1
|
Chen Y, He L, Ianevski A, Ayuda-Durán P, Potdar S, Saarela J, Miettinen JJ, Kytölä S, Miettinen S, Manninen M, Heckman CA, Enserink JM, Wennerberg K, Aittokallio T. Robust scoring of selective drug responses for patient-tailored therapy selection. Nat Protoc 2024; 19:60-82. [PMID: 37996540 DOI: 10.1038/s41596-023-00903-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 08/10/2023] [Indexed: 11/25/2023]
Abstract
Most patients with advanced malignancies are treated with severely toxic, first-line chemotherapies. Personalized treatment strategies have led to improved patient outcomes and could replace one-size-fits-all therapies, yet they need to be tailored by testing of a range of targeted drugs in primary patient cells. Most functional precision medicine studies use simple drug-response metrics, which cannot quantify the selective effects of drugs (i.e., the differential responses of cancer cells and normal cells). We developed a computational method for selective drug-sensitivity scoring (DSS), which enables normalization of the individual patient's responses against normal cell responses. The selective response scoring uses the inhibition of noncancerous cells as a proxy for potential drug toxicity, which can in turn be used to identify effective and safer treatment options. Here, we explain how to apply the selective DSS calculation for guiding precision medicine in patients with leukemia treated across three cancer centers in Europe and the USA; the generic methods are also widely applicable to other malignancies that are amenable to drug testing. The open-source and extendable R-codes provide a robust means to tailor personalized treatment strategies on the basis of increasingly available ex vivo drug-testing data from patients in real-world and clinical trial settings. We also make available drug-response profiles to 527 anticancer compounds tested in 10 healthy bone marrow samples as reference data for selective scoring and de-prioritization of drugs that show broadly toxic effects. The procedure takes <60 min and requires basic skills in R.
Collapse
Affiliation(s)
- Yingjia Chen
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland
| | - Liye He
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland
| | - Aleksandr Ianevski
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland
| | - Pilar Ayuda-Durán
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
- Centre for Cancer Cell Reprogramming, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Swapnil Potdar
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland
| | - Jani Saarela
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland
| | - Juho J Miettinen
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland
| | - Sari Kytölä
- Department of Hematology, Helsinki University Hospital Comprehensive Cancer Center, Helsinki, Finland
| | - Susanna Miettinen
- Adult Stem Cell Group, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Research, Development and Innovation Centre, Tampere University Hospital, Tampere, Finland
| | | | - Caroline A Heckman
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland
- iCAN Digital Precision Cancer Medicine Flagship, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Jorrit M Enserink
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
- Centre for Cancer Cell Reprogramming, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
- Section for Biochemistry and Molecular Biology, Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo, Norway
| | - Krister Wennerberg
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Copenhagen, Denmark
| | - Tero Aittokallio
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland.
- iCAN Digital Precision Cancer Medicine Flagship, University of Helsinki and Helsinki University Hospital, Helsinki, Finland.
- Department of Cancer Genetics, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway.
- Centre for Biostatistics and Epidemiology (OCBE), Faculty of Medicine, University of Oslo, Oslo, Norway.
| |
Collapse
|
2
|
Rosenquist R, Bernard E, Erkers T, Scott DW, Itzykson R, Rousselot P, Soulier J, Hutchings M, Östling P, Cavelier L, Fioretos T, Smedby KE. Novel precision medicine approaches and treatment strategies in hematological malignancies. J Intern Med 2023; 294:413-436. [PMID: 37424223 DOI: 10.1111/joim.13697] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
Genetic testing has been applied for decades in clinical routine diagnostics of hematological malignancies to improve disease (sub)classification, prognostication, patient management, and survival. In recent classifications of hematological malignancies, disease subtypes are defined by key recurrent genetic alterations detected by conventional methods (i.e., cytogenetics, fluorescence in situ hybridization, and targeted sequencing). Hematological malignancies were also one of the first disease areas in which targeted therapies were introduced, the prime example being BCR::ABL1 inhibitors, followed by an increasing number of targeted inhibitors hitting the Achilles' heel of each disease, resulting in a clear patient benefit. Owing to the technical advances in high-throughput sequencing, we can now apply broad genomic tests, including comprehensive gene panels or whole-genome and whole-transcriptome sequencing, to identify clinically important diagnostic, prognostic, and predictive markers. In this review, we give examples of how precision diagnostics has been implemented to guide treatment selection and improve survival in myeloid (myelodysplastic syndromes and acute myeloid leukemia) and lymphoid malignancies (acute lymphoblastic leukemia, diffuse large B-cell lymphoma, and chronic lymphocytic leukemia). We discuss the relevance and potential of monitoring measurable residual disease using ultra-sensitive techniques to assess therapy response and detect early relapses. Finally, we bring up the promising avenue of functional precision medicine, combining ex vivo drug screening with various omics technologies, to provide novel treatment options for patients with advanced disease. Although we are only in the beginning of the field of precision hematology, we foresee rapid development with new types of diagnostics and treatment strategies becoming available to the benefit of our patients.
Collapse
Affiliation(s)
- Richard Rosenquist
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
- Clinical Genetics, Karolinska University Hospital, Solna, Stockholm, Sweden
| | - Elsa Bernard
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, USA
- PRISM Center for Personalized Medicine, Gustave Roussy, Villejuif, France
| | - Tom Erkers
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
- SciLifeLab, Stockholm, Sweden
| | - David W Scott
- BC Cancer's Centre for Lymphoid Cancer, Vancouver, Canada
- Department of Medicine, University of British Columbia, Vancouver, Canada
| | - Raphael Itzykson
- Université Paris Cité, Génomes, biologie cellulaire et thérapeutique U944, INSERM, CNRS, Paris, France
- Département Hématologie et Immunologie, Hôpital Saint-Louis, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Philippe Rousselot
- Department of Hematology, Centre Hospitalier de Versailles, Le Chesnay, France
| | - Jean Soulier
- Université Paris Cité, Génomes, biologie cellulaire et thérapeutique U944, INSERM, CNRS, Paris, France
- Hématologie Biologique, APHP, Hôpital Saint-Louis, Paris, France
| | - Martin Hutchings
- Department of Haematology and Phase 1 Unit, Rigshospitalet, Copenhagen, Denmark
| | - Päivi Östling
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
- SciLifeLab, Stockholm, Sweden
| | - Lucia Cavelier
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
- Clinical Genetics, Karolinska University Hospital, Solna, Stockholm, Sweden
| | - Thoas Fioretos
- Department of Clinical Genetics, Pathology and Molecular Diagnostics, Office for Medical Services, Region Skåne, Lund, Sweden
- Division of Clinical Genetics, Department of Laboratory Medicine, Lund University, Lund, Sweden
- Clinical Genomics Lund, Science for Life Laboratory, Lund University, Lund, Sweden
| | - Karin E Smedby
- Department of Hematology, Karolinska University Hospital, Solna, Stockholm, Sweden
- Division of Clinical Epidemiology, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
3
|
Therapeutic strategies for non-small cell lung cancer: Experimental models and emerging biomarkers to monitor drug efficacies. Pharmacol Ther 2023; 242:108347. [PMID: 36642389 DOI: 10.1016/j.pharmthera.2023.108347] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 12/15/2022] [Accepted: 01/09/2023] [Indexed: 01/15/2023]
Abstract
While new targeted therapies have considerably changed the treatment and prognosis of non-small cell lung cancer (NSCLC), they are frequently unsuccessful due to primary or acquired resistances. Chemoresistance is a complex process that combines cancer cell intrinsic mechanisms including molecular and genetic abnormalities, aberrant interactions within the tumor microenvironment, and the pharmacokinetic characteristics of each molecule. From a pharmacological point of view, two levers could improve the response to treatment: (i) developing tools to predict the response to chemo- and targeted therapies and (ii) gaining a better understanding of the influence of the tumor microenvironment. Both personalized medicine approaches require the identification of relevant experimental models and biomarkers to understand and fight against chemoresistance mechanisms. After describing the main therapies in NSCLC, the scope of this review will be to identify and to discuss relevant in vitro and ex vivo experimental models that are able to mimic tumors. In addition, the interests of these models in the predictive responses to proposed therapies will be discussed. Finally, this review will evaluate the involvement of novel secreted biomarkers such as tumor DNA or micro RNA in predicting responses to anti-tumor therapies.
Collapse
|
4
|
Goh J, De Mel S, Hoppe MM, Mohd Abdul Rashid MB, Zhang XY, Jaynes P, Ka Yan Ng E, Rahmat NDB, Jayalakshmi, Liu CX, Poon L, Chan E, Lee J, Chee YL, Koh LP, Tan LK, Soh TG, Yuen YC, Loi HY, Ng SB, Goh X, Eu D, Loh S, Ng S, Tan D, Cheah DMZ, Pang WL, Huang D, Ong SY, Nagarajan C, Chan JY, Ha JCH, Khoo LP, Somasundaram N, Tang T, Ong CK, Chng WJ, Lim ST, Chow EK, Jeyasekharan AD. An ex vivo platform to guide drug combination treatment in relapsed/refractory lymphoma. Sci Transl Med 2022; 14:eabn7824. [PMID: 36260690 DOI: 10.1126/scitranslmed.abn7824] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Although combination therapy is the standard of care for relapsed/refractory non-Hodgkin's lymphoma (RR-NHL), combination treatment chosen for an individual patient is empirical, and response rates remain poor in individuals with chemotherapy-resistant disease. Here, we evaluate an experimental-analytic method, quadratic phenotypic optimization platform (QPOP), for prediction of patient-specific drug combination efficacy from a limited quantity of biopsied tumor samples. In this prospective study, we enrolled 71 patients with RR-NHL (39 B cell NHL and 32 NK/T cell NHL) with a median of two prior lines of treatment, at two academic hospitals in Singapore from November 2017 to August 2021. Fresh biopsies underwent ex vivo testing using a panel of 12 drugs with known efficacy against NHL to identify effective single and combination treatments. Individualized QPOP reports were generated for 67 of 75 patient samples, with a median turnaround time of 6 days from sample collection to report generation. Doublet drug combinations containing copanlisib or romidepsin were most effective against B cell NHL and NK/T cell NHL samples, respectively. Off-label QPOP-guided therapy offered at physician discretion in the absence of standard options (n = 17) resulted in five complete responses. Among patients with more than two prior lines of therapy, the rates of progressive disease were lower with QPOP-guided treatments than with conventional chemotherapy. Overall, this study shows that the identification of patient-specific drug combinations through ex vivo analysis was achievable for RR-NHL in a clinically applicable time frame. These data provide the basis for a prospective clinical trial evaluating ex vivo-guided combination therapy in RR-NHL.
Collapse
Affiliation(s)
- Jasmine Goh
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Singapore
| | - Sanjay De Mel
- NUS Center for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University Singapore, Singapore 117599, Singapore.,Department of Haematology-Oncology, National University Cancer Institute, Singapore, National University Health System, Singapore 119074, Singapore
| | - Michal M Hoppe
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Singapore
| | | | - Xi Yun Zhang
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Singapore
| | - Patrick Jaynes
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Singapore
| | - Esther Ka Yan Ng
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Singapore
| | | | - Jayalakshmi
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Singapore
| | - Clementine Xin Liu
- Department of Haematology-Oncology, National University Cancer Institute, Singapore, National University Health System, Singapore 119074, Singapore
| | - Limei Poon
- NUS Center for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University Singapore, Singapore 117599, Singapore.,Department of Haematology-Oncology, National University Cancer Institute, Singapore, National University Health System, Singapore 119074, Singapore
| | - Esther Chan
- NUS Center for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University Singapore, Singapore 117599, Singapore.,Department of Haematology-Oncology, National University Cancer Institute, Singapore, National University Health System, Singapore 119074, Singapore
| | - Joanne Lee
- NUS Center for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University Singapore, Singapore 117599, Singapore.,Department of Haematology-Oncology, National University Cancer Institute, Singapore, National University Health System, Singapore 119074, Singapore
| | - Yen Lin Chee
- NUS Center for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University Singapore, Singapore 117599, Singapore.,Department of Haematology-Oncology, National University Cancer Institute, Singapore, National University Health System, Singapore 119074, Singapore
| | - Liang Piu Koh
- Department of Haematology-Oncology, National University Cancer Institute, Singapore, National University Health System, Singapore 119074, Singapore
| | - Lip Kun Tan
- Department of Laboratory Medicine, National University Hospital, Singapore 119074, Singapore
| | - Teck Guan Soh
- Department of Laboratory Medicine, National University Hospital, Singapore 119074, Singapore
| | - Yi Ching Yuen
- Department of Pharmacy, National University Health System, Singapore 119074, Singapore
| | - Hoi-Yin Loi
- Department of Diagnostic Imaging, National University Hospital, Singapore 119074, Singapore
| | - Siok-Bian Ng
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Singapore.,NUS Center for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University Singapore, Singapore 117599, Singapore.,Department of Pathology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
| | - Xueying Goh
- Department of Otolaryngology, National University Hospital, Singapore 119074, Singapore
| | - Donovan Eu
- Department of Otolaryngology, National University Hospital, Singapore 119074, Singapore
| | - Stanley Loh
- Department of Diagnostic Imaging, National University Hospital, Singapore 119074, Singapore
| | - Sheldon Ng
- Department of Diagnostic Imaging, National University Hospital, Singapore 119074, Singapore
| | - Daryl Tan
- Mount Elizabeth Novena Hospital, Singapore 329563, Singapore.,Department of Haematology, Singapore General Hospital, Singapore 169608, Singapore
| | - Daryl Ming Zhe Cheah
- Lymphoma Genomic Translational Research Laboratory, Division of Cellular and Molecular Research, National Cancer Centre Singapore, Singapore 169610, Singapore
| | - Wan Lu Pang
- Lymphoma Genomic Translational Research Laboratory, Division of Cellular and Molecular Research, National Cancer Centre Singapore, Singapore 169610, Singapore
| | - Dachuan Huang
- Lymphoma Genomic Translational Research Laboratory, Division of Cellular and Molecular Research, National Cancer Centre Singapore, Singapore 169610, Singapore
| | - Shin Yeu Ong
- Department of Haematology, Singapore General Hospital, Singapore 169608, Singapore
| | | | - Jason Yongsheng Chan
- Division of Medical Oncology, National Cancer Centre Singapore, Singapore 169610, Singapore.,SingHealth Duke-NUS Blood Cancer Centre, Singapore 168582, Singapore
| | - Jeslin Chian Hung Ha
- Division of Medical Oncology, National Cancer Centre Singapore, Singapore 169610, Singapore
| | - Lay Poh Khoo
- Division of Medical Oncology, National Cancer Centre Singapore, Singapore 169610, Singapore
| | - Nagavalli Somasundaram
- Division of Medical Oncology, National Cancer Centre Singapore, Singapore 169610, Singapore
| | - Tiffany Tang
- Division of Medical Oncology, National Cancer Centre Singapore, Singapore 169610, Singapore
| | - Choon Kiat Ong
- Lymphoma Genomic Translational Research Laboratory, Division of Cellular and Molecular Research, National Cancer Centre Singapore, Singapore 169610, Singapore.,Programme in Cancer and Stem Cell Biology, Duke-NUS Medical School, Singapore 169857, Singapore.,Genome Institute of Singapore, A*STAR, Singapore 138672, Singapore
| | - Wee-Joo Chng
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Singapore.,NUS Center for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University Singapore, Singapore 117599, Singapore.,Department of Haematology-Oncology, National University Cancer Institute, Singapore, National University Health System, Singapore 119074, Singapore.,Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
| | - Soon Thye Lim
- Division of Medical Oncology, National Cancer Centre Singapore, Singapore 169610, Singapore.,SingHealth Duke-NUS Blood Cancer Centre, Singapore 168582, Singapore.,Office of Education, Duke-NUS Medical School, Singapore 169857, Singapore
| | - Edward K Chow
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Singapore.,NUS Center for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University Singapore, Singapore 117599, Singapore.,Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore.,N.1 Institute for Health, National University of Singapore, Singapore 117456, Singapore.,Institute for Digital Medicine (WisDM), Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
| | - Anand D Jeyasekharan
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Singapore.,NUS Center for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University Singapore, Singapore 117599, Singapore.,Department of Haematology-Oncology, National University Cancer Institute, Singapore, National University Health System, Singapore 119074, Singapore.,Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
| |
Collapse
|
5
|
Precision oncology using ex vivo technology: a step towards individualised cancer care? Expert Rev Mol Med 2022; 24:e39. [PMID: 36184897 PMCID: PMC9884776 DOI: 10.1017/erm.2022.32] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Despite advances in cancer genomics and the increased use of genomic medicine, metastatic cancer is still mostly an incurable and fatal disease. With diminishing returns from traditional drug discovery strategies, and high clinical failure rates, more emphasis is being placed on alternative drug discovery platforms, such as ex vivo approaches. Ex vivo approaches aim to embed biological relevance and inter-patient variability at an earlier stage of drug discovery, and to offer more precise treatment stratification for patients. However, these techniques also have a high potential to offer personalised therapies to patients, complementing and enhancing genomic medicine. Although an array of approaches are available to researchers, only a minority of techniques have made it through to direct patient treatment within robust clinical trials. Within this review, we discuss the current challenges to ex vivo approaches within clinical practice and summarise the contemporary literature which has directed patient treatment. Finally, we map out how ex vivo approaches could transition from a small-scale, predominantly research based technology to a robust and validated predictive tool. In future, these pre-clinical approaches may be integrated into clinical cancer pathways to assist in the personalisation of therapy choices and to hopefully improve patient experiences and outcomes.
Collapse
|
6
|
Wästerlid T, Cavelier L, Haferlach C, Konopleva M, Fröhling S, Östling P, Bullinger L, Fioretos T, Smedby KE. Application of precision medicine in clinical routine in haematology-Challenges and opportunities. J Intern Med 2022; 292:243-261. [PMID: 35599019 PMCID: PMC9546002 DOI: 10.1111/joim.13508] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Precision medicine is revolutionising patient care in cancer. As more knowledge is gained about the impact of specific genetic lesions on diagnosis, prognosis and treatment response, diagnostic precision and the possibility for optimal individual treatment choice have improved. Identification of hallmark genetic aberrations such as the BCR::ABL1 gene fusion in chronic myeloid leukaemia (CML) led to the rapid development of efficient targeted therapy and molecular follow-up, vastly improving survival for patients with CML during recent decades. The assessment of translocations, copy number changes and point mutations are crucial for the diagnosis and risk stratification of acute myeloid leukaemia and myelodysplastic syndromes. Still, the often heterogeneous and complex genetic landscape of haematological malignancies presents several challenges for the implementation of precision medicine to guide diagnosis, prognosis and treatment choice. This review provides an introduction and overview of the important molecular characteristics and methods currently applied in clinical practice to guide clinical decision making in haematological malignancies of myeloid and lymphoid origin. Further, experimental ways to guide the choice of targeted therapy for refractory patients are reviewed, such as functional precision medicine using drug profiling. An example of the use of pipeline studies where the treatment is chosen according to the molecular characteristics in rare solid malignancies is also provided. Finally, the future opportunities and remaining challenges of precision medicine in the real world are discussed.
Collapse
Affiliation(s)
- Tove Wästerlid
- Department of Medicine Solna, Division of Clinical Epidemiology, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden.,Department of Hematology, Karolinska University Hospital, Stockholm, Sweden
| | - Lucia Cavelier
- Department of Immunology, Genetics and Pathology, Clinical Genomics Uppsala, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | | | - Marina Konopleva
- Department of Leukemia, M.D. Anderson Cancer Center, Houston, Texas, USA
| | - Stefan Fröhling
- Department of Translational Medical Oncology, National Center for Tumor Diseases (NCT) Heidelberg, German Cancer Research Center (DKFZ), Heidelberg, Germany.,German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Päivi Östling
- Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Lars Bullinger
- Department of Hematology, Oncology and Tumor Immunology, Charité-Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany.,German Cancer Consortium (DKTK) Berlin Site, and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Thoas Fioretos
- Division of Clinical Genetics, Department of Laboratory Medicine, Science for Life Laboratory, Lund University and Clinical Genomics Lund, Lund, Sweden
| | - Karin E Smedby
- Department of Medicine Solna, Division of Clinical Epidemiology, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden.,Department of Hematology, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
7
|
da Mata S, Franchi-Mendes T, Abreu S, Filipe B, Morgado S, Mesquita M, Albuquerque C, Fonseca R, Santo VE, Boghaert ER, Rosa I, Brito C. Patient-Derived Explants of Colorectal Cancer: Histopathological and Molecular Analysis of Long-Term Cultures. Cancers (Basel) 2021; 13:cancers13184695. [PMID: 34572922 PMCID: PMC8465429 DOI: 10.3390/cancers13184695] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 09/14/2021] [Indexed: 12/11/2022] Open
Abstract
Simple Summary Colorectal cancer is the third most common cancer type among men and women. Prescription of medical treatments for cancer often relies on a process of trial and potential error, more recently guided by patient stratification based on biomarkers. Nonetheless, available biomarkers do not accurately predict patient response and there is a need for predictive and translational models to provide proper clinical information on treatment guidance. Herein, we developed an ex vivo model of colorectal cancer, using fresh tumour samples to establish explant cultures, taking advantage of agitation-based culture systems. We performed a thorough characterisation over one month in culture and observed preservation of original tumour genetic features and partial preservation of architecture and non-malignant cells that compose the tumour microenvironment. Our findings highlight the importance of detailed model characterisation and support the applicability of our model in pre- and co-clinical settings. Abstract Colorectal cancer (CRC) is one of the most common cancers worldwide. Although short-term cultures of tumour sections and xenotransplants have been used to determine drug efficacy, the results frequently fail to confer clinically useful information. Biomarker discovery has changed the paradigm for advanced CRC, though the presence of a biomarker does not necessarily translate into therapeutic success. To improve clinical outcomes, translational models predictive of drug response are needed. We describe a simple method for the fast establishment of CRC patient-derived explant (CRC-PDE) cultures from different carcinogenesis pathways, employing agitation-based platforms. A total of 26 CRC-PDE were established and a subset was evaluated for viability (n = 23), morphology and genetic key alterations (n = 21). CRC-PDE retained partial tumor glandular architecture and microenvironment features were partially lost over 4 weeks of culture. Key proteins (p53 and Mismatch repair) and oncogenic driver mutations of the original tumours were sustained throughout the culture. Drug challenge (n = 5) revealed differential drug response from distinct CRC-PDE cases. These findings suggest an adequate representation of the original tumour and highlight the importance of detailed model characterisation. The preservation of key aspects of the CRC microenvironment and genetics supports CRC-PDE potential applicability in pre- and co-clinical settings, as long as temporal dynamics are considered.
Collapse
Affiliation(s)
- Sara da Mata
- Serviço de Anatomia Patológica, Instituto Português de Oncologia de Lisboa Francisco Gentil (IPOLFG, EPE), Rua Prof. Lima Basto, 1099-023 Lisboa, Portugal; (S.d.M.); (S.M.); (M.M.); (R.F.)
- NOVA Medical School, Universidade Nova de Lisboa, Campo dos Mártires da Pátria 130, 1169-056 Lisboa, Portugal
| | - Teresa Franchi-Mendes
- Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2780-901 Oeiras, Portugal; (T.F.-M.); (S.A.); (V.E.S.)
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | - Sofia Abreu
- Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2780-901 Oeiras, Portugal; (T.F.-M.); (S.A.); (V.E.S.)
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | - Bruno Filipe
- Unidade de Investigação em Patobiologia Molecular (UIPM), Instituto Português de Oncologia de Lisboa Francisco Gentil (IPOLFG, EPE), Rua Prof. Lima Basto, 1099-023 Lisboa, Portugal; (B.F.); (C.A.)
| | - Sónia Morgado
- Serviço de Anatomia Patológica, Instituto Português de Oncologia de Lisboa Francisco Gentil (IPOLFG, EPE), Rua Prof. Lima Basto, 1099-023 Lisboa, Portugal; (S.d.M.); (S.M.); (M.M.); (R.F.)
| | - Marta Mesquita
- Serviço de Anatomia Patológica, Instituto Português de Oncologia de Lisboa Francisco Gentil (IPOLFG, EPE), Rua Prof. Lima Basto, 1099-023 Lisboa, Portugal; (S.d.M.); (S.M.); (M.M.); (R.F.)
| | - Cristina Albuquerque
- Unidade de Investigação em Patobiologia Molecular (UIPM), Instituto Português de Oncologia de Lisboa Francisco Gentil (IPOLFG, EPE), Rua Prof. Lima Basto, 1099-023 Lisboa, Portugal; (B.F.); (C.A.)
| | - Ricardo Fonseca
- Serviço de Anatomia Patológica, Instituto Português de Oncologia de Lisboa Francisco Gentil (IPOLFG, EPE), Rua Prof. Lima Basto, 1099-023 Lisboa, Portugal; (S.d.M.); (S.M.); (M.M.); (R.F.)
- Faculdade de Medicina da Universidade de Lisboa, Avenida Prof. Egas Moniz MB, 1649-028 Lisboa, Portugal
| | - Vítor E. Santo
- Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2780-901 Oeiras, Portugal; (T.F.-M.); (S.A.); (V.E.S.)
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | - Erwin R. Boghaert
- Abbvie Inc., 1 North Waukegan Road, North Chicago, IL 60064-6098, USA;
| | - Isadora Rosa
- Serviço de Gastrenterologia, Instituto Português de Oncologia de Lisboa Francisco Gentil (IPOLFG, EPE), Rua Prof. Lima Basto, 1099-023 Lisboa, Portugal
- Correspondence: (I.R.); (C.B.)
| | - Catarina Brito
- Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2780-901 Oeiras, Portugal; (T.F.-M.); (S.A.); (V.E.S.)
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
- The Discoveries Centre for Regenerative and Precision Medicine, Lisbon Campus, Av. da República, 2780-157 Oeiras, Portugal
- Correspondence: (I.R.); (C.B.)
| |
Collapse
|