SlBAGs interact with HSP70. The current study provides insights into role of SlBAGs in plant development particualry fruit ripening and abiotic stress response.
Collapse
Affiliation(s)
- Mohammad Irfan
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India. .,Plant Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, USA.
| | - Pankaj Kumar
- grid.419632.b0000 0001 2217 5846National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067 India ,grid.444600.20000 0004 0500 5898Department of Biotechnology, Dr. Y.S. Parmar University of Horticulture and Forestry, Solan, Himachal Pradesh India
| | - Irshad Ahmad
- grid.419632.b0000 0001 2217 5846National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067 India
| | - Asis Datta
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India.
| |
Collapse
|
43
|
Zou J, Lü P, Jiang L, Liu K, Zhang T, Chen J, Yao Y, Cui Y, Gao J, Zhang C. Regulation of rose petal dehydration tolerance and senescence by RhNAP transcription factor via the modulation of cytokinin catabolism. MOLECULAR HORTICULTURE 2021; 1:13. [PMID: 37789474 PMCID: PMC10515265 DOI: 10.1186/s43897-021-00016-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Accepted: 08/02/2021] [Indexed: 10/05/2023]
Abstract
Petals and leaves share common evolutionary origins but have different phenotypic characteristics, such as the absence of stomata in the petals of most angiosperm species. Plant NAC transcription factor, NAP, is involved in ABA responses and regulates senescence-associated genes, and especially those that affect stomatal movement. However, the regulatory mechanisms and significance of NAP action in senescing astomatous petals is unclear. A major limiting factor is failure of flower opening and accelerated senescence. Our goal is to understand the finely regulatory mechanism of dehydration tolerance and aging in rose flowers. We functionally characterized RhNAP, an AtNAP-like transcription factor gene that is induced by dehydration and aging in astomatous rose petals. Cytokinins (CKs) are known to delay petal senescence and we found that a cytokinin oxidase/dehydrogenase gene 6 (RhCKX6) shares similar expression patterns with RhNAP. Silencing of RhNAP or RhCKX6 expression in rose petals by virus induced gene silencing markedly reduced petal dehydration tolerance and delayed petal senescence. Endogenous CK levels in RhNAP- or RhCKX6-silenced petals were significantly higher than those of the control. Moreover, RhCKX6 expression was reduced in RhNAP-silenced petals. This suggests that the expression of RhCKX6 is regulated by RhNAP. Yeast one-hybrid experiments and electrophoresis mobility shift assays showed that RhNAP binds to the RhCKX6 promoter in heterologous in vivo system and in vitro, respectively. Furthermore, the expression of putative signal transduction and downstream genes of ABA-signaling pathways were also reduced due to the repression of PP2C homolog genes by RhNAP in rose petals. Taken together, our study indicates that the RhNAP/RhCKX6 interaction represents a regulatory step enhancing dehydration tolerance in young rose petals and accelerating senescence in mature petals in a stomata-independent manner.
Collapse
Affiliation(s)
- Jing Zou
- Department of Ornamental Horticulture, China Agricultural University, Beijing, 100193, China
| | - Peitao Lü
- Department of Ornamental Horticulture, China Agricultural University, Beijing, 100193, China
- College of Horticulture, FAFU-UCR Joint Center for Horticultural Biology and Metabolomics, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Liwei Jiang
- Department of Ornamental Horticulture, China Agricultural University, Beijing, 100193, China
| | - Kun Liu
- Department of Ornamental Horticulture, China Agricultural University, Beijing, 100193, China
| | - Tao Zhang
- Department of Ornamental Horticulture, China Agricultural University, Beijing, 100193, China
| | - Jin Chen
- Department of Ornamental Horticulture, China Agricultural University, Beijing, 100193, China
| | - Yi Yao
- Department of Ornamental Horticulture, China Agricultural University, Beijing, 100193, China
| | - Yusen Cui
- Department of Ornamental Horticulture, China Agricultural University, Beijing, 100193, China
| | - Junping Gao
- Department of Ornamental Horticulture, China Agricultural University, Beijing, 100193, China
| | - Changqing Zhang
- Department of Ornamental Horticulture, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
44
|
Shetty R, Jensen B, Shelton D, Jørgensen K, Pedas P, Jørgensen HJL. Site-specific, silicon-induced structural and molecular defence responses against powdery mildew infection in roses. PEST MANAGEMENT SCIENCE 2021; 77:4545-4554. [PMID: 34075680 DOI: 10.1002/ps.6493] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 04/18/2021] [Accepted: 06/02/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Silicon (Si) application to miniature potted roses can decrease severity of powdery mildew (Podosphaera pannosa) and this is associated with increased accumulation of callose and hydrogen peroxide (H2 O2 ) as well as hypersensitive (HR) cells. We used microscopy, gene expression and specific inhibitors of callose and H2 O2 to determine how effective these plant responses are in stopping infection. RESULTS Pathogen arrest in Si-treated (Si+) plants was accompanied by increased accumulation of callose and H2 O2 in papillae and HR cells, respectively. These responses were reduced by application of specific inhibitors (2-deoxy-d-glucose for callose and catalase for H2 O2 ), which increased disease severity in Si+, but not in Si- plants. As markers for HR and callose, expression of the HR-specific gene hsr203J and the wound-related callose synthase GSL5, respectively, was studied. An up-regulation of expression was only seen after isolation of HR cells with laser capture microdissection. The up-regulation was higher in Si+ than in Si- plants and occurred concomitantly with more efficient photosynthesis in Si+ plants at high disease severity as compared to Si- plants. CONCLUSION Silicon-mediated activation of callose and H2 O2 are decisive factors in the defence of rose against P. pannosa and these responses were accompanied with more efficient photosynthesis to strengthen the plant. Only by isolation of HR cells using laser capture microdissection as compared to analysis of whole leaf tissues allowed detection of elevated transcript levels of hsr203J and GSL5 at infection sites as markers for HR. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Radhakrishna Shetty
- Department of Plant and Environmental Sciences and Copenhagen Plant Science Centre, Faculty of Sciences, University of Copenhagen, Frederiksberg C, Denmark
| | - Birgit Jensen
- Department of Plant and Environmental Sciences and Copenhagen Plant Science Centre, Faculty of Sciences, University of Copenhagen, Frederiksberg C, Denmark
| | - Dale Shelton
- Department of Plant and Environmental Sciences and Copenhagen Plant Science Centre, Faculty of Sciences, University of Copenhagen, Frederiksberg C, Denmark
| | - Kirsten Jørgensen
- Department of Plant and Environmental Sciences and Copenhagen Plant Science Centre, Faculty of Sciences, University of Copenhagen, Frederiksberg C, Denmark
| | - Pai Pedas
- Department of Plant and Environmental Sciences and Copenhagen Plant Science Centre, Faculty of Sciences, University of Copenhagen, Frederiksberg C, Denmark
- Carlsberg Research Laboratory, Carlsberg Group, J.C. Jacobsens Gade 1, Copenhagen V, Denmark
| | - Hans Jørgen Lyngs Jørgensen
- Department of Plant and Environmental Sciences and Copenhagen Plant Science Centre, Faculty of Sciences, University of Copenhagen, Frederiksberg C, Denmark
| |
Collapse
|
45
|
Graff van Creveld S, Ben-Dor S, Mizrachi A, Alcolombri U, Hopes A, Mock T, Rosenwasser S, Vardi A. Biochemical Characterization of a Novel Redox-Regulated Metacaspase in a Marine Diatom. Front Microbiol 2021; 12:688199. [PMID: 34566902 PMCID: PMC8455989 DOI: 10.3389/fmicb.2021.688199] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 08/16/2021] [Indexed: 11/24/2022] Open
Abstract
Programmed cell death (PCD) in marine microalgae was suggested to be one of the mechanisms that facilitates bloom demise, yet its molecular components in phytoplankton are unknown. Phytoplankton are completely lacking any of the canonical components of PCD, such as caspases, but possess metacaspases. Metacaspases were shown to regulate PCD in plants and some protists, but their roles in algae and other organisms are still elusive. Here, we identified and biochemically characterized a type III metacaspase from the model diatom Phaeodactylum tricornutum, termed PtMCA-IIIc. Through expression of recombinant PtMCA-IIIc in E. coli, we revealed that PtMCA-IIIc exhibits a calcium-dependent protease activity, including auto-processing and cleavage after arginine. Similar metacaspase activity was detected in P. tricornutum cell extracts. PtMCA-IIIc overexpressing cells exhibited higher metacaspase activity, while CRISPR/Cas9-mediated knockout cells had decreased metacaspase activity compared to WT cells. Site-directed mutagenesis of cysteines that were predicted to form a disulfide bond decreased recombinant PtMCA-IIIc activity, suggesting its enhancement under oxidizing conditions. One of those cysteines was oxidized, detected in redox proteomics, specifically in response to lethal concentrations of hydrogen peroxide and a diatom derived aldehyde. Phylogenetic analysis revealed that this cysteine-pair is unique and widespread among diatom type III metacaspases. The characterization of a cell death associated protein in diatoms provides insights into the evolutionary origins of PCD and its ecological significance in algal bloom dynamics.
Collapse
Affiliation(s)
- Shiri Graff van Creveld
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel
- School of Oceanography, University of Washington, Seattle, WA, United States
| | - Shifra Ben-Dor
- Department of Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot, Israel
| | - Avia Mizrachi
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Uria Alcolombri
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel
- Department of Civil, Environmental and Geomatic Engineering, Institute for Environmental Engineering, Swiss Federal Institute of Technology, Zurich, Switzerland
| | - Amanda Hopes
- School of Environmental Sciences, University of East Anglia, Norwich, United Kingdom
| | - Thomas Mock
- School of Environmental Sciences, University of East Anglia, Norwich, United Kingdom
| | - Shilo Rosenwasser
- Robert H. Smith Faculty of Plant Sciences and Genetics in Agriculture, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Assaf Vardi
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
46
|
Zhao C, Xu W, Li H, Dai W, Zhang Z, Qiang S, Song X. The Rapid Cytological Process of Grain Determines Early Maturity in Weedy Rice. FRONTIERS IN PLANT SCIENCE 2021; 12:711321. [PMID: 34531884 PMCID: PMC8438156 DOI: 10.3389/fpls.2021.711321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 08/09/2021] [Indexed: 06/13/2023]
Abstract
Shorter grain-filling period and rapid endosperm development endow weedy rice (WR) with early maturity compared to cultivated rice (CR). However, the role of the cytological features and antioxidative enzyme system during grain development are largely unexplored. We selected four biotypes of WR and their associated cultivated rice (ACR) types from different latitudes to conduct a common garden experiment. The difference in the cytological features of endosperm between WR and ACR was compared by chemical staining, and the cell viability and nuclear morphometry of endosperm cells were observed by optical microscopy. Furthermore, antioxidative enzyme activity was measured during grain filling. Anatomic observation of endosperm shows that the development process of endosperm cell in WR was more rapid and earlier than that in ACR. The percentage of degraded nuclei of WR was 2-83% more than that of ACR. Endosperm cells in WR lost viability 2-6 days earlier than those in ACR. The antioxidant enzyme activity of WR was lower than that of ACR during grain filling. The ability of WR to scavenge reactive oxygen species (ROS) was weaker than that of ACR, which may contribute to the rapid cytological process in the endosperm cells of WR. The rapid cytological process and weaker ability to scavenge ROS in endosperm cells may contribute to early maturity in WR.
Collapse
|
47
|
Zhou Y, Yang K, Cheng M, Cheng Y, Li Y, Ai G, Bai T, Xu R, Duan W, Peng H, Li X, Xia A, Wang Y, Jing M, Dou D, Dickman MB. Double-faced role of Bcl-2-associated athanogene 7 in plant-Phytophthora interaction. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:5751-5765. [PMID: 34195821 DOI: 10.1093/jxb/erab252] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 06/03/2021] [Indexed: 06/13/2023]
Abstract
Due to their sessile nature, plants must respond to various environmental assaults in a coordinated manner. The endoplasmic reticulum is a central hub for plant responses to various stresses. We previously showed that Phytophthora utilizes effector PsAvh262-mediated binding immunoglobulin protein (BiP) accumulation for suppressing endoplasmic reticulum stress-triggered cell death. As a BiP binding partner, Bcl-2-associated athanogene 7 (BAG7) plays a crucial role in the maintenance of the unfolded protein response, but little is known about its role in plant immunity. In this work, we reveal a double-faced role of BAG7 in Arabidopsis-Phytophthora interaction in which it regulates endoplasmic reticulum stress-mediated immunity oppositely in different cellular compartments. In detail, it acts as a susceptibility factor in the endoplasmic reticulum, but plays a resistance role in the nucleus against Phytophthora. Phytophthora infection triggers the endoplasmic reticulum-to-nucleus translocation of BAG7, the same as abiotic heat stress; however, this process can be prevented by PsAvh262-mediated BiP accumulation. Moreover, the immunoglobulin/albumin-binding domain in PsAvh262 is essential for both pathogen virulence and BiP accumulation. Taken together, our study uncovers a double-faced role of BAG7; Phytophthora advances its colonization in planta by utilizing an effector to detain BAG7 in the endoplasmic reticulum.
Collapse
Affiliation(s)
- Yang Zhou
- The Key Laboratory of Plant Immunity, Collage of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
| | - Kun Yang
- The Key Laboratory of Plant Immunity, Collage of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
| | - Ming Cheng
- The Key Laboratory of Plant Immunity, Collage of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yang Cheng
- The Key Laboratory of Plant Immunity, Collage of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yurong Li
- Corteva Agriscience, Johnston, IA 50131, USA
- Institute for Plant Genomics and Biotechnology, Texas A&M University, College Station, TX 77843, USA
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, TX 77843, USA
| | - Gan Ai
- The Key Laboratory of Plant Immunity, Collage of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
| | - Tian Bai
- The Key Laboratory of Plant Immunity, Collage of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
| | - Ruofei Xu
- The Key Laboratory of Plant Immunity, Collage of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
| | - Weiwei Duan
- The Key Laboratory of Plant Immunity, Collage of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
| | - Hao Peng
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA 99164, USA
| | - Xiaobo Li
- Crops Research Institute, Guangdong Academy of Agricultural Sciences/Guangdong Provincial Key Laboratory of Crop Genetic Improvement, Guangdong, Guangzhou 510640, China
| | - Ai Xia
- The Key Laboratory of Plant Immunity, Collage of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yuanchao Wang
- The Key Laboratory of Plant Immunity, Collage of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
| | - Maofeng Jing
- The Key Laboratory of Plant Immunity, Collage of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
| | - Daolong Dou
- The Key Laboratory of Plant Immunity, Collage of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
| | - Marty B Dickman
- Institute for Plant Genomics and Biotechnology, Texas A&M University, College Station, TX 77843, USA
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, TX 77843, USA
| |
Collapse
|
48
|
The effect of reversible permeabilization and post-electroporation resting on the survival of Thai basil (O. Basilicum cv. thyrsiflora) leaves during drying. Bioelectrochemistry 2021; 142:107912. [PMID: 34358981 DOI: 10.1016/j.bioelechem.2021.107912] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 06/18/2021] [Accepted: 07/23/2021] [Indexed: 11/23/2022]
Abstract
Horticultural crops have a low tolerance to dehydration. In this paper, we show that the reversible electroporation (200 monopolar, rectangular pulses of 50 µs pulse duration, 760 µs between pulses and nominal field strength of 650 V/cm) of Thai basil leaves followed by 24 h resting before hot air drying at 40 °C enhanced the survivability of the tissues at certain levels of dehydration (moisture ratio = 0.2 and 0.1). However, this increased survival was rather limited. Through measurements of metabolic heat production during resting, rehydration kinetics, respiration and photosynthesis of the rehydrated leaves, we show that resting after the application of a reversible pulse-electric field (PEF) may allow a phase of hardening that has a protective effect on the cells, thus decreasing damage during the subsequent drying phase. Increased preservation of cell vitality would be associated with a more turgid and fresh-like rehydrated product, as cells would have the capacity to retain the rehydration water.
Collapse
|
49
|
Britto DT, Coskun D, Kronzucker HJ. Potassium physiology from Archean to Holocene: A higher-plant perspective. JOURNAL OF PLANT PHYSIOLOGY 2021; 262:153432. [PMID: 34034042 DOI: 10.1016/j.jplph.2021.153432] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 04/22/2021] [Accepted: 04/22/2021] [Indexed: 05/27/2023]
Abstract
In this paper, we discuss biological potassium acquisition and utilization processes over an evolutionary timescale, with emphasis on modern vascular plants. The quintessential osmotic and electrical functions of the K+ ion are shown to be intimately tied to K+-transport systems and membrane energization. Several prominent themes in plant K+-transport physiology are explored in greater detail, including: (1) channel mediated K+ acquisition by roots at low external [K+]; (2) K+ loading of root xylem elements by active transport; (3) variations on the theme of K+ efflux from root cells to the extracellular environment; (4) the veracity and utility of the "affinity" concept in relation to transport systems. We close with a discussion of the importance of plant-potassium relations to our human world, and current trends in potassium nutrition from farm to table.
Collapse
Affiliation(s)
- Dev T Britto
- Faculty of Land and Food Systems, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada; School of BioSciences, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Devrim Coskun
- Département de Phytologie, Faculté des Sciences de l'Agriculture et de l'Alimentation (FSAA), Université Laval, Québec, QC, G1V 0A6, Canada
| | - Herbert J Kronzucker
- Faculty of Land and Food Systems, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada; School of BioSciences, The University of Melbourne, Parkville, Victoria, 3010, Australia.
| |
Collapse
|
50
|
R-BPMV-Mediated Resistance to Bean pod mottle virus in Phaseolus vulgaris L. Is Heat-Stable but Elevated Temperatures Boost Viral Infection in Susceptible Genotypes. Viruses 2021; 13:v13071239. [PMID: 34206842 PMCID: PMC8310253 DOI: 10.3390/v13071239] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 06/16/2021] [Accepted: 06/21/2021] [Indexed: 11/23/2022] Open
Abstract
In the context of climate change, elevated temperature is a major concern due to the impact on plant–pathogen interactions. Although atmospheric temperature is predicted to increase in the next century, heat waves during summer seasons have already become a current problem. Elevated temperatures strongly influence plant–virus interactions, the most drastic effect being a breakdown of plant viral resistance conferred by some major resistance genes. In this work, we focused on the R-BPMV gene, a major resistance gene against Bean pod mottle virus in Phaseolus vulgaris. We inoculated different BPMV constructs in order to study the behavior of the R-BPMV-mediated resistance at normal (20 °C) and elevated temperatures (constant 25, 30, and 35 °C). Our results show that R-BPMV mediates a temperature-dependent phenotype of resistance from hypersensitive reaction at 20 °C to chlorotic lesions at 35 °C in the resistant genotype BAT93. BPMV is detected in inoculated leaves but not in systemic ones, suggesting that the resistance remains heat-stable up to 35 °C. R-BPMV segregates as an incompletely dominant gene in an F2 population. We also investigated the impact of elevated temperature on BPMV infection in susceptible genotypes, and our results reveal that elevated temperatures boost BPMV infection both locally and systemically in susceptible genotypes.
Collapse
|