1
|
Mattoo S, Arora M, Sharma P, Pore SK. Targeting mammalian N-end rule pathway for cancer therapy. Biochem Pharmacol 2025; 231:116684. [PMID: 39613115 DOI: 10.1016/j.bcp.2024.116684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 11/12/2024] [Accepted: 11/26/2024] [Indexed: 12/01/2024]
Abstract
Regulated protein degradation plays a crucial role in maintaining proteostasis along with protein refolding and compartmentalisation which collectively control biological functions. The N-end rule pathway is a major ubiquitin-dependent protein degradation system. The short-lived protein substrates containing destabilizing amino acid residues (N-degrons) are recognized by E3 ubiquitin ligases containing UBR box domains (N-recognin) for degradation. The dysregulated pathway fails to maintain the metabolic stability of the substrate proteins which leads to diseases. The mammalian substrates of this pathway are involved in many hallmarks of cancer such as resisting cell death, evading growth suppression, chromosomal instability, angiogenesis, and deregulation of cellular metabolism. Besides, mutations in E3 N-recognin have been detected in human cancers. In this review, we discuss the mammalian N-end rule pathway components, functions, and mechanism of degradation of substrates, and their implications in cancer pathogenesis. We also discuss the impact of pharmacological and genetic inhibition of this pathway component on cancer cells and chemoresistance. We further highlight how this pathway can be manipulated for selective protein degradation; for instance, using PROTAC technique. The challenges and future perspectives to utilize this pathway as a drug target for cancer therapy are also discussed.
Collapse
Affiliation(s)
- Shria Mattoo
- Amity Institute of Molecular Medicine and Stem Cell Research, Amity University Uttar Pradesh, Noida 201311, India
| | - Muskaan Arora
- Amity Institute of Molecular Medicine and Stem Cell Research, Amity University Uttar Pradesh, Noida 201311, India
| | - Priyanka Sharma
- Amity Institute of Virology and Immunology, Amity University Uttar Pradesh, Noida 201311, India
| | - Subrata Kumar Pore
- Amity Institute of Molecular Medicine and Stem Cell Research, Amity University Uttar Pradesh, Noida 201311, India.
| |
Collapse
|
2
|
Presloid CJ, Jiang J, Kandel P, Anderson HR, Beardslee PC, Swayne TM, Schmitz KR. ClpS Directs Degradation of N-Degron Substrates With Primary Destabilizing Residues in Mycolicibacterium smegmatis. Mol Microbiol 2024. [PMID: 39626090 DOI: 10.1111/mmi.15334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 11/06/2024] [Accepted: 11/13/2024] [Indexed: 12/08/2024]
Abstract
Drug-resistant tuberculosis infections are a major threat to global public health. The essential mycobacterial ClpC1P1P2 protease has received attention as a prospective target for novel antibacterial therapeutics. However, efforts to probe its function in cells are constrained by our limited knowledge of its physiological proteolytic repertoire. Here, we interrogate the role of mycobacterial ClpS in directing N-degron pathway proteolysis by ClpC1P1P2 in Mycolicibacterium smegmatis. Binding assays demonstrate that mycobacterial ClpS binds canonical primary destabilizing residues (Leu, Phe, Tyr, Trp) with moderate affinity. N-degron binding restricts the conformational flexibility of a loop adjacent to the ClpS N-degron binding pocket and strengthens ClpS•ClpC1 binding affinity ~30-fold, providing a mechanism for cells to prioritize N-degron proteolysis when substrates are abundant. Proteolytic reporter assays in M. smegmatis confirm degradation of substrates bearing primary N-degrons, but suggest that secondary N-degrons are absent in mycobacteria. This work expands our understanding of the mycobacterial N-degron pathway and identifies ClpS as a critical component for substrate specificity, providing insights that may support the development of improved Clp protease inhibitors.
Collapse
Affiliation(s)
| | - Jialiu Jiang
- Department of Chemistry & Biochemistry, University of Delaware, Newark, Delaware, USA
| | - Pratistha Kandel
- Department of Biological Sciences, University of Delaware, Newark, Delaware, USA
| | - Henry R Anderson
- Department of Chemistry & Biochemistry, University of Delaware, Newark, Delaware, USA
| | - Patrick C Beardslee
- Department of Chemistry & Biochemistry, University of Delaware, Newark, Delaware, USA
| | - Thomas M Swayne
- Department of Chemistry & Biochemistry, University of Delaware, Newark, Delaware, USA
| | - Karl R Schmitz
- Department of Biological Sciences, University of Delaware, Newark, Delaware, USA
- Department of Chemistry & Biochemistry, University of Delaware, Newark, Delaware, USA
| |
Collapse
|
3
|
Martins DM, Fernandes PO, Vieira LA, Maltarollo VG, Moraes AH. Structure-Guided Drug Design Targeting Abl Kinase: How Structure and Regulation Can Assist in Designing New Drugs. Chembiochem 2024; 25:e202400296. [PMID: 39008807 DOI: 10.1002/cbic.202400296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 07/11/2024] [Accepted: 07/12/2024] [Indexed: 07/17/2024]
Abstract
The human protein Abelson kinase (Abl), a tyrosine kinase, plays a pivotal role in developing chronic myeloid leukemia (CML). Abl's involvement in various signaling pathways underscores its significance in regulating fundamental biological processes, including DNA damage responses, actin polymerization, and chromatin structural changes. The discovery of the Bcr-Abl oncoprotein, resulting from a chromosomal translocation in CML patients, revolutionized the understanding and treatment of the disease. The introduction of targeted therapies, starting with interferon-alpha and culminating in the development of tyrosine kinase inhibitors (TKIs) like imatinib, significantly improved patient outcomes. However, challenges such as drug resistance and side effects persist, indicating the necessity of research into novel therapeutic strategies. This review describes advancements in Abl kinase inhibitor development, emphasizing rational compound design from structural and regulatory information. Strategies, including bivalent inhibitors, PROTACs, and compounds targeting regulatory domains, promise to overcome resistance and minimize side effects. Additionally, leveraging the intricate structure and interactions of Bcr-Abl may provide insights into developing inhibitors for other kinases. Overall, this review highlights the importance of continued research into Abl kinase inhibition and its broader implications for therapeutic interventions targeting kinase-driven diseases. It provides valuable insights and strategies that may guide the development of next-generation therapies.
Collapse
MESH Headings
- Humans
- Protein Kinase Inhibitors/chemistry
- Protein Kinase Inhibitors/pharmacology
- Drug Design
- Proto-Oncogene Proteins c-abl/metabolism
- Proto-Oncogene Proteins c-abl/antagonists & inhibitors
- Proto-Oncogene Proteins c-abl/chemistry
- Antineoplastic Agents/pharmacology
- Antineoplastic Agents/chemistry
- Antineoplastic Agents/therapeutic use
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/pathology
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/metabolism
- Fusion Proteins, bcr-abl/antagonists & inhibitors
- Fusion Proteins, bcr-abl/metabolism
- Molecular Structure
Collapse
Affiliation(s)
- Diego M Martins
- Departamento de Química, Instituto de Ciências Exatas, Universidade Federal de Minas Gerais, 31270-901, Pampulha, MG, Brazil
| | - Philipe O Fernandes
- Departamento de Produtos Farmacêuticos, Faculdade de Farmácia, Universidade Federal de Minas Gerais, 31270-901, Pampulha, MG, Brazil
| | - Lucas A Vieira
- Departamento de Química, Instituto de Ciências Exatas, Universidade Federal de Minas Gerais, 31270-901, Pampulha, MG, Brazil
| | - Vinícius G Maltarollo
- Departamento de Produtos Farmacêuticos, Faculdade de Farmácia, Universidade Federal de Minas Gerais, 31270-901, Pampulha, MG, Brazil
| | - Adolfo H Moraes
- Departamento de Química, Instituto de Ciências Exatas, Universidade Federal de Minas Gerais, 31270-901, Pampulha, MG, Brazil
| |
Collapse
|
4
|
Hoernstein SNW, Schlosser A, Fiedler K, van Gessel N, Igloi GL, Lang D, Reski R. A snapshot of the Physcomitrella N-terminome reveals N-terminal methylation of organellar proteins. PLANT CELL REPORTS 2024; 43:250. [PMID: 39361041 PMCID: PMC11450134 DOI: 10.1007/s00299-024-03329-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 09/13/2024] [Indexed: 10/05/2024]
Abstract
KEY MESSAGE Analysis of the N-terminome of Physcomitrella reveals N-terminal monomethylation of nuclear-encoded, mitochondria-localized proteins. Post- or co-translational N-terminal modifications of proteins influence their half-life as well as mediating protein sorting to organelles via cleavable N-terminal sequences that are recognized by the respective translocation machinery. Here, we provide an overview on the current modification state of the N-termini of over 4500 proteins from the model moss Physcomitrella (Physcomitrium patens) using a compilation of 24 N-terminomics datasets. Our data reveal distinct proteoforms and modification states and confirm predicted targeting peptide cleavage sites of 1,144 proteins localized to plastids and the thylakoid lumen, to mitochondria, and to the secretory pathway. In addition, we uncover extended N-terminal methylation of mitochondrial proteins. Moreover, we identified PpNTM1 (P. patens alpha N-terminal protein methyltransferase 1) as a candidate for protein methylation in plastids, mitochondria, and the cytosol. These data can now be used to optimize computational targeting predictors, for customized protein fusions and their targeted localization in biotechnology, and offer novel insights into potential dual targeting of proteins.
Collapse
Affiliation(s)
- Sebastian N W Hoernstein
- Plant Biotechnology, Faculty of Biology, University of Freiburg, Schaenzlestr. 1, 79104, Freiburg, Germany
| | - Andreas Schlosser
- Rudolf Virchow Center for Experimental Biomedicine, University of Würzburg, Josef-Schneider-Str. 2, 97080, Würzburg, Germany
| | - Kathrin Fiedler
- Institute of Biology III, University of Freiburg, Schaenzlestr. 1, 79104, Freiburg, Germany
- Lonza, Hochbergerstr. 60A, 4057, Basel, Switzerland
| | - Nico van Gessel
- Plant Biotechnology, Faculty of Biology, University of Freiburg, Schaenzlestr. 1, 79104, Freiburg, Germany
| | - Gabor L Igloi
- Institute of Biology III, University of Freiburg, Schaenzlestr. 1, 79104, Freiburg, Germany
| | - Daniel Lang
- Plant Biotechnology, Faculty of Biology, University of Freiburg, Schaenzlestr. 1, 79104, Freiburg, Germany
- Microbial Genomics and Bioforensics, Bundeswehr Institute of Microbiology, Neuherbergstr. 11, 80937, Munich, Germany
| | - Ralf Reski
- Plant Biotechnology, Faculty of Biology, University of Freiburg, Schaenzlestr. 1, 79104, Freiburg, Germany.
- Signalling Research Centres BIOSS and CIBSS, Schaenzlestr. 18, 79104, Freiburg, Germany.
| |
Collapse
|
5
|
Castagna D, Gourdet B, Hjerpe R, MacFaul P, Novak A, Revol G, Rochette E, Jordan A. To homeostasis and beyond! Recent advances in the medicinal chemistry of heterobifunctional derivatives. PROGRESS IN MEDICINAL CHEMISTRY 2024; 63:61-160. [PMID: 39370242 DOI: 10.1016/bs.pmch.2024.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
The field of induced proximity therapeutics has expanded dramatically over the past 3 years, and heterobifunctional derivatives continue to form a significant component of the activities in this field. Here, we review recent advances in the field from the perspective of the medicinal chemist, with a particular focus upon informative case studies, alongside a review of emerging topics such as Direct-To-Biology (D2B) methodology and utilities for heterobifunctional compounds beyond E3 ligase mediated degradation. We also include a critical evaluation of the latest thinking around the optimisation of physicochemical and pharmacokinetic attributes of these beyond Role of Five molecules, to deliver appropriate therapeutic exposure in vivo.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Allan Jordan
- Sygnature Discovery, Nottingham, United Kingdom; Sygnature Discovery, Macclesfield, United Kingdom.
| |
Collapse
|
6
|
Yeo JC, Tay FP, Bennion R, Loss O, Maignel J, Pons L, Foster K, Beard M, Bard F. Botulinum toxin intoxication requires retrograde transport and membrane translocation at the ER in RenVM neurons. eLife 2024; 12:RP92806. [PMID: 39196607 DOI: 10.7554/elife.92806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2024] Open
Abstract
Botulinum neurotoxin A (BoNT/A) is a highly potent proteolytic toxin specific for neurons with numerous clinical and cosmetic uses. After uptake at the synapse, the protein is proposed to translocate from synaptic vesicles to the cytosol through a self-formed channel. Surprisingly, we found that after intoxication proteolysis of a fluorescent reporter occurs in the neuron soma first and then centrifugally in neurites. To investigate the molecular mechanisms at play, we use a genome-wide siRNA screen in genetically engineered neurons and identify over three hundred genes. An organelle-specific split-mNG complementation indicates BoNT/A traffic from the synapse to the soma-localized Golgi in a retromer-dependent fashion. The toxin then moves to the ER and appears to require the Sec61 complex for retro-translocation to the cytosol. Our study identifies genes and trafficking processes hijacked by the toxin, revealing a new pathway mediating BoNT/A cellular toxicity.
Collapse
Affiliation(s)
- Jeremy C Yeo
- Institute of Molecular and Cell Biology, Singapore, Singapore
| | - Felicia P Tay
- Institute of Molecular and Cell Biology, Singapore, Singapore
| | - Rebecca Bennion
- Centre de Recherche en Cancérologie de Marseille, Aix Marseille Université, Inserm, CNRS, Institut Paoli-Calmettes, Equipe Leader Fondation ARC 2021, Marseille, France
| | - Omar Loss
- Ipsen Bioinnovation, London, United Kingdom
| | | | | | | | | | - Frederic Bard
- Institute of Molecular and Cell Biology, Singapore, Singapore
- Centre de Recherche en Cancérologie de Marseille, Aix Marseille Université, Inserm, CNRS, Institut Paoli-Calmettes, Equipe Leader Fondation ARC 2021, Marseille, France
| |
Collapse
|
7
|
Zhang J, Chen X, Chen C, Li F, Song X, Liu C, Liao K, Su MY, Tan CSH, Fang L, Rao H. Distinct Amino Acid-Based PROTACs Target Oncogenic Kinases for Degradation in Non-Small Cell Lung Cancer (NSCLC). J Med Chem 2024; 67:13666-13680. [PMID: 39114932 DOI: 10.1021/acs.jmedchem.4c00208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
Proteolysis-targeting chimeras (PROTACs) selectively eliminate detrimental proteins by exploiting the ubiquitin-proteasome system (UPS), representing a promising therapeutic strategy against various diseases. Effective adaptations of degradation signal sequences and E3 ligases for PROTACs remain limited. Here, we employed three amino acids─Gly, Pro, and Lys─as the ligand to recruit the corresponding E3 ligases: CRL2ZYG11B/ZER1, GID4, and UBRs, to degrade EML4-ALK and mutant EGFR, two oncogenic drivers in NSCLC. We found that the extent of EML4-ALK and EGFR reduction can be easily fine-tuned by using different degradation signals. These amino acid-based PROTACs, termed AATacs, hindered proliferation and induced cell cycle arrest and apoptosis of NSCLC cells in vitro. Compared to other PROTACs, AATacs are small, interchangeable but with different degradation efficiency. Our study further expands the repertoire of E3 ligases and their ligands for PROTAC application, improving the versatility and utility of targeted protein degradation for therapeutic purposes.
Collapse
Affiliation(s)
- Jianchao Zhang
- Department of Biochemistry, School of Medicine, Southern University of Science and Technology, Shenzhen 518055, China
| | - Xiao Chen
- Department of Biochemistry, School of Medicine, Southern University of Science and Technology, Shenzhen 518055, China
| | - Congli Chen
- Guangdong Key Laboratory of Nanomedicine, CAS-HK Joint Lab of Biomaterials, CAS Key Laboratory of Biomedical Imaging Science and System, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology (SIAT), Chinese Academy of Sciences, Shenzhen 518055, China
| | - Fengming Li
- Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| | - Xiaoxiao Song
- Department of Biochemistry, School of Medicine, Southern University of Science and Technology, Shenzhen 518055, China
| | - Chaowei Liu
- Department of Biochemistry, School of Medicine, Southern University of Science and Technology, Shenzhen 518055, China
| | - Kefan Liao
- Department of Biochemistry, School of Medicine, Southern University of Science and Technology, Shenzhen 518055, China
| | - Ming-Yuan Su
- Department of Biochemistry, School of Medicine, Southern University of Science and Technology, Shenzhen 518055, China
- Key University Laboratory of Metabolism and Health of Guangdong, Southern University of Science and Technology, Shenzhen 518055, China
- Institute for Biological Electron Microscopy, Southern University of Science and Technology, Shenzhen 518055, China
| | - Chris Soon Heng Tan
- Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| | - Lijing Fang
- Guangdong Key Laboratory of Nanomedicine, CAS-HK Joint Lab of Biomaterials, CAS Key Laboratory of Biomedical Imaging Science and System, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology (SIAT), Chinese Academy of Sciences, Shenzhen 518055, China
| | - Hai Rao
- Department of Biochemistry, School of Medicine, Southern University of Science and Technology, Shenzhen 518055, China
- Key University Laboratory of Metabolism and Health of Guangdong, Southern University of Science and Technology, Shenzhen 518055, China
| |
Collapse
|
8
|
Yang YM, Karbstein K. The ubiquitin-proteasome system regulates the formation of specialized ribosomes during high salt stress in yeast. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.15.608112. [PMID: 39185221 PMCID: PMC11343215 DOI: 10.1101/2024.08.15.608112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/27/2024]
Abstract
Rps26-deficient ribosomes are a physiologically relevant ribosome population which arises during osmotic stress to support the translation of mRNAs involved in the response to high salt in yeast. They are formed by binding of the chaperone Tsr2 to fully assembled ribosomes to release Rps26 when intracellular Na+ concentrations rise. Tsr2-mediated Rps26 release is reversible, enabling a rapid response that conserves ribosomes. However, because the concentration of Tsr2 relative to ribosomes is low, how the released Rps26•Tsr2 complex is managed to allow for accumulation of Rps26-deficient ribosomes to nearly 50% of all ribosomes remains unclear. Here we show that released Rps26 is degraded via the Pro/N-degron pathway, enabling the accumulation of Rps26-deficient ribosomes. Substitution of the N-terminal proline of Rps26 to serine increases the stability of free Rps26, limits the accumulation of Rps26-deficient ribosomes and renders yeast sensitive to high salt. The GID-complex, an E3 ubiquitin ligase, and its adaptor Gid4, mediate polyubiquitination of Rps26 at Lys66 and Lys70. Moreover, this ubiquitination event is required for Rps26 degradation, the accumulation of Rps26-deficient ribosomes and the high salt stress resistance. Together, the data show that targeted degradation of released Rps26 from the Rps26•Tsr2 complex allows Tsr2 to be recycled, thus facilitating multiple rounds of Rps26 release.
Collapse
Affiliation(s)
- Yoon-Mo Yang
- Department of Molecular Medicine, The Herbert Wertheim UF Scripps Institute for Biomedical Research Innovation and Technology, Jupiter, FL, 33458, USA
- present address: Graduate School for Biomedical Science & Engineering, Hanyang University, Seoul 04763, Republic of Korea
- Hanyang Institute of Bioscience and Biotechnology, Hanyang University, Seoul 04763, Republic of Korea
| | - Katrin Karbstein
- Department of Molecular Medicine, The Herbert Wertheim UF Scripps Institute for Biomedical Research Innovation and Technology, Jupiter, FL, 33458, USA
- present address: Department of Biochemistry, Vanderbilt University, Nashville, TN 37232-0146, USA
| |
Collapse
|
9
|
Shimshon A, Dahan K, Israel-Gueta M, Olmayev-Yaakobov D, Timms RT, Bekturova A, Makaros Y, Elledge SJ, Koren I. Dipeptidyl peptidases and E3 ligases of N-degron pathways cooperate to regulate protein stability. J Cell Biol 2024; 223:e202311035. [PMID: 38874443 PMCID: PMC11178506 DOI: 10.1083/jcb.202311035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 03/21/2024] [Accepted: 04/30/2024] [Indexed: 06/15/2024] Open
Abstract
N-degrons are short sequences located at protein N-terminus that mediate the interaction of E3 ligases (E3s) with substrates to promote their proteolysis. It is well established that N-degrons can be exposed following protease cleavage to allow recognition by E3s. However, our knowledge regarding how proteases and E3s cooperate in protein quality control mechanisms remains minimal. Using a systematic approach to monitor the protein stability of an N-terminome library, we found that proline residue at the third N-terminal position (hereafter "P+3") promotes instability. Genetic perturbations identified the dipeptidyl peptidases DPP8 and DPP9 and the primary E3s of N-degron pathways, UBR proteins, as regulators of P+3 bearing substrate turnover. Interestingly, P+3 UBR substrates are significantly enriched for secretory proteins. We found that secretory proteins relying on a signal peptide (SP) for their targeting contain a "built-in" N-degron within their SP. This degron becomes exposed by DPP8/9 upon translocation failure to the designated compartments, thus enabling clearance of mislocalized proteins by UBRs to maintain proteostasis.
Collapse
Affiliation(s)
- Adi Shimshon
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | - Karin Dahan
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | - Mor Israel-Gueta
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | - Diana Olmayev-Yaakobov
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | - Richard T. Timms
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, Jeffrey Cheah Biomedical Centre, Cambridge, UK
| | - Aizat Bekturova
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | - Yaara Makaros
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | - Stephen J. Elledge
- Department of Genetics, Harvard Medical School, Brigham and Women’s Hospital, Howard Hughes Medical Institute, Boston, MA, USA
| | - Itay Koren
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| |
Collapse
|
10
|
Budayeva HG, Ma TP, Wang S, Choi M, Rose CM. Increasing the Throughput and Reproducibility of Activity-Based Proteome Profiling Studies with Hyperplexing and Intelligent Data Acquisition. J Proteome Res 2024; 23:2934-2947. [PMID: 38251652 PMCID: PMC11301772 DOI: 10.1021/acs.jproteome.3c00598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 11/16/2023] [Accepted: 12/27/2023] [Indexed: 01/23/2024]
Abstract
Intelligent data acquisition (IDA) strategies, such as a real-time database search (RTS), have improved the depth of proteome coverage for experiments that utilize isobaric labels and gas phase purification techniques (i.e., SPS-MS3). In this work, we introduce inSeqAPI, an instrument application programing interface (iAPI) program that enables construction of novel data acquisition algorithms. First, we analyze biotinylated cysteine peptides from ABPP experiments to demonstrate that a real-time search method within inSeqAPI performs similarly to an equivalent vendor method. Then, we describe PairQuant, a method within inSeqAPI designed for the hyperplexing approach that utilizes protein-level isotopic labeling and peptide-level TMT labeling. PairQuant allows for TMT analysis of 36 conditions in a single sample and achieves ∼98% coverage of both peptide pair partners in a hyperplexed experiment as well as a 40% improvement in the number of quantified cysteine sites compared with non-RTS acquisition. We applied this method in the ABPP study of ligandable cysteine sites in the nucleus leading to an identification of additional druggable sites on protein- and DNA-interaction domains of transcription regulators and on nuclear ubiquitin ligases.
Collapse
Affiliation(s)
- Hanna G. Budayeva
- Department
of Microchemistry, Proteomics and Lipidomics, Genentech, Inc., South
San Francisco, California 94080, United States
| | - Taylur P. Ma
- Department
of Microchemistry, Proteomics and Lipidomics, Genentech, Inc., South
San Francisco, California 94080, United States
| | - Shuai Wang
- Department
of Metabolism and Pharmacokinetics, Genentech,
Inc., South San Francisco, California 94080, United States
| | - Meena Choi
- Department
of Microchemistry, Proteomics and Lipidomics, Genentech, Inc., South
San Francisco, California 94080, United States
| | - Christopher M. Rose
- Department
of Microchemistry, Proteomics and Lipidomics, Genentech, Inc., South
San Francisco, California 94080, United States
| |
Collapse
|
11
|
Huang J, De Veirman L, Van Breusegem F. Cysteine thiol sulfinic acid in plant stress signaling. PLANT, CELL & ENVIRONMENT 2024; 47:2766-2779. [PMID: 38251793 DOI: 10.1111/pce.14827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 12/25/2023] [Accepted: 01/09/2024] [Indexed: 01/23/2024]
Abstract
Cysteine thiols are susceptible to various oxidative posttranslational modifications (PTMs) due to their high chemical reactivity. Thiol-based PTMs play a crucial role in regulating protein functions and are key contributors to cellular redox signaling. Although reversible thiol-based PTMs, such as disulfide bond formation, S-nitrosylation, and S-glutathionylation, have been extensively studied for their roles in redox regulation, thiol sulfinic acid (-SO2H) modification is often perceived as irreversible and of marginal significance in redox signaling. Here, we revisit this narrow perspective and shed light on the redox regulatory roles of -SO2H in plant stress signaling. We provide an overview of protein sulfinylation in plants, delving into the roles of hydrogen peroxide-mediated and plant cysteine oxidase-catalyzed formation of -SO2H, highlighting the involvement of -SO2H in specific regulatory signaling pathways. Additionally, we compile the existing knowledge of the -SO2H reducing enzyme, sulfiredoxin, offering insights into its molecular mechanisms and biological relevance. We further summarize current proteomic techniques for detecting -SO2H and furnish a list of experimentally validated cysteine -SO2H sites across various species, discussing their functional consequences. This review aims to spark new insights and discussions that lead to further investigations into the functional significance of protein -SO2H-based redox signaling in plants.
Collapse
Affiliation(s)
- Jingjing Huang
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, VIB, Ghent, Belgium
| | - Lindsy De Veirman
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, VIB, Ghent, Belgium
| | - Frank Van Breusegem
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, VIB, Ghent, Belgium
| |
Collapse
|
12
|
Schultz SK, Kothe U. RNA modifying enzymes shape tRNA biogenesis and function. J Biol Chem 2024; 300:107488. [PMID: 38908752 PMCID: PMC11301382 DOI: 10.1016/j.jbc.2024.107488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 06/11/2024] [Accepted: 06/12/2024] [Indexed: 06/24/2024] Open
Abstract
Transfer RNAs (tRNAs) are the most highly modified cellular RNAs, both with respect to the proportion of nucleotides that are modified within the tRNA sequence and with respect to the extraordinary diversity in tRNA modification chemistry. However, the functions of many different tRNA modifications are only beginning to emerge. tRNAs have two general clusters of modifications. The first cluster is within the anticodon stem-loop including several modifications essential for protein translation. The second cluster of modifications is within the tRNA elbow, and roles for these modifications are less clear. In general, tRNA elbow modifications are typically not essential for cell growth, but nonetheless several tRNA elbow modifications have been highly conserved throughout all domains of life. In addition to forming modifications, many tRNA modifying enzymes have been demonstrated or hypothesized to also play an important role in folding tRNA acting as tRNA chaperones. In this review, we summarize the known functions of tRNA modifying enzymes throughout the lifecycle of a tRNA molecule, from transcription to degradation. Thereby, we describe how tRNA modification and folding by tRNA modifying enzymes enhance tRNA maturation, tRNA aminoacylation, and tRNA function during protein synthesis, ultimately impacting cellular phenotypes and disease.
Collapse
Affiliation(s)
- Sarah K Schultz
- Department of Chemistry, University of Manitoba, Winnipeg, Manitoba, Canada; Alberta RNA Research and Training Institute (ARRTI), Department of Chemistry and Biochemistry, University of Lethbridge, Lethbridge, Alberta, Canada.
| | - Ute Kothe
- Department of Chemistry, University of Manitoba, Winnipeg, Manitoba, Canada; Alberta RNA Research and Training Institute (ARRTI), Department of Chemistry and Biochemistry, University of Lethbridge, Lethbridge, Alberta, Canada.
| |
Collapse
|
13
|
Shokeen K, Baroi MK, Chahar M, Das D, Saini H, Kumar S. Arginyltransferase 1 (ATE1)-mediated proteasomal degradation of viral haemagglutinin protein: a unique host defence mechanism. J Gen Virol 2024; 105. [PMID: 39207120 DOI: 10.1099/jgv.0.002020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024] Open
Abstract
The extensive protein production in virus-infected cells can disrupt protein homeostasis and activate various proteolytic pathways. These pathways utilize post-translational modifications (PTMs) to drive the ubiquitin-mediated proteasomal degradation of surplus proteins. Protein arginylation is the least explored PTM facilitated by arginyltransferase 1 (ATE1) enzyme. Several studies have provided evidence supporting its importance in multiple physiological processes, including ageing, stress, nerve regeneration, actin formation and embryo development. However, its function in viral pathogenesis is still unexplored. The present work utilizes Newcastle disease virus (NDV) as a model to establish the role of the ATE1 enzyme and its activity in pathogenesis. Our data indicate a rise in levels of N-arginylated cellular proteins in the infected cells. Here, we also explore the haemagglutinin-neuraminidase (HN) protein of NDV as a presumable target for arginylation. The data indicate that the administration of Arg amplifies the arginylation process, resulting in reduced stability of the HN protein. ATE1 enzyme activity inhibition and gene expression knockdown studies were also conducted to analyse modulation in HN protein levels, which further substantiated the findings. Moreover, we also observed Arg addition and probable ubiquitin modification to the HN protein, indicating engagement of the proteasomal degradation machinery. Lastly, we concluded that the enhanced levels of the ATE1 enzyme could transfer the Arg residue to the N-terminus of the HN protein, ultimately driving its proteasomal degradation.
Collapse
Affiliation(s)
- Kamal Shokeen
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, India
| | - Malay Kumar Baroi
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, India
| | - Manjeet Chahar
- Centre for Medical Biotechnology, Maharshi Dayanand University, Rohtak, India
| | - Debapratim Das
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, India
| | - Harimohan Saini
- Centre for Medical Biotechnology, Maharshi Dayanand University, Rohtak, India
| | - Sachin Kumar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, India
| |
Collapse
|
14
|
Liu Q, Zheng Y, Sturmlechner I, Jain A, Own M, Yang Q, Zhang H, Pinto e Vairo F, Cerosaletti K, Buckner JH, Warrington KJ, Koster MJ, Weyand CM, Goronzy JJ. IKZF1 and UBR4 gene variants drive autoimmunity and Th2 polarization in IgG4-related disease. J Clin Invest 2024; 134:e178692. [PMID: 38885295 PMCID: PMC11324302 DOI: 10.1172/jci178692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 06/07/2024] [Indexed: 06/20/2024] Open
Abstract
IgG4-related disease (IgG4-RD) is a systemic immune-mediated fibroinflammatory disease whose pathomechanisms remain poorly understood. Here, we identified gene variants in familial IgG4-RD and determined their functional consequences. All 3 affected members of the family shared variants of the transcription factor IKAROS, encoded by IKZF1, and the E3 ubiquitin ligase UBR4. The IKAROS variant increased binding to the FYN promoter, resulting in higher transcription of FYN in T cells. The UBR4 variant prevented the lysosomal degradation of the phosphatase CD45. In the presence of elevated FYN, CD45 functioned as a positive regulatory loop, lowering the threshold for T cell activation. Consequently, T cells from the affected family members were hyperresponsive to stimulation. When transduced with a low-avidity, autoreactive T cell receptor, their T cells responded to the autoantigenic peptide. In parallel, high expression of FYN in T cells biased their differentiation toward Th2 polarization by stabilizing the transcription factor JunB. This bias was consistent with the frequent atopic manifestations in patients with IgG4-RD, including the affected family members in the present study. Building on the functional consequences of these 2 variants, we propose a disease model that is not only instructive for IgG4-RD but also for atopic diseases and autoimmune diseases associated with an IKZF1 risk haplotype.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Filippo Pinto e Vairo
- Center for Individualized Medicine and Department of Clinical Genomics, Mayo Clinic College of Medicine and Science, Rochester, Minnesota, USA
| | - Karen Cerosaletti
- Center for Translational Immunology, Benaroya Research Institute at Virginia Mason, Seattle, Washington, USA
| | - Jane H. Buckner
- Center for Translational Immunology, Benaroya Research Institute at Virginia Mason, Seattle, Washington, USA
| | | | | | | | | |
Collapse
|
15
|
Deng L, Liao L, Zhang YL, Yang SY, Hu SY, Andriani L, Ling YX, Ma XY, Zhang FL, Shao ZM, Li DQ. SF3A2 promotes progression and cisplatin resistance in triple-negative breast cancer via alternative splicing of MKRN1. SCIENCE ADVANCES 2024; 10:eadj4009. [PMID: 38569025 PMCID: PMC10990288 DOI: 10.1126/sciadv.adj4009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Accepted: 02/28/2024] [Indexed: 04/05/2024]
Abstract
Triple-negative breast cancer (TNBC) is the deadliest subtype of breast cancer owing to the lack of effective therapeutic targets. Splicing factor 3a subunit 2 (SF3A2), a poorly defined splicing factor, was notably elevated in TNBC tissues and promoted TNBC progression, as confirmed by cell proliferation, colony formation, transwell migration, and invasion assays. Mechanistic investigations revealed that E3 ubiquitin-protein ligase UBR5 promoted the ubiquitination-dependent degradation of SF3A2, which in turn regulated UBR5, thus forming a feedback loop to balance these two oncoproteins. Moreover, SF3A2 accelerated TNBC progression by, at least in part, specifically regulating the alternative splicing of makorin ring finger protein 1 (MKRN1) and promoting the expression of the dominant and oncogenic isoform, MKRN1-T1. Furthermore, SF3A2 participated in the regulation of both extrinsic and intrinsic apoptosis, leading to cisplatin resistance in TNBC cells. Collectively, these findings reveal a previously unknown role of SF3A2 in TNBC progression and cisplatin resistance, highlighting SF3A2 as a potential therapeutic target for patients with TNBC.
Collapse
Affiliation(s)
- Ling Deng
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Li Liao
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Cancer Institute, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Yin-Ling Zhang
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Cancer Institute, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Shao-Ying Yang
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Cancer Institute, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Shu-Yuan Hu
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Lisa Andriani
- Department of Breast Surgery, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Yun-Xiao Ling
- Department of Breast Surgery, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Xiao-Yan Ma
- Department of Breast Surgery, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Fang-Lin Zhang
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Cancer Institute, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Zhi-Ming Shao
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Cancer Institute, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Department of Breast Surgery, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Shanghai Key Laboratory of Breast Cancer, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Shanghai Key Laboratory of Radiation Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Da-Qiang Li
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Cancer Institute, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Department of Breast Surgery, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Shanghai Key Laboratory of Breast Cancer, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Shanghai Key Laboratory of Radiation Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| |
Collapse
|
16
|
Chuang CN, Liu HC, Woo TT, Chao JL, Chen CY, Hu HT, Hsueh YP, Wang TF. Noncanonical usage of stop codons in ciliates expands proteins with structurally flexible Q-rich motifs. eLife 2024; 12:RP91405. [PMID: 38393970 PMCID: PMC10942620 DOI: 10.7554/elife.91405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2024] Open
Abstract
Serine(S)/threonine(T)-glutamine(Q) cluster domains (SCDs), polyglutamine (polyQ) tracts and polyglutamine/asparagine (polyQ/N) tracts are Q-rich motifs found in many proteins. SCDs often are intrinsically disordered regions that mediate protein phosphorylation and protein-protein interactions. PolyQ and polyQ/N tracts are structurally flexible sequences that trigger protein aggregation. We report that due to their high percentages of STQ or STQN amino acid content, four SCDs and three prion-causing Q/N-rich motifs of yeast proteins possess autonomous protein expression-enhancing activities. Since these Q-rich motifs can endow proteins with structural and functional plasticity, we suggest that they represent useful toolkits for evolutionary novelty. Comparative Gene Ontology (GO) analyses of the near-complete proteomes of 26 representative model eukaryotes reveal that Q-rich motifs prevail in proteins involved in specialized biological processes, including Saccharomyces cerevisiae RNA-mediated transposition and pseudohyphal growth, Candida albicans filamentous growth, ciliate peptidyl-glutamic acid modification and microtubule-based movement, Tetrahymena thermophila xylan catabolism and meiosis, Dictyostelium discoideum development and sexual cycles, Plasmodium falciparum infection, and the nervous systems of Drosophila melanogaster, Mus musculus and Homo sapiens. We also show that Q-rich-motif proteins are expanded massively in 10 ciliates with reassigned TAAQ and TAGQ codons. Notably, the usage frequency of CAGQ is much lower in ciliates with reassigned TAAQ and TAGQ codons than in organisms with expanded and unstable Q runs (e.g. D. melanogaster and H. sapiens), indicating that the use of noncanonical stop codons in ciliates may have coevolved with codon usage biases to avoid triplet repeat disorders mediated by CAG/GTC replication slippage.
Collapse
Affiliation(s)
| | - Hou-Cheng Liu
- Institute of Molecular Biology, Academia SinicaTaipeiTaiwan
| | - Tai-Ting Woo
- Institute of Molecular Biology, Academia SinicaTaipeiTaiwan
| | - Ju-Lan Chao
- Institute of Molecular Biology, Academia SinicaTaipeiTaiwan
| | - Chiung-Ya Chen
- Institute of Molecular Biology, Academia SinicaTaipeiTaiwan
| | - Hisao-Tang Hu
- Institute of Molecular Biology, Academia SinicaTaipeiTaiwan
| | - Yi-Ping Hsueh
- Institute of Molecular Biology, Academia SinicaTaipeiTaiwan
- Department of Biochemical Science and Technology, National Chiayi UniversityChiayiTaiwan
| | - Ting-Fang Wang
- Institute of Molecular Biology, Academia SinicaTaipeiTaiwan
- Department of Biochemical Science and Technology, National Chiayi UniversityChiayiTaiwan
| |
Collapse
|
17
|
Ye S, Wang S, Chan R, Cao L, Wang H. Identification of short protein-destabilizing sequences in Arabidopsis cyclin-dependent kinase inhibitors, ICKs. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:772-788. [PMID: 37862584 DOI: 10.1093/jxb/erad411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 10/18/2023] [Indexed: 10/22/2023]
Abstract
Plants have a family of cyclin-dependent kinase (CDK) inhibitors called interactors/inhibitors of CDK (ICKs) or Kip-related proteins (KRPs). ICK proteins have important functions in cell proliferation, endoreduplication, plant growth, and reproductive development, and their functions depend on the protein levels. However, understanding of how ICK protein levels are regulated is very limited. We fused Arabidopsis ICK sequences to green fluorescent protein (GFP) and determined their effects on the fusion proteins in plants, yeast, and Escherichia coli. The N-terminal regions of ICKs drastically reduced GFP fusion protein levels in Arabidopsis plants. A number of short sequences of 10-20 residues were found to decrease GFP fusion protein levels when fused at the N-terminus or C-terminus. Three of the four short sequences from ICK3 showed a similar function in yeast. Intriguingly, three short sequences from ICK1 and ICK3 caused the degradation of the fusion proteins in E. coli. In addition, computational analyses showed that ICK proteins were mostly disordered and unstructured except for the conserved C-terminal region, suggesting that ICKs are intrinsically disordered proteins. This study has identified a number of short protein-destabilizing sequences, and evidence suggests that some of them may cause protein degradation through structural disorder and instability.
Collapse
Affiliation(s)
- Shengjian Ye
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, SK, S7N 5E5, Canada
| | - Sheng Wang
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, SK, S7N 5E5, Canada
| | - Ron Chan
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, SK, S7N 5E5, Canada
| | - Ling Cao
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, SK, S7N 5E5, Canada
| | - Hong Wang
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, SK, S7N 5E5, Canada
| |
Collapse
|
18
|
Bonnet LV, Palandri A, Flores-Martin JB, Hallak ME. Arginyltransferase 1 modulates p62-driven autophagy via mTORC1/AMPk signaling. Cell Commun Signal 2024; 22:87. [PMID: 38297346 PMCID: PMC10832197 DOI: 10.1186/s12964-024-01499-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 01/21/2024] [Indexed: 02/02/2024] Open
Abstract
BACKGROUND Arginyltransferase (Ate1) orchestrates posttranslational protein arginylation, a pivotal regulator of cellular proteolytic processes. In eukaryotic cells, two interconnected systems-the ubiquitin proteasome system (UPS) and macroautophagy-mediate proteolysis and cooperate to maintain quality protein control and cellular homeostasis. Previous studies have shown that N-terminal arginylation facilitates protein degradation through the UPS. Dysregulation of this machinery triggers p62-mediated autophagy to ensure proper substrate processing. Nevertheless, how Ate1 operates through this intricate mechanism remains elusive. METHODS We investigated Ate1 subcellular distribution through confocal microscopy and biochemical assays using cells transiently or stably expressing either endogenous Ate1 or a GFP-tagged Ate1 isoform transfected in CHO-K1 or MEFs, respectively. To assess Ate1 and p62-cargo clustering, we analyzed their colocalization and multimerization status by immunofluorescence and nonreducing immunoblotting, respectively. Additionally, we employed Ate1 KO cells to examine the role of Ate1 in autophagy. Ate1 KO MEFs cells stably expressing GFP-tagged Ate1-1 isoform were used as a model for phenotype rescue. Autophagy dynamics were evaluated by analyzing LC3B turnover and p62/SQSTM1 levels under both steady-state and serum-starvation conditions, through immunoblotting and immunofluorescence. We determined mTORC1/AMPk activation by assessing mTOR and AMPk phosphorylation through immunoblotting, while mTORC1 lysosomal localization was monitored by confocal microscopy. RESULTS Here, we report a multifaceted role for Ate1 in the autophagic process, wherein it clusters with p62, facilitates autophagic clearance, and modulates its signaling. Mechanistically, we found that cell-specific inactivation of Ate1 elicits overactivation of the mTORC1/AMPk signaling hub that underlies a failure in autophagic flux and subsequent substrate accumulation, which is partially rescued by ectopic expression of Ate1. Statistical significance was assessed using a two-sided unpaired t test with a significance threshold set at P<0.05. CONCLUSIONS Our findings uncover a critical housekeeping role of Ate1 in mTORC1/AMPk-regulated autophagy, as a potential therapeutic target related to this pathway, that is dysregulated in many neurodegenerative and cancer diseases.
Collapse
Affiliation(s)
- Laura V Bonnet
- Departamento de Química Biológica Ranwel Caputto, Universidad Nacional de Córdoba, Córdoba, Argentina.
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), CIQUIBIC, Córdoba, Argentina.
| | - Anabela Palandri
- Departamento de Química Biológica Ranwel Caputto, Universidad Nacional de Córdoba, Córdoba, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), CIQUIBIC, Córdoba, Argentina
| | - Jesica B Flores-Martin
- Departamento de Química Biológica Ranwel Caputto, Universidad Nacional de Córdoba, Córdoba, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), CIQUIBIC, Córdoba, Argentina
| | - Marta E Hallak
- Departamento de Química Biológica Ranwel Caputto, Universidad Nacional de Córdoba, Córdoba, Argentina.
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), CIQUIBIC, Córdoba, Argentina.
| |
Collapse
|
19
|
Bhowal P, Roy B, Ganguli S, Igloi GL, Banerjee R. Elucidating the structure-function attributes of a trypanosomal arginyl-tRNA synthetase. Mol Biochem Parasitol 2023; 256:111597. [PMID: 37852416 DOI: 10.1016/j.molbiopara.2023.111597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 09/20/2023] [Accepted: 10/10/2023] [Indexed: 10/20/2023]
Abstract
Aminoacyl-tRNA synthetases (aaRSs) are fundamental components of the protein translation machinery. In light of their pivotal role in protein synthesis and structural divergence among species, they have always been considered potential targets for the development of antimicrobial compounds. Arginyl-tRNA synthetase from Trypanosoma cruzi (TcArgRS), the parasite responsible for causing Chagas Disease, contains a 100-amino acid insertion that was found to be completely absent in the human counterpart of similar length, as ascertained from multiple sequence alignment results. Thus, we were prompted to perform a preliminary characterization of TcArgRS using biophysical, biochemical, and bioinformatics tools. We expressed the protein in E. coli and validated its in-vitro enzymatic activity. Additionally, analysis of DTNB kinetics, Circular dichroism (CD) spectra, and ligand-binding studies using intrinsic tryptophan fluorescence measurements aided us to understand some structural features in the absence of available crystal structures. Our study indicates that TcArgRS can discriminate between L-arginine and its analogues. Among the many tested substrates, only L-canavanine and L-thioarginine, a synthetic arginine analogue exhibited notable activation. The binding of various substrates was also determined using in silico methods. This study may provide a viable foundation for studying small compounds that can be targeted against TcArgRS.
Collapse
Affiliation(s)
- Pratyasha Bhowal
- Department of Biotechnology and Dr. B. C. Guha Centre for Genetic Engineering and Biotechnology, University of Calcutta, 35, Ballygunge Circular Road, Kolkata 700 019, India
| | - Bappaditya Roy
- Department of Microbiology, The Ohio State University, 318 West 12th Avenue, Columbus, OH 43210, USA; Center for RNA Biology, The Ohio State University, Columbus, OH 43210, USA
| | - Sayak Ganguli
- Post Graduate Department of Biotechnology, St. Xavier's College (Autonomous), 30, Park Street, Mullick Bazar, Kolkata 700 016, India.
| | - Gabor L Igloi
- Institute of Biology III, University of Freiburg, Schänzlestr 1, D-79104 Freiburg, Germany
| | - Rajat Banerjee
- Department of Biotechnology and Dr. B. C. Guha Centre for Genetic Engineering and Biotechnology, University of Calcutta, 35, Ballygunge Circular Road, Kolkata 700 019, India.
| |
Collapse
|
20
|
Jeong DE, Lee HS, Ku B, Kim CH, Kim SJ, Shin HC. Insights into the recognition mechanism in the UBR box of UBR4 for its specific substrates. Commun Biol 2023; 6:1214. [PMID: 38030679 PMCID: PMC10687169 DOI: 10.1038/s42003-023-05602-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Accepted: 11/17/2023] [Indexed: 12/01/2023] Open
Abstract
The N-end rule pathway is a proteolytic system involving the destabilization of N-terminal amino acids, known as N-degrons, which are recognized by N-recognins. Dysregulation of the N-end rule pathway results in the accumulation of undesired proteins, causing various diseases. The E3 ligases of the UBR subfamily recognize and degrade N-degrons through the ubiquitin-proteasome system. Herein, we investigated UBR4, which has a distinct mechanism for recognizing type-2 N-degrons. Structural analysis revealed that the UBR box of UBR4 differs from other UBR boxes in the N-degron binding sites. It recognizes type-2 N-terminal amino acids containing an aromatic ring and type-1 N-terminal arginine through two phenylalanines on its hydrophobic surface. We also characterized the binding mechanism for the second ligand residue. This is the report on the structural basis underlying the recognition of type-2 N-degrons by the UBR box with implications for understanding the N-end rule pathway.
Collapse
Affiliation(s)
- Da Eun Jeong
- Critical Disease Diagnostics Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea
- Department of Bioscience & Biotechnology, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Hye Seon Lee
- Disease Target Structure Research Center, Division of Biomedical Research, KRIBB, Daejeon, 34141, Republic of Korea
| | - Bonsu Ku
- Disease Target Structure Research Center, Division of Biomedical Research, KRIBB, Daejeon, 34141, Republic of Korea
| | - Cheol-Hee Kim
- Department of Bioscience & Biotechnology, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Seung Jun Kim
- Critical Disease Diagnostics Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea.
- Department of Proteome Structural Biology, KRIBB School of Bioscience, University of Science and Technology, Daejeon, 34113, Republic of Korea.
| | - Ho-Chul Shin
- Critical Disease Diagnostics Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea.
- Graduate School of New Drug Discovery and Development, Chungnam National University, Daejeon, 34134, Republic of Korea.
| |
Collapse
|
21
|
Suen TC, DeBruyne JP. Lysine-independent ubiquitination and degradation of REV-ERBα involves a bi-functional degradation control sequence at its N-terminus. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.01.538963. [PMID: 37205588 PMCID: PMC10187254 DOI: 10.1101/2023.05.01.538963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
REV-ERBα and REV-ERBβ proteins play crucial roles in linking the circadian system to overt daily rhythms in mammalian physiology and behavior. In most tissues, REV-ERBα protein robustly cycles such that it is detected only within a tight interval of 4-6 hours each day, suggesting both its synthesis and degradation are tightly controlled. Several ubiquitin ligases are known to drive REV-ERBα degradation, but how they interact with REV-ERBα and which lysine residues they ubiquitinate to promote degradation are unknown. In this study, we attempted to identify both ubiquitin-ligase-binding and ubiquitination sites within REV-ERBα required for its degradation. Surprisingly, mutating all lysine residues, the common sites for ubiquitin conjugation, in REV-ERBα to arginines (K20R), did very little to impair its degradation in cells. K20R were degraded much faster by co-expression of two E3 ligases, SIAH2 or SPSB4, suggesting possible N-terminal ubiquitination. To explore this, we examined if small deletions at the N-terminus of REV-ERBα would alter its degradation. Interestingly, deletion of amino acid (AA) residues 2 to 9 (delAA2-9) clearly resulted in a less stable REV-ERBα. We found that it was the length (i.e. 8 AA), and not the specific sequence, that confers stability in this region. Simultaneously, we also mapped the interaction site of the E3 ligase SPSB4 to this same region, specifically requiring AA4-9 of REV-ERBα. Thus, the first 9 AA of REV-ERBα has two opposing roles in regulating REV-ERBα turnover. Further, deleting eight additional AAs (delAA2-17) from the N-terminus strongly prevents REV-ERBα degradation. Combined, these results suggest that complex interactions within the first 25AAs potentially act as an endogenous 'switch' that allows REV-ERBα to exist in a stabilized conformation in order to accumulate at one time of day, but then rapidly shifts to a destabilized form, to enhance its removal at the end of its daily cycle.
Collapse
|
22
|
Jung EJ, Sung KW, Bae TH, Kim HY, Choi HR, Kim SH, Jung CH, Mun SR, Son YS, Kim S, Suh YH, Kashina A, Park JW, Kwon YT. The N-degron pathway mediates lipophagy: The chemical modulation of lipophagy in obesity and NAFLD. Metabolism 2023; 146:155644. [PMID: 37385404 PMCID: PMC10529862 DOI: 10.1016/j.metabol.2023.155644] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 06/23/2023] [Accepted: 06/24/2023] [Indexed: 07/01/2023]
Abstract
BACKGROUND AND AIMS Central to the pathogenesis of nonalcoholic fatty liver disease (NAFLD) is the accumulation of lipids in the liver and various fat tissues. We aimed to elucidate the mechanisms by which lipid droplets (LDs) in the liver and adipocytes are degraded by the autophagy-lysosome system and develop therapeutic means to modulate lipophagy, i.e., autophagic degradation of LDs. METHODS We monitored the process in which LDs are pinched off by autophagic membranes and degraded by lysosomal hydrolases in cultured cells and mice. The autophagic receptor p62/SQSTM-1/Sequestosome-1 was identified as a key regulator and used as a target to develop drugs to induce lipophagy. The efficacy of p62 agonists was validated in mice to treat hepatosteatosis and obesity. RESULTS We found that the N-degron pathway modulates lipophagy. This autophagic degradation initiates when the molecular chaperones including BiP/GRP78, retro-translocated from the endoplasmic reticulum, is N-terminally (Nt-) arginylated by ATE1 R-transferase. The resulting Nt-arginine (Nt-Arg) binds the ZZ domain of p62 associated with LDs. Upon binding to Nt-Arg, p62 undergoes self-polymerization and recruits LC3+ phagophores to the site of lipophagy, leading to lysosomal degradation. Liver-specific Ate1 conditional knockout mice under high fat diet developed severe NAFLD. The Nt-Arg was modified into small molecule agonists to p62 that facilitate lipophagy in mice and exerted therapeutic efficacy in obesity and hepatosteatosis of wild-type but not p62 knockout mice. CONCLUSIONS Our results show that the N-degron pathway modulates lipophagy and provide p62 as a drug target to treat NAFLD and other diseases related with metabolic syndrome.
Collapse
Affiliation(s)
- Eui Jung Jung
- Cellular Degradation Biology Center, College of Medicine, Seoul National University, Seoul, 03080, Republic of Korea; Department of Biomedical Sciences, College of Medicine, Seoul National University, Seoul, 03080, Republic of Korea
| | - Ki Woon Sung
- Cellular Degradation Biology Center, College of Medicine, Seoul National University, Seoul, 03080, Republic of Korea; Department of Biomedical Sciences, College of Medicine, Seoul National University, Seoul, 03080, Republic of Korea; AUTOTAC Bio Inc., Changgyeonggung-Ro 254, Jongno-Gu, Seoul, 03077, Republic of Korea
| | - Tae Hyun Bae
- Cellular Degradation Biology Center, College of Medicine, Seoul National University, Seoul, 03080, Republic of Korea; Department of Biomedical Sciences, College of Medicine, Seoul National University, Seoul, 03080, Republic of Korea
| | - Hee-Yeon Kim
- Department of Biochemistry, College of Medicine, Ewha Womans University, Seoul, 07804, Republic of Korea
| | - Ha Rim Choi
- Department of Biomedical Sciences, College of Medicine, Seoul National University, Seoul, 03080, Republic of Korea
| | - Sung Hyun Kim
- AUTOTAC Bio Inc., Changgyeonggung-Ro 254, Jongno-Gu, Seoul, 03077, Republic of Korea
| | - Chan Hoon Jung
- Cellular Degradation Biology Center, College of Medicine, Seoul National University, Seoul, 03080, Republic of Korea; Department of Biomedical Sciences, College of Medicine, Seoul National University, Seoul, 03080, Republic of Korea
| | - Su Ran Mun
- Cellular Degradation Biology Center, College of Medicine, Seoul National University, Seoul, 03080, Republic of Korea
| | - Yeon Sung Son
- Neuroscience Research Institute, College of Medicine, Seoul National University, Seoul, 03080, Republic of Korea
| | - Shin Kim
- Department of Immunology, School of Medicine, Keimyung University, Daegu, 42601, Republic of Korea
| | - Young Ho Suh
- Department of Biomedical Sciences, College of Medicine, Seoul National University, Seoul, 03080, Republic of Korea; Neuroscience Research Institute, College of Medicine, Seoul National University, Seoul, 03080, Republic of Korea
| | - Anna Kashina
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States
| | - Joo-Won Park
- Department of Biochemistry, College of Medicine, Ewha Womans University, Seoul, 07804, Republic of Korea.
| | - Yong Tae Kwon
- Cellular Degradation Biology Center, College of Medicine, Seoul National University, Seoul, 03080, Republic of Korea; Department of Biomedical Sciences, College of Medicine, Seoul National University, Seoul, 03080, Republic of Korea; AUTOTAC Bio Inc., Changgyeonggung-Ro 254, Jongno-Gu, Seoul, 03077, Republic of Korea; Convergence Research Center for Dementia, Seoul National University Medical Research Center, Seoul, 03080, Republic of Korea; Ischemic/Hypoxic Disease Institute, College of Medicine, Seoul National University, Seoul, 03080, Republic of Korea.
| |
Collapse
|
23
|
Zhang J, Ma C, Yu Y, Liu C, Fang L, Rao H. Single amino acid-based PROTACs trigger degradation of the oncogenic kinase BCR-ABL in chronic myeloid leukemia (CML). J Biol Chem 2023; 299:104994. [PMID: 37392851 PMCID: PMC10388202 DOI: 10.1016/j.jbc.2023.104994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 06/09/2023] [Accepted: 06/19/2023] [Indexed: 07/03/2023] Open
Abstract
Proteolysis-targeting chimera (PROTAC) that specifically targets harmful proteins for destruction by hijacking the ubiquitin-proteasome system is emerging as a potent anticancer strategy. How to efficiently modulate the target degradation remains a challenging issue. In this study, we employ a single amino acid-based PROTAC, which uses the shortest degradation signal sequence as the ligand of the N-end rule E3 ubiquitin ligases to degrade the fusion protein BCR (breakpoint cluster region)-ABL (Abelson proto-oncogene), an oncogenic kinase that drives the progression of chronic myeloid leukemia. We find that the reduction level of BCR-ABL can be easily adjusted by substituting different amino acids. Furthermore, a single PEG linker is found to achieve the best proteolytic effect. Our efforts have resulted in effective degradation of BCR-ABL protein by the N-end rule pathway and efficient growth inhibition of K562 cells expressing BCR-ABL in vitro and blunted tumor growth in a K562 xenograft tumor model in vivo. The PROTAC presented has unique advantages including lower effective concentration, smaller molecular size, and modular degradation rate. Demonstrating the efficacy of the N-end rule-based PROTACs in vitro and in vivo, our study further expands the limited degradation pathways currently available for PROTACs in vivo and is easily adapted for broader applications in targeted protein degradation.
Collapse
MESH Headings
- Humans
- Proteolysis Targeting Chimera
- Amino Acids
- Fusion Proteins, bcr-abl/genetics
- Fusion Proteins, bcr-abl/metabolism
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/metabolism
- K562 Cells
- Ubiquitins
Collapse
Affiliation(s)
- Jianchao Zhang
- Department of Biochemistry, School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Caibing Ma
- Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, China
| | - Yongjun Yu
- Department of Biochemistry, School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Chaowei Liu
- Department of Biochemistry, School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Lijing Fang
- Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, China.
| | - Hai Rao
- Department of Biochemistry, School of Medicine, Southern University of Science and Technology, Shenzhen, China; Key University Laboratory of Metabolism and Health of Guangdong, Southern University of Science and Technology, Shenzhen, China.
| |
Collapse
|
24
|
Peker E, Weiss K, Song J, Zarges C, Gerlich S, Boehm V, Trifunovic A, Langer T, Gehring NH, Becker T, Riemer J. A two-step mitochondrial import pathway couples the disulfide relay with matrix complex I biogenesis. J Cell Biol 2023; 222:e202210019. [PMID: 37159021 PMCID: PMC10174193 DOI: 10.1083/jcb.202210019] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 03/03/2023] [Accepted: 04/06/2023] [Indexed: 05/10/2023] Open
Abstract
Mitochondria critically rely on protein import and its tight regulation. Here, we found that the complex I assembly factor NDUFAF8 follows a two-step import pathway linking IMS and matrix import systems. A weak targeting sequence drives TIM23-dependent NDUFAF8 matrix import, and en route, allows exposure to the IMS disulfide relay, which oxidizes NDUFAF8. Import is closely surveyed by proteases: YME1L prevents accumulation of excess NDUFAF8 in the IMS, while CLPP degrades reduced NDUFAF8 in the matrix. Therefore, NDUFAF8 can only fulfil its function in complex I biogenesis if both oxidation in the IMS and subsequent matrix import work efficiently. We propose that the two-step import pathway for NDUFAF8 allows integration of the activity of matrix complex I biogenesis pathways with the activity of the mitochondrial disulfide relay system in the IMS. Such coordination might not be limited to NDUFAF8 as we identified further proteins that can follow such a two-step import pathway.
Collapse
Affiliation(s)
- Esra Peker
- Institute for Biochemistry, University of Cologne, Cologne, Germany
| | - Konstantin Weiss
- Institute for Biochemistry, University of Cologne, Cologne, Germany
| | - Jiyao Song
- Institute of Biochemistry and Molecular Biology, Medical Faculty, University of Bonn, Bonn, Germany
| | - Christine Zarges
- Institute for Biochemistry, University of Cologne, Cologne, Germany
| | - Sarah Gerlich
- Institute for Biochemistry, University of Cologne, Cologne, Germany
| | - Volker Boehm
- Institute for Genetics, University of Cologne, Cologne, Germany
| | - Aleksandra Trifunovic
- Institute for Mitochondrial Diseases and Aging, Medical Faculty, University of Cologne, Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
- Center for Molecular Medicine, University of Cologne, Cologne, Germany
| | - Thomas Langer
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
- Center for Molecular Medicine, University of Cologne, Cologne, Germany
- Department of Mitochondrial Proteostasis, Max Planck Institute for Biology of Ageing, Cologne, Germany
| | - Niels H. Gehring
- Institute for Genetics, University of Cologne, Cologne, Germany
- Center for Molecular Medicine, University of Cologne, Cologne, Germany
| | - Thomas Becker
- Institute of Biochemistry and Molecular Biology, Medical Faculty, University of Bonn, Bonn, Germany
| | - Jan Riemer
- Institute for Biochemistry, University of Cologne, Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| |
Collapse
|
25
|
Kwon SC, Lee J, Kwon YT, Heo AJ. Monitoring the interactions between N-degrons and N-recognins of the Arg/N-degron pathway. Methods Enzymol 2023; 686:165-203. [PMID: 37532399 DOI: 10.1016/bs.mie.2023.05.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2023]
Abstract
As defined by the N-degron pathway, single N-terminal (Nt) amino acids can function as N-degrons that induce the degradation of proteins and other biological materials. Central to this pathway is the selective recognition of N-degrons by cognate N-recognins that direct the substrates to either the ubiquitin (Ub)-proteasome system (UPS) or autophagy-lysosome pathway (ALP). Eukaryotic cells have developed diverse pathways to utilize all 20 amino acids in the genetic code as pro-N-degrons or N-degrons which can be generated through endoproteolytic cleavage or post-translational modifications. Amongst these, the arginine (Arg) N-degron plays a key role in both cis- and trans-degradation of a large spectrum of cellular materials by the proteasome or lysosome. In mammals, Arg/N-degrons can be generated through endoproteolytic cleavage or post-translational conjugation of the amino acid L-Arg by ATE1-encoded R-transferases (EC 2.3.2.8), which requires Arg-tRNAArg as a cofactor. Arg/N-degrons of short-lived substrates are recognized by a family of N-recognins characterized by the UBR box for polyubiquitination and proteasomal degradation. Under stresses, however, the same degrons can be recognized for autophagic degradation by the ZZ domain of the N-recognin p62/SQSTSM-1/Sequestosome-1 or KCMF1. Biochemical tools were developed to monitor the interaction of Arg/N-degrons with its cognate N-recognins. These assays were employed to identify new N-recognins and to characterize their biochemical properties and physiological functions. The principles of these assays may be applied for other types of N-degron pathways. Below, we describe the methods that analyze the interaction of Arg/N-degrons and their chemical mimics to N-recognins.
Collapse
Affiliation(s)
- Soon Chul Kwon
- Cellular Degradation Biology Center and Department of Biomedical Sciences, College of Medicine, Seoul National University, Seoul, South Korea
| | - Jihoon Lee
- Cellular Degradation Biology Center and Department of Biomedical Sciences, College of Medicine, Seoul National University, Seoul, South Korea; AUTOTAC Bio Inc., Seoul, South Korea
| | - Yong Tae Kwon
- Cellular Degradation Biology Center and Department of Biomedical Sciences, College of Medicine, Seoul National University, Seoul, South Korea; AUTOTAC Bio Inc., Seoul, South Korea; Ischemic/Hypoxic Disease Institute, College of Medicine, Seoul National University, Seoul, South Korea; SNU Dementia Research Center, College of Medicine, Seoul National University, Seoul, South Korea.
| | - Ah Jung Heo
- Cellular Degradation Biology Center and Department of Biomedical Sciences, College of Medicine, Seoul National University, Seoul, South Korea.
| |
Collapse
|
26
|
Heo AJ, Kim SB, Kwon YT, Ji CH. The N-degron pathway: From basic science to therapeutic applications. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2023; 1866:194934. [PMID: 36990317 DOI: 10.1016/j.bbagrm.2023.194934] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 03/22/2023] [Accepted: 03/22/2023] [Indexed: 03/30/2023]
Abstract
The N-degron pathway is a degradative system in which single N-terminal (Nt) amino acids regulate the half-lives of proteins and other biological materials. These determinants, called N-degrons, are recognized by N-recognins that link them to the ubiquitin (Ub)-proteasome system (UPS) or autophagy-lysosome system (ALS). In the UPS, the Arg/N-degron pathway targets the Nt-arginine (Nt-Arg) and other N-degrons to assemble Lys48 (K48)-linked Ub chains by UBR box N-recognins for proteasomal proteolysis. In the ALS, Arg/N-degrons are recognized by the N-recognin p62/SQSTSM-1/Sequestosome-1 to induce cis-degradation of substrates and trans-degradation of various cargoes such as protein aggregates and subcellular organelles. This crosstalk between the UPS and ALP involves reprogramming of the Ub code. Eukaryotic cells developed diverse ways to target all 20 principal amino acids for degradation. Here we discuss the components, regulation, and functions of the N-degron pathways, with an emphasis on the basic mechanisms and therapeutic applications of Arg/N-degrons and N-recognins.
Collapse
Affiliation(s)
- Ah Jung Heo
- Cellular Degradation Biology Center and Department of Biomedical Sciences, College of Medicine, Seoul National University, Seoul 03080, Republic of Korea
| | - Su Bin Kim
- Cellular Degradation Biology Center and Department of Biomedical Sciences, College of Medicine, Seoul National University, Seoul 03080, Republic of Korea
| | - Yong Tae Kwon
- Cellular Degradation Biology Center and Department of Biomedical Sciences, College of Medicine, Seoul National University, Seoul 03080, Republic of Korea; AUTOTAC Bio Inc., Changkyunggung-ro 254, Jongno-gu, Seoul 03077, Republic of Korea; Ischemic/Hypoxic Disease Institute, College of Medicine, Seoul National University, Seoul 110-799, Republic of Korea; SNU Dementia Research Center, College of Medicine, Seoul National University, Seoul 110-799, Republic of Korea.
| | - Chang Hoon Ji
- Cellular Degradation Biology Center and Department of Biomedical Sciences, College of Medicine, Seoul National University, Seoul 03080, Republic of Korea; AUTOTAC Bio Inc., Changkyunggung-ro 254, Jongno-gu, Seoul 03077, Republic of Korea.
| |
Collapse
|
27
|
van de Kooij B, de Vries E, Rooswinkel RW, Janssen GMC, Kok FK, van Veelen PA, Borst J. N-terminal acetylation can stabilize proteins independent of their ubiquitination. Sci Rep 2023; 13:5333. [PMID: 37005459 PMCID: PMC10067848 DOI: 10.1038/s41598-023-32380-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 03/27/2023] [Indexed: 04/04/2023] Open
Abstract
The majority of proteins in mammalian cells are modified by covalent attachment of an acetyl-group to the N-terminus (Nt-acetylation). Paradoxically, Nt-acetylation has been suggested to inhibit as well as to promote substrate degradation. Contrasting these findings, proteome-wide stability measurements failed to detect any correlation between Nt-acetylation status and protein stability. Accordingly, by analysis of protein stability datasets, we found that predicted Nt-acetylation positively correlates with protein stability in case of GFP, but this correlation does not hold for the entire proteome. To further resolve this conundrum, we systematically changed the Nt-acetylation and ubiquitination status of model substrates and assessed their stability. For wild-type Bcl-B, which is heavily modified by proteasome-targeting lysine ubiquitination, Nt-acetylation did not correlate with protein stability. For a lysine-less Bcl-B mutant, however, Nt-acetylation correlated with increased protein stability, likely due to prohibition of ubiquitin conjugation to the acetylated N-terminus. In case of GFP, Nt-acetylation correlated with increased protein stability, as predicted, but our data suggest that Nt-acetylation does not affect GFP ubiquitination. Similarly, in case of the naturally lysine-less protein p16, Nt-acetylation correlated with protein stability, regardless of ubiquitination on its N-terminus or on an introduced lysine residue. A direct effect of Nt-acetylation on p16 stability was supported by studies in NatB-deficient cells. Together, our studies argue that Nt-acetylation can stabilize proteins in human cells in a substrate-specific manner, by competition with N-terminal ubiquitination, but also by other mechanisms that are independent of protein ubiquitination status.
Collapse
Affiliation(s)
- Bert van de Kooij
- Department of Human Genetics, Leiden University Medical Center, Leiden, the Netherlands.
- Division of Tumor Biology and Immunology, The Netherlands Cancer Institute, Amsterdam, the Netherlands.
- Department of Medical Oncology, University Medical Center Groningen, Groningen, the Netherlands.
| | - Evert de Vries
- Division of Tumor Biology and Immunology, The Netherlands Cancer Institute, Amsterdam, the Netherlands
- Department of Immunology and Oncode Institute, Leiden University Medical Center, Leiden, the Netherlands
| | - Rogier W Rooswinkel
- Division of Tumor Biology and Immunology, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - George M C Janssen
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, the Netherlands
| | - Frédérique K Kok
- Division of Tumor Biology and Immunology, The Netherlands Cancer Institute, Amsterdam, the Netherlands
- Leiden Academic Centre for Drug Research, Leiden, the Netherlands
| | - Peter A van Veelen
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, the Netherlands
| | - Jannie Borst
- Division of Tumor Biology and Immunology, The Netherlands Cancer Institute, Amsterdam, the Netherlands.
- Department of Immunology and Oncode Institute, Leiden University Medical Center, Leiden, the Netherlands.
| |
Collapse
|
28
|
Heo AJ, Ji CH, Kwon YT. The Cys/N-degron pathway in the ubiquitin-proteasome system and autophagy. Trends Cell Biol 2023; 33:247-259. [PMID: 35945077 DOI: 10.1016/j.tcb.2022.07.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 07/12/2022] [Accepted: 07/13/2022] [Indexed: 10/15/2022]
Abstract
The N-degron pathway is a degradative system in which the N-terminal residues of proteins modulate the half-lives of proteins and other cellular materials. The majority of amino acids in the genetic code have the potential to induce cis or trans degradation in diverse processes, which requires selective recognition between N-degrons and cognate N-recognins. Of particular interest is the Cys/N-degron branch, in which the N-terminal cysteine (Nt-Cys) induces proteolysis via either the ubiquitin (Ub)-proteasome system (UPS) or the autophagy-lysosome pathway (ALP), depending on physiological conditions. Recent studies provided new insights into the central role of Nt-Cys in sensing the fluctuating levels of oxygen and reactive oxygen species (ROS). Here, we discuss the components, regulations, and functions of the Cys/N-degron pathway.
Collapse
Affiliation(s)
- Ah Jung Heo
- Cellular Degradation Biology Center and Department of Biomedical Sciences, College of Medicine, Seoul National University, Seoul 03080, Korea
| | - Chang Hoon Ji
- Cellular Degradation Biology Center and Department of Biomedical Sciences, College of Medicine, Seoul National University, Seoul 03080, Korea; AUTOTAC Bio Inc., Changkyunggung-ro 254, Jongno-gu, Seoul 03077, Korea
| | - Yong Tae Kwon
- Cellular Degradation Biology Center and Department of Biomedical Sciences, College of Medicine, Seoul National University, Seoul 03080, Korea; AUTOTAC Bio Inc., Changkyunggung-ro 254, Jongno-gu, Seoul 03077, Korea; Ischemic/Hypoxic Disease Institute, College of Medicine, Seoul National University, Seoul 110-799, Korea.
| |
Collapse
|
29
|
Seo DY, Kim D, Nguyen KT, Oh J, Lee JS, Hwang CS. N-Terminally arginylated ubiquitin is attached to histone H2A by RING1B E3 ligase in human cells. Biochem Biophys Res Commun 2023; 666:186-194. [PMID: 36932026 DOI: 10.1016/j.bbrc.2023.02.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 02/09/2023] [Indexed: 02/11/2023]
Abstract
Ubiquitin (Ub) is highly conserved in all eukaryotic organisms and begins at the N-terminus with Met and Gln. Our recent research demonstrates that N-terminally (Nt-) arginylated Ub can be produced in the yeast Saccharomyces cerevisiae. However, the existence of Nt-arginylated Ub in multicellular organisms remains unknown. Here we explore the mechanism for creating Nt-arginylated Ub using human embryonic kidney HEK293 cells that express various Nt-modified Ubs. We found that Gln-starting Q-Ub was converted into Glu-starting E-Ub by NTAQ1 Nt-deamidase and subsequently Nt-arginylated by ATE1 arginyltransferase in HEK293 cells. We also found that the resulting Arg-Glu-starting RE-Ub was mainly deposited on the Lys119 residue of histone H2A. Furthermore, RING1B E3 Ub ligase mediated the attachment of RE-Ub to H2A. These findings reveal a previously unknown type of histone ubiquitylation which greatly increases the combinatorial complexity of histone and ubiquitin codes.
Collapse
Affiliation(s)
- Dong-Young Seo
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Gyeongbuk, 37673, Republic of Korea
| | - Dasom Kim
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Gyeongbuk, 37673, Republic of Korea
| | - Kha The Nguyen
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Gyeongbuk, 37673, Republic of Korea
| | - Junsoo Oh
- Department of Molecular Bioscience, College of Biomedical Science, Kangwon National University, Chuncheon, Kangwon, 24341, Republic of Korea
| | - Jung-Shin Lee
- Department of Molecular Bioscience, College of Biomedical Science, Kangwon National University, Chuncheon, Kangwon, 24341, Republic of Korea
| | - Cheol-Sang Hwang
- Department of Life Sciences, Korea University, Seoul, 02841, Republic of Korea.
| |
Collapse
|
30
|
Paudel RR, Lu D, Roy Chowdhury S, Monroy EY, Wang J. Targeted Protein Degradation via Lysosomes. Biochemistry 2023; 62:564-579. [PMID: 36130224 DOI: 10.1021/acs.biochem.2c00310] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
In the scope of targeted protein degradation (TPD), proteolysis-targeting chimeras (PROTACs), leveraging the ubiquitin-proteasome system, have been extensively studied. However, they are limited to the degradation of soluble and membrane proteins, excluding the aggregated and extracellular proteins and dysfunctional organelles. As an alternative protein degradation pathway, lysosomes serve as a feasible tool for accessing these untouched proteins and/or organelles by proteosomes. Here, we focus on reviewing the emerging lysosome-mediated TPD, such as AUTAC, ATTEC, AUTOTAC, LYTAC, and MoDE-A. Intracellular targets, such as soluble and aggregated proteins and organelles, can be degraded via the autophagy-lysosome pathway. Extracellular targets, such as membrane proteins, and secreted extracellular proteins can be degraded via the endosome-lysosome pathway. In addition, we summarize the mechanism and regulation of autophagy, available methods and assays for monitoring the autophagy process, and the recently developed chemical probes for perturbing the autophagy pathways.
Collapse
Affiliation(s)
- Rishi R Paudel
- Department of Pharmacology and Chemical Biology, Baylor College of Medicine, Houston, Texas 77030, United States
| | - Dong Lu
- Department of Pharmacology and Chemical Biology, Baylor College of Medicine, Houston, Texas 77030, United States
| | - Sandipan Roy Chowdhury
- Department of Pharmacology and Chemical Biology, Baylor College of Medicine, Houston, Texas 77030, United States
| | - Erika Y Monroy
- Department of Pharmacology and Chemical Biology, Baylor College of Medicine, Houston, Texas 77030, United States
| | - Jin Wang
- Department of Pharmacology and Chemical Biology, Baylor College of Medicine, Houston, Texas 77030, United States.,Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030, United States
| |
Collapse
|
31
|
Xu J, Liu Z, Zhang J, Chen S, Wang W, Zhao X, Zhen M, Huang X. N-end Rule-Mediated Proteasomal Degradation of ATGL Promotes Lipid Storage. Diabetes 2023; 72:210-222. [PMID: 36346641 PMCID: PMC9871197 DOI: 10.2337/db22-0362] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 11/03/2022] [Indexed: 11/09/2022]
Abstract
Cellular lipid storage is regulated by the balance of lipogenesis and lipolysis. The rate-limiting triglyceride hydrolase ATGL (desnutrin/PNPLA2) is critical for lipolysis. The control of ATGL transcription, localization, and activation has been intensively studied, while regulation of the protein stability of ATGL is much less explored. In this study, we showed that the protein stability of ATGL is regulated by the N-end rule in cultured cells and in mice. The N-end rule E3 ligases UBR1 and UBR2 reduce the level of ATGL and affect lipid storage. The N-end rule-resistant ATGL(F2A) mutant, in which the N-terminal phenylalanine (F) of ATGL is substituted by alanine (A), has increased protein stability and enhanced lipolysis activity. ATGLF2A/F2A knock-in mice are protected against high-fat diet (HFD)-induced obesity, hepatic steatosis, and insulin resistance. Hepatic knockdown of Ubr1 attenuates HFD-induced hepatic steatosis by enhancing the ATGL level. Finally, the protein levels of UBR1 and ATGL are negatively correlated in the adipose tissue of obese mice. Our study reveals N-end rule-mediated proteasomal regulation of ATGL, a finding that may potentially be beneficial for treatment of obesity.
Collapse
Affiliation(s)
- Jiesi Xu
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- Corresponding authors: Jiesi Xu, , and Xun Huang,
| | - Zhenglong Liu
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jianxin Zhang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Siyu Chen
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Wei Wang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Xuefan Zhao
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Mei Zhen
- Lunenfeld–Tanebaum Research Institute, Departments of Molecular Genetics and Physiology, University of Toronto, Toronto, Ontario, Canada
| | - Xun Huang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- Corresponding authors: Jiesi Xu, , and Xun Huang,
| |
Collapse
|
32
|
Di Nisio E, Licursi V, Mannironi C, Buglioni V, Paiardini A, Robusti G, Noberini R, Bonaldi T, Negri R. A truncated and catalytically inactive isoform of KDM5B histone demethylase accumulates in breast cancer cells and regulates H3K4 tri-methylation and gene expression. Cancer Gene Ther 2023:10.1038/s41417-022-00584-w. [PMID: 36697763 DOI: 10.1038/s41417-022-00584-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 12/20/2022] [Accepted: 12/21/2022] [Indexed: 01/27/2023]
Abstract
KDM5B histone demethylase is overexpressed in many cancers and plays an ambivalent role in oncogenesis, depending on the specific context. This ambivalence could be explained by the expression of KDM5B protein isoforms with diverse functional roles, which could be present at different levels in various cancer cell lines. We show here that one of these isoforms, namely KDM5B-NTT, accumulates in breast cancer cell lines due to remarkable protein stability relative to the canonical PLU-1 isoform, which shows a much faster turnover. This isoform is the truncated and catalytically inactive product of an mRNA with a transcription start site downstream of the PLU-1 isoform, and the consequent usage of an alternative ATG for translation initiation. It also differs from the PLU-1 transcript in the inclusion of an additional exon (exon-6), previously attributed to other putative isoforms. Overexpression of this isoform in MCF7 cells leads to an increase in bulk H3K4 methylation and induces derepression of a gene cluster, including the tumor suppressor Cav1 and several genes involved in the interferon-alpha and -gamma response. We discuss the relevance of this finding considering the hypothesis that KDM5B may possess regulatory roles independent of its catalytic activity.
Collapse
Affiliation(s)
- Elena Di Nisio
- Department of Biology and Biotechnologies "C. Darwin", Sapienza University of Rome, via dei Sardi 70, 00185, Rome, Italy.,MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Sir James Black Centre, Dow Street, DD1 5EH, Dundee, Scotland, UK
| | - Valerio Licursi
- Institute of Molecular Biology and Pathology (IBPM), National Research Council (CNR) of Italy, Via degli Apuli 4, 00185, Rome, Italy
| | - Cecilia Mannironi
- Institute of Molecular Biology and Pathology (IBPM), National Research Council (CNR) of Italy, Via degli Apuli 4, 00185, Rome, Italy
| | - Valentina Buglioni
- Department of Biology and Biotechnologies "C. Darwin", Sapienza University of Rome, via dei Sardi 70, 00185, Rome, Italy
| | - Alessandro Paiardini
- Department of Biochemical Sciences, Sapienza University of Rome, p.le Aldo Moro 5, 00185, Rome, Italy
| | - Giulia Robusti
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, Via Adamello 16, 20139, Milan, Italy
| | - Roberta Noberini
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, Via Adamello 16, 20139, Milan, Italy
| | - Tiziana Bonaldi
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, Via Adamello 16, 20139, Milan, Italy.,Department of Oncology and Hematology-Oncology, University of Milan, Milan, 20122, Italy
| | - Rodolfo Negri
- Department of Biology and Biotechnologies "C. Darwin", Sapienza University of Rome, via dei Sardi 70, 00185, Rome, Italy. .,Institute of Molecular Biology and Pathology (IBPM), National Research Council (CNR) of Italy, Via degli Apuli 4, 00185, Rome, Italy.
| |
Collapse
|
33
|
Macedo-da-Silva J, Rosa-Fernandes L, Gomes VDM, Santiago VF, Santos DM, Molnar CMS, Barboza BR, de Souza EE, Marques RF, Boscardin SB, Durigon EL, Marinho CRF, Wrenger C, Marie SKN, Palmisano G. Protein Arginylation Is Regulated during SARS-CoV-2 Infection. Viruses 2023; 15:v15020290. [PMID: 36851505 PMCID: PMC9964439 DOI: 10.3390/v15020290] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 01/09/2023] [Accepted: 01/17/2023] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND In 2019, the world witnessed the onset of an unprecedented pandemic. By February 2022, the infection by SARS-CoV-2 has already been responsible for the death of more than 5 million people worldwide. Recently, we and other groups discovered that SARS-CoV-2 infection induces ER stress and activation of the unfolded protein response (UPR) pathway. Degradation of misfolded/unfolded proteins is an essential element of proteostasis and occurs mainly in lysosomes or proteasomes. The N-terminal arginylation of proteins is characterized as an inducer of ubiquitination and proteasomal degradation by the N-degron pathway. RESULTS The role of protein arginylation during SARS-CoV-2 infection was elucidated. Protein arginylation was studied in Vero CCL-81, macrophage-like THP1, and Calu-3 cells infected at different times. A reanalysis of in vivo and in vitro public omics data combined with immunoblotting was performed to measure levels of arginyl-tRNA-protein transferase (ATE1) and its substrates. Dysregulation of the N-degron pathway was specifically identified during coronavirus infections compared to other respiratory viruses. We demonstrated that during SARS-CoV-2 infection, there is an increase in ATE1 expression in Calu-3 and Vero CCL-81 cells. On the other hand, infected macrophages showed no enzyme regulation. ATE1 and protein arginylation was variant-dependent, as shown using P1 and P2 viral variants and HEK 293T cells transfection with the spike protein and receptor-binding domains (RBD). In addition, we report that ATE1 inhibitors, tannic acid and merbromine (MER) reduce viral load. This finding was confirmed in ATE1-silenced cells. CONCLUSIONS We demonstrate that ATE1 is increased during SARS-CoV-2 infection and its inhibition has potential therapeutic value.
Collapse
Affiliation(s)
- Janaina Macedo-da-Silva
- GlycoProteomics Laboratory, Department of Parasitology, ICB, University of São Paulo, São Paulo 05508-000, Brazil
| | - Livia Rosa-Fernandes
- GlycoProteomics Laboratory, Department of Parasitology, ICB, University of São Paulo, São Paulo 05508-000, Brazil
- Laboratory of Experimental Immunoparasitology, Department of Parasitology, ICB, University of São Paulo, São Paulo 05508-000, Brazil
| | - Vinicius de Morais Gomes
- GlycoProteomics Laboratory, Department of Parasitology, ICB, University of São Paulo, São Paulo 05508-000, Brazil
| | - Veronica Feijoli Santiago
- GlycoProteomics Laboratory, Department of Parasitology, ICB, University of São Paulo, São Paulo 05508-000, Brazil
| | - Deivid Martins Santos
- GlycoProteomics Laboratory, Department of Parasitology, ICB, University of São Paulo, São Paulo 05508-000, Brazil
| | | | - Bruno Rafael Barboza
- GlycoProteomics Laboratory, Department of Parasitology, ICB, University of São Paulo, São Paulo 05508-000, Brazil
| | - Edmarcia Elisa de Souza
- Unit for Drug Discovery, Department of Parasitology, Institute of Biomedical Sciences at the University of São Paulo, São Paulo 05508-000, Brazil
| | - Rodolfo Ferreira Marques
- Laboratory of Antigen Targeting for Dendritic Cells, Department of Parasitology, Institute of Biomedical Sciences at the University of São Paulo, São Paulo 05508-000, Brazil
| | - Silvia Beatriz Boscardin
- Laboratory of Antigen Targeting for Dendritic Cells, Department of Parasitology, Institute of Biomedical Sciences at the University of São Paulo, São Paulo 05508-000, Brazil
| | - Edison Luiz Durigon
- Laboratory of Clinical and Molecular Virology, Department of Microbiology, ICB, University of São Paulo, São Paulo 05508-000, Brazil
| | - Claudio Romero Farias Marinho
- Laboratory of Experimental Immunoparasitology, Department of Parasitology, ICB, University of São Paulo, São Paulo 05508-000, Brazil
| | - Carsten Wrenger
- Unit for Drug Discovery, Department of Parasitology, Institute of Biomedical Sciences at the University of São Paulo, São Paulo 05508-000, Brazil
| | - Suely Kazue Nagahashi Marie
- Laboratory of Molecular and Cellular Biology (LIM 15), Department of Neurology, Faculdade de Medicina FMUSP, Universidade de São Paulo, São Paulo 01246-903, Brazil
| | - Giuseppe Palmisano
- GlycoProteomics Laboratory, Department of Parasitology, ICB, University of São Paulo, São Paulo 05508-000, Brazil
- School of Natural Sciences, Macquarie University, Sydney 2109, Australia
- Correspondence: or ; Tel.: +55-11-99920-8662
| |
Collapse
|
34
|
Lee SJ, Kim HY, Lee MJ, Kim SB, Kwon YT, Ji CH. Characterization and chemical modulation of p62/SQSTM1/Sequestosome-1 as an autophagic N-recognin. Methods Enzymol 2023. [PMID: 37532402 DOI: 10.1016/bs.mie.2023.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
Abstract
In the Arg/N-degron pathway, single N-terminal (Nt) residues function as N-degrons recognized by UBR box-containing N-recognins that induce substrate ubiquitination and proteasomal degradation. Recent studies led to the discovery of the autophagic Arg/N-degron pathway, in which the autophagic receptor p62/SQSTM1/Sequestosome-1 acts as an N-recognin that binds the Nt-Arg and other destabilizing residues as N-degrons. Upon binding to Nt-Arg, p62 undergoes self-polymerization associated with its cargoes, accelerating the macroautophagic delivery of p62-cargo complexes to autophagosomes leading to degradation by lysosomal hydrolases. This autophagic mechanism is emerging as an important pathway that modulates the lysosomal degradation of various biomaterial ranging from protein aggregates and subcellular organelles to invading pathogens. Chemical mimics of the physiological N-degrons were developed to exert therapeutic efficacy in pathophysiological processes associated with neurodegeneration and other related diseases. Here, we describe the methods to monitor the activities of p62 in a dual role as an N-recognin and an autophagic receptor. The topic includes self-polymerization (for cargo condensation), its interaction with LC3 on autophagic membranes (for cargo targeting), and the degradation of p62-cargo complexes by lysosomal hydrolases. We also discuss the development and use of small molecule mimics of N-degrons that modulate p62-dependent macroautophagy in biological and pathophysiological processes.
Collapse
|
35
|
Dougan DA, Truscott KN. Affinity isolation and biochemical characterization of N-degron ligands using the N-recognin, ClpS. Methods Enzymol 2023. [PMID: 37532398 DOI: 10.1016/bs.mie.2023.02.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
Abstract
The N-degron pathways are a set of proteolytic systems that relate the half-life of a protein to its N-terminal (Nt) residue. In Escherichia coli the principal N-degron pathway is known as the Leu/N-degron pathway. Proteins degraded by this pathway contain an Nt degradation signal (N-degron) composed of an Nt primary destabilizing (Nd1) residue (Leu, Phe, Trp or Tyr). All Leu/N-degron substrates are recognized by the adaptor protein, ClpS and delivered to the ClpAP protease for degradation. Although many components of the pathway are well defined, the physiological role of this pathway remains poorly understood. To address this gap in knowledge we developed a biospecific affinity chromatography technique to isolate physiological substrates of the Leu/N-degron pathway. In this chapter we describe the use of peptide arrays to determine the binding specificity of ClpS. We demonstrate how the information obtained from the peptide array, when coupled with ClpS affinity chromatography, can be used to specifically elute physiological Leu/N-degron ligands from a bacterial lysate. These techniques are illustrated using E. coli ClpS (EcClpS), but both are broadly suitable for application to related N-recognins and systems, not only for the determination of N-recognin specificity, but also for the identification of natural Leu/N-degron ligands from various bacterial and plant species that contain ClpS homologs.
Collapse
|
36
|
Yan C, Li Q, Sun Q, Yang L, Liu X, Zhao Y, Shi M, Li X, Luo K. Promising Nanomedicines of Shikonin for Cancer Therapy. Int J Nanomedicine 2023; 18:1195-1218. [PMID: 36926681 PMCID: PMC10013574 DOI: 10.2147/ijn.s401570] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 02/15/2023] [Indexed: 03/18/2023] Open
Abstract
Malignant tumor, the leading cause of death worldwide, poses a serious threat to human health. For decades, natural product has been proven to be an essential source for novel anticancer drug discovery. Shikonin (SHK), a natural molecule separated from the root of Lithospermum erythrorhizon, shows great potential in anticancer therapy. However, its further clinical application is significantly restricted by poor bioavailability, adverse effects, and non-selective toxicity. With the development of nanotechnology, nano drug delivery systems have emerged as promising strategies to improve bioavailability and enhance the therapeutic efficacy of drugs. To overcome the shortcoming of SHK, various nano drug delivery systems such as liposomes, polymeric micelles, nanoparticles, nanogels, and nanoemulsions, were developed to achieve efficient delivery for enhanced antitumor effects. Herein, this review summarizes the anticancer pharmacological activities and pharmacokinetics of SHK. Additionally, the latest progress of SHK nanomedicines in cancer therapy is outlined, focusing on long circulation, tumor targeting ability, tumor microenvironment responsive drug release, and nanosystem-mediated combination therapy. Finally, the challenges and prospects of SHK nanomedicines in the future clinical application are spotlighted.
Collapse
Affiliation(s)
- Chunmei Yan
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, People's Republic of China
| | - Qiuxia Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, People's Republic of China
| | - Qiang Sun
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, People's Republic of China
| | - Lu Yang
- Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, People's Republic of China
| | - Xing Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, People's Republic of China
| | - Yuxin Zhao
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, People's Republic of China
| | - Mingyi Shi
- School of Intelligent Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, People's Republic of China
| | - Xiaofang Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, People's Republic of China
| | - Kaipei Luo
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, People's Republic of China
| |
Collapse
|
37
|
Böhm J, Winter N, Kozlic A, Telser T, Nehlin L, Bachmair A. Analysis of higher plant N-degron pathway components and substrates via expression in S. cerevisiae. Methods Enzymol 2023. [PMID: 37532401 DOI: 10.1016/bs.mie.2023.02.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
Abstract
Heterologous expression of enzymes can generate a background-free environment that facilitates investigation of enzyme properties, for instance to focus on particular isoforms in case of gene families, or on individual splicing variants. If a proper host can be found, in vivo assays are often simpler than overexpression and purification, followed by in vitro measurements, would be. We expressed plant ubiquitin ligase PRT6 in the budding yeast Saccharomyces cerevisiae for studies on activity and substrate preferences. Expression of this large enzyme profits from the eukaryotic folding catalysis provided by budding yeast, and from the presence of endogenous ubiquitin activating enzyme. While yeast encodes a ubiquitin ligase, Ubr1, that is functionally related to PRT6, a strain with deletion of the UBR1 gene offers a background-free host. Two different substrates were analyzed. One was a model substate, and the other one a natural substrate fused to a reporter. Two different methods were compared for assessment of protein stability. A method based on internal standardization via tandem fluorescent timer measurement turned out to be complementary to standardization based on cell culture density.
Collapse
|
38
|
Weits DA, Zhou L, Giuntoli B, Carbonare LD, Iacopino S, Piccinini L, Lombardi L, Shukla V, Bui LT, Novi G, van Dongen JT, Licausi F. Acquisition of hypoxia inducibility by oxygen sensing N-terminal cysteine oxidase in spermatophytes. PLANT, CELL & ENVIRONMENT 2023; 46:322-338. [PMID: 36120894 PMCID: PMC10092093 DOI: 10.1111/pce.14440] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 08/23/2022] [Accepted: 08/29/2022] [Indexed: 06/15/2023]
Abstract
N-terminal cysteine oxidases (NCOs) use molecular oxygen to oxidise the amino-terminal cysteine of specific proteins, thereby initiating the proteolytic N-degron pathway. To expand the characterisation of the plant family of NCOs (plant cysteine oxidases [PCOs]), we performed a phylogenetic analysis across different taxa in terms of sequence similarity and transcriptional regulation. Based on this survey, we propose a distinction of PCOs into two main groups. A-type PCOs are conserved across all plant species and are generally unaffected at the messenger RNA level by oxygen availability. Instead, B-type PCOs appeared in spermatophytes to acquire transcriptional regulation in response to hypoxia. The inactivation of two A-type PCOs in Arabidopsis thaliana, PCO4 and PCO5, is sufficient to activate the anaerobic response in young seedlings, whereas the additional removal of B-type PCOs leads to a stronger induction of anaerobic genes and impairs plant growth and development. Our results show that both PCO types are required to regulate the anaerobic response in angiosperms. Therefore, while it is possible to distinguish two clades within the PCO family, we conclude that they all contribute to restrain the anaerobic transcriptional programme in normoxic conditions and together generate a molecular switch to toggle the hypoxic response.
Collapse
Affiliation(s)
- Daan A. Weits
- Institute of Biology 1, Aachen Biology and BiotechnologyRWTH Aachen UniversityAachenGermany
- Institute of Life SciencesScuola Superiore Sant'AnnaPisaItaly
- Plant‐Environment Signaling, Institute of Environmental BiologyUtrecht UniversityUtrechtThe Netherlands
| | - Lina Zhou
- Institute of Biology 1, Aachen Biology and BiotechnologyRWTH Aachen UniversityAachenGermany
- School of Life SciencesLanzhou UniversityLanzhouChina
- School of Ecology and EnvironmentNorthwestern Polytechnical UniversityXi'anChina
| | - Beatrice Giuntoli
- Institute of Life SciencesScuola Superiore Sant'AnnaPisaItaly
- Department of BiologyUniversity of PisaPisaItaly
| | | | - Sergio Iacopino
- Institute of Life SciencesScuola Superiore Sant'AnnaPisaItaly
- Department of BiologyUniversity of PisaPisaItaly
- Department of Plant SciencesUniversity of OxfordOxfordUK
| | - Luca Piccinini
- Institute of Life SciencesScuola Superiore Sant'AnnaPisaItaly
| | | | - Vinay Shukla
- Institute of Life SciencesScuola Superiore Sant'AnnaPisaItaly
| | - Liem T. Bui
- Institute of Life SciencesScuola Superiore Sant'AnnaPisaItaly
- Biotechnology Research and Development InstituteCan Tho UniversityCan ThoVietnam
| | - Giacomo Novi
- Institute of Life SciencesScuola Superiore Sant'AnnaPisaItaly
| | - Joost T. van Dongen
- Institute of Biology 1, Aachen Biology and BiotechnologyRWTH Aachen UniversityAachenGermany
| | - Francesco Licausi
- Institute of Life SciencesScuola Superiore Sant'AnnaPisaItaly
- Department of BiologyUniversity of PisaPisaItaly
- Department of Plant SciencesUniversity of OxfordOxfordUK
| |
Collapse
|
39
|
Kim HY, Yoon HS, Heo AJ, Jung EJ, Ji CH, Mun SR, Lee MJ, Kwon YT, Park JW. Mitophagy and endoplasmic reticulum-phagy accelerated by a p62 ZZ ligand alleviates paracetamol-induced hepatotoxicity. Br J Pharmacol 2022; 180:1247-1266. [PMID: 36479690 DOI: 10.1111/bph.16004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 10/31/2022] [Accepted: 11/28/2022] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND AND PURPOSE Paracetamol (acetaminophen)-induced hepatotoxicity is the leading cause of drug-induced liver injury worldwide. Autophagy is a degradative process by which various cargoes are collected by the autophagic receptors such as p62/SQSTM1/Sequestosome-1 for lysosomal degradation. Here, we investigated the protective role of p62-dependent autophagy in paracetamol-induced liver injury. EXPERIMENTAL APPROACH Paracetamol-induced hepatotoxicity was induced by a single i.p. injection of paracetamol (500 mg·kg-1 ) in C57/BL6 male mice. YTK-2205 (20 mg·kg-1 ), a p62 agonist targeting ZZ domain, was co- or post-administered with paracetamol. Western blotting and immunocytochemistry were performed to explore the mechanism. KEY RESULTS N-terminal arginylation of the molecular chaperone calreticulin retro-translocated from the endoplasmic reticulum (ER) was induced in the livers undergoing paracetamol-induced hepatotoxicity, and YTK-2205 exhibited notable therapeutic efficacy in acute hepatotoxicity as assessed by the levels of serum alanine aminotransferase and hepatic necrosis. This efficacy was significantly attributed to accelerated degradation of ubiquitin (Ub) conjugates as well as damaged mitochondria (mitophagy) and endoplasmic reticulum (ER-phagy). In primary murine hepatocytes treated with paracetamol, YTK-2205 induced the co-localization of p62+ LC3+ phagophores to the sites of mitophagy and ER-phagy. A similar activity of YTK-2205 was observed with N-acetyl-p-benzoquinone imine, a putative toxic metabolite of paracetamol in Hep3B cells. CONCLUSION AND IMPLICATIONS Our results elucidated that p62-dependent autophagy plays a key role in the removal of cytotoxic materials such as damaged mitochondria in paracetamol-induced hepatotoxicity. Small molecule ligands to p62 may be developed into drugs to treat this pathological condition.
Collapse
Affiliation(s)
- Hee-Yeon Kim
- Department of Biochemistry, College of Medicine, Ewha Womans University, Seoul, Republic of Korea
| | - Hee-Soo Yoon
- Department of Biochemistry, College of Medicine, Ewha Womans University, Seoul, Republic of Korea
| | - Ah Jung Heo
- Cellular Degradation Biology Center and Department of Biomedical Sciences, College of Medicine, Seoul National University, Seoul, Republic of Korea
| | - Eui Jung Jung
- Cellular Degradation Biology Center and Department of Biomedical Sciences, College of Medicine, Seoul National University, Seoul, Republic of Korea
| | - Chang Hoon Ji
- Cellular Degradation Biology Center and Department of Biomedical Sciences, College of Medicine, Seoul National University, Seoul, Republic of Korea.,AUTOTAC Bio Inc., 254, Changgyeonggung-ro, Jongno-gu, Seoul, Republic of Korea
| | - Su Ran Mun
- Cellular Degradation Biology Center and Department of Biomedical Sciences, College of Medicine, Seoul National University, Seoul, Republic of Korea
| | - Min Ju Lee
- Cellular Degradation Biology Center and Department of Biomedical Sciences, College of Medicine, Seoul National University, Seoul, Republic of Korea
| | - Yong Tae Kwon
- Cellular Degradation Biology Center and Department of Biomedical Sciences, College of Medicine, Seoul National University, Seoul, Republic of Korea.,AUTOTAC Bio Inc., 254, Changgyeonggung-ro, Jongno-gu, Seoul, Republic of Korea.,Ischemic/Hypoxic Disease Institute, College of Medicine, Seoul National University, Seoul, Republic of Korea.,SNU Dementia Research Center, College of Medicine, Seoul National University, Seoul, Republic of Korea
| | - Joo-Won Park
- Department of Biochemistry, College of Medicine, Ewha Womans University, Seoul, Republic of Korea
| |
Collapse
|
40
|
Lee YJ, Kim JK, Jung CH, Kim YJ, Jung EJ, Lee SH, Choi HR, Son YS, Shim SM, Jeon SM, Choe JH, Lee SH, Whang J, Sohn KC, Hur GM, Kim HT, Yeom J, Jo EK, Kwon YT. Chemical modulation of SQSTM1/p62-mediated xenophagy that targets a broad range of pathogenic bacteria. Autophagy 2022; 18:2926-2945. [PMID: 35316156 PMCID: PMC9673928 DOI: 10.1080/15548627.2022.2054240] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023] Open
Abstract
The N-degron pathway is a proteolytic system in which the N-terminal degrons (N-degrons) of proteins, such as arginine (Nt-Arg), induce the degradation of proteins and subcellular organelles via the ubiquitin-proteasome system (UPS) or macroautophagy/autophagy-lysosome system (hereafter autophagy). Here, we developed the chemical mimics of the N-degron Nt-Arg as a pharmaceutical means to induce targeted degradation of intracellular bacteria via autophagy, such as Salmonella enterica serovar Typhimurium (S. Typhimurium), Escherichia coli, and Streptococcus pyogenes as well as Mycobacterium tuberculosis (Mtb). Upon binding the ZZ domain of the autophagic cargo receptor SQSTM1/p62 (sequestosome 1), these chemicals induced the biogenesis and recruitment of autophagic membranes to intracellular bacteria via SQSTM1, leading to lysosomal degradation. The antimicrobial efficacy was independent of rapamycin-modulated core autophagic pathways and synergistic with the reduced production of inflammatory cytokines. In mice, these drugs exhibited antimicrobial efficacy for S. Typhimurium, Bacillus Calmette-Guérin (BCG), and Mtb as well as multidrug-resistant Mtb and inhibited the production of inflammatory cytokines. This dual mode of action in xenophagy and inflammation significantly protected mice from inflammatory lesions in the lungs and other tissues caused by all the tested bacterial strains. Our results suggest that the N-degron pathway provides a therapeutic target in host-directed therapeutics for a broad range of drug-resistant intracellular pathogens.Abbreviations: ATG: autophagy-related gene; BCG: Bacillus Calmette-Guérin; BMDMs: bone marrow-derived macrophages; CALCOCO2/NDP52: calcium binding and coiled-coil domain 2; CFUs: colony-forming units; CXCL: C-X-C motif chemokine ligand; EGFP: enhanced green fluorescent protein; IL1B/IL-1β: interleukin 1 beta; IL6: interleukin 6; LIR: MAP1LC3/LC3-interacting region; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; Mtb: Mycobacterium tuberculosis; MTOR: mechanistic target of rapamycin kinase; NBR1: NBR1 autophagy cargo receptor; OPTN: optineurin; PB1: Phox and Bem1; SQSTM1/p62: sequestosome 1; S. Typhimurium: Salmonella enterica serovar Typhimurium; TAX1BP1: Tax1 binding protein 1; TNF: tumor necrosis factor; UBA: ubiquitin-associated.
Collapse
Affiliation(s)
- Yoon Jee Lee
- Cellular Degradation Biology Center and Department of Biomedical Sciences, College of Medicine, Seoul National University, Seoul, Republic of Korea
| | - Jin Kyung Kim
- Department of Microbiology, Chungnam National University School of Medicine, Daejeon, Korea,Department of Medical Science, Chungnam National University School of Medicine, Daejeon, Korea,Infection Control Convergence Research Center, Chungnam National University School of Medicine, Daejeon, Korea
| | - Chan Hoon Jung
- Cellular Degradation Biology Center and Department of Biomedical Sciences, College of Medicine, Seoul National University, Seoul, Republic of Korea
| | - Young Jae Kim
- Department of Microbiology, Chungnam National University School of Medicine, Daejeon, Korea,Department of Medical Science, Chungnam National University School of Medicine, Daejeon, Korea,Infection Control Convergence Research Center, Chungnam National University School of Medicine, Daejeon, Korea
| | - Eui Jung Jung
- Cellular Degradation Biology Center and Department of Biomedical Sciences, College of Medicine, Seoul National University, Seoul, Republic of Korea
| | - Su Hyun Lee
- Cellular Degradation Biology Center and Department of Biomedical Sciences, College of Medicine, Seoul National University, Seoul, Republic of Korea
| | - Ha Rim Choi
- Cellular Degradation Biology Center and Department of Biomedical Sciences, College of Medicine, Seoul National University, Seoul, Republic of Korea
| | - Yeon Sung Son
- Neuroscience Research Institute, Medical Research Center, College of Medicine, Seoul National University, Seoul, Republic of Korea
| | - Sang Mi Shim
- Cellular Degradation Biology Center and Department of Biomedical Sciences, College of Medicine, Seoul National University, Seoul, Republic of Korea
| | - Sang Min Jeon
- Department of Microbiology, Chungnam National University School of Medicine, Daejeon, Korea,Department of Medical Science, Chungnam National University School of Medicine, Daejeon, Korea,Infection Control Convergence Research Center, Chungnam National University School of Medicine, Daejeon, Korea
| | - Jin Ho Choe
- Department of Microbiology, Chungnam National University School of Medicine, Daejeon, Korea,Department of Medical Science, Chungnam National University School of Medicine, Daejeon, Korea,Infection Control Convergence Research Center, Chungnam National University School of Medicine, Daejeon, Korea
| | - Sang-Hee Lee
- Center for Research Equipment, Korea Basic Science Institute, Cheongju, Korea
| | - Jake Whang
- Korea Mycobacterium Resource Center (KMRC) & Basic Research Section, The Korean Institute of Tuberculosis (KIT), Cheongju, Korea
| | - Kyung-Cheol Sohn
- Department of Medical Science, Chungnam National University School of Medicine, Daejeon, Korea,Department of Pharmacology, Chungnam National University School of Medicine, Daejeon, Korea
| | - Gang Min Hur
- Department of Medical Science, Chungnam National University School of Medicine, Daejeon, Korea,Department of Pharmacology, Chungnam National University School of Medicine, Daejeon, Korea
| | - Hyun Tae Kim
- Chemistry R&D Center, AUTOTAC Bio Inc, Seoul, Republic of Korea
| | - Jinki Yeom
- Cellular Degradation Biology Center and Department of Biomedical Sciences, College of Medicine, Seoul National University, Seoul, Republic of Korea,Department of Microbiology and Immunology, College of Medicine, Seoul National University, Seoul, Republic of Korea
| | - Eun-Kyeong Jo
- Department of Microbiology, Chungnam National University School of Medicine, Daejeon, Korea,Department of Medical Science, Chungnam National University School of Medicine, Daejeon, Korea,Infection Control Convergence Research Center, Chungnam National University School of Medicine, Daejeon, Korea,CONTACT Eun-Kyeong Jo Department of Microbiology, and Infection Control Convergence Research Center, Chungnam National University School of Medicine, Daejeon35015, Korea
| | - Yong Tae Kwon
- Cellular Degradation Biology Center and Department of Biomedical Sciences, College of Medicine, Seoul National University, Seoul, Republic of Korea,Chemistry R&D Center, AUTOTAC Bio Inc, Seoul, Republic of Korea,SNU Dementia Research Center, College of Medicine, Seoul National University, Seoul, Republic of Korea,Ischemic/Hypoxic Disease Institute, College of Medicine, Seoul National University, Seoul, Republic of Korea,Yong Tae Kwon Department of Biomedical Sciences, College of Medicine, Seoul National University, Seoul110-799, Korea
| |
Collapse
|
41
|
Zheng Y, Zhang S, Luo Y, Li F, Tan J, Wang B, Zhao Z, Lin H, Zhang T, Liu J, Liu X, Guo J, Xie X, Chen L, Liu YG, Chu Z. Rice OsUBR7 modulates plant height by regulating histone H2B monoubiquitination and cell proliferation. PLANT COMMUNICATIONS 2022; 3:100412. [PMID: 35836378 PMCID: PMC9700165 DOI: 10.1016/j.xplc.2022.100412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 06/20/2022] [Accepted: 07/08/2022] [Indexed: 06/15/2023]
Abstract
Plant height is an important agronomic trait for lodging resistance and yield. Here, we report a new plant-height-related gene, OsUBR7 in rice (Oryza sativa L.); knockout of OsUBR7 caused fewer cells in internodes, resulting in a semi-dwarf phenotype. OsUBR7 encodes a putative E3 ligase containing a plant homeodomain finger and a ubiquitin protein ligase E3 component N-recognin 7 (UBR7) domain. OsUBR7 interacts with histones and monoubiquitinates H2B (H2Bub1) at lysine148 in coordination with the E2 conjugase OsUBC18. OsUBR7 mediates H2Bub1 at a number of chromatin loci for the normal expression of target genes, including cell-cycle-related and pleiotropic genes, consistent with the observation that cell-cycle progression was suppressed in the osubr7 mutant owing to reductions in H2Bub1 and expression levels at these loci. The genetic divergence of OsUBR7 alleles among japonica and indica cultivars affects their transcriptional activity, and these alleles may have undergone selection during rice domestication. Overall, our results reveal a novel mechanism that mediates H2Bub1 in plants, and UBR7 orthologs could be utilized as an untapped epigenetic resource for crop improvement.
Collapse
Affiliation(s)
- Yangyi Zheng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Sensen Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Yanqiu Luo
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Fuquan Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Jiantao Tan
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Bin Wang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Zhe Zhao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Huifang Lin
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Tingting Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Jianhong Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Xupeng Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Jingxin Guo
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Xianrong Xie
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Letian Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Yao-Guang Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China.
| | - Zhizhan Chu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China; Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
42
|
Modulation of the Translation Efficiency of Heterologous mRNA and Target Protein Stability in a Plant System: The Case Study of Interferon-αA. PLANTS 2022; 11:plants11192450. [PMID: 36235315 PMCID: PMC9573741 DOI: 10.3390/plants11192450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 09/13/2022] [Accepted: 09/15/2022] [Indexed: 11/17/2022]
Abstract
A broad and amazingly intricate network of mechanisms underlying the decoding of a plant genome into the proteome forces the researcher to design new strategies to enhance both the accumulation of recombinant proteins and their purification from plants and to improve the available relevant strategies. In this paper, we propose new approaches to optimize a codon composition of target genes (case study of interferon-αA) and to search for regulatory sequences (case study of 5′UTR), and we demonstrated their effectiveness in increasing the synthesis of recombinant proteins in plant systems. In addition, we convincingly show that the approach utilizing stabilization of the protein product according to the N-end rule or a new protein-stabilizing partner (thermostable lichenase) is sufficiently effective and results in a significant increase in the protein yield manufactured in a plant system. Moreover, it is validly demonstrated that thermostable lichenase as a protein-stabilizing partner not only has no negative effect on the target protein activity (interferon-αA) integrated in its sequence, but rather enhances the accumulation of the target protein product in plant cells. In addition, the retention of lichenase enzyme activity and interferon biological activity after the incubation of plant protein lysates at 65 °C and precipitation of nontarget proteins with ethanol is applicable to a rapid and inexpensive purification of fusion proteins, thereby confirming the utility of thermostable lichenase as a protein-stabilizing partner for plant systems.
Collapse
|
43
|
Winichayakul S, Curran A, Moraga R, Cookson R, Xue H, Crowther T, Roldan M, Bryan G, Roberts N. An alternative angiosperm DGAT1 topology and potential motifs in the N-terminus. FRONTIERS IN PLANT SCIENCE 2022; 13:951389. [PMID: 36186081 PMCID: PMC9523541 DOI: 10.3389/fpls.2022.951389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 08/05/2022] [Indexed: 06/16/2023]
Abstract
The highly variable cytoplasmic N-terminus of the plant diacylglycerol acyltransferase 1 (DGAT1) has been shown to have roles in oligomerization as well as allostery; however, the biological significance of the variation within this region is not understood. Comparing the coding sequences over the variable N-termini revealed the Poaceae DGAT1s contain relatively high GC compositional gradients as well as numerous direct and inverted repeats in this region. Using a variety of reciprocal chimeric DGAT1s from angiosperms we show that related N-termini had similar effects (positive or negative) on the accumulation of the recombinant protein in Saccharomyces cerevisiae. When expressed in Camelina sativa seeds the recombinant proteins of specific chimeras elevated total lipid content of the seeds as well as increased seed size. In addition, we combine N- and C-terminal as well as internal tags with high pH membrane reformation, protease protection and differential permeabilization. This led us to conclude the C-terminus is in the ER lumen; this contradicts earlier reports of the cytoplasmic location of plant DGAT1 C-termini.
Collapse
Affiliation(s)
- Somrutai Winichayakul
- Resilient Agriculture Innovation Centre of Excellence, AgResearch Ltd., Palmerston North, New Zealand
| | - Amy Curran
- ZeaKal Inc., San Diego, CA, United States
| | - Roger Moraga
- Bioinformatics and Statistics, AgResearch Ltd., Palmerston North, New Zealand
| | - Ruth Cookson
- Resilient Agriculture Innovation Centre of Excellence, AgResearch Ltd., Palmerston North, New Zealand
| | - Hong Xue
- Resilient Agriculture Innovation Centre of Excellence, AgResearch Ltd., Palmerston North, New Zealand
| | - Tracey Crowther
- Resilient Agriculture Innovation Centre of Excellence, AgResearch Ltd., Palmerston North, New Zealand
| | - Marissa Roldan
- Resilient Agriculture Innovation Centre of Excellence, AgResearch Ltd., Palmerston North, New Zealand
| | - Greg Bryan
- Resilient Agriculture Innovation Centre of Excellence, AgResearch Ltd., Palmerston North, New Zealand
- ZeaKal Inc., San Diego, CA, United States
| | - Nick Roberts
- Resilient Agriculture Innovation Centre of Excellence, AgResearch Ltd., Palmerston North, New Zealand
- ZeaKal Inc., San Diego, CA, United States
| |
Collapse
|
44
|
Abdalla OHMH, Mascarenhas B, Cheng HYM. Death of a Protein: The Role of E3 Ubiquitin Ligases in Circadian Rhythms of Mice and Flies. Int J Mol Sci 2022; 23:ijms231810569. [PMID: 36142478 PMCID: PMC9502492 DOI: 10.3390/ijms231810569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 09/07/2022] [Accepted: 09/08/2022] [Indexed: 12/04/2022] Open
Abstract
Circadian clocks evolved to enable organisms to anticipate and prepare for periodic environmental changes driven by the day–night cycle. This internal timekeeping mechanism is built on autoregulatory transcription–translation feedback loops that control the rhythmic expression of core clock genes and their protein products. The levels of clock proteins rise and ebb throughout a 24-h period through their rhythmic synthesis and destruction. In the ubiquitin–proteasome system, the process of polyubiquitination, or the covalent attachment of a ubiquitin chain, marks a protein for degradation by the 26S proteasome. The process is regulated by E3 ubiquitin ligases, which recognize specific substrates for ubiquitination. In this review, we summarize the roles that known E3 ubiquitin ligases play in the circadian clocks of two popular model organisms: mice and fruit flies. We also discuss emerging evidence that implicates the N-degron pathway, an alternative proteolytic system, in the regulation of circadian rhythms. We conclude the review with our perspectives on the potential for the proteolytic and non-proteolytic functions of E3 ubiquitin ligases within the circadian clock system.
Collapse
Affiliation(s)
- Osama Hasan Mustafa Hasan Abdalla
- Department of Biology, University of Toronto Mississauga, Mississauga, ON L5L 1C6, Canada
- Department of Cell & Systems Biology, University of Toronto, Toronto, ON M5S 3G5, Canada
| | - Brittany Mascarenhas
- Department of Biology, University of Toronto Mississauga, Mississauga, ON L5L 1C6, Canada
- Department of Cell & Systems Biology, University of Toronto, Toronto, ON M5S 3G5, Canada
| | - Hai-Ying Mary Cheng
- Department of Biology, University of Toronto Mississauga, Mississauga, ON L5L 1C6, Canada
- Department of Cell & Systems Biology, University of Toronto, Toronto, ON M5S 3G5, Canada
- Correspondence:
| |
Collapse
|
45
|
Cartwright M, Van V, Smith AT. The preparation of recombinant arginyltransferase 1 (ATE1) for biophysical characterization. Methods Enzymol 2022; 679:235-254. [PMID: 36682863 PMCID: PMC9871371 DOI: 10.1016/bs.mie.2022.07.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Arginyltransferases (ATE1s) are eukaryotic enzymes that catalyze the non-ribosomal, post-translational addition of the amino acid arginine to an acceptor protein. While understudied, post-translation arginylation and ATE1 have major impacts on eukaryotic cellular homeostasis through both degradative and non-degradative effects on the intracellular proteome. Consequently, ATE1-catalyzed arginylation impacts major eukaryotic biological processes including the stress response, cellular motility, cardiovascular maturation, and even neurological function. Despite this importance, there is a lack of information on the structural and biophysical characteristics of ATE1, prohibiting a comprehensive understanding of the mechanism of this post-translational modification, and hampering efforts to design ATE1-specific therapeutics. To that end, this chapter details a protocol designed for the expression and the purification of ATE1 from Saccharomyces cerevisiae, although the approaches described herein should be generally applicable to other eukaryotic ATE1s. The detailed procedures afford high amounts of pure, homogeneous, monodisperse ATE1 suitable for downstream biophysical analyses such as X-ray crystallography, small angle X-ray scattering (SAXS), and cryo-EM techniques.
Collapse
Affiliation(s)
- Misti Cartwright
- Department of Chemistry and Biochemistry, University of Maryland Baltimore County, Baltimore, MD, United States
| | - Verna Van
- Department of Chemistry and Biochemistry, University of Maryland Baltimore County, Baltimore, MD, United States
| | - Aaron T Smith
- Department of Chemistry and Biochemistry, University of Maryland Baltimore County, Baltimore, MD, United States.
| |
Collapse
|
46
|
Kim H, Park J, Kim JM. Targeted Protein Degradation to Overcome Resistance in Cancer Therapies: PROTAC and N-Degron Pathway. Biomedicines 2022; 10:2100. [PMID: 36140200 PMCID: PMC9495352 DOI: 10.3390/biomedicines10092100] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/22/2022] [Accepted: 08/24/2022] [Indexed: 11/17/2022] Open
Abstract
Extensive progress in understanding the molecular mechanisms of cancer growth and proliferation has led to the remarkable development of drugs that target cancer-driving molecules. Most target molecules are proteins such as kinases and kinase-associated receptors, which have enzymatic activities needed for the signaling cascades of cells. The small molecule inhibitors for these target molecules greatly improved therapeutic efficacy and lowered the systemic toxicity in cancer therapies. However, long-term and high-dosage treatment of small inhibitors for cancer has produced other obstacles, such as resistance to inhibitors. Among recent approaches to overcoming drug resistance to cancers, targeted protein degradation (TPD) such as proteolysis-targeting chimera (PROTAC) technology adopts a distinct mechanism of action by which a target protein is destroyed through the cellular proteolytic system, such as the ubiquitin-proteasome system or autophagy. Here, we review the currently developed PROTACs as the representative TPD molecules for cancer therapy and the N-degrons of the N-degron pathways as the potential TPD ligands.
Collapse
Affiliation(s)
- Hanbyeol Kim
- Department of Life Science, College of Natural Sciences, Hanyang University, Seoul 04763, Korea
| | - Jeongbae Park
- Department of Life Science, College of Natural Sciences, Hanyang University, Seoul 04763, Korea
| | - Jeong-Mok Kim
- Department of Life Science, College of Natural Sciences, Hanyang University, Seoul 04763, Korea
- Research Institute for Natural Sciences, Hanyang University, Seoul 04763, Korea
- Hanyang Institute of Bioscience and Biotechnology, Hanyang University, Seoul 04763, Korea
| |
Collapse
|
47
|
Ma K, Deng L, Wu H, Fan J. Towards green biomanufacturing of high-value recombinant proteins using promising cell factory: Chlamydomonas reinhardtii chloroplast. BIORESOUR BIOPROCESS 2022; 9:83. [PMID: 38647750 PMCID: PMC10992328 DOI: 10.1186/s40643-022-00568-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 07/29/2022] [Indexed: 11/10/2022] Open
Abstract
Microalgae are cosmopolitan organisms in nature with short life cycles, playing a tremendous role in reducing the pressure of industrial carbon emissions. Besides, microalgae have the unique advantages of being photoautotrophic and harboring both prokaryotic and eukaryotic expression systems, becoming a popular host for recombinant proteins. Currently, numerous advanced molecular tools related to microalgal transgenesis have been explored and established, especially for the model species Chlamydomonas reinhardtii (C. reinhardtii hereafter). The development of genetic tools and the emergence of new strategies further increase the feasibility of developing C. reinhardtii chloroplasts as green factories, and the strong genetic operability of C. reinhardtii endows it with enormous potential as a synthetic biology platform. At present, C. reinhardtii chloroplasts could successfully produce plenty of recombinant proteins, including antigens, antibodies, antimicrobial peptides, protein hormones and enzymes. However, additional techniques and toolkits for chloroplasts need to be developed to achieve efficient and markerless editing of plastid genomes. Mining novel genetic elements and selectable markers will be more intensively studied in the future, and more factors affecting protein expression are urged to be explored. This review focuses on the latest technological progress of selectable markers for Chlamydomonas chloroplast genetic engineering and the factors that affect the efficiency of chloroplast protein expression. Furthermore, urgent challenges and prospects for future development are pointed out.
Collapse
Affiliation(s)
- Ke Ma
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, People's Republic of China
| | - Lei Deng
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, People's Republic of China
| | - Haizhen Wu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, People's Republic of China.
- Department of Applied Biology, East China University of Science and Technology, Shanghai, 200237, People's Republic of China.
| | - Jianhua Fan
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, People's Republic of China.
- Department of Applied Biology, East China University of Science and Technology, Shanghai, 200237, People's Republic of China.
- School of Chemistry and Chemical Engineering, Shihezi University, Shihezi, 832003, People's Republic of China.
| |
Collapse
|
48
|
Crystal structure of the Ate1 arginyl-tRNA-protein transferase and arginylation of N-degron substrates. Proc Natl Acad Sci U S A 2022; 119:e2209597119. [PMID: 35878037 PMCID: PMC9351520 DOI: 10.1073/pnas.2209597119] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
N-degron pathways are proteolytic systems that target proteins bearing N-terminal (Nt) degradation signals (degrons) called N-degrons. Nt-Arg of a protein is among Nt-residues that can be recognized as destabilizing ones by the Arg/N-degron pathway. A proteolytic cleavage of a protein can generate Arg at the N terminus of a resulting C-terminal (Ct) fragment either directly or after Nt-arginylation of that Ct-fragment by the Ate1 arginyl-tRNA-protein transferase (R-transferase), which uses Arg-tRNAArg as a cosubstrate. Ate1 can Nt-arginylate Nt-Asp, Nt-Glu, and oxidized Nt-Cys* (Cys-sulfinate or Cys-sulfonate) of proteins or short peptides. Ate1 genes of fungi, animals, and plants have been cloned decades ago, but a three-dimensional structure of Ate1 remained unknown. A detailed mechanism of arginylation is unknown as well. We describe here the crystal structure of the Ate1 R-transferase from the budding yeast Kluyveromyces lactis. The 58-kDa R-transferase comprises two domains that recognize, together, an acidic Nt-residue of an acceptor substrate, the Arg residue of Arg-tRNAArg, and a 3'-proximal segment of the tRNAArg moiety. The enzyme's active site is located, at least in part, between the two domains. In vitro and in vivo arginylation assays with site-directed Ate1 mutants that were suggested by structural results yielded inferences about specific binding sites of Ate1. We also analyzed the inhibition of Nt-arginylation activity of Ate1 by hemin (Fe3+-heme), and found that hemin induced the previously undescribed disulfide-mediated oligomerization of Ate1. Together, these results advance the understanding of R-transferase and the Arg/N-degron pathway.
Collapse
|
49
|
Lazar I, Fabre B, Feng Y, Khateb A, Frit P, Kashina A, Zhang T, Avitan-Hersh E, Kim H, Brown K, Topisirovic I, Ronai ZA. Arginyl-tRNA-protein transferase 1 (ATE1) promotes melanoma cell growth and migration. FEBS Lett 2022; 596:1468-1480. [PMID: 35561126 PMCID: PMC10118390 DOI: 10.1002/1873-3468.14376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 04/21/2022] [Accepted: 04/25/2022] [Indexed: 11/10/2022]
Abstract
Arginyl-tRNA-protein transferase 1 (ATE1) catalyses N-terminal protein arginylation, a post-translational modification implicated in cell migration, invasion and the cellular stress response. Herein, we report that ATE1 is overexpressed in NRAS-mutant melanomas, while it is downregulated in BRAF-mutant melanomas. ATE1 expression was higher in metastatic tumours, compared with primary tumours. Consistent with these findings, ATE1 depletion reduced melanoma cell viability, migration and colony formation. Reduced ATE1 expression also affected cell responses to mTOR and MEK inhibitors and to serum deprivation. Among putative ATE1 substrates is the tumour suppressor AXIN1, pointing to the possibility that ATE1 may fine-tune AXIN1 function in melanoma. Our findings highlight an unexpected role for ATE1 in melanoma cell aggressiveness and suggest that ATE1 constitutes a potential new therapeutic target.
Collapse
Affiliation(s)
- Ikrame Lazar
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA.,Technion Integrated Cancer Center, Faculty of Medicine, Technion Institute of Technology, Haifa, Israel.,MCD, Centre de Biologie Intégrative (CBI), CNRS, UT3, Université de Toulouse, France
| | - Bertrand Fabre
- Technion Integrated Cancer Center, Faculty of Medicine, Technion Institute of Technology, Haifa, Israel.,Laboratoire de Recherche en Sciences Végétales, UMR5546, UT3, INP, CNRS, Université de Toulouse, Auzeville-Tolosane, France
| | - Yongmei Feng
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Ali Khateb
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA.,Technion Integrated Cancer Center, Faculty of Medicine, Technion Institute of Technology, Haifa, Israel
| | - Philippe Frit
- Institut de Pharmacologie et de Biologie Structurale (IPBS), UMR 5089, CNRS, UT3, Université de Toulouse, France
| | - Anna Kashina
- Department of Biomedical Sciences, University of Pennsylvania, Philadelphia, PA, USA
| | - Tongwu Zhang
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Emily Avitan-Hersh
- Technion Integrated Cancer Center, Faculty of Medicine, Technion Institute of Technology, Haifa, Israel
| | - Hyungsoo Kim
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Kevin Brown
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Ivan Topisirovic
- Gerald Bronfman Department of Oncology, Departments of Experimental Medicine and Biochemistry, Lady Davis Institute, Sir Mortimer B. Davis Jewish General Hospital, McGill University, Montreal, QC, Canada
| | - Ze'ev A Ronai
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| |
Collapse
|
50
|
Demir D, Kendir Demirkol Y, Gerenli N, Aktaş Karabay E. Johanson–Blizzard's Syndrome with a Novel UBR1 Mutation. J Pediatr Genet 2022; 11:147-150. [DOI: 10.1055/s-0040-1716331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Accepted: 07/22/2020] [Indexed: 10/23/2022]
Abstract
AbstractJohanson–Blizzard syndrome (JBS) is a rare autosomal recessive genetic disorder, characterized by exocrine pancreatic insufficiency, a distinct abnormal facial appearance and varying degrees of growth retardation. Ubiquitin protein ligase E3 component n-recognin 1 (UBR1) gene mutations are responsible for the syndrome. Here, we describe a 2-month-old female infant, who presented with oily diarrhea, facial dysmorphia, scalp defect, hearing defects, and growth impairment. Molecular genetic testing revealed a novel frameshift mutation in UBR1, c.4027_4028 del (p.Leu1343Valfs*7), which was not previously described in JBS in the literature.
Collapse
Affiliation(s)
- Damla Demir
- Department of Dermatology, Ümraniye Training and Research Hospital, University of Health Science, Istanbul, Turkey
| | - Yasemin Kendir Demirkol
- Department of Pediatrics Genetics, Ümraniye Training and Research Hospital, University of Health Science, Istanbul, Turkey
| | - Nelgin Gerenli
- Department of Pediatrics Gastroenterology, Ümraniye Training and Research Hospital, University of Health Science, Istanbul, Turkey
| | - Ezgi Aktaş Karabay
- Department of Dermatology, Faculty of Medicine, Bahçeşehir University, Istanbul, Turkey
| |
Collapse
|