1
|
Moreira L, Guimarães NM, Santos RS, Loureiro JA, Pereira MDC, Azevedo NF. Oligonucleotide probes for imaging and diagnosis of bacterial infections. Crit Rev Biotechnol 2025; 45:128-147. [PMID: 38830823 DOI: 10.1080/07388551.2024.2344574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 06/17/2023] [Indexed: 06/05/2024]
Abstract
The rise of infectious diseases as a public health concern has necessitated the development of rapid and precise diagnostic methods. Imaging techniques like nuclear and optical imaging provide the ability to diagnose infectious diseases within the body, eliminating delays caused by sampling and pre-enrichments of clinical samples and offering spatial information that can aid in a more informed diagnosis. Traditional molecular probes are typically created to image infected tissue without accurately identifying the pathogen. In contrast, oligonucleotides can be tailored to target specific RNA sequences, allowing for the identification of pathogens, and even generating antibiotic susceptibility profiles by focusing on drug resistance genes. Despite the benefits that nucleic acid mimics (NAMs) have provided in terms of stabilizing oligonucleotides, the inadequate delivery of these relatively large molecules into the cytoplasm of bacteria remains a challenge for widespread use of this technology. This review summarizes the key advancements in the field of oligonucleotide probes for in vivo imaging, highlighting the most promising delivery systems described in the literature for developing optical imaging through in vivo hybridization.
Collapse
Affiliation(s)
- Luís Moreira
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Porto, Portugal
- ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Porto, Portugal
| | - Nuno Miguel Guimarães
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Porto, Portugal
- ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Porto, Portugal
| | - Rita Sobral Santos
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Porto, Portugal
- ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Porto, Portugal
| | - Joana Angélica Loureiro
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Porto, Portugal
- ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Porto, Portugal
| | - Maria do Carmo Pereira
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Porto, Portugal
- ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Porto, Portugal
| | - Nuno Filipe Azevedo
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Porto, Portugal
- ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Porto, Portugal
| |
Collapse
|
2
|
Xu Z, Wang C, He S, Wu J, Zhao Y. Enhancing Molecular-Level Biological Monitoring with a Smart Self-Assembling 19F-Labeled Probe. Angew Chem Int Ed Engl 2025; 64:e202417112. [PMID: 39400552 DOI: 10.1002/anie.202417112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 10/09/2024] [Accepted: 10/13/2024] [Indexed: 10/15/2024]
Abstract
Real-time monitoring of molecular transformations is crucial for advancements in biotechnology. In this study, we introduce a novel self-assembling 19F-labeled nuclear magnetic resonance (NMR) probe that disassembles upon interaction with various nucleotides. This interaction not only activates the 19F signals but also produces distinct signatures for each specific component, thereby enabling precise identification and quantification of molecules in evolving samples. We demonstrate the capability of this probe for real-time monitoring of adenosine triphosphate (ATP) hydrolysis and screening potential enzyme inhibitors. These applications highlight the probe's significant potential in enzyme analysis, drug development, and disease diagnostics.
Collapse
Affiliation(s)
- Zhenchuang Xu
- Key Laboratory of Fluorine and Nitrogen Chemistry and Advanced Materials and Shanghai Hongkong Joint Laboratory in Chemical Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Ling-Ling Road, Shanghai, 200032, China
| | - Chenyang Wang
- Key Laboratory of Fluorine and Nitrogen Chemistry and Advanced Materials and Shanghai Hongkong Joint Laboratory in Chemical Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Ling-Ling Road, Shanghai, 200032, China
| | - Shengyuan He
- Key Laboratory of Fluorine and Nitrogen Chemistry and Advanced Materials and Shanghai Hongkong Joint Laboratory in Chemical Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Ling-Ling Road, Shanghai, 200032, China
| | - Jian Wu
- Instrumental Analysis Center, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Ling-Ling Road, Shanghai, 200032, China
| | - Yanchuan Zhao
- Key Laboratory of Fluorine and Nitrogen Chemistry and Advanced Materials and Shanghai Hongkong Joint Laboratory in Chemical Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Ling-Ling Road, Shanghai, 200032, China
- Instrumental Analysis Center, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Ling-Ling Road, Shanghai, 200032, China
| |
Collapse
|
3
|
Vitale NH, Hassibi A, Soh HT, Murmann B, Lee TH. Inherent stochasticity, noise and limits of detection in continuous and time-gated fluorescence systems. PLoS One 2024; 19:e0313949. [PMID: 39715245 DOI: 10.1371/journal.pone.0313949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Accepted: 11/02/2024] [Indexed: 12/25/2024] Open
Abstract
We present a model for the noise and inherent stochasticity of fluorescence signals in both continuous wave (CW) and time-gated (TG) conditions. When the fluorophores are subjected to an arbitrary excitation photon flux, we apply the model and compute the evolution of the probability mass function (pmf) for each quantum state comprising a fluorophore's electronic structure, and hence the dynamics of the resulting emission photon flux. Both the ensemble and stochastic models presented in this work have been verified using Monte Carlo molecular dynamic simulations that utilize the Gillespie algorithm. The implications of the model on the design of biomolecular fluorescence detection systems are explored in three relevant numerical examples. For a given system, the quantum-limited signal-to-noise ratio (QSNR) and limits of detection are computed to demonstrate how key design tradeoffs are quantified. We find that as systems scale down to micro- and nano- dimensions, the interplay between the fluorophore's photophysical qualities and use of CW or TG has ramifications on optimal design strategies when considering optical component selection, measurement speed, and system energy requirements. While CW systems remain a gold standard, TG systems can be leveraged to overcome cost and system complexity hurdles when paired with the appropriate fluorophore.
Collapse
Affiliation(s)
- Nicholas H Vitale
- Department of Electrical Engineering, Stanford University, Stanford, California, United States of America
| | - Arjang Hassibi
- Department of Electrical Engineering, Stanford University, Stanford, California, United States of America
| | - Hyongsok Tom Soh
- Department of Electrical Engineering, Stanford University, Stanford, California, United States of America
- Department of Radiology, Stanford University, Stanford, California, United States of America
| | - Boris Murmann
- Department of Electrical Engineering, University of Hawaii at Manoa, Honolulu, Hawaii, United States of America
| | - Thomas H Lee
- Department of Electrical Engineering, Stanford University, Stanford, California, United States of America
| |
Collapse
|
4
|
Lee EH, Jeong M, Park K, Lee DG, Lee EJ, Lee H, Kim AY, Ahn JW, Woo HJ, Kim S, Lim J, Kim J. Detection of miR-133a-5p Using a Molecular Beacon Probe for Investigating Postmortem Intervals. Noncoding RNA 2024; 10:58. [PMID: 39728603 DOI: 10.3390/ncrna10060058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 11/22/2024] [Accepted: 11/23/2024] [Indexed: 12/28/2024] Open
Abstract
Background: When a body is discovered at a crime or murder scene, it is crucial to examine the body and estimate its postmortem interval (PMI). Accurate estimation of PMI is vital for identifying suspects and providing clues to resolve the case. MicroRNAs (miRNAs or miRs) are small non-coding RNAs that remain relatively stable in the cell nucleus even after death-related changes occur. Objective: This study developed a molecular beacon probe for mmu-miR-133a-5p and assessed its use in mouse muscle tissue at temperatures of 4 °C and 21 °C to estimate the PMI. Methods: A total of 36 healthy adult male BALB/c mice were divided into 9 PMI time points (0, 2, 6, 8, and 10 days) with 3 mice per time point, and they were exposed to 4 °C and 21 °C. Next, the expression pattern of mmu-miR-133a in the skeletal muscle tissue over a 10-day PMI period was analyzed using the developed molecular beacon probe. Results: The molecular beacon (MB) probe was designed for optimal thermodynamic stability with a hairpin structure that opened in the presence of mmu-miR-133a-5p, thus separating the fluorophore from the quencher and resulting in a strong fluorescence signal at 495 nm. Fluorescence intensity increased with mmu-miR-133a-5p concentration from 1 ng/μL to 1000 ng/μL and exhibited a strong correlation (R2 = 0.9966) and a detection limit of 1 ng/μL. Subsequently, the expression level of mmu-miR-133a-5p was observed to be stable in mouse skeletal muscle tissue at both 4 °C and 21 °C. Conclusions: This user-friendly assay can complete measurements in just 30 min after RNA extraction and is suitable for point-of-care testing, and it possesses the potential to improve existing complex and time-consuming methods for PMI estimation.
Collapse
Affiliation(s)
- Eun Hye Lee
- Department of Forensic Science, Graduate School, Catholic University of Pusan, Busan 46252, Republic of Korea
| | - Mingyoung Jeong
- Department of Forensic Science, Graduate School, Catholic University of Pusan, Busan 46252, Republic of Korea
- Next-Generation Industrial Field-Based Specialist Program for Molecular Diagnostics, Brain Busan 21 Plus Project, Graduate School, Catholic University of Pusan, Busan 46252, Republic of Korea
| | - Kwangmin Park
- Next-Generation Industrial Field-Based Specialist Program for Molecular Diagnostics, Brain Busan 21 Plus Project, Graduate School, Catholic University of Pusan, Busan 46252, Republic of Korea
- Department of Clinical Laboratory Science, College of Health Sciences, Catholic University of Pusan, Busan 46252, Republic of Korea
| | - Dong Geon Lee
- Next-Generation Industrial Field-Based Specialist Program for Molecular Diagnostics, Brain Busan 21 Plus Project, Graduate School, Catholic University of Pusan, Busan 46252, Republic of Korea
- Department of Clinical Laboratory Science, College of Health Sciences, Catholic University of Pusan, Busan 46252, Republic of Korea
| | - Eun Ju Lee
- Department of Clinical Laboratory Science, College of Health Sciences, Catholic University of Pusan, Busan 46252, Republic of Korea
- Korea Mycobacterium Resource Center (KMRC), Department of Research and Development, The Korean Institute of Tuberculosis, Osong 28158, Republic of Korea
| | - Haneul Lee
- Department of Forensic Science, Graduate School, Catholic University of Pusan, Busan 46252, Republic of Korea
- Next-Generation Industrial Field-Based Specialist Program for Molecular Diagnostics, Brain Busan 21 Plus Project, Graduate School, Catholic University of Pusan, Busan 46252, Republic of Korea
| | - Ah Yeoung Kim
- Next-Generation Industrial Field-Based Specialist Program for Molecular Diagnostics, Brain Busan 21 Plus Project, Graduate School, Catholic University of Pusan, Busan 46252, Republic of Korea
- Department of Clinical Laboratory Science, College of Health Sciences, Catholic University of Pusan, Busan 46252, Republic of Korea
| | - Jae Won Ahn
- Department of Forensic Science, Graduate School, Catholic University of Pusan, Busan 46252, Republic of Korea
| | - Hyun Jun Woo
- Department of Clinical Laboratory Science, Semyung University, Jecheon 27136, Republic of Korea
| | - Sunghyun Kim
- Department of Forensic Science, Graduate School, Catholic University of Pusan, Busan 46252, Republic of Korea
- Next-Generation Industrial Field-Based Specialist Program for Molecular Diagnostics, Brain Busan 21 Plus Project, Graduate School, Catholic University of Pusan, Busan 46252, Republic of Korea
- Department of Clinical Laboratory Science, College of Health Sciences, Catholic University of Pusan, Busan 46252, Republic of Korea
| | - Jaewon Lim
- Department of Forensic Science, Graduate School, Catholic University of Pusan, Busan 46252, Republic of Korea
- Next-Generation Industrial Field-Based Specialist Program for Molecular Diagnostics, Brain Busan 21 Plus Project, Graduate School, Catholic University of Pusan, Busan 46252, Republic of Korea
- Department of Clinical Laboratory Science, College of Health Sciences, Catholic University of Pusan, Busan 46252, Republic of Korea
| | - Jungho Kim
- Department of Forensic Science, Graduate School, Catholic University of Pusan, Busan 46252, Republic of Korea
- Next-Generation Industrial Field-Based Specialist Program for Molecular Diagnostics, Brain Busan 21 Plus Project, Graduate School, Catholic University of Pusan, Busan 46252, Republic of Korea
- Department of Clinical Laboratory Science, College of Health Sciences, Catholic University of Pusan, Busan 46252, Republic of Korea
| |
Collapse
|
5
|
Jiang X, Peng Z, Zhang J. Starting with screening strains to construct synthetic microbial communities (SynComs) for traditional food fermentation. Food Res Int 2024; 190:114557. [PMID: 38945561 DOI: 10.1016/j.foodres.2024.114557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 05/16/2024] [Accepted: 05/26/2024] [Indexed: 07/02/2024]
Abstract
With the elucidation of community structures and assembly mechanisms in various fermented foods, core communities that significantly influence or guide fermentation have been pinpointed and used for exogenous restructuring into synthetic microbial communities (SynComs). These SynComs simulate ecological systems or function as adjuncts or substitutes in starters, and their efficacy has been widely verified. However, screening and assembly are still the main limiting factors for implementing theoretic SynComs, as desired strains cannot be effectively obtained and integrated. To expand strain screening methods suitable for SynComs in food fermentation, this review summarizes the recent research trends in using SynComs to study community evolution or interaction and improve the quality of food fermentation, as well as the specific process of constructing synthetic communities. The potential for novel screening modalities based on genes, enzymes and metabolites in food microbial screening is discussed, along with the emphasis on strategies to optimize assembly for facilitating the development of synthetic communities.
Collapse
Affiliation(s)
- Xinyi Jiang
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China; Science Center for Future Foods, Jiangnan University, Wuxi 214122, China; Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Zheng Peng
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China; Science Center for Future Foods, Jiangnan University, Wuxi 214122, China; Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Juan Zhang
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China; Science Center for Future Foods, Jiangnan University, Wuxi 214122, China; Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
6
|
Matić J, Piotrowski P, Vrban L, Kobetić R, Vianello R, Jurić I, Fabijanić I, Pernar Kovač M, Brozovic A, Piantanida I, Schmuck C, Radić Stojković M. Distinctive Nucleic Acid Recognition by Lysine-Embedded Phenanthridine Peptides. Int J Mol Sci 2024; 25:4866. [PMID: 38732083 PMCID: PMC11084427 DOI: 10.3390/ijms25094866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 04/25/2024] [Accepted: 04/27/2024] [Indexed: 05/13/2024] Open
Abstract
Three new phenanthridine peptide derivatives (19, 22, and 23) were synthesized to explore their potential as spectrophotometric probes for DNA and RNA. UV/Vis and circular dichroism (CD) spectra, mass spectroscopy, and computational analysis confirmed the presence of intramolecular interactions in all three compounds. Computational analysis revealed that compounds alternate between bent and open conformations, highlighting the latter's crucial influence on successful polynucleotide recognition. Substituting one glycine with lysine in two regioisomers (22, 23) resulted in stronger binding interactions with DNA and RNA than for a compound containing two glycines (19), thus emphasizing the importance of lysine. The regioisomer with lysine closer to the phenanthridine ring (23) exhibited a dual and selective fluorimetric response with non-alternating AT and ATT polynucleotides and induction of triplex formation from the AT duplex. The best binding constant (K) with a value of 2.5 × 107 M-1 was obtained for the interaction with AT and ATT polynucleotides. Furthermore, apart from distinguishing between different types of ds-DNA and ds-RNA, the same compound could recognize GC-rich DNA through distinct induced CD signals.
Collapse
Affiliation(s)
- Josipa Matić
- Laboratory for Biomolecular Interactions and Spectroscopy, Division of Organic Chemistry and Biochemistry, Ruđer Bošković Institute, Bijenička Cesta 54, 10000 Zagreb, Croatia; (J.M.); (R.K.); (I.J.); (I.F.); (I.P.)
| | - Patryciusz Piotrowski
- Institute for Organic Chemistry, University of Duisburg-Essen, Universitätsstrasse 7, 45141 Essen, Germany; (P.P.)
| | - Lucija Vrban
- Laboratory for the Computational Design and Synthesis of Functional Materials, Division of Organic Chemistry and Biochemistry, Ruđer Bošković Institute, Bijenička Cesta 54, 10000 Zagreb, Croatia; (L.V.); (R.V.)
| | - Renata Kobetić
- Laboratory for Biomolecular Interactions and Spectroscopy, Division of Organic Chemistry and Biochemistry, Ruđer Bošković Institute, Bijenička Cesta 54, 10000 Zagreb, Croatia; (J.M.); (R.K.); (I.J.); (I.F.); (I.P.)
| | - Robert Vianello
- Laboratory for the Computational Design and Synthesis of Functional Materials, Division of Organic Chemistry and Biochemistry, Ruđer Bošković Institute, Bijenička Cesta 54, 10000 Zagreb, Croatia; (L.V.); (R.V.)
| | - Ivona Jurić
- Laboratory for Biomolecular Interactions and Spectroscopy, Division of Organic Chemistry and Biochemistry, Ruđer Bošković Institute, Bijenička Cesta 54, 10000 Zagreb, Croatia; (J.M.); (R.K.); (I.J.); (I.F.); (I.P.)
| | - Ivana Fabijanić
- Laboratory for Biomolecular Interactions and Spectroscopy, Division of Organic Chemistry and Biochemistry, Ruđer Bošković Institute, Bijenička Cesta 54, 10000 Zagreb, Croatia; (J.M.); (R.K.); (I.J.); (I.F.); (I.P.)
| | - Margareta Pernar Kovač
- Division of Molecular Biology, Ruđer Bošković Institute, Bijenička Cesta 54, 10000 Zagreb, Croatia; (M.P.K.); (A.B.)
| | - Anamaria Brozovic
- Division of Molecular Biology, Ruđer Bošković Institute, Bijenička Cesta 54, 10000 Zagreb, Croatia; (M.P.K.); (A.B.)
| | - Ivo Piantanida
- Laboratory for Biomolecular Interactions and Spectroscopy, Division of Organic Chemistry and Biochemistry, Ruđer Bošković Institute, Bijenička Cesta 54, 10000 Zagreb, Croatia; (J.M.); (R.K.); (I.J.); (I.F.); (I.P.)
| | - Carsten Schmuck
- Institute for Organic Chemistry, University of Duisburg-Essen, Universitätsstrasse 7, 45141 Essen, Germany; (P.P.)
| | - Marijana Radić Stojković
- Laboratory for Biomolecular Interactions and Spectroscopy, Division of Organic Chemistry and Biochemistry, Ruđer Bošković Institute, Bijenička Cesta 54, 10000 Zagreb, Croatia; (J.M.); (R.K.); (I.J.); (I.F.); (I.P.)
| |
Collapse
|
7
|
Zhang H, Vandesompele J, Braeckmans K, De Smedt SC, Remaut K. Nucleic acid degradation as barrier to gene delivery: a guide to understand and overcome nuclease activity. Chem Soc Rev 2024; 53:317-360. [PMID: 38073448 DOI: 10.1039/d3cs00194f] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
Gene therapy is on its way to revolutionize the treatment of both inherited and acquired diseases, by transferring nucleic acids to correct a disease-causing gene in the target cells of patients. In the fight against infectious diseases, mRNA-based therapeutics have proven to be a viable strategy in the recent Covid-19 pandemic. Although a growing number of gene therapies have been approved, the success rate is limited when compared to the large number of preclinical and clinical trials that have been/are being performed. In this review, we highlight some of the hurdles which gene therapies encounter after administration into the human body, with a focus on nucleic acid degradation by nucleases that are extremely abundant in mammalian organs, biological fluids as well as in subcellular compartments. We overview the available strategies to reduce the biodegradation of gene therapeutics after administration, including chemical modifications of the nucleic acids, encapsulation into vectors and co-administration with nuclease inhibitors and discuss which strategies are applied for clinically approved nucleic acid therapeutics. In the final part, we discuss the currently available methods and techniques to qualify and quantify the integrity of nucleic acids, with their own strengths and limitations.
Collapse
Affiliation(s)
- Heyang Zhang
- Laboratory for General Biochemistry and Physical Pharmacy, Department of Pharmaceutical Sciences, Ghent University, 9000 Ghent, Belgium.
- Leiden Academic Centre for Drug Research, Leiden University, 2333 CC Leiden, The Netherlands
| | - Jo Vandesompele
- Department of Biomolecular Medicine, Ghent University, 9000 Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Kevin Braeckmans
- Laboratory for General Biochemistry and Physical Pharmacy, Department of Pharmaceutical Sciences, Ghent University, 9000 Ghent, Belgium.
- Centre for Nano- and Biophotonics, Ghent University, 9000 Ghent, Belgium
| | - Stefaan C De Smedt
- Laboratory for General Biochemistry and Physical Pharmacy, Department of Pharmaceutical Sciences, Ghent University, 9000 Ghent, Belgium.
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium
- Centre for Nano- and Biophotonics, Ghent University, 9000 Ghent, Belgium
| | - Katrien Remaut
- Laboratory for General Biochemistry and Physical Pharmacy, Department of Pharmaceutical Sciences, Ghent University, 9000 Ghent, Belgium.
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| |
Collapse
|
8
|
Chen K, Wang Y. CRISPR/Cas systems for in situ imaging of intracellular nucleic acids: Concepts and applications. Biotechnol Bioeng 2023; 120:3446-3464. [PMID: 37641170 DOI: 10.1002/bit.28543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 07/13/2023] [Accepted: 08/15/2023] [Indexed: 08/31/2023]
Abstract
Accurate and precise localization of intracellular nucleic acids is crucial for regulating genetic information transcription and diagnosing diseases. Although intracellular nucleic acid imaging methods are available for various cell types, their widespread utilization is impeded by the intricate nature of the process and its exorbitant cost. Recently, numerous intracellular nucleic acid labeling techniques based on clustered regularly interspaced short palindromic repeats (CRISPR) have been established due to their modularity, flexibility, and specificity. In this work, we present various CRISPR methods that are currently employed for visualizing intracellular genomic sequences and RNA, based on their detection principles and application scenarios. Furthermore, we discuss the advantages and drawbacks of the existing CRISPR imaging methods, as well as future research directions. We anticipate that with continued refinement, more advanced CRISPR-based imaging techniques can be developed to better elucidate the localization and dynamics of intracellular nucleic acids, thereby providing a powerful tool for molecular biology research and clinical molecular pathology diagnosis.
Collapse
Affiliation(s)
- Kun Chen
- Department of Clinical Laboratory, Peking University Cancer Hospital & Institute, Key laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Beijing, China
| | - Yufei Wang
- Department of Clinical Diagnosis, Laboratory of Beijing Tiantan Hospital, Capital Medical University, NMPA Key Laboratory for Quality Control of In Vitro Diagnostics, Beijing Engineering Research Center of Immunological Reagents Clinical Research, Beijing, China
| |
Collapse
|
9
|
Zeng Y, Peng R, Hu Y, Luo P, Yang R, Li J, Zheng J. Endogenous Enzyme-Activatable Spherical Nucleic Acids for Spatiotemporally Controlled Signal Amplification Molecular Imaging and Combinational Tumor Therapy. Anal Chem 2023; 95:14710-14719. [PMID: 37728636 DOI: 10.1021/acs.analchem.3c02831] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/21/2023]
Abstract
Due to the adjustable hybridization activity, antinuclease digestion stability, and superior endocytosis, spherical nucleic acids (SNAs) have been actively developed as probes for molecular imaging and the development of noninvasive diagnosis and image-guided surgery. However, since highly expressed biomarkers in tumors are not negligible in normal tissues, an inevitable background signal and the inability to precisely release probes at the chosen region remain a challenge for SNAs. Herein, we proposed a rationally designed, endogenous enzyme-activatable functional SNA (Ep-SNA) for spatiotemporally controlled signal amplification molecular imaging and combinational tumor therapy. The self-assembled amphiphilic polymer micelles (SM-ASO), which were obtained by a simple and rapid copper-free strain-promoted azide-alkyne cycloaddition click reaction between dibenzocyclooctyne-modified antisense oligonucleotide and azide-containing aliphatic polymer polylactic acid, were introduced as the core elements of Ep-SNA. This Ep-SNA was then constructed by connecting two apurinic/apyrimidinic (AP) site-containing trailing DNA hairpins, which could occur via a hybridization chain reaction in the presence of low-abundance survivin mRNA to SM-ASO through complementary base pairing. Notably, the AP site-containing trailing DNA hairpins also empowered the SNA with the feasibility of drug delivery. Once this constructed intelligent Ep-SNA nanoprobe was specifically cleaved by the highly expressed cytoplasmic human apurinic/apyrimidinic endonuclease 1 in tumor cells, three key elements (trailing DNA hairpins, antisense oligonucleotide, and doxorubicin) could be released to enable subsequent high-sensitivity survivin mRNA imaging and combinational cancer therapy (gene silencing and chemotherapy). This strategy shows great application prospects of SNAs as a precise platform for the integration of disease diagnosis and treatment and can contribute to basic biomedical research.
Collapse
Affiliation(s)
- Youhui Zeng
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Ruiying Peng
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Yingcai Hu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Pan Luo
- Yueyang Central Hospital, Yueyang 414020, China
| | - Ronghua Yang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
- Laboratory of Chemical Biology & Traditional Chinese Medicine Research, Ministry of Education, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, China
| | - Jishan Li
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Jing Zheng
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| |
Collapse
|
10
|
Peng Y, Shu L, Deng X, Huang X, Mo X, Du F, Tang Z. Live-Cell Imaging of Endogenous RNA with a Genetically Encoded Fluorogenic Allosteric Aptamer. Anal Chem 2023; 95:13762-13768. [PMID: 37661353 DOI: 10.1021/acs.analchem.2c05724] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
Imaging and tracking tools for natural cellular RNA with improved biocompatibility, specificity, and sensitivity are critical to understanding RNA function and providing insights into disease therapeutics. We developed a new genetically encoded sensor using fluorogenic allosteric aptamer (FaApt) for the sensitive imaging of the localization and dynamics of RNA targets in live cells. Target RNAs can be specifically recognized with our sensor by forming perfectly complementary duplexes, which in turn can induce allosteric structural changes of the sensor to refold the native conformation of fluorogenic RNA aptamers. We demonstrated the ability of the sensor to monitor the effect of tumor necrosis factor and small-molecule inhibitor on the expression abundance of CXCL1 and survivin mRNA in human cancer cells, respectively. The asymmetrical distribution of endogenous Squint mRNA was confirmed in developing zebrafish embryos through microinjection of FaApt probes. This study provides an effective molecular tool for sensitive imaging and tracking endogenous RNA in living cells. Due to the high specificity and small size of our sensor system, it is expected to be applied to early diagnosis of RNA marker-related diseases and real-time evaluation of the treatment process.
Collapse
Affiliation(s)
- Yan Peng
- Natural Products Research Center, Chengdu Institute of Biology, Chinese Academy of Science, Chengdu 610041, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Linjuan Shu
- State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 6100141, P. R. China
| | - Xiongfei Deng
- Natural Products Research Center, Chengdu Institute of Biology, Chinese Academy of Science, Chengdu 610041, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Xin Huang
- Natural Products Research Center, Chengdu Institute of Biology, Chinese Academy of Science, Chengdu 610041, P. R. China
| | - Xianming Mo
- State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 6100141, P. R. China
| | - Feng Du
- Natural Products Research Center, Chengdu Institute of Biology, Chinese Academy of Science, Chengdu 610041, P. R. China
| | - Zhuo Tang
- Natural Products Research Center, Chengdu Institute of Biology, Chinese Academy of Science, Chengdu 610041, P. R. China
| |
Collapse
|
11
|
Hadynski JC, Diggins J, Goad Z, Joy M, Dunckel S, Kraus P, Lufkin T, Wriedt M. Metal-Organic Framework as a Fluorescent and Colorimetric Dual-Signal Readout Biosensor Platform for the Detection of a Genetic Sequence from the SARS-CoV-2 Genome. ACS APPLIED MATERIALS & INTERFACES 2023; 15:38163-38170. [PMID: 37535905 DOI: 10.1021/acsami.3c03518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/05/2023]
Abstract
The quest for the development of high-accuracy, point-of-care, and cost-effective testing platforms for SARS-CoV-2 infections is ongoing as current diagnostics rely on either assays based on costly yet accurate nucleic acid amplification tests (NAAT) or less selective and less sensitive but rapid and cost-effective antigen tests. As a potential solution, this work presents a fluorescence-based detection platform using a metal-organic framework (MOF) in an effective assay, demonstrating the potential of MOFs to recognize specific targets of the SARS-CoV-2 genome with high accuracy and rapid process turnaround time. As a highlight of this work, positive detection of SARS-CoV-2 is indicated by a visible color change of the MOF probe with ultrahigh detection selectivities down to single-base mismatch nucleotide sequences, thereby providing an alternative avenue for the development of innovative detection methods for diverse viral genomes.
Collapse
Affiliation(s)
- John C Hadynski
- Department of Chemistry & Biomolecular Science, Clarkson University, Potsdam, New York 13699, United States
| | - Jaren Diggins
- Department of Chemistry, Texas Southern University, Houston, Texas 77004, United States
| | - Zachary Goad
- Department of Chemistry & Biomolecular Science, Clarkson University, Potsdam, New York 13699, United States
| | - Monu Joy
- Department of Chemistry & Biomolecular Science, Clarkson University, Potsdam, New York 13699, United States
| | - Steven Dunckel
- Department of Chemistry & Biomolecular Science, Clarkson University, Potsdam, New York 13699, United States
| | - Petra Kraus
- Department of Biology, Clarkson University, Potsdam, New York 13699, United States
| | - Thomas Lufkin
- Department of Biology, Clarkson University, Potsdam, New York 13699, United States
| | - Mario Wriedt
- Department of Chemistry & Biomolecular Science, Clarkson University, Potsdam, New York 13699, United States
| |
Collapse
|
12
|
Kim MJ, Li Y, Junge JA, Kim NK, Fraser SE, Zhang C. Development of Highly Fluorogenic Styrene Probes for Visualizing RNA in Live Cells. ACS Chem Biol 2023; 18:1523-1533. [PMID: 37200527 PMCID: PMC10367048 DOI: 10.1021/acschembio.3c00141] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 05/05/2023] [Indexed: 05/20/2023]
Abstract
Styrene dyes are useful imaging probes and fluorescent sensors due to their strong fluorogenic responses to environmental changes or binding macromolecules. Previously, indole-containing styrene dyes have been reported to selectively bind RNA in the nucleolus and cytoplasm. However, the application of these indole-based dyes in cell imaging is limited by their moderate fluorescence enhancement and quantum yields, as well as relatively high background associated with these green-emitting dyes. In this work, we have investigated the positional and electronic effects of the electron donor by generating regioisomeric and isosteric analogues of the indole ring. Select probes exhibited large Stokes shifts, enhanced molar extinction coefficients, and bathochromic shifts in their absorption and fluorescence wavelengths. In particular, the indolizine analogues displayed high membrane permeability, strong fluorogenic responses upon binding RNA, compatibility with fluorescence lifetime imaging microscopy (FLIM), low cytotoxicity, and excellent photostability. These indolizine dyes not only give rise to rapid, sensitive, and intense staining of nucleoli in live cells but can also resolve subnucleolar structures enabling highly detailed studies of nucleolar morphology. Furthermore, our dyes can partition into RNA coacervates and resolve the formation of multiphase complex coacervate droplets. These indolizine-containing styrene probes offer the highest fluorescence enhancement among the RNA-selective dyes reported in the literature; thus, these new dyes are excellent alternatives to the commercially available RNA dye, SYTO RNASelect, for visualizing RNA in live cells and in vitro.
Collapse
Affiliation(s)
- Moon Jung Kim
- Department
of Chemistry & Loker Hydrocarbon Research Institute, University of Southern California, Los Angeles, California 90089, United States
| | - Yida Li
- Department
of Chemistry & Loker Hydrocarbon Research Institute, University of Southern California, Los Angeles, California 90089, United States
| | - Jason A. Junge
- Department
of Biological Sciences, Division of Molecular and Computational Biology, University of Southern California, Los Angeles, California 90089, United States
- Translational
Imaging Center, Michelson Center for Convergent Bioscience, University of Southern California, Los Angeles, California 90089, United States
| | - Nathan K. Kim
- Department
of Chemistry & Loker Hydrocarbon Research Institute, University of Southern California, Los Angeles, California 90089, United States
| | - Scott E. Fraser
- Department
of Biological Sciences, Division of Molecular and Computational Biology, University of Southern California, Los Angeles, California 90089, United States
- Translational
Imaging Center, Michelson Center for Convergent Bioscience, University of Southern California, Los Angeles, California 90089, United States
| | - Chao Zhang
- Department
of Chemistry & Loker Hydrocarbon Research Institute, University of Southern California, Los Angeles, California 90089, United States
- Department
of Biological Sciences, Division of Molecular and Computational Biology, University of Southern California, Los Angeles, California 90089, United States
| |
Collapse
|
13
|
Algar WR, Szwarczewski A, Massey M. Are We There Yet? Intracellular Sensing with Luminescent Nanoparticles and FRET. Anal Chem 2023; 95:551-559. [PMID: 36595310 DOI: 10.1021/acs.analchem.2c03751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Combinations of luminescent nanoparticles (LNPs) and Förster resonance energy transfer (FRET) offer properties and features that are advantageous for sensing of biomolecular targets and activity. Despite a multitude of designs for LNP-FRET sensors, intracellular sensing applications are underdeveloped. We introduce readers to this field, summarize essential concepts, meta-analyze the literature, and offer a perspective on the bottleneck in LNP-FRET sensor development.
Collapse
Affiliation(s)
- W Russ Algar
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada
| | - Agnes Szwarczewski
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada
| | - Melissa Massey
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada
| |
Collapse
|
14
|
Abstract
Exosomes are extracellular vesicles, which have the ability to convey various types of cargo between cells. Lately, a great amount of interest has been paid to exosomal microRNAs (miRNAs), since much evidence has suggested that the sorting of miRNAs into exosomes is not an accidental process. It has been shown that exosomal miRNAs (exo-miRNAs) are implicated in a variety of cellular processes including (but not limited to) cell migration, apoptosis, proliferation, and autophagy. Exosomes can play a role in cardiovascular diseases and can be used as diagnostic biomarkers for several diseases, especially cancer. Tremendous advances in technology have led to the development of various platforms for miRNA profiling. Each platform has its own limitations and strengths that need to be understood in order to use them properly. In the current review, we summarize some exo-miRNAs that are relevant to exo-miRNA profiling studies and describe new methods used for the measurement of miRNA profiles in different human bodily fluids.
Collapse
|
15
|
Dong F, Yan W, Dong W, Shang X, Xu Y, Liu W, Wu Y, Wei W, Zhao T. DNA-enabled fluorescent-based nanosensors monitoring tumor-related RNA toward advanced cancer diagnosis: A review. Front Bioeng Biotechnol 2022; 10:1059845. [DOI: 10.3389/fbioe.2022.1059845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Accepted: 11/18/2022] [Indexed: 12/02/2022] Open
Abstract
As a burgeoning non-invasive indicator for reproducible cancer diagnosis, tumor-related biomarkers have a wide range of applications in early cancer screening, efficacy monitoring, and prognosis predicting. Accurate and efficient biomarker determination, therefore, is of great importance to prevent cancer progression at an early stage, thus reducing the disease burden on the entire population, and facilitating advanced therapies for cancer. During the last few years, various DNA structure-based fluorescent probes have established a versatile platform for biological measurements, due to their inherent biocompatibility, excellent capacity to recognize nucleic and non-nucleic acid targets, obvious accessibility to synthesis as well as chemical modification, and the ease of interfacing with signal amplification protocols. After decades of research, DNA fluorescent probe technology for detecting tumor-related mRNAs has gradually grown to maturity, especially the advent of fluorescent nanoprobes has taken the process to a new level. Here, a systematic introduction to recent trends and advances focusing on various nanomaterials-related DNA fluorescent probes and the physicochemical properties of various involved nanomaterials (such as AuNP, GO, MnO2, SiO2, AuNR, etc.) are also presented in detail. Further, the strengths and weaknesses of existing probes were described and their progress in the detection of tumor-related mRNAs was illustrated. Also, the salient challenges were discussed later, with a few potential solutions.
Collapse
|
16
|
Lau MHY, Wong CH, Chan HYE, Au-Yeung HY. Development of Fluorescent Turn-On Probes for CAG-RNA Repeats. BIOSENSORS 2022; 12:1080. [PMID: 36551047 PMCID: PMC9775061 DOI: 10.3390/bios12121080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 11/18/2022] [Accepted: 11/21/2022] [Indexed: 06/17/2023]
Abstract
Fluorescent sensing of nucleic acids is a highly sensitive and efficient bioanalytical method for their study in cellular processes, detection and diagnosis in related diseases. However, the design of small molecule fluorescent probes for the selective binding and detection of RNA of a specific sequence is very challenging because of their diverse, dynamic, and flexible structures. By modifying a bis(amidinium)-based small molecular binder that is known to selectively target RNA with CAG repeats using an environment-sensitive fluorophore, a turn-on fluorescent probe featuring aggregation-induced emission (AIE) is successfully developed in this proof-of-concept study. The probe (DB-TPE) exhibits a strong, 19-fold fluorescence enhancement upon binding to a short CAG RNA, and the binding and fluorescence response was found to be specific to the overall RNA secondary structure with A·A mismatches. These promising analytical performances suggest that the probe could be applied in pathological studies, disease progression monitoring, as well as diagnosis of related neurodegenerative diseases due to expanded CAG RNA repeats.
Collapse
Affiliation(s)
- Matthew Ho Yan Lau
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Chun-Ho Wong
- School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Ho Yin Edwin Chan
- School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China
- Gerald Choa Neuroscience Centre, The Chinese University of Hong Kong, Hong Kong, China
- Nexus of Rare Neurodegenerative Diseases, School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Ho Yu Au-Yeung
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, China
- Nexus of Rare Neurodegenerative Diseases, School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China
- State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| |
Collapse
|
17
|
Development of a Highly Selective and Sensitive Fluorescent Probe for Imaging RNA Dynamics in Live Cells. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27206927. [PMID: 36296519 PMCID: PMC9607629 DOI: 10.3390/molecules27206927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 10/09/2022] [Accepted: 10/11/2022] [Indexed: 11/06/2022]
Abstract
RNA imaging is of great importance for understanding its complex spatiotemporal dynamics and cellular functions. Considerable effort has been devoted to the development of small-molecule fluorescent probes for RNA imaging. However, most of the reported studies have mainly focused on improving the photostability, permeability, long emission wavelength, and compatibility with live-cell imaging of RNA probes. Less attention has been paid to the selectivity and detection limit of this class of probes. Highly selective and sensitive RNA probes are still rarely available. In this study, a new set of styryl probes were designed and synthesized, with the aim of upgrading the detection limit and maintaining the selectivity of a lead probe QUID−1 for RNA. Among these newly synthesized compounds, QUID−2 was the most promising candidate. The limit of detection (LOD) value of QUID−2 for the RNA was up to 1.8 ng/mL in solution. This property was significantly improved in comparison with that of QUID−1. Further spectroscopy and cell imaging studies demonstrated the advantages of QUID−2 over a commercially available RNA staining probe, SYTO RNASelect, for highly selective and sensitive RNA imaging. In addition, QUID−2 exhibited excellent photostability and low cytotoxicity. Using QUID−2, the global dynamics of RNA were revealed in live cells. More importantly, QUID−2 was found to be potentially applicable for detecting RNA granules in live cells. Collectively, our work provides an ideal probe for RNA imaging. We anticipate that this powerful tool may create new opportunities to investigate the underlying roles of RNA and RNA granules in live cells.
Collapse
|
18
|
Yang J, Dong C, Zhang A, Ren J. Quantification of mRNA in Single Cells Based on Dimerization-Induced Photoluminescence Nonblinking of Quantum Dots. Anal Chem 2022; 94:12407-12415. [PMID: 36050288 DOI: 10.1021/acs.analchem.2c02209] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Photoluminescence (PL) intermittency (or "blinking") is a unique characteristic of single quantum dot (QD) emission. Here, we report a novel single-molecule detection strategy for the intracellular mRNA of interest using the mRNA-induced nonblinking QD dimers as probes. The working principle of the method is that the DNA hybrid of the target DNA (or mRNA) with a biotin-modified ssDNA probe can induce two blinking streptavidin-modified QDs (SAV-QDs) conjugated. The formed QD dimer as a bright spot showed a nonblinking emission property, observed with total inner reflection fluorescence microscopy (TIRFM). In theory, one nonblinking spot indicated a target DNA (or mRNA). The experimental results from single-spot fluorescence trajectory analysis and single-particle brightness analysis based on TIRFM and fluorescence correlation spectroscopy (FCS) techniques verified this dimerization process of QDs or its induced nonblinking emission. Employing a target DNA with the same base sequences to Survivin mRNA as a model, the detection strategy was used to detect the target DNA concentration based on the linear relationship between the percentage of the nonblinking spots and the target DNA concentration. This single-molecule detection strategy was also successfully used for determining Survivin mRNA in a single HeLa cell. The method can simplify the hybridization steps, eliminate self-quenching and photobleaching of fluorophores, and reduce the influence of unspecific binding on the detection.
Collapse
Affiliation(s)
- Jie Yang
- School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Chaoqing Dong
- School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Aidi Zhang
- School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Jicun Ren
- School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| |
Collapse
|
19
|
Shen J, Chen J, Wang D, Liu Z, Han G, Liu B, Han M, Zhang R, Liu G, Zhang Z. Real-time quantification of nuclear RNA export using an intracellular relocation probe. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2021.10.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
20
|
Le P, Ahmed N, Yeo GW. Illuminating RNA biology through imaging. Nat Cell Biol 2022; 24:815-824. [PMID: 35697782 PMCID: PMC11132331 DOI: 10.1038/s41556-022-00933-9] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Accepted: 05/06/2022] [Indexed: 12/14/2022]
Abstract
RNA processing plays a central role in accurately transmitting genetic information into functional RNA and protein regulators. To fully appreciate the RNA life-cycle, tools to observe RNA with high spatial and temporal resolution are critical. Here we review recent advances in RNA imaging and highlight how they will propel the field of RNA biology. We discuss current trends in RNA imaging and their potential to elucidate unanswered questions in RNA biology.
Collapse
Affiliation(s)
- Phuong Le
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
- Stem Cell Program, University of California San Diego, La Jolla, CA, USA
- Institute for Genomic Medicine, University of California San Diego, La Jolla, CA, USA
| | - Noorsher Ahmed
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
- Stem Cell Program, University of California San Diego, La Jolla, CA, USA
- Institute for Genomic Medicine, University of California San Diego, La Jolla, CA, USA
- Biomedical Sciences Graduate Program, University of California San Diego, La Jolla, CA, USA
| | - Gene W Yeo
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA.
- Stem Cell Program, University of California San Diego, La Jolla, CA, USA.
- Institute for Genomic Medicine, University of California San Diego, La Jolla, CA, USA.
- Biomedical Sciences Graduate Program, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
21
|
Liu X, Wang Y, Effah CY, Wu L, Yu F, Wei J, Mao G, Xiong Y, He L. Endocytosis and intracellular RNAs imaging of nanomaterials-based fluorescence probes. Talanta 2022; 243:123377. [DOI: 10.1016/j.talanta.2022.123377] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 03/02/2022] [Accepted: 03/09/2022] [Indexed: 12/12/2022]
|
22
|
Cherbonneau F, Li G, Gokulnath P, Sahu P, Prunevieille A, Kitchen R, Benichou G, Larghero J, Domian I, Das S. TRACE-seq: A transgenic system for unbiased and non-invasive transcriptome profiling of living cells. iScience 2022; 25:103806. [PMID: 35198871 PMCID: PMC8844816 DOI: 10.1016/j.isci.2022.103806] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 11/11/2021] [Accepted: 01/20/2022] [Indexed: 11/16/2022] Open
Abstract
Dynamic profiling of changes in gene expression in response to stressors in specific microenvironments without requiring cellular destruction remains challenging. Current methodologies that seek to interrogate gene expression at a molecular level require sampling of cellular transcriptome and therefore lysis of the cell, preventing serial analysis of cellular transcriptome. To address this area of unmet need, we have recently developed a technology allowing transcriptomic analysis over time without cellular destruction. Our method, TRACE-seq (TRanscriptomic Analysis Captured in Extracellular vesicles using sequencing), is characterized by a cell-type specific transgene expression. It provides data on the transcriptome inside extracellular vesicles that provides an accurate representation of stress-responsive cellular transcriptomic changes. Thus, the transcriptome of cells expressing TRACE can be followed over time without destroying the source cell, which is a powerful tool for many fields of fundamental and translational biology research.
Collapse
Affiliation(s)
- François Cherbonneau
- Université de Paris, AP-HP, Hôpital Saint-Louis, Unité de Thérapie Cellulaire, U976, CICBT CBT501, INSERM, Paris, France
- Cardiovascular Research Center, Massachusetts General Hospital, Harvard Medical School, 185 Cambridge Street, Simches 3(rd.) Floor, Boston, MA 02114, USA
| | - Guoping Li
- Cardiovascular Research Center, Massachusetts General Hospital, Harvard Medical School, 185 Cambridge Street, Simches 3(rd.) Floor, Boston, MA 02114, USA
| | - Priyanka Gokulnath
- Cardiovascular Research Center, Massachusetts General Hospital, Harvard Medical School, 185 Cambridge Street, Simches 3(rd.) Floor, Boston, MA 02114, USA
| | - Parul Sahu
- Cardiovascular Research Center, Massachusetts General Hospital, Harvard Medical School, 185 Cambridge Street, Simches 3(rd.) Floor, Boston, MA 02114, USA
| | - Aurore Prunevieille
- Université de Paris, AP-HP, Hôpital Saint-Louis, Human Immunology and Immunopathology, UMR976, INSERM, Paris, France
- Transplant Research Center, Department of Surgery, Center for Transplantation Sciences, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Robert Kitchen
- Cardiovascular Research Center, Massachusetts General Hospital, Harvard Medical School, 185 Cambridge Street, Simches 3(rd.) Floor, Boston, MA 02114, USA
| | - Gilles Benichou
- Transplant Research Center, Department of Surgery, Center for Transplantation Sciences, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Jérôme Larghero
- Université de Paris, AP-HP, Hôpital Saint-Louis, Unité de Thérapie Cellulaire, U976, CICBT CBT501, INSERM, Paris, France
| | - Ibrahim Domian
- Cardiovascular Research Center, Massachusetts General Hospital, Harvard Medical School, 185 Cambridge Street, Simches 3(rd.) Floor, Boston, MA 02114, USA
| | - Saumya Das
- Cardiovascular Research Center, Massachusetts General Hospital, Harvard Medical School, 185 Cambridge Street, Simches 3(rd.) Floor, Boston, MA 02114, USA
| |
Collapse
|
23
|
Chen M, Sui T, Yang L, Qian Y, Liu Z, Liu Y, Wang G, Lai L, Li Z. Live imaging of RNA and RNA splicing in mammalian cells via the dcas13a-SunTag-BiFC system. Biosens Bioelectron 2022; 204:114074. [PMID: 35149451 DOI: 10.1016/j.bios.2022.114074] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Revised: 01/19/2022] [Accepted: 02/02/2022] [Indexed: 12/26/2022]
Abstract
Dynamic tracking of the localization of RNA molecules (nucleus and/or cytoplasm) and RNA splicing in living cells plays an important role in understanding their functions. However, a lack of dynamic imaging and high background fluorescence have been reported in the fluorescence in situ hybridization (FISH). Here, we developed a new tool, the dcas13a-SunTag-BiFC system, which fused the dLwacas13a and SunTag systems. dLwacas13a is used as a tracker to target specific RNAs, while SunTag recruits split Venus fluorescent proteins to label targeted RNAs. Our results showed that 4 × NLS-dCas13a-24 × SunTag-BiFC and 2 × NLS- dCas13a-24 × SunTag-BiFC systems can be used for imaging of endogenous RNA foci in the nucleus (Xist) and cytoplasm (Ppib and stress granules) in living cells, respectively. Compared to 12x MS2-MCP system, the dcas13a-SunTag-BiFC system showed a better performance of mRNA foci tracking in live cells. Furthermore, we confirmed the premature termination codon (PTC)-induced exon skipping of Oxt RNA using the dcas13a-SunTag-BiFC and MS2-MCP systems in the nucleus. Thus, the dcas13a-SunTag-BiFC system will facilitate the study of RNA localization in living cells and provide new insights into RNA translocation and splicing.
Collapse
Affiliation(s)
- Mao Chen
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Animal Science, Jilin University, Changchun, 130062, China
| | - Tingting Sui
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Animal Science, Jilin University, Changchun, 130062, China
| | - Li Yang
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Animal Science, Jilin University, Changchun, 130062, China
| | - Yuqiang Qian
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Animal Science, Jilin University, Changchun, 130062, China
| | - Zhiquan Liu
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Animal Science, Jilin University, Changchun, 130062, China
| | - Yongsai Liu
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Animal Science, Jilin University, Changchun, 130062, China
| | - Gerong Wang
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Animal Science, Jilin University, Changchun, 130062, China
| | - Liangxue Lai
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Animal Science, Jilin University, Changchun, 130062, China; CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China.
| | - Zhanjun Li
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Animal Science, Jilin University, Changchun, 130062, China.
| |
Collapse
|
24
|
Zhang Y, Du XK, Su X, Zou X, Zhang CY. Mismatched fluorescent probes with an enhanced strand displacement reaction rate for intracellular long noncoding RNA imaging. Chem Commun (Camb) 2022; 58:1760-1763. [PMID: 35037666 DOI: 10.1039/d1cc05270e] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
We design mismatched fluorescent probes to directly monitor the long noncoding RNA (lncRNA) in living cells. The introduction of mismatched bases in the fluorescent probe greatly enhances the strand displacement reaction rate toward the target lncRNA. These mismatched probes can monitor the intracellular lncRNA expression level in various cell lines and discriminate cancer cells from normal cells, holding great potential in fundamental biomedical research and clinical disease diagnosis.
Collapse
Affiliation(s)
- Yan Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, China.
| | - Xue-Ke Du
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, China.
| | - Xianwei Su
- CUHK-SDU Joint Laboratory on Reproductive Genetics, School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong 999077, China
| | - Xiaoran Zou
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, China.
| | - Chun-Yang Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, China.
| |
Collapse
|
25
|
Vilchez Mercedes SA, Eder I, Ahmed M, Zhu N, Wong PK. Optimizing locked nucleic acid modification in double-stranded biosensors for live single cell analysis. Analyst 2022; 147:722-733. [DOI: 10.1039/d1an01802g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Double-stranded (ds) biosensors are homogeneous oligonucleotide probes for detection of nucleic acid sequences in biochemical assays and live cell imaging.
Collapse
Affiliation(s)
- Samuel A. Vilchez Mercedes
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Ian Eder
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Mona Ahmed
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Ninghao Zhu
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Pak Kin Wong
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA, 16802, USA
- Department of Mechanical Engineering and Department of Surgery, The Pennsylvania State University, University Park, PA, 16802, USA
| |
Collapse
|
26
|
Chen W, Li Z, Deng P, Li Z, Xu Y, Li H, Su W, Qin J. Advances of Exosomal miRNAs in Breast Cancer Progression and Diagnosis. Diagnostics (Basel) 2021; 11:diagnostics11112151. [PMID: 34829498 PMCID: PMC8622700 DOI: 10.3390/diagnostics11112151] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 10/25/2021] [Accepted: 11/01/2021] [Indexed: 12/19/2022] Open
Abstract
Breast cancer is one of the most commonly diagnosed malignancies and the leading cause of cancer death in women worldwide. Although many factors associated with breast cancer have been identified, the definite etiology of breast cancer is still unclear. In addition, early diagnosis of breast cancer remains challenging. Exosomes are membrane-bound nanovesicles secreted by most types of cells and contain a series of biologically important molecules, such as lipids, proteins, and miRNAs, etc. Emerging evidence shows that exosomes can affect the status of cells by transmitting substances and messages among cells and are involved in various physiological and pathological processes. In breast cancer, exosomes play a significant role in breast tumorigenesis and progression through transfer miRNAs which can be potential biomarkers for early diagnosis of breast cancer. This review discusses the potential utility of exosomal miRNAs in breast cancer progression such as tumorigenesis, metastasis, immune regulation and drug resistance, and further in breast cancer diagnosis.
Collapse
Affiliation(s)
- Wenwen Chen
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China; (W.C.); (P.D.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhongyu Li
- College of Life Science, Dalian Minzu University, Dalian 116600, China;
| | - Pengwei Deng
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China; (W.C.); (P.D.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhengnan Li
- Clinical Laboratory, Dalian University Affiliated Xinhua Hospital, Dalian 116021, China;
| | - Yuhai Xu
- First Affiliated Hospital of Dalian Medical University, Dalian 116000, China; (Y.X.); (H.L.)
| | - Hongjing Li
- First Affiliated Hospital of Dalian Medical University, Dalian 116000, China; (Y.X.); (H.L.)
| | - Wentao Su
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
- Correspondence: (W.S.); (J.Q.)
| | - Jianhua Qin
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China; (W.C.); (P.D.)
- University of Chinese Academy of Sciences, Beijing 100049, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100049, China
- CAS Centre for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
- Correspondence: (W.S.); (J.Q.)
| |
Collapse
|
27
|
Chen L, Chen W, Liu G, Li J, Lu C, Li J, Tan W, Yang H. Nucleic acid-based molecular computation heads towards cellular applications. Chem Soc Rev 2021; 50:12551-12575. [PMID: 34604889 DOI: 10.1039/d0cs01508c] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Nucleic acids, with the advantages of programmability and biocompatibility, have been widely used to design different kinds of novel biocomputing devices. Recently, nucleic acid-based molecular computing has shown promise in making the leap from the test tube to the cell. Such molecular computing can perform logic analysis within the confines of the cellular milieu with programmable modulation of biological functions at the molecular level. In this review, we summarize the development of nucleic acid-based biocomputing devices that are rationally designed and chemically synthesized, highlighting the ability of nucleic acid-based molecular computing to achieve cellular applications in sensing, imaging, biomedicine, and bioengineering. Then we discuss the future challenges and opportunities for cellular and in vivo applications. We expect this review to inspire innovative work on constructing nucleic acid-based biocomputing to achieve the goal of precisely rewiring, even reconstructing cellular signal networks in a prescribed way.
Collapse
Affiliation(s)
- Lanlan Chen
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350108, P. R. China.
| | - Wanzhen Chen
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350108, P. R. China.
| | - Guo Liu
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350108, P. R. China.
| | - Jingying Li
- College of Biological Science and Engineering, Fuzhou University, Fuzhou 350108, P. R. China
| | - Chunhua Lu
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350108, P. R. China.
| | - Juan Li
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350108, P. R. China. .,Institute of Cancer and Basic Medicine (ICBM), Chinese Academy of Sciences; The Cancer Hospital of the University of Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, P. R. China
| | - Weihong Tan
- Institute of Cancer and Basic Medicine (ICBM), Chinese Academy of Sciences; The Cancer Hospital of the University of Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, P. R. China.,Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha 410082, P. R. China
| | - Huanghao Yang
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350108, P. R. China.
| |
Collapse
|
28
|
Sato T, Sato Y, Nishizawa S. Spectroscopic, thermodynamic and kinetic analysis of selective triplex formation by peptide nucleic acid with double-stranded RNA over its DNA counterpart. Biopolymers 2021; 113:e23474. [PMID: 34478151 DOI: 10.1002/bip.23474] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 07/11/2021] [Accepted: 08/17/2021] [Indexed: 12/27/2022]
Abstract
Unlike conventional triplex-forming oligonucleotide (TFO), triplex-forming peptide nucleic acid (PNA) can tightly bind with double-stranded RNA (dsRNA) than double-stranded DNA (dsDNA). Here, we performed spectroscopic, thermodynamic and kinetic experiments for triplex formation by PNA to examine different binding behaviors between PNA - dsRNA and PNA - dsDNA triplexes. We found 9-mer PNA (cytosine content of 66%) formed the thermally stable triplex with dsRNA compared to dsDNA over a wide range of pH (5.5-8.0), salt concentration (50-500 mM NaCl). Both the calorimetric binding constant and the association rate constant for dsRNA were larger than those for dsDNA, indicating the favorable association process for the PNA - dsRNA triplex formation. Comparison with the DNA/RNA heteroduplexes revealed that the DNA strand was detrimental to the triplex stability for PNA, a contrasting result for conventional TFO. The keys underlying the difference in the triplex formation of PNA with different duplexes appear to be the conformational adoptability and the geometric compatibility of PNA to fit the deep, narrow major groove of dsRNA and the helical rigidity difference of the duplexes. Our results emphasize the importance of both the sugar puckering of the duplex and the appropriate conformational flexibility of PNA for the triplex formation.
Collapse
Affiliation(s)
- Takaya Sato
- Department of Chemistry, Graduate School of Science, Tohoku University, Sendai, Japan
| | - Yusuke Sato
- Department of Chemistry, Graduate School of Science, Tohoku University, Sendai, Japan
| | - Seiichi Nishizawa
- Department of Chemistry, Graduate School of Science, Tohoku University, Sendai, Japan
| |
Collapse
|
29
|
Depaix A, Mlynarska-Cieslak A, Warminski M, Sikorski PJ, Jemielity J, Kowalska J. RNA Ligation for Mono and Dually Labeled RNAs. Chemistry 2021; 27:12190-12197. [PMID: 34114681 DOI: 10.1002/chem.202101909] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Indexed: 12/27/2022]
Abstract
Labeled RNAs are invaluable probes for investigation of RNA function and localization. However, mRNA labeling remains challenging. Here, we developed an improved method for 3'-end labeling of in vitro transcribed RNAs. We synthesized novel adenosine 3',5'-bisphosphate analogues modified at the N6 or C2 position of adenosine with an azide-containing linker, fluorescent label, or biotin and assessed these constructs as substrates for RNA labeling directly by T4 ligase or via postenzymatic strain-promoted alkyne-azide cycloaddition (SPAAC). All analogues were substrates for T4 RNA ligase. Analogues containing bulky fluorescent labels or biotin showed better overall labeling yields than postenzymatic SPAAC. We successfully labeled uncapped RNAs, NAD-capped RNAs, and 5'-fluorescently labeled m7 Gp3 Am -capped mRNAs. The obtained highly homogenous dually labeled mRNA was translationally active and enabled fluorescence-based monitoring of decapping. This method will facilitate the use of various functionalized mRNA-based probes.
Collapse
Affiliation(s)
- Anaïs Depaix
- Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Pasteura 5, 02-093, Warsaw, Poland
| | - Agnieszka Mlynarska-Cieslak
- Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Pasteura 5, 02-093, Warsaw, Poland
| | - Marcin Warminski
- Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Pasteura 5, 02-093, Warsaw, Poland
| | - Pawel J Sikorski
- Centre of New Technologies, University of Warsaw, Banacha 2c, 02-097, Warsaw, Poland
| | - Jacek Jemielity
- Centre of New Technologies, University of Warsaw, Banacha 2c, 02-097, Warsaw, Poland
| | - Joanna Kowalska
- Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Pasteura 5, 02-093, Warsaw, Poland
| |
Collapse
|
30
|
Dziuba D, Didier P, Ciaco S, Barth A, Seidel CAM, Mély Y. Fundamental photophysics of isomorphic and expanded fluorescent nucleoside analogues. Chem Soc Rev 2021; 50:7062-7107. [PMID: 33956014 DOI: 10.1039/d1cs00194a] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Fluorescent nucleoside analogues (FNAs) are structurally diverse mimics of the natural essentially non-fluorescent nucleosides which have found numerous applications in probing the structure and dynamics of nucleic acids as well as their interactions with various biomolecules. In order to minimize disturbance in the labelled nucleic acid sequences, the FNA chromophoric groups should resemble the natural nucleobases in size and hydrogen-bonding patterns. Isomorphic and expanded FNAs are the two groups that best meet the criteria of non-perturbing fluorescent labels for DNA and RNA. Significant progress has been made over the past decades in understanding the fundamental photophysics that governs the spectroscopic and environmentally sensitive properties of these FNAs. Herein, we review recent advances in the spectroscopic and computational studies of selected isomorphic and expanded FNAs. We also show how this information can be used as a rational basis to design new FNAs, select appropriate sequences for optimal spectroscopic response and interpret fluorescence data in FNA applications.
Collapse
Affiliation(s)
- Dmytro Dziuba
- Laboratoire de Bioimagerie et Pathologies, UMR 7021, Université de Strasbourg, 74 route du Rhin, 67401 Illkirch, France.
| | - Pascal Didier
- Laboratoire de Bioimagerie et Pathologies, UMR 7021, Université de Strasbourg, 74 route du Rhin, 67401 Illkirch, France.
| | - Stefano Ciaco
- Laboratoire de Bioimagerie et Pathologies, UMR 7021, Université de Strasbourg, 74 route du Rhin, 67401 Illkirch, France. and Department of Biotechnology, Chemistry and Pharmacy, University of Siena, via Aldo Moro 2, 53100 Siena, Italy
| | - Anders Barth
- Institut für Physikalische Chemie, Lehrstuhl für Molekulare Physikalische Chemie, Heinrich-Heine-Universität, 40225 Düsseldorf, Germany
| | - Claus A M Seidel
- Institut für Physikalische Chemie, Lehrstuhl für Molekulare Physikalische Chemie, Heinrich-Heine-Universität, 40225 Düsseldorf, Germany
| | - Yves Mély
- Laboratoire de Bioimagerie et Pathologies, UMR 7021, Université de Strasbourg, 74 route du Rhin, 67401 Illkirch, France.
| |
Collapse
|
31
|
Semikolenova OA, Golyshev VM, Kim BH, Venyaminova AG, Novopashina DS. New Two-Component Pyrene Probes Based on Oligo(2'-O-Methylribonucleotides) for microRNA Detection. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2021. [DOI: 10.1134/s1068162021020230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
32
|
Rolling Circle Replication for Biosensing, Bioimaging, and Biomedicine. Trends Biotechnol 2021; 39:1160-1172. [PMID: 33715868 DOI: 10.1016/j.tibtech.2021.02.007] [Citation(s) in RCA: 115] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 02/10/2021] [Accepted: 02/10/2021] [Indexed: 12/11/2022]
Abstract
Rolling circle replication (RCR), including rolling circle amplification (RCA) and rolling circle transcription (RCT), is an isothermal enzymatic reaction. Because of its high amplification efficiency, RCR is a powerful biosensing tool for detecting biomolecules. In recent years, RCR has also been extended to the field of bioimaging to better understand biological pathways. Furthermore, RCR provides a simple technique to design and generate DNA/RNA structures with unique advantages in delivering drugs and enhanced targeting ability. In this review, we introduce the fundamentals of RCR and describe the most recent advances in RCR-based detection methods and delivery vehicles for biosensing, bioimaging, and biomedicine. Finally, some challenges and further opportunities of RCR-based biotechnology are discussed.
Collapse
|
33
|
A Miniaturized Platform for Multiplexed Drug Response Imaging in Live Tumors. Cancers (Basel) 2021; 13:cancers13040653. [PMID: 33562152 PMCID: PMC7915324 DOI: 10.3390/cancers13040653] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 01/29/2021] [Accepted: 02/01/2021] [Indexed: 12/12/2022] Open
Abstract
Simple Summary We have developed an implantable microdevice that is placed into a live tumor, and can directly image how effective various chemotherapy drugs are at inducing cell death, without having to remove or process the tumor tissue. Currently drug optimization is performed by assessing tumor shrinkage after treating a patient with systemic doses of a chemotherapy agent; this only evaluates a single treatment at a time and typically takes weeks-months before an optimal treatment strategy is found (if found at all) for a specific patient. In contrast, using the technology presented here, a personalized cancer treatment strategy can potentially be optimized and tailored to a specific patient’s tumor characteristics within several hours, without requiring surgical tissue removal or prolonged trials of potentially ineffective chemotherapies. Abstract By observing the activity of anti-cancer agents directly in tumors, there is potential to greatly expand our understanding of drug response and develop more personalized cancer treatments. Implantable microdevices (IMD) have been recently developed to deliver microdoses of chemotherapeutic agents locally into confined regions of live tumors; the tissue can be subsequently removed and analyzed to evaluate drug response. This method has the potential to rapidly screen multiple drugs, but requires surgical tissue removal and only evaluates drug response at a single timepoint when the tissue is excised. Here, we describe a “lab-in-a-tumor” implantable microdevice (LIT-IMD) platform to image cell-death drug response within a live tumor, without requiring surgical resection or tissue processing. The LIT-IMD is inserted into a live tumor and delivers multiple drug microdoses into spatially discrete locations. In parallel, it locally delivers microdose levels of a fluorescent cell-death assay, which diffuses into drug-exposed tissues and accumulates at sites of cell death. An integrated miniaturized fluorescence imaging probe images each region to evaluate drug-induced cell death. We demonstrate ability to evaluate multi-drug response over 8 h using murine tumor models and show correlation with gold-standard conventional fluorescence microscopy and histopathology. This is the first demonstration of a fully integrated platform for evaluating multiple chemotherapy responses in situ. This approach could enable a more complete understanding of drug activity in live tumors, and could expand the utility of drug-response measurements to a wide range of settings where surgery is not feasible.
Collapse
|
34
|
Dou CX, Liu C, Ying ZM, Dong W, Wang F, Jiang JH. Genetically Encoded Dual-Color Light-Up RNA Sensor Enabled Ratiometric Imaging of MicroRNA. Anal Chem 2021; 93:2534-2540. [PMID: 33461295 DOI: 10.1021/acs.analchem.0c04588] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
MicroRNAs (miRNAs) play essential roles in regulating gene expression and cell fate. However, it remains a great challenge to image miRNAs with high accuracy in living cells. Here, we report a novel genetically encoded dual-color light-up RNA sensor for ratiometric imaging of miRNAs using Mango as an internal reference and SRB2 as the sensor module. This genetically encoded sensor is designed by expressing a splittable fusion of the internal reference and sensor module under a single promoter. This design strategy allows synchronous expression of the two modules with negligible interference. Live cell imaging studies reveal that the genetically encoded ratiometric RNA sensor responds specifically to mir-224. Moreover, the sensor-to-Mango fluorescence ratios are linearly correlated with the concentrations of mir-224, confirming their capability of determining mir-224 concentrations in living cells. Our genetically encoded light-up RNA sensor also enables ratiometric imaging of mir-224 in different cell lines. This strategy could provide a versatile approach for ratiometric imaging of intracellular RNAs, affording powerful tools for interrogating RNA functions and abundance in living cells.
Collapse
Affiliation(s)
- Cai-Xia Dou
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, China
| | - Chaoyang Liu
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, China
| | - Zhan-Ming Ying
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, China
| | - Wanrong Dong
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, China
| | - Fenglin Wang
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, China
| | - Jian-Hui Jiang
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, China
| |
Collapse
|
35
|
Kurutos A, Nikodinovic-Runic J, Veselinovic A, Veselinović JB, Kamounah FS, Ilic-Tomic T. RNA-targeting low-molecular-weight fluorophores for nucleoli staining: synthesis, in silico modelling and cellular imaging. NEW J CHEM 2021. [DOI: 10.1039/d1nj01659h] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Herein we present our work on the synthesis, investigation of the photophysical properties, interactions with nucleic acids, molecular docking, and imaging application of three carbocyanine dyes.
Collapse
Affiliation(s)
- Atanas Kurutos
- Institute of Organic Chemistry with Centre of Phytochemistry
- Bulgarian Academy of Sciences
- 1113 Sofia
- Bulgaria
| | | | | | - Jovana B. Veselinović
- Institute of Molecular Genetics and Genetic Engineering
- University of Belgrade
- 11000 Belgrade
- Serbia
| | - Fadhil S. Kamounah
- Department of Chemistry
- University of Copenhagen
- DK-2100 Copenhagen
- Denmark
| | - Tatjana Ilic-Tomic
- Institute of Molecular Genetics and Genetic Engineering
- University of Belgrade
- 11000 Belgrade
- Serbia
| |
Collapse
|
36
|
Mao S, Ying Y, Wu R, Chen AK. Recent Advances in the Molecular Beacon Technology for Live-Cell Single-Molecule Imaging. iScience 2020; 23:101801. [PMID: 33299972 PMCID: PMC7702005 DOI: 10.1016/j.isci.2020.101801] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Nucleic acids, aside from being best known as the carrier of genetic information, are versatile biomaterials for constructing nanoscopic devices for biointerfacing, owing to their unique properties such as specific base pairing and predictable structure. For live-cell analysis of native RNA transcripts, the most widely used nucleic acid-based nanodevice has been the molecular beacon (MB), a class of stem-loop-forming probes that is activated to fluoresce upon hybridization with target RNA. Here, we overview efforts that have been made in developing MB-based bioassays for sensitive intracellular analysis, particularly at the single-molecule level. We also describe challenges that are currently limiting the widespread use of MBs and provide possible solutions. With continued refinement of MBs in terms of labeling specificity and detection accuracy, accompanied by new development in imaging platforms with unprecedented sensitivity, the application of MBs is envisioned to expand in various biological research fields.
Collapse
Affiliation(s)
- Shiqi Mao
- Department of Biomedical Engineering, College of Engineering, Peking University, No. 5 Yiheyuan Road, Haidian District, Beijing 100871, China
| | - Yachen Ying
- Department of Biomedical Engineering, College of Engineering, Peking University, No. 5 Yiheyuan Road, Haidian District, Beijing 100871, China
| | - Ruonan Wu
- Department of Biomedical Engineering, College of Engineering, Peking University, No. 5 Yiheyuan Road, Haidian District, Beijing 100871, China
| | - Antony K. Chen
- Department of Biomedical Engineering, College of Engineering, Peking University, No. 5 Yiheyuan Road, Haidian District, Beijing 100871, China
- Corresponding author
| |
Collapse
|
37
|
Ebrahimi SB, Samanta D, Mirkin CA. DNA-Based Nanostructures for Live-Cell Analysis. J Am Chem Soc 2020; 142:11343-11356. [DOI: 10.1021/jacs.0c04978] [Citation(s) in RCA: 94] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
38
|
Yasun E, Neff B, Trusty T, Boskic L, Mezić I. Electrokinetic mixing in electrode-embedded multiwell plates to improve the diffusion limited kinetics of biosensing platforms. Anal Chim Acta 2020; 1106:79-87. [PMID: 32145858 DOI: 10.1016/j.aca.2020.02.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Revised: 01/13/2020] [Accepted: 02/03/2020] [Indexed: 12/13/2022]
Abstract
Rapid and accurate biosensing with low concentrations of the analytes is usually challenged by the diffusion limited reaction kinetics. Thus, as a remedy, long incubation times or excess amounts of the reagents are employed to ensure the reactions to go to completion. Therefore, mixing becomes both a serious problem and necessity to overcome that diffusion limitation and homogenize the samples, especially for the biochemical reactions that take place in multiwell plates. Because the current mixing platforms such as shakers/vortexers, sonicators, magnetic stirrers and acoustic mixers have disadvantages including, but not limited to, being invasive/harfmul to the samples, causing the samples to splash out or stick to the walls of the wells and allowing foreign compartments to enter the solutions in the wells. Here we propose a noninvasive and safer (considering the risk of sample loss) technology that provides electrokinetic-mixing (EKM) of the reagents placed in electrode-embedded multiwell plates where the incubation times, or in other words, the time required for the desired molecules to meet in stationary solutions, can be reduced substantially. In order to demonstrate the power of this innovation, in this specific case, a simple Förster resonance energy transfer (FRET) based quenching bioplatform was adopted, where a molecular beacon DNA (MB) modified with sulfhydryl (-SH) and fluorescein (FITC) dye at opposite terminals was incubated with 10 nm sized gold nanoparticles (AuNPs) in the wells of an electrode-embedded multiwell plate, in which a printed circuit board (PCB) was attached at the bottom to control the liquid flows by EKM. When the MB binds to AuNPs through thiolate chemistry in the solution, FITC dye comes in close proximity to the AuNP surface and the emission is quenched via FRET principle. Thus, this quenching percentage over time was our comparison parameter for the mixing and no mixing cases to demonstrate the impact of mixing on the quenching kinetics. This reaction was conducted with different concentrations of AuNPs to observe the impact of mixing on MB quenching kinetics when the concentrations of the AuNPs were increased. Total quenching efficiency could go up to 90% in the presence of the AuNPs and it took about 60 min to reach stability. When the EKM was involved, fluorescence quenching time for the MBs could be reduced by up to 4.1 times. Thus, it was demonstrated that this technology may improve the kinetics of the diffusion limited biological reactions take place in multiwell plates substantially so that it may be adopted in various different sensing platforms for rapid measurements.
Collapse
Affiliation(s)
- Emir Yasun
- Department of Mechanical Engineering and Biological Nanostructures Laboratory, California NanoSystems Institute (CNSI), University of California, Santa Barbara, Santa Barbara, CA, 93106, USA.
| | - Baptiste Neff
- Department of Mechanical Engineering and Biological Nanostructures Laboratory, California NanoSystems Institute (CNSI), University of California, Santa Barbara, Santa Barbara, CA, 93106, USA
| | - Travis Trusty
- Department of Mechanical Engineering and Biological Nanostructures Laboratory, California NanoSystems Institute (CNSI), University of California, Santa Barbara, Santa Barbara, CA, 93106, USA
| | - Ljuboslav Boskic
- Department of Mechanical Engineering and Biological Nanostructures Laboratory, California NanoSystems Institute (CNSI), University of California, Santa Barbara, Santa Barbara, CA, 93106, USA
| | - Igor Mezić
- Department of Mechanical Engineering and Biological Nanostructures Laboratory, California NanoSystems Institute (CNSI), University of California, Santa Barbara, Santa Barbara, CA, 93106, USA.
| |
Collapse
|
39
|
Samanta D, Ebrahimi SB, Mirkin CA. Nucleic-Acid Structures as Intracellular Probes for Live Cells. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1901743. [PMID: 31271253 PMCID: PMC6942251 DOI: 10.1002/adma.201901743] [Citation(s) in RCA: 98] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 05/08/2019] [Indexed: 05/02/2023]
Abstract
The chemical composition of cells at the molecular level determines their growth, differentiation, structure, and function. Probing this composition is powerful because it provides invaluable insight into chemical processes inside cells and in certain cases allows disease diagnosis based on molecular profiles. However, many techniques analyze fixed cells or lysates of bulk populations, in which information about dynamics and cellular heterogeneity is lost. Recently, nucleic-acid-based probes have emerged as a promising platform for the detection of a wide variety of intracellular analytes in live cells with single-cell resolution. Recent advances in this field are described and common strategies for probe design, types of targets that can be identified, current limitations, and future directions are discussed.
Collapse
Affiliation(s)
- Devleena Samanta
- Department of Chemistry and International Institute for Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208, USA
| | - Sasha B Ebrahimi
- Department of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208, USA
| | - Chad A Mirkin
- Department of Chemistry and International Institute for Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208, USA
| |
Collapse
|
40
|
Pendergraff H, Schmidt S, Vikeså J, Weile C, Øverup C, W. Lindholm M, Koch T. Nuclear and Cytoplasmatic Quantification of Unconjugated, Label-Free Locked Nucleic Acid Oligonucleotides. Nucleic Acid Ther 2020; 30:4-13. [PMID: 31618108 PMCID: PMC6987631 DOI: 10.1089/nat.2019.0810] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 08/28/2019] [Indexed: 12/23/2022] Open
Abstract
Methods for the quantification of antisense oligonucleotides (AONs) provide insightful information on biodistribution and intracellular trafficking. However, the established methods have not provided information on the absolute number of molecules in subcellular compartments or about how many AONs are needed for target gene reduction for unconjugated AONs. We have developed a new method for nuclear AON quantification that enables us to determine the absolute number of AONs per nucleus without relying on AON conjugates such as fluorophores that may alter AON distribution. This study describes an alternative and label-free method using subcellular fractionation, nucleus counting, and locked nucleic acid (LNA) sandwich enzyme-linked immunosorbent assay to quantify absolute numbers of oligonucleotides in nuclei. Our findings show compound variability (diversity) by which 247,000-693,000 LNAs/nuclei results in similar target reduction for different compounds. This method can be applied to any antisense drug discovery platform providing information on specific and clinically relevant AONs. Finally, this method can directly compare nuclear entry of AON with target gene knockdown for any compound design and nucleobase sequence, gene target, and phosphorothioate stereochemistry.
Collapse
Affiliation(s)
- Hannah Pendergraff
- Roche Pharma Research and Early Development, RNA Therapeutics Research, Roche Innovation Center Copenhagen, Hørsholm, Denmark
| | - Steffen Schmidt
- Roche Pharma Research and Early Development, RNA Therapeutics Research, Roche Innovation Center Copenhagen, Hørsholm, Denmark
| | - Jonas Vikeså
- Roche Pharma Research and Early Development, RNA Therapeutics Research, Roche Innovation Center Copenhagen, Hørsholm, Denmark
| | - Christian Weile
- Roche Pharma Research and Early Development, RNA Therapeutics Research, Roche Innovation Center Copenhagen, Hørsholm, Denmark
| | - Charlotte Øverup
- Roche Pharma Research and Early Development, RNA Therapeutics Research, Roche Innovation Center Copenhagen, Hørsholm, Denmark
| | - Marie W. Lindholm
- Roche Pharma Research and Early Development, RNA Therapeutics Research, Roche Innovation Center Copenhagen, Hørsholm, Denmark
| | - Troels Koch
- Roche Pharma Research and Early Development, RNA Therapeutics Research, Roche Innovation Center Copenhagen, Hørsholm, Denmark
| |
Collapse
|
41
|
Batani G, Bayer K, Böge J, Hentschel U, Thomas T. Fluorescence in situ hybridization (FISH) and cell sorting of living bacteria. Sci Rep 2019; 9:18618. [PMID: 31819112 PMCID: PMC6901588 DOI: 10.1038/s41598-019-55049-2] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 11/21/2019] [Indexed: 01/09/2023] Open
Abstract
Despite the development of several cultivation methods, the rate of discovery of microorganisms that are yet-to-be cultivated outpaces the rate of isolating and cultivating novel species in the laboratory. Furthermore, no current cultivation technique is capable of selectively isolating and cultivating specific bacterial taxa or phylogenetic groups independently of morphological or physiological properties. Here, we developed a new method to isolate living bacteria solely based on their 16S rRNA gene sequence. We showed that bacteria can survive a modified version of the standard fluorescence in situ hybridization (FISH) procedure, in which fixation is omitted and other factors, such as centrifugation and buffers, are optimized. We also demonstrated that labelled DNA probes can be introduced into living bacterial cells by means of chemical transformation and that specific hybridization occurs. This new method, which we call live-FISH, was then combined with fluorescence-activated cell sorting (FACS) to sort specific taxonomic groups of bacteria from a mock and natural bacterial communities and subsequently culture them. Live-FISH represents the first attempt to systematically optimize conditions known to affect cell viability during FISH and then to sort bacterial cells surviving the procedure. No sophisticated probe design is required, making live-FISH a straightforward method to be potentially used in combination with other single-cell techniques and for the isolation and cultivation of new microorganisms.
Collapse
Affiliation(s)
- Giampiero Batani
- Centre for Marine Science and Innovation and School of Biological, Earth and Environmental Sciences, The University of New South Wales, Sydney, New South Wales, Australia
- Faculty of Science - Department of Parasitology, University of South Bohemia, Ceske Budejovice, Czech Republic
| | - Kristina Bayer
- GEOMAR Helmholtz Centre for Ocean Research Kiel, Düsternbrooker Weg 20, 24105, Kiel, Germany
| | - Julia Böge
- GEOMAR Helmholtz Centre for Ocean Research Kiel, Düsternbrooker Weg 20, 24105, Kiel, Germany
| | - Ute Hentschel
- GEOMAR Helmholtz Centre for Ocean Research Kiel, Düsternbrooker Weg 20, 24105, Kiel, Germany
- Christian-Albrechts University of Kiel, Christian-Albrechts-Platz 4, 24118, Kiel, Germany
| | - Torsten Thomas
- Centre for Marine Science and Innovation and School of Biological, Earth and Environmental Sciences, The University of New South Wales, Sydney, New South Wales, Australia.
| |
Collapse
|
42
|
Mao S, Ying Y, Wu X, Krueger CJ, Chen AK. CRISPR/dual-FRET molecular beacon for sensitive live-cell imaging of non-repetitive genomic loci. Nucleic Acids Res 2019; 47:e131. [PMID: 31504824 PMCID: PMC6847002 DOI: 10.1093/nar/gkz752] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 08/15/2019] [Accepted: 08/21/2019] [Indexed: 01/19/2023] Open
Abstract
Clustered regularly interspaced short palindromic repeats (CRISPR)-based genomic imaging systems predominantly rely on fluorescent protein reporters, which lack the optical properties essential for sensitive dynamic imaging. Here, we modified the CRISPR single-guide RNA (sgRNA) to carry two distinct molecular beacons (MBs) that can undergo fluorescence resonance energy transfer (FRET) and demonstrated that the resulting system, CRISPR/dual-FRET MB, enables dynamic imaging of non-repetitive genomic loci with only three unique sgRNAs.
Collapse
Affiliation(s)
- Shiqi Mao
- Department of Biomedical Engineering, College of Engineering, Peking University, Beijing 100871, China
| | - Yachen Ying
- Department of Biomedical Engineering, College of Engineering, Peking University, Beijing 100871, China
| | - Xiaotian Wu
- Department of Biomedical Engineering, College of Engineering, Peking University, Beijing 100871, China
- School of Life Sciences, Peking University, Beijing 100871, China
| | - Christopher J Krueger
- Department of Biomedical Engineering, College of Engineering, Peking University, Beijing 100871, China
- Wallace H Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Antony K Chen
- Department of Biomedical Engineering, College of Engineering, Peking University, Beijing 100871, China
| |
Collapse
|
43
|
Atmanli A, Hu D, Deiman FE, van de Vrugt AM, Cherbonneau F, Black LD, Domian IJ. Multiplex live single-cell transcriptional analysis demarcates cellular functional heterogeneity. eLife 2019; 8:49599. [PMID: 31591966 PMCID: PMC6861004 DOI: 10.7554/elife.49599] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2019] [Accepted: 10/07/2019] [Indexed: 12/21/2022] Open
Abstract
A fundamental goal in the biological sciences is to determine how individual cells with varied gene expression profiles and diverse functional characteristics contribute to development, physiology, and disease. Here, we report a novel strategy to assess gene expression and cell physiology in single living cells. Our approach utilizes fluorescently labeled mRNA-specific anti-sense RNA probes and dsRNA-binding protein to identify the expression of specific genes in real-time at single-cell resolution via FRET. We use this technology to identify distinct myocardial subpopulations expressing the structural proteins myosin heavy chain α and myosin light chain 2a in real-time during early differentiation of human pluripotent stem cells. We combine this live-cell gene expression analysis with detailed physiologic phenotyping to capture the functional evolution of these early myocardial subpopulations during lineage specification and diversification. This live-cell mRNA imaging approach will have wide ranging application wherever heterogeneity plays an important biological role.
Collapse
Affiliation(s)
- Ayhan Atmanli
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, United States.,Harvard Medical School, Boston, United States.,Department of Biomedical Engineering, Tufts University, Medford, United States
| | - Dongjian Hu
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, United States.,Harvard Medical School, Boston, United States.,Department of Biomedical Engineering, Boston University, Boston, United States
| | - Frederik Ernst Deiman
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, United States.,Harvard Medical School, Boston, United States
| | - Annebel Marjolein van de Vrugt
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, United States.,Harvard Medical School, Boston, United States
| | - François Cherbonneau
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, United States
| | - Lauren Deems Black
- Department of Biomedical Engineering, Tufts University, Medford, United States.,Sackler School of Graduate Biomedical Sciences, Tufts University School of Medicine, Boston, United States
| | - Ibrahim John Domian
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, United States.,Harvard Medical School, Boston, United States.,Harvard Stem Cell Institute, Cambridge, United States
| |
Collapse
|
44
|
Fluorescent determination of micro-quantities of RNA using Hoechst 33258 and binase. Anal Biochem 2019; 576:5-8. [PMID: 30958999 DOI: 10.1016/j.ab.2019.04.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 03/27/2019] [Accepted: 04/02/2019] [Indexed: 11/20/2022]
Abstract
Detection of small amounts of RNA in various biological samples is an important applied task. Using fluorescence spectroscopy, the hydrolysis by binase of rRNA and tRNA, stained with Hoechst 33258, in aqueous solutions was investigated. The binding constant of Hoechst with rRNA is 106 M-1. Specific hydrolysis of rRNA and tRNA by binase during 1-2 min at room temperature leads to a multiple decrease in fluorescence of the dye. This rapid hydrolysis goes to large polynucleotide fragments, but not to short oligonucleotides. The binding constant of binase with rRNA is about of 2.5 × 106 M-1, which is several dozen times higher than with oligonucleotides. The susceptibility to binase attack depends on the secondary structure of RNA, determined by non-canonical ribonucleotides. The developed highly sensitive fluorescent method can be used for the rapid selective detection of trace amounts of rRNA or tRNA, as well as for studying the physicochemical properties of these RNAs. Using the proposed method, one can confidently detect RNA from 10-7 M.
Collapse
|
45
|
Park HS, Kietrys AM, Kool ET. Simple alkanoyl acylating agents for reversible RNA functionalization and control. Chem Commun (Camb) 2019; 55:5135-5138. [PMID: 30977472 PMCID: PMC6541391 DOI: 10.1039/c9cc01598a] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
We describe the synthesis and RNA acylation activity of a series of minimalist azidoalkanoyl imidazole reagents, with the aim of functionalizing RNA at 2'-hydroxyl groups at stoichiometric to superstoichiometric levels. We find marked effects of small structural changes on their ability to acylate and be reductively removed, and identify reagents and methods that enable efficient RNA functionalization and control.
Collapse
Affiliation(s)
- Hyun Shin Park
- Department of Chemistry, Stanford University, Stanford, CA 94305, USA.
| | | | | |
Collapse
|
46
|
Hanspach G, Trucks S, Hengesbach M. Strategic labelling approaches for RNA single-molecule spectroscopy. RNA Biol 2019; 16:1119-1132. [PMID: 30874475 DOI: 10.1080/15476286.2019.1593093] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Most single-molecule techniques observing RNA in vitro or in vivo require fluorescent labels that have to be connected to the RNA of interest. In recent years, a plethora of methods has been developed to achieve site-specific labelling, in many cases under near-native conditions. Here, we review chemical as well as enzymatic labelling methods that are compatible with single-molecule fluorescence spectroscopy or microscopy and show how these can be combined to offer a large variety of options to site-specifically place one or more labels in an RNA of interest. By either chemically forming a covalent bond or non-covalent hybridization, these techniques are prerequisites to perform state-of-the-art single-molecule experiments.
Collapse
Affiliation(s)
- Gerd Hanspach
- a Goethe-University Frankfurt, Institute for Organic Chemistry and Chemical Biology , Frankfurt , Germany
| | - Sven Trucks
- a Goethe-University Frankfurt, Institute for Organic Chemistry and Chemical Biology , Frankfurt , Germany
| | - Martin Hengesbach
- a Goethe-University Frankfurt, Institute for Organic Chemistry and Chemical Biology , Frankfurt , Germany
| |
Collapse
|
47
|
Vekshin NL, Doynikova AN, Lvov AM. Determination of Micro-Quantities of DNA Using DNAse and Fluorescence of Hoechst 33258 and Light-Scattering. J Fluoresc 2019; 29:479-484. [PMID: 30811018 DOI: 10.1007/s10895-019-02358-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 02/20/2019] [Indexed: 10/27/2022]
Abstract
The DNA hydrolysis by deoxyribonuclease (DNAse I) in aqueous solution was studied, using fluorescence spectroscopy and high-sensitive light-scattering detection. Specific hydrolysis of high-polymer DNA or fragmented DNA by the enzyme led to a strong decrease in the fluorescence of the Hoechst dye. The hydrolysis of mitochondrial DNA was accompanied by a decrease in the fluorescence of the dye only in 1.6 times. Hydrolysis within minutes and even hours led to appearance of large polynucleotide fragments, but not to short oligonucleotides, that was confirmed using polarized fluorescence and highly sensitive measurement of light-scattering. At the moment of the time of formation of a complex between DNA and DNAse I, a strong light-scattering occurred, which then dropped sharply during hydrolysis of high-molecular DNA, and slowly decreased during hydrolysis of fragmented DNA. The proposed methods can be applied for selective detection of trace amounts of various types of DNA, as well as for studying their physic-chemical properties.
Collapse
Affiliation(s)
- N L Vekshin
- Institute of Cell Biophysics of PSC of RAS, Pushchino, Moscow Region, Russian Federation, 142290
| | - A N Doynikova
- Institute of Cell Biophysics of PSC of RAS, Pushchino, Moscow Region, Russian Federation, 142290. .,Kazan (Volga Region) Federal University, Kazan, Russian Federation.
| | - A M Lvov
- Institute of Cell Biophysics of PSC of RAS, Pushchino, Moscow Region, Russian Federation, 142290
| |
Collapse
|
48
|
Adivarahan S, Zenklusen D. Lessons from (pre-)mRNA Imaging. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1203:247-284. [DOI: 10.1007/978-3-030-31434-7_9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
49
|
Chamiolo J, Fang GM, Hövelmann F, Friedrich D, Knoll A, Loewer A, Seitz O. Comparing Agent-Based Delivery of DNA and PNA Forced Intercalation (FIT) Probes for Multicolor mRNA Imaging. Chembiochem 2018; 20:595-604. [PMID: 30326174 PMCID: PMC6470956 DOI: 10.1002/cbic.201800526] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Indexed: 12/19/2022]
Abstract
Fluorogenic oligonucleotide probes allow mRNA imaging in living cells. A key challenge is the cellular delivery of probes. Most delivery agents, such as cell‐penetrating peptides (CPPs) and pore‐forming proteins, require interactions with the membrane. Charges play an important role. To explore the influence of charge on fluorogenic properties and delivery efficiency, we compared peptide nucleic acid (PNA)‐ with DNA‐based forced intercalation (FIT) probes. Perhaps counterintuitively, fluorescence signaling by charged DNA FIT probes proved tolerant to CPP conjugation, whereas CPP–FIT PNA conjugates were affected. Live‐cell imaging was performed with a genetically engineered HEK293 cell line to allow the inducible expression of a specific mRNA target. Blob‐like features and high background were recurring nuisances of the tested CPP and lipid conjugates. By contrast, delivery by streptolysin‐O provided high enhancements of the fluorescence of the FIT probe upon target induction. Notably, DNA‐based FIT probes were brighter and more responsive than PNA‐based FIT probes. Optimized conditions enabled live‐cell multicolor imaging of three different mRNA target sequences.
Collapse
Affiliation(s)
- Jasmine Chamiolo
- Department of Chemistry, Humboldt-Universität zu Berlin, Brook-Taylor-Strasse 2, 12849, Berlin, Germany
| | - Ge-Min Fang
- Department of Chemistry, Humboldt-Universität zu Berlin, Brook-Taylor-Strasse 2, 12849, Berlin, Germany.,Institute of Physical Science and Information Technology, Anhui University, Hefei, Anhui, 230601, P.R. China
| | - Felix Hövelmann
- Department of Chemistry, Humboldt-Universität zu Berlin, Brook-Taylor-Strasse 2, 12849, Berlin, Germany
| | - Dhana Friedrich
- Max Delbrück Centrum für Molekulare Medizin, Robert Rössle Strasse 10, 13125, Berlin, Germany.,Department of Biology, Technische Universität Darmstadt, Schnittspahnstrasse 13, 64287, Darmstadt, Germany
| | - Andrea Knoll
- Department of Chemistry, Humboldt-Universität zu Berlin, Brook-Taylor-Strasse 2, 12849, Berlin, Germany
| | - Alexander Loewer
- Max Delbrück Centrum für Molekulare Medizin, Robert Rössle Strasse 10, 13125, Berlin, Germany.,Department of Biology, Technische Universität Darmstadt, Schnittspahnstrasse 13, 64287, Darmstadt, Germany
| | - Oliver Seitz
- Department of Chemistry, Humboldt-Universität zu Berlin, Brook-Taylor-Strasse 2, 12849, Berlin, Germany
| |
Collapse
|
50
|
Li D, Wu Y, Gan C, Yuan R, Xiang Y. Bio-cleavable nanoprobes for target-triggered catalytic hairpin assembly amplification detection of microRNAs in live cancer cells. NANOSCALE 2018; 10:17623-17628. [PMID: 30204195 DOI: 10.1039/c8nr05229h] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
The monitoring and imaging of intracellular microRNAs (miRNAs) with specific sequences plays a vital role in cell biology as it can potentially elucidate many cellular processes and diseases related to miRNAs in living cells with accurate information. However, the detection of trace amounts of under-expressed intracellular miRNAs in living cells represents one of the current major challenges. In an effort to address this issue, we describe the establishment of an in cell catalytic hairpin assembly (CHA) signal amplification strategy for imaging under-expressed intracellular miRNAs in this work. Gold nanoparticles functionalized with FAM- and TAMRA-labeled hairpins with disulfide bonds in the stems are readily delivered into cells via endocytosis. Glutathione with evaluated concentrations in cancer cells cleaves the disulfide bonds in the hairpins by reduction to release the hairpins, and the target miRNAs further trigger CHA between the two hairpins to form many DNA duplexes, which bring the FAM and TAMRA labels into close proximity to generate apparently enhanced fluorescence resonance energy transfer (FRET) for the sensitive monitoring of low amounts of under-expressed miRNAs in live cancer cells. Using CHA to amplify the signal output and FRET to reduce the background noise, a significantly enhanced signal-to-noise ratio, thereby high sensitivity, over conventional fluorescence imaging can be realized, making our method particularly suitable for monitoring low levels of intracellular species.
Collapse
Affiliation(s)
- Daxiu Li
- Key Laboratory on Luminescence and Real-Time Analysis, Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China.
| | | | | | | | | |
Collapse
|