1
|
Thompson MC. Combining temperature perturbations with X-ray crystallography to study dynamic macromolecules: A thorough discussion of experimental methods. Methods Enzymol 2023; 688:255-305. [PMID: 37748829 DOI: 10.1016/bs.mie.2023.07.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2023]
Abstract
Temperature is an important state variable that governs the behavior of microscopic systems, yet crystallographers rarely exploit temperature changes to study the structure and dynamics of biological macromolecules. In fact, approximately 90% of crystal structures in the Protein Data Bank were determined under cryogenic conditions, because sample cryocooling makes crystals robust to X-ray radiation damage and facilitates data collection. On the other hand, cryocooling can introduce artifacts into macromolecular structures, and can suppress conformational dynamics that are critical for function. Fortunately, recent advances in X-ray detector technology, X-ray sources, and computational data processing algorithms make non-cryogenic X-ray crystallography easier and more broadly applicable than ever before. Without the reliance on cryocooling, high-resolution crystallography can be combined with various temperature perturbations to gain deep insight into the conformational landscapes of macromolecules. This Chapter reviews the historical reasons for the prevalence of cryocooling in macromolecular crystallography, and discusses its potential drawbacks. Next, the Chapter summarizes technological developments and methodologies that facilitate non-cryogenic crystallography experiments. Finally, the chapter discusses the theoretical underpinnings and practical aspects of multi-temperature and temperature-jump crystallography experiments, which are powerful tools for understanding the relationship between the structure, dynamics, and function of proteins and other biological macromolecules.
Collapse
Affiliation(s)
- Michael C Thompson
- Department of Chemistry and Biochemistry, University of California, Merced, Merced, CA, United States.
| |
Collapse
|
2
|
Case DA. MD simulations of macromolecular crystals: Implications for the analysis of Bragg and diffuse scattering. Methods Enzymol 2023; 688:145-168. [PMID: 37748825 DOI: 10.1016/bs.mie.2023.06.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2023]
Abstract
Some of our most detailed information about structure and dynamics of macromolecules comes from X-ray-diffraction studies in crystalline environments. More than 170,000 atomic models have been deposited in the Protein Data Bank, and the number of observations (typically of intensities of Bragg diffraction peaks) is generally quite large, when compared to other experimental methods. Nevertheless, the general agreement between calculated and observed intensities is far outside the experimental precision, and the majority of scattered photons fall between the sharp Bragg peaks, and are rarely taken into account. This chapter considers how molecular dynamics simulations can be used to explore the connections between microscopic behavior in a crystalline lattice and observed scattering intensities, and point the way to new atomic models that could more faithfully recapitulate Bragg intensities and extract useful information from the diffuse scattering that lies between those peaks.
Collapse
Affiliation(s)
- David A Case
- Dept. of Chemistry & Chemical Biology, Rutgers University, Piscataway, NJ, United States.
| |
Collapse
|
3
|
Zhang C, Zhao DX, Feng Y, Wang J, Yang ZZ. Energetics and J-coupling constants for Ala, Gly, and Val peptides demonstrated using ABEEM polarizable force field in vacuo and an aqueous solution. Phys Chem Chem Phys 2022; 24:4232-4250. [DOI: 10.1039/d1cp05676j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The development of an atom-bond electronegativity equalisation method at the σπ-level (ABEEM) polarisable force field (PFF) for peptides is presented. ABEEM PFF utilises a fluctuating charge model to explicitly describe...
Collapse
|
4
|
Sanbonmatsu K. Getting to the bottom of lncRNA mechanism: structure-function relationships. Mamm Genome 2021; 33:343-353. [PMID: 34642784 PMCID: PMC8509902 DOI: 10.1007/s00335-021-09924-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 09/28/2021] [Indexed: 12/14/2022]
Abstract
While long non-coding RNAs are known to play key roles in disease and development, relatively few structural studies have been performed for this important class of RNAs. Here, we review functional studies of long non-coding RNAs and expose the need for high-resolution 3-D structural studies, discussing the roles of long non-coding RNAs in the cell and how structure–function relationships might be used to elucidate further understanding. We then describe structural studies of other classes of RNAs using chemical probing, nuclear magnetic resonance, small-angle X-ray scattering, X-ray crystallography, and cryogenic electron microscopy (cryo-EM). Next, we review early structural studies of long non-coding RNAs to date and describe the way forward for the structural biology of long non-coding RNAs in terms of cryo-EM.
Collapse
|
5
|
Isoprenoid-chained lipid EROCOC 17+4: a new matrix for membrane protein crystallization and a crystal delivery medium in serial femtosecond crystallography. Sci Rep 2020; 10:19305. [PMID: 33168855 PMCID: PMC7652841 DOI: 10.1038/s41598-020-76277-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 10/26/2020] [Indexed: 11/08/2022] Open
Abstract
In meso crystallization of membrane proteins relies on the use of lipids capable of forming a lipidic cubic phase (LCP). However, almost all previous crystallization trials have used monoacylglycerols, with 1-(cis-9-octadecanoyl)-rac-glycerol (MO) being the most widely used lipid. We now report that EROCOC17+4 mixed with 10% (w/w) cholesterol (Fig. 1) serves as a new matrix for crystallization and a crystal delivery medium in the serial femtosecond crystallography of Adenosine A2A receptor (A2AR). The structures of EROCOC17+4-matrix grown A2AR crystals were determined at 2.0 Å resolution by serial synchrotron rotation crystallography at a cryogenic temperature, and at 1.8 Å by LCP-serial femtosecond crystallography, using an X-ray free-electron laser at 4 and 20 °C sample temperatures, and are comparable to the structure of the MO-matrix grown A2AR crystal (PDB ID: 4EIY). Moreover, X-ray scattering measurements indicated that the EROCOC17+4/water system did not form the crystalline LC phase at least down to - 20 °C, in marked contrast to the equilibrium MO/water system, which transforms into the crystalline LC phase below about 17 °C. As the LC phase formation within the LCP-matrix causes difficulties in protein crystallography experiments in meso, this feature of EROCOC17+4 will expand the utility of the in meso method.
Collapse
|
6
|
Abstract
X-ray free-electron lasers provide femtosecond-duration pulses of hard X-rays with a peak brightness approximately one billion times greater than is available at synchrotron radiation facilities. One motivation for the development of such X-ray sources was the proposal to obtain structures of macromolecules, macromolecular complexes, and virus particles, without the need for crystallization, through diffraction measurements of single noncrystalline objects. Initial explorations of this idea and of outrunning radiation damage with femtosecond pulses led to the development of serial crystallography and the ability to obtain high-resolution structures of small crystals without the need for cryogenic cooling. This technique allows the understanding of conformational dynamics and enzymatics and the resolution of intermediate states in reactions over timescales of 100 fs to minutes. The promise of more photons per atom recorded in a diffraction pattern than electrons per atom contributing to an electron micrograph may enable diffraction measurements of single molecules, although challenges remain.
Collapse
Affiliation(s)
- Henry N. Chapman
- Center for Free-Electron Laser Science, DESY, 22607 Hamburg, Germany
- Department of Physics, University of Hamburg, 22761 Hamburg, Germany
- Centre for Ultrafast Imaging, University of Hamburg, 22761 Hamburg, Germany
| |
Collapse
|
7
|
Wierman JL, Paré-Labrosse O, Sarracini A, Besaw JE, Cook MJ, Oghbaey S, Daoud H, Mehrabi P, Kriksunov I, Kuo A, Schuller DJ, Smith S, Ernst OP, Szebenyi DME, Gruner SM, Miller RJD, Finke AD. Fixed-target serial oscillation crystallography at room temperature. IUCRJ 2019; 6:305-316. [PMID: 30867928 PMCID: PMC6400179 DOI: 10.1107/s2052252519001453] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2018] [Accepted: 01/25/2019] [Indexed: 05/18/2023]
Abstract
A fixed-target approach to high-throughput room-temperature serial synchrotron crystallography with oscillation is described. Patterned silicon chips with microwells provide high crystal-loading density with an extremely high hit rate. The microfocus, undulator-fed beamline at CHESS, which has compound refractive optics and a fast-framing detector, was built and optimized for this experiment. The high-throughput oscillation method described here collects 1-5° of data per crystal at room temperature with fast (10° s-1) oscillation rates and translation times, giving a crystal-data collection rate of 2.5 Hz. Partial datasets collected by the oscillation method at a storage-ring source provide more complete data per crystal than still images, dramatically lowering the total number of crystals needed for a complete dataset suitable for structure solution and refinement - up to two orders of magnitude fewer being required. Thus, this method is particularly well suited to instances where crystal quantities are low. It is demonstrated, through comparison of first and last oscillation images of two systems, that dose and the effects of radiation damage can be minimized through fast rotation and low angular sweeps for each crystal.
Collapse
Affiliation(s)
| | - Olivier Paré-Labrosse
- Departments of Chemistry and Physics, University of Toronto, Toronto, ON Canada
- Max Planck Institute for the Structure and Dynamics of Matter, Hamburg, Germany
| | - Antoine Sarracini
- Departments of Chemistry and Physics, University of Toronto, Toronto, ON Canada
| | - Jessica E. Besaw
- Departments of Chemistry and Physics, University of Toronto, Toronto, ON Canada
| | | | - Saeed Oghbaey
- Departments of Chemistry and Physics, University of Toronto, Toronto, ON Canada
| | - Hazem Daoud
- Departments of Chemistry and Physics, University of Toronto, Toronto, ON Canada
| | - Pedram Mehrabi
- Max Planck Institute for the Structure and Dynamics of Matter, Hamburg, Germany
| | | | - Anling Kuo
- Departments of Biochemistry and Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | | | - Scott Smith
- MacCHESS, Cornell University, Ithaca, NY 14853, USA
| | - Oliver P. Ernst
- Departments of Biochemistry and Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | | | - Sol M. Gruner
- MacCHESS, Cornell University, Ithaca, NY 14853, USA
- Department of Physics, Cornell University, Ithaca, NY 14853, USA
- Kavli Institute for Nanoscale Science, Cornell University, Ithaca, NY 14853, USA
| | - R. J. Dwayne Miller
- Departments of Chemistry and Physics, University of Toronto, Toronto, ON Canada
- Max Planck Institute for the Structure and Dynamics of Matter, Hamburg, Germany
| | | |
Collapse
|
8
|
Cerutti DS, Case DA. Molecular Dynamics Simulations of Macromolecular Crystals. WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL MOLECULAR SCIENCE 2018; 9. [PMID: 31662799 DOI: 10.1002/wcms.1402] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The structures of biological macromolecules would not be known to their present extent without X-ray crystallography. Most simulations of globular proteins in solution begin by surrounding the crystal structure of the monomer in a bath of water molecules, but the standard simulation employing periodic boundary conditions is already close to a crystal lattice environment. With simple protocols, the same software and molecular models can perform simulations of the crystal lattice, including all asymmetric units and solvent to fill the box. Throughout the history of molecular dynamics, studies of crystal lattices have served to investigate the quality of the underlying force fields, correlate the simulated ensembles to experimental structure factors, and extrapolate the behavior in lattices to behavior in solution. Powerful new computers are enabling molecular simulations with greater realism and statistical convergence. Meanwhile, the advent of exciting new methods in crystallography, including femtosecond free-electron lasers and image reconstruction for time-resolved crystallography on slurries of small crystals, is expanding the range of structures accessible to X-ray diffraction. We review past fusions of simulations and crystallography, then look ahead to the ways that simulations of crystal structures will enhance structural biology in the future.
Collapse
Affiliation(s)
- David S Cerutti
- Department of Chemistry and Chemical Biology, Rutgers University, 174 Frelinghuysen Road, Piscataway, NJ 08854-8066
| | - David A Case
- Department of Chemistry and Chemical Biology, Rutgers University, 174 Frelinghuysen Road, Piscataway, NJ 08854-8066
| |
Collapse
|
9
|
Leonarski F, Redford S, Mozzanica A, Lopez-Cuenca C, Panepucci E, Nass K, Ozerov D, Vera L, Olieric V, Buntschu D, Schneider R, Tinti G, Froejdh E, Diederichs K, Bunk O, Schmitt B, Wang M. Fast and accurate data collection for macromolecular crystallography using the JUNGFRAU detector. Nat Methods 2018; 15:799-804. [PMID: 30275593 DOI: 10.1038/s41592-018-0143-7] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Accepted: 07/25/2018] [Indexed: 11/09/2022]
Abstract
The accuracy of X-ray diffraction data is directly related to how the X-ray detector records photons. Here we describe the application of a direct-detection charge-integrating pixel-array detector (JUNGFRAU) in macromolecular crystallography (MX). JUNGFRAU features a uniform response on the subpixel level, linear behavior toward high photon rates, and low-noise performance across the whole dynamic range. We demonstrate that these features allow accurate MX data to be recorded at unprecedented speed. We also demonstrate improvements over previous-generation detectors in terms of data quality, using native single-wavelength anomalous diffraction (SAD) phasing, for thaumatin, lysozyme, and aminopeptidase N. Our results suggest that the JUNGFRAU detector will substantially improve the performance of synchrotron MX beamlines and equip them for future synchrotron light sources.
Collapse
Affiliation(s)
- Filip Leonarski
- Swiss Light Source, Paul Scherrer Institute, Villigen, Switzerland
| | - Sophie Redford
- Swiss Light Source, Paul Scherrer Institute, Villigen, Switzerland
| | - Aldo Mozzanica
- Swiss Light Source, Paul Scherrer Institute, Villigen, Switzerland
| | | | | | - Karol Nass
- Swiss Light Source, Paul Scherrer Institute, Villigen, Switzerland
| | - Dmitry Ozerov
- Swiss Light Source, Paul Scherrer Institute, Villigen, Switzerland
| | - Laura Vera
- Swiss Light Source, Paul Scherrer Institute, Villigen, Switzerland
| | - Vincent Olieric
- Swiss Light Source, Paul Scherrer Institute, Villigen, Switzerland
| | - Dominik Buntschu
- Swiss Light Source, Paul Scherrer Institute, Villigen, Switzerland
| | - Roman Schneider
- Swiss Light Source, Paul Scherrer Institute, Villigen, Switzerland
| | - Gemma Tinti
- Swiss Light Source, Paul Scherrer Institute, Villigen, Switzerland
| | - Erik Froejdh
- Swiss Light Source, Paul Scherrer Institute, Villigen, Switzerland
| | - Kay Diederichs
- Fachbereich Biologie, Universität Konstanz, Konstanz, Germany
| | - Oliver Bunk
- Swiss Light Source, Paul Scherrer Institute, Villigen, Switzerland
| | - Bernd Schmitt
- Swiss Light Source, Paul Scherrer Institute, Villigen, Switzerland.
| | - Meitian Wang
- Swiss Light Source, Paul Scherrer Institute, Villigen, Switzerland.
| |
Collapse
|
10
|
Lan TY, Wierman JL, Tate MW, Philipp HT, Martin-Garcia JM, Zhu L, Kissick D, Fromme P, Fischetti RF, Liu W, Elser V, Gruner SM. Solving protein structure from sparse serial microcrystal diffraction data at a storage-ring synchrotron source. IUCRJ 2018; 5:548-558. [PMID: 30224958 PMCID: PMC6126656 DOI: 10.1107/s205225251800903x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Accepted: 06/20/2018] [Indexed: 05/29/2023]
Abstract
In recent years, the success of serial femtosecond crystallography and the paucity of beamtime at X-ray free-electron lasers have motivated the development of serial microcrystallography experiments at storage-ring synchrotron sources. However, especially at storage-ring sources, if a crystal is too small it will have suffered significant radiation damage before diffracting a sufficient number of X-rays into Bragg peaks for peak-indexing software to determine the crystal orientation. As a consequence, the data frames of small crystals often cannot be indexed and are discarded. Introduced here is a method based on the expand-maximize-compress (EMC) algorithm to solve protein structures, specifically from data frames for which indexing methods fail because too few X-rays are diffracted into Bragg peaks. The method is demonstrated on a real serial microcrystallography data set whose signals are too weak to be indexed by conventional methods. In spite of the daunting background scatter from the sample-delivery medium, it was still possible to solve the protein structure at 2.1 Å resolution. The ability of the EMC algorithm to analyze weak data frames will help to reduce sample consumption. It will also allow serial microcrystallography to be performed with crystals that are otherwise too small to be feasibly analyzed at storage-ring sources.
Collapse
Affiliation(s)
- Ti-Yen Lan
- Laboratory of Atomic and Solid State Physics, Cornell University, Ithaca, NY 14853, USA
| | - Jennifer L. Wierman
- Cornell High Energy Synchrotron Source (CHESS), Cornell University, Ithaca, NY 14853, USA
- Macromolecular Diffraction Facility at CHESS (MacCHESS), Cornell University, Ithaca, NY 14853, USA
| | - Mark W. Tate
- Laboratory of Atomic and Solid State Physics, Cornell University, Ithaca, NY 14853, USA
| | - Hugh T. Philipp
- Laboratory of Atomic and Solid State Physics, Cornell University, Ithaca, NY 14853, USA
| | - Jose M. Martin-Garcia
- School of Molecular Sciences and Biodesign Center for Applied Structural Discovery, Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA
| | - Lan Zhu
- School of Molecular Sciences and Biodesign Center for Applied Structural Discovery, Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA
| | - David Kissick
- Advanced Photon Source, Argonne National Laboratory, 9700 South Cass Avenue, Lemont, IL 60439, USA
| | - Petra Fromme
- School of Molecular Sciences and Biodesign Center for Applied Structural Discovery, Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA
| | - Robert F. Fischetti
- Advanced Photon Source, Argonne National Laboratory, 9700 South Cass Avenue, Lemont, IL 60439, USA
| | - Wei Liu
- School of Molecular Sciences and Biodesign Center for Applied Structural Discovery, Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA
| | - Veit Elser
- Laboratory of Atomic and Solid State Physics, Cornell University, Ithaca, NY 14853, USA
| | - Sol M. Gruner
- Laboratory of Atomic and Solid State Physics, Cornell University, Ithaca, NY 14853, USA
- Cornell High Energy Synchrotron Source (CHESS), Cornell University, Ithaca, NY 14853, USA
- Macromolecular Diffraction Facility at CHESS (MacCHESS), Cornell University, Ithaca, NY 14853, USA
- Kavli Institute for Nanoscale Science, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
11
|
Meents A, Wiedorn MO, Srajer V, Henning R, Sarrou I, Bergtholdt J, Barthelmess M, Reinke PYA, Dierksmeyer D, Tolstikova A, Schaible S, Messerschmidt M, Ogata CM, Kissick DJ, Taft MH, Manstein DJ, Lieske J, Oberthuer D, Fischetti RF, Chapman HN. Pink-beam serial crystallography. Nat Commun 2017; 8:1281. [PMID: 29097720 PMCID: PMC5668288 DOI: 10.1038/s41467-017-01417-3] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Accepted: 09/14/2017] [Indexed: 02/02/2023] Open
Abstract
Serial X-ray crystallography allows macromolecular structure determination at both X-ray free electron lasers (XFELs) and, more recently, synchrotron sources. The time resolution for serial synchrotron crystallography experiments has been limited to millisecond timescales with monochromatic beams. The polychromatic, "pink", beam provides a more than two orders of magnitude increased photon flux and hence allows accessing much shorter timescales in diffraction experiments at synchrotron sources. Here we report the structure determination of two different protein samples by merging pink-beam diffraction patterns from many crystals, each collected with a single 100 ps X-ray pulse exposure per crystal using a setup optimized for very low scattering background. In contrast to experiments with monochromatic radiation, data from only 50 crystals were required to obtain complete datasets. The high quality of the diffraction data highlights the potential of this method for studying irreversible reactions at sub-microsecond timescales using high-brightness X-ray facilities.
Collapse
Affiliation(s)
- A Meents
- Center for Free Electron Laser Science, DESY, Notkestrasse 85, 22607, Hamburg, Germany. .,Deutsches Elektronen Synchrotron (DESY), Photon Science, Notkestrasse 85, 22607, Hamburg, Germany.
| | - M O Wiedorn
- Center for Free Electron Laser Science, DESY, Notkestrasse 85, 22607, Hamburg, Germany.,Department of Physics, University of Hamburg, Luruper Chaussee 149, 22761, Hamburg, Germany
| | - V Srajer
- Center for Advanced Radiation Sources, The University of Chicago, 9700 South Cass Avenue, Argonne, IL, 60439, USA
| | - R Henning
- Center for Advanced Radiation Sources, The University of Chicago, 9700 South Cass Avenue, Argonne, IL, 60439, USA
| | - I Sarrou
- Center for Free Electron Laser Science, DESY, Notkestrasse 85, 22607, Hamburg, Germany
| | - J Bergtholdt
- Center for Free Electron Laser Science, DESY, Notkestrasse 85, 22607, Hamburg, Germany
| | - M Barthelmess
- Center for Free Electron Laser Science, DESY, Notkestrasse 85, 22607, Hamburg, Germany
| | - P Y A Reinke
- Medizinische Hochschule Hannover (MHH), Institut für Biophysikalische Chemie, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | - D Dierksmeyer
- Center for Free Electron Laser Science, DESY, Notkestrasse 85, 22607, Hamburg, Germany
| | - A Tolstikova
- Department of Physics, University of Hamburg, Luruper Chaussee 149, 22761, Hamburg, Germany
| | - S Schaible
- Deutsches Elektronen Synchrotron (DESY), Photon Science, Notkestrasse 85, 22607, Hamburg, Germany
| | - M Messerschmidt
- National Science Foundation BioXFEL Science and Technology Center, 700 Ellicott Street, Buffalo, NY, 14203, USA
| | - C M Ogata
- Advanced Photon Source, Argonne National Laboratory, 9700 S. Cass Ave, Lemont, IL, 60439, USA
| | - D J Kissick
- Advanced Photon Source, Argonne National Laboratory, 9700 S. Cass Ave, Lemont, IL, 60439, USA
| | - M H Taft
- Medizinische Hochschule Hannover (MHH), Institut für Biophysikalische Chemie, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | - D J Manstein
- Medizinische Hochschule Hannover (MHH), Institut für Biophysikalische Chemie, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | - J Lieske
- Deutsches Elektronen Synchrotron (DESY), Photon Science, Notkestrasse 85, 22607, Hamburg, Germany
| | - D Oberthuer
- Center for Free Electron Laser Science, DESY, Notkestrasse 85, 22607, Hamburg, Germany
| | - R F Fischetti
- Advanced Photon Source, Argonne National Laboratory, 9700 S. Cass Ave, Lemont, IL, 60439, USA
| | - H N Chapman
- Center for Free Electron Laser Science, DESY, Notkestrasse 85, 22607, Hamburg, Germany.,Department of Physics, University of Hamburg, Luruper Chaussee 149, 22761, Hamburg, Germany.,Centre for Ultrafast Imaging, Luruper Chaussee 149, 22761, Hamburg, Germany
| |
Collapse
|
12
|
Yamamoto M, Hirata K, Yamashita K, Hasegawa K, Ueno G, Ago H, Kumasaka T. Protein microcrystallography using synchrotron radiation. IUCRJ 2017; 4:529-539. [PMID: 28989710 PMCID: PMC5619846 DOI: 10.1107/s2052252517008193] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Accepted: 06/02/2017] [Indexed: 05/21/2023]
Abstract
The progress in X-ray microbeam applications using synchrotron radiation is beneficial to structure determination from macromolecular microcrystals such as small in meso crystals. However, the high intensity of microbeams causes severe radiation damage, which worsens both the statistical quality of diffraction data and their resolution, and in the worst cases results in the failure of structure determination. Even in the event of successful structure determination, site-specific damage can lead to the misinterpretation of structural features. In order to overcome this issue, technological developments in sample handling and delivery, data-collection strategy and data processing have been made. For a few crystals with dimensions of the order of 10 µm, an elegant two-step scanning strategy works well. For smaller samples, the development of a novel method to analyze multiple isomorphous microcrystals was motivated by the success of serial femtosecond crystallography with X-ray free-electron lasers. This method overcame the radiation-dose limit in diffraction data collection by using a sufficient number of crystals. Here, important technologies and the future prospects for microcrystallography are discussed.
Collapse
Affiliation(s)
- Masaki Yamamoto
- Advanced Photon Technology Division, RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
| | - Kunio Hirata
- Advanced Photon Technology Division, RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
- Precursory Research for Embryonic Science and Technology (PRESTO), Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| | - Keitaro Yamashita
- Advanced Photon Technology Division, RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
| | - Kazuya Hasegawa
- Advanced Photon Technology Division, RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
- Protein Crystal Analysis Division, Japan Synchrotron Radiation Research Institute, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5198, Japan
| | - Go Ueno
- Advanced Photon Technology Division, RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
| | - Hideo Ago
- Advanced Photon Technology Division, RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
| | - Takashi Kumasaka
- Advanced Photon Technology Division, RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
- Protein Crystal Analysis Division, Japan Synchrotron Radiation Research Institute, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5198, Japan
| |
Collapse
|
13
|
Lan TY, Wierman JL, Tate MW, Philipp HT, Elser V, Gruner SM. Reconstructing three-dimensional protein crystal intensities from sparse unoriented two-axis X-ray diffraction patterns. J Appl Crystallogr 2017; 50:985-993. [PMID: 28808431 PMCID: PMC5541350 DOI: 10.1107/s1600576717006537] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Accepted: 05/01/2017] [Indexed: 11/16/2022] Open
Abstract
Recently, there has been a growing interest in adapting serial microcrystallography (SMX) experiments to existing storage ring (SR) sources. For very small crystals, however, radiation damage occurs before sufficient numbers of photons are diffracted to determine the orientation of the crystal. The challenge is to merge data from a large number of such 'sparse' frames in order to measure the full reciprocal space intensity. To simulate sparse frames, a dataset was collected from a large lysozyme crystal illuminated by a dim X-ray source. The crystal was continuously rotated about two orthogonal axes to sample a subset of the rotation space. With the EMC algorithm [expand-maximize-compress; Loh & Elser (2009). Phys. Rev. E, 80, 026705], it is shown that the diffracted intensity of the crystal can still be reconstructed even without knowledge of the orientation of the crystal in any sparse frame. Moreover, parallel computation implementations were designed to considerably improve the time and memory scaling of the algorithm. The results show that EMC-based SMX experiments should be feasible at SR sources.
Collapse
Affiliation(s)
- Ti-Yen Lan
- Laboratory of Atomic and Solid State Physics, Cornell University, Ithaca, NY 14853, USA
| | - Jennifer L. Wierman
- Cornell High Energy Synchrotron Source (CHESS), Cornell University, Ithaca, NY 14853, USA
- Macromolecular Diffraction Facility at CHESS (MacCHESS), Cornell University, Ithaca, NY 14853, USA
| | - Mark W. Tate
- Laboratory of Atomic and Solid State Physics, Cornell University, Ithaca, NY 14853, USA
| | - Hugh T. Philipp
- Laboratory of Atomic and Solid State Physics, Cornell University, Ithaca, NY 14853, USA
| | - Veit Elser
- Laboratory of Atomic and Solid State Physics, Cornell University, Ithaca, NY 14853, USA
| | - Sol M. Gruner
- Laboratory of Atomic and Solid State Physics, Cornell University, Ithaca, NY 14853, USA
- Cornell High Energy Synchrotron Source (CHESS), Cornell University, Ithaca, NY 14853, USA
- Macromolecular Diffraction Facility at CHESS (MacCHESS), Cornell University, Ithaca, NY 14853, USA
- Kavli Institute for Nanoscale Science, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
14
|
Abstract
The intense X-ray pulses from free-electron lasers, of only femtoseconds duration, outrun most of the processes that lead to structural degradation in X-ray exposures of macromolecules. Using these sources it is therefore possible to increase the dose to macromolecular crystals by several orders of magnitude higher than usually tolerable in conventional measurements, allowing crystal size to be decreased dramatically in diffraction measurements and without the need to cool the sample. Such pulses lead to the eventual vaporization of the sample, which has required a measurement approach, called serial crystallography, of consolidating snapshot diffraction patterns of many individual crystals. This in turn has further separated the connection between dose and obtainable diffraction information, with the only requirement from a single pattern being that to give enough information to place it, in three-dimensional reciprocal space, in relation to other patterns. Millions of extremely weak patterns can be collected and combined in this way, requiring methods to rapidly replenish the sample into the beam while generating the lowest possible background . The method is suited to time-resolved measurements over timescales below 1 ps to several seconds, and opens new opportunities for phasing. Some straightforward considerations of achievable signal levels are discussed and compared with a wide variety of recent experiments carried out at XFEL, synchrotron, and even laboratory sources, to discuss the capabilities of these new approaches and give some perspectives on their further development.
Collapse
Affiliation(s)
- Henry N Chapman
- Center for Free-Electron Laser Science, DESY, Hamburg, 22607, Germany.
- Department of Physics, University of Hamburg, Hamburg, 22607, Germany.
- The Centre for Ultrafast Imaging, University of Hamburg, Hamburg, 22607, Germany.
| |
Collapse
|
15
|
Schubert R, Kapis S, Gicquel Y, Bourenkov G, Schneider TR, Heymann M, Betzel C, Perbandt M. A multicrystal diffraction data-collection approach for studying structural dynamics with millisecond temporal resolution. IUCRJ 2016; 3:393-401. [PMID: 27840678 PMCID: PMC5094441 DOI: 10.1107/s2052252516016304] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Accepted: 10/13/2016] [Indexed: 05/20/2023]
Abstract
Many biochemical processes take place on timescales ranging from femto-seconds to seconds. Accordingly, any time-resolved experiment must be matched to the speed of the structural changes of interest. Therefore, the timescale of interest defines the requirements of the X-ray source, instrumentation and data-collection strategy. In this study, a minimalistic approach for in situ crystallization is presented that requires only a few microlitres of sample solution containing a few hundred crystals. It is demonstrated that complete diffraction data sets, merged from multiple crystals, can be recorded within only a few minutes of beamtime and allow high-resolution structural information of high quality to be obtained with a temporal resolution of 40 ms. Global and site-specific radiation damage can be avoided by limiting the maximal dose per crystal to 400 kGy. Moreover, analysis of the data collected at higher doses allows the time-resolved observation of site-specific radiation damage. Therefore, our approach is well suited to observe structural changes and possibly enzymatic reactions in the low-millisecond regime.
Collapse
Affiliation(s)
- Robin Schubert
- University of Hamburg c/o DESY, Notkestrasse 85, 22603 Hamburg, Germany
- The Hamburg Center for Ultrafast Imaging c/o DESY, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Svetlana Kapis
- University of Hamburg c/o DESY, Notkestrasse 85, 22603 Hamburg, Germany
| | - Yannig Gicquel
- Center for Free Electron Laser Science c/o DESY, Notkestrasse 85, 22607 Hamburg, Germany
| | | | | | - Michael Heymann
- Center for Free Electron Laser Science c/o DESY, Notkestrasse 85, 22607 Hamburg, Germany
| | - Christian Betzel
- University of Hamburg c/o DESY, Notkestrasse 85, 22603 Hamburg, Germany
| | - Markus Perbandt
- University of Hamburg c/o DESY, Notkestrasse 85, 22603 Hamburg, Germany
- The Hamburg Center for Ultrafast Imaging c/o DESY, Luruper Chaussee 149, 22761 Hamburg, Germany
| |
Collapse
|
16
|
Casanas A, Warshamanage R, Finke AD, Panepucci E, Olieric V, Nöll A, Tampé R, Brandstetter S, Förster A, Mueller M, Schulze-Briese C, Bunk O, Wang M. EIGER detector: application in macromolecular crystallography. Acta Crystallogr D Struct Biol 2016; 72:1036-48. [PMID: 27599736 PMCID: PMC5013597 DOI: 10.1107/s2059798316012304] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Accepted: 07/29/2016] [Indexed: 11/24/2022] Open
Abstract
The development of single-photon-counting detectors, such as the PILATUS, has been a major recent breakthrough in macromolecular crystallography, enabling noise-free detection and novel data-acquisition modes. The new EIGER detector features a pixel size of 75 × 75 µm, frame rates of up to 3000 Hz and a dead time as low as 3.8 µs. An EIGER 1M and EIGER 16M were tested on Swiss Light Source beamlines X10SA and X06SA for their application in macromolecular crystallography. The combination of fast frame rates and a very short dead time allows high-quality data acquisition in a shorter time. The ultrafine ϕ-slicing data-collection method is introduced and validated and its application in finding the optimal rotation angle, a suitable rotation speed and a sufficient X-ray dose are presented. An improvement of the data quality up to slicing at one tenth of the mosaicity has been observed, which is much finer than expected based on previous findings. The influence of key data-collection parameters on data quality is discussed.
Collapse
Affiliation(s)
- Arnau Casanas
- Swiss Light Source, Paul Scherrer Institute, 5232 Villigen, Switzerland
| | | | - Aaron D. Finke
- Swiss Light Source, Paul Scherrer Institute, 5232 Villigen, Switzerland
| | | | - Vincent Olieric
- Swiss Light Source, Paul Scherrer Institute, 5232 Villigen, Switzerland
| | - Anne Nöll
- Institute of Biochemistry, Biocenter, Goethe University Frankfurt, Max-von-Laue-Strasse 9, 60438 Frankfurt am Main, Germany
| | - Robert Tampé
- Institute of Biochemistry, Biocenter, Goethe University Frankfurt, Max-von-Laue-Strasse 9, 60438 Frankfurt am Main, Germany
| | | | | | - Marcus Mueller
- DECTRIS Ltd, Taefernweg 1, 5405 Baden-Dättwil, Switzerland
| | | | - Oliver Bunk
- Swiss Light Source, Paul Scherrer Institute, 5232 Villigen, Switzerland
| | - Meitian Wang
- Swiss Light Source, Paul Scherrer Institute, 5232 Villigen, Switzerland
| |
Collapse
|
17
|
Goh BC, Hadden JA, Bernardi RC, Singharoy A, McGreevy R, Rudack T, Cassidy CK, Schulten K. Computational Methodologies for Real-Space Structural Refinement of Large Macromolecular Complexes. Annu Rev Biophys 2016; 45:253-78. [PMID: 27145875 DOI: 10.1146/annurev-biophys-062215-011113] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The rise of the computer as a powerful tool for model building and refinement has revolutionized the field of structure determination for large biomolecular systems. Despite the wide availability of robust experimental methods capable of resolving structural details across a range of spatiotemporal resolutions, computational hybrid methods have the unique ability to integrate the diverse data from multimodal techniques such as X-ray crystallography and electron microscopy into consistent, fully atomistic structures. Here, commonly employed strategies for computational real-space structural refinement are reviewed, and their specific applications are illustrated for several large macromolecular complexes: ribosome, virus capsids, chemosensory array, and photosynthetic chromatophore. The increasingly important role of computational methods in large-scale structural refinement, along with current and future challenges, is discussed.
Collapse
Affiliation(s)
- Boon Chong Goh
- Beckman Institute, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801.,Department of Physics, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
| | - Jodi A Hadden
- Beckman Institute, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801.,Energy Biosciences Institute, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
| | - Rafael C Bernardi
- Beckman Institute, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801.,Energy Biosciences Institute, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
| | - Abhishek Singharoy
- Beckman Institute, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
| | - Ryan McGreevy
- Beckman Institute, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
| | - Till Rudack
- Beckman Institute, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
| | - C Keith Cassidy
- Beckman Institute, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801.,Department of Physics, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
| | - Klaus Schulten
- Beckman Institute, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801.,Department of Physics, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801.,Energy Biosciences Institute, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801.,Center for the Physics of Living Cells, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801.,Center for Biophysics and Computational Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801;
| |
Collapse
|
18
|
Chen Y, Pollack L. SAXS studies of RNA: structures, dynamics, and interactions with partners. WILEY INTERDISCIPLINARY REVIEWS-RNA 2016; 7:512-26. [PMID: 27071649 DOI: 10.1002/wrna.1349] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Revised: 02/11/2016] [Accepted: 03/01/2016] [Indexed: 12/29/2022]
Abstract
Small-angle X-ray scattering, SAXS, is a powerful and easily employed experimental technique that provides solution structures of macromolecules. The size and shape parameters derived from SAXS provide global structural information about these molecules in solution and essentially complement data acquired by other biophysical methods. As applied to protein systems, SAXS is a relatively mature technology: sophisticated tools exist to acquire and analyze data, and to create structural models that include dynamically flexible ensembles. Given the expanding appreciation of RNA's biological roles, there is a need to develop comparable tools to characterize solution structures of RNA, including its interactions with important biological partners. We review the progress toward achieving this goal, focusing on experimental and computational innovations. The use of multiphase modeling, absolute calibration and contrast variation methods, among others, provides new and often unique ways of visualizing this important biological molecule and its essential partners: ions, other RNAs, or proteins. WIREs RNA 2016, 7:512-526. doi: 10.1002/wrna.1349 For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Yujie Chen
- School of Applied and Engineering Physics, Cornell University, Ithaca, NY, USA
| | - Lois Pollack
- School of Applied and Engineering Physics, Cornell University, Ithaca, NY, USA
| |
Collapse
|
19
|
Abdallah BG, Roy-Chowdhury S, Fromme R, Fromme P, Ros A. Protein Crystallization in an Actuated Microfluidic Nanowell Device. CRYSTAL GROWTH & DESIGN 2016; 16:2074-2082. [PMID: 27683240 PMCID: PMC5036579 DOI: 10.1021/acs.cgd.5b01748] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Protein crystallization is a major bottleneck of structure determination by X-ray crystallography, hampering the process by years in some cases. Numerous matrix screening trials using significant amounts of protein are often applied, while a systematic approach with phase diagram determination is prohibited for many proteins that can only be expressed in small amounts. Here, we demonstrate a microfluidic nanowell device implementing protein crystallization and phase diagram screening using nanoscale volumes of protein solution per trial. The device is made with cost-effective materials and is completely automated for efficient and economical experimentation. In the developed device, 170 trials can be realized with unique concentrations of protein and precipitant established by gradient generation and isolated by elastomeric valving for crystallization incubation. Moreover, this device can be further downscaled to smaller nanowell volumes and larger scale integration. The device was calibrated using a fluorescent dye and compared to a numerical model where concentrations of each trial can be quantified to establish crystallization phase diagrams. Using this device, we successfully crystallized lysozyme and C-phycocyanin, as visualized by compatible crystal imaging techniques such as bright-field microscopy, UV fluorescence, and second-order nonlinear imaging of chiral crystals. Concentrations yielding observed crystal formation were quantified and used to determine regions of the crystallization phase space for both proteins. Low sample consumption and compatibility with a variety of proteins and imaging techniques make this device a powerful tool for systematic crystallization studies.
Collapse
Affiliation(s)
- Bahige G. Abdallah
- School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, United States
- Center for Applied Structural Discovery, The Biodesign Institute, Arizona State University, Tempe, Arizona 85287, United States
| | - Shatabdi Roy-Chowdhury
- School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, United States
- Center for Applied Structural Discovery, The Biodesign Institute, Arizona State University, Tempe, Arizona 85287, United States
| | - Raimund Fromme
- School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, United States
- Center for Applied Structural Discovery, The Biodesign Institute, Arizona State University, Tempe, Arizona 85287, United States
| | - Petra Fromme
- School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, United States
- Center for Applied Structural Discovery, The Biodesign Institute, Arizona State University, Tempe, Arizona 85287, United States
| | - Alexandra Ros
- Corresponding Author: Phone: 1-480-965-5323. Fax: 1-480-965-7954.
| |
Collapse
|
20
|
Deller MC, Kong L, Rupp B. Protein stability: a crystallographer's perspective. ACTA CRYSTALLOGRAPHICA SECTION F-STRUCTURAL BIOLOGY COMMUNICATIONS 2016; 72:72-95. [PMID: 26841758 PMCID: PMC4741188 DOI: 10.1107/s2053230x15024619] [Citation(s) in RCA: 154] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Accepted: 12/21/2015] [Indexed: 12/18/2022]
Abstract
Protein stability is a topic of major interest for the biotechnology, pharmaceutical and food industries, in addition to being a daily consideration for academic researchers studying proteins. An understanding of protein stability is essential for optimizing the expression, purification, formulation, storage and structural studies of proteins. In this review, discussion will focus on factors affecting protein stability, on a somewhat practical level, particularly from the view of a protein crystallographer. The differences between protein conformational stability and protein compositional stability will be discussed, along with a brief introduction to key methods useful for analyzing protein stability. Finally, tactics for addressing protein-stability issues during protein expression, purification and crystallization will be discussed.
Collapse
Affiliation(s)
- Marc C Deller
- Stanford ChEM-H, Macromolecular Structure Knowledge Center, Stanford University, Shriram Center, 443 Via Ortega, Room 097, MC5082, Stanford, CA 94305-4125, USA
| | - Leopold Kong
- Laboratory of Cell and Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), National Institutes of Health (NIH), Building 8, Room 1A03, 8 Center Drive, Bethesda, MD 20814, USA
| | - Bernhard Rupp
- Department of Forensic Crystallography, k.-k. Hofkristallamt, 91 Audrey Place, Vista, CA 92084, USA
| |
Collapse
|
21
|
Wierman JL, Lan TY, Tate MW, Philipp HT, Elser V, Gruner SM. Protein crystal structure from non-oriented, single-axis sparse X-ray data. IUCRJ 2016; 3:43-50. [PMID: 26870380 PMCID: PMC4704078 DOI: 10.1107/s2052252515018795] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Accepted: 10/06/2015] [Indexed: 05/29/2023]
Abstract
X-ray free-electron lasers (XFELs) have inspired the development of serial femtosecond crystallography (SFX) as a method to solve the structure of proteins. SFX datasets are collected from a sequence of protein microcrystals injected across ultrashort X-ray pulses. The idea behind SFX is that diffraction from the intense, ultrashort X-ray pulses leaves the crystal before the crystal is obliterated by the effects of the X-ray pulse. The success of SFX at XFELs has catalyzed interest in analogous experiments at synchrotron-radiation (SR) sources, where data are collected from many small crystals and the ultrashort pulses are replaced by exposure times that are kept short enough to avoid significant crystal damage. The diffraction signal from each short exposure is so 'sparse' in recorded photons that the process of recording the crystal intensity is itself a reconstruction problem. Using the EMC algorithm, a successful reconstruction is demonstrated here in a sparsity regime where there are no Bragg peaks that conventionally would serve to determine the orientation of the crystal in each exposure. In this proof-of-principle experiment, a hen egg-white lysozyme (HEWL) crystal rotating about a single axis was illuminated by an X-ray beam from an X-ray generator to simulate the diffraction patterns of microcrystals from synchrotron radiation. Millions of these sparse frames, typically containing only ∼200 photons per frame, were recorded using a fast-framing detector. It is shown that reconstruction of three-dimensional diffraction intensity is possible using the EMC algorithm, even with these extremely sparse frames and without knowledge of the rotation angle. Further, the reconstructed intensity can be phased and refined to solve the protein structure using traditional crystallographic software. This suggests that synchrotron-based serial crystallography of micrometre-sized crystals can be practical with the aid of the EMC algorithm even in cases where the data are sparse.
Collapse
Affiliation(s)
- Jennifer L. Wierman
- Field of Biophysics, Cornell University, Ithaca, NY 14853, USA
- Cornell High Energy Synchrotron Source (CHESS), Cornell University, Ithaca, NY 14853, USA
| | - Ti-Yen Lan
- Laboratory of Atomic and Solid State Physics, Cornell University, Ithaca, NY 14853, USA
| | - Mark W. Tate
- Laboratory of Atomic and Solid State Physics, Cornell University, Ithaca, NY 14853, USA
| | - Hugh T. Philipp
- Laboratory of Atomic and Solid State Physics, Cornell University, Ithaca, NY 14853, USA
| | - Veit Elser
- Laboratory of Atomic and Solid State Physics, Cornell University, Ithaca, NY 14853, USA
| | - Sol M. Gruner
- Cornell High Energy Synchrotron Source (CHESS), Cornell University, Ithaca, NY 14853, USA
- Laboratory of Atomic and Solid State Physics, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
22
|
Rodriguez JA. Accessible atomic structures from sub-micron protein crystals. Acta Crystallogr A Found Adv 2015; 71:351-2. [DOI: 10.1107/s2053273315012206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Accepted: 06/26/2015] [Indexed: 11/10/2022] Open
|