1
|
Pandey P, Ramniwas S, Pandey S, Lakhanpal S, Ballal S, Kumar S, Bhat M, Sharma S, Kumar MR, Khan F. Elucidating the anticancerous efficacy of genistein via modulating HPV (E7 and E6) oncogenes expression and apoptotic induction in cervical cancer cells. Biotechnol Appl Biochem 2024. [PMID: 39491824 DOI: 10.1002/bab.2691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 10/16/2024] [Indexed: 11/05/2024]
Abstract
In recent years, genistein has garnered increased interest for its ability to inhibit numerous deregulated targets associated with cancer progression and induction of programmed cell death and antiproliferative activities in human carcinoma cells. Cancer etiology is influenced via multiple disrupted signaling pathways. This study therefore directed toward investigating genistein efficacy in modulating mRNA expression levels of two crucial Human Pappiloma Virus (HPV) (E7 and E6) oncogenes for cancer treatment. Moreover, the inhibitory effects of genistein for HPV (E7 and E6) oncogenes in cervical carcinoma have not yet been reported. Current study investigated inhibitory potential of genistein in HPV (E7 and E6) oncogenes in HeLa cells. These oncogenes are known to deactivate many tumor suppressor proteins (p53 and pRB). Genistein therapy resulted in decreased cell proliferation and increased cell accumulation in the G (G0/G1) phase in HeLa cell lines. In addition, genistein therapy has resulted in the suppression of HPV (E7 and E6) gene expression and simultaneously increasing expression levels of p53 and pRB mRNA levels. As a consequence, there has been an activation of a series of caspases (3, 8, and 9), resulting in their cleavage. Consequently, our data suggests that genistein could be a powerful candidate for treating cervical cancer by targeting two important oncogenes involved in viral development. However, more in vitro research on primary cervical cancer cells is required to validate the clinically relevant efficacy of genistein against cervical cancer.
Collapse
Affiliation(s)
- Pratibha Pandey
- Centre for Research Impact & Outcome, Chitkara University Institute of Engineering & Technology, Chitkara University, Rajpura, Punjab, India
- Chitkara Centre for Research and Development, Chitkara University, Baddi, Himachal Pradesh, India
| | - Seema Ramniwas
- University Centre of Research and Development, University institute of Biotechnology, Chandigarh University, Gharuan, Mohali, Punjab, India
| | - Shivam Pandey
- School of Applied and Life Sciences, Uttaranchal University, Dehradun, Uttarakhand, India
| | - Sorabh Lakhanpal
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
| | - Suhas Ballal
- Department of Chemistry and Biochemistry, School of Sciences, JAIN (Deemed to be University), Bangalore, Karnataka, India
| | - Sanjay Kumar
- Department of Allied Healthcare and Sciences, Vivekananda Global University, Jaipur, Rajasthan, India
| | - Mahakshit Bhat
- Department of Medicine, National Institute of Medical Sciences, NIMS University Rajasthan, Jaipur, Rajasthan, India
| | - Shilpa Sharma
- Chandigarh Pharmacy College, Chandigarh Group of Colleges-Jhanjeri, Mohali, Punjab, India
| | - M Ravi Kumar
- Department of Chemistry, Raghu Engineering College, Visakhapatnam, Andhra Pradesh, India
| | - Fahad Khan
- Center for Global Health Research Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Chennai, India
| |
Collapse
|
2
|
Chu W, Liu P, Zhang Z, Wu D, Li W, Chen W, Li Z, Wang W, Yang Y. Preparation, characterization and cytotoxic activity of selenium nanoparticles stabilized with a heteropolysaccharide isolated from Sanghuangporus vaninii residue. Carbohydr Polym 2024; 343:122468. [PMID: 39174129 DOI: 10.1016/j.carbpol.2024.122468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 07/04/2024] [Accepted: 07/06/2024] [Indexed: 08/24/2024]
Abstract
Selenium nanoparticles (SeNPs) possess unique features with excellent bioavailability and bioactivity, but the poor stability limits its application. A combination of polysaccharides and SeNPs is an effective strategy to overcome the limitation. Herein, a heteropolysaccharide (SVL-3) with an average molecular weight of 2.428 × 104 Da was purified from the fruiting body residue of Sanghuangporus vaninii after soaking in sorghum wine, which was composed of fucose, galactose, glucose, fructose and 3-O-methyl-galactose. The main chain of SVL-3 was composed of →6)-α-3-MeO-Galp-(1→, →4)-α-D-Galp-(1→, →2,6)-β-D-Glcp-(1 → and →3)-α-D-Glcp-(1→, and the branched chain was composed of →4)-α-D-Xylp-(1 → and α-L-Fucp-(1→. For enhancing bioactivity of SVL-3 and stability of SeNPs, SVL-3-functionalized SeNPs (SVL-3-SeNPs) was prepared, which contained 45.31 % polysaccharide and 48.49 % selenium. SVL-3-SeNPs maintained an emphatic stability over 28 days at 4 °C and pH 6-8, and exhibited a higher cytotoxic effect on MCF-7 cells than SVL-3 and SeNPs. The inhibitory effect of SVL-3-SeNPs on the cancer cells may be associated with the mechanisms by inducing S-phase arrest, triggering apoptosis and elevating the protein levels of Cytochrome c, Caspases and cleaved caspases 3 and 9. These results indicated that SeNPs modified by S. vaninii polysaccharides can be utilized as a potential material for targeted antitumor drugs.
Collapse
Affiliation(s)
- Wenqi Chu
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, National Engineering Research Center of Edible Fungi, Shanghai 201403, China; Shanghai Institute of Biological products CO., LTD, Shanghai 200050, China
| | - Peng Liu
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, National Engineering Research Center of Edible Fungi, Shanghai 201403, China
| | - Zhong Zhang
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, National Engineering Research Center of Edible Fungi, Shanghai 201403, China
| | - Di Wu
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, National Engineering Research Center of Edible Fungi, Shanghai 201403, China
| | - Wen Li
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, National Engineering Research Center of Edible Fungi, Shanghai 201403, China
| | - Wanchao Chen
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, National Engineering Research Center of Edible Fungi, Shanghai 201403, China
| | - Zhengpeng Li
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, National Engineering Research Center of Edible Fungi, Shanghai 201403, China
| | - Weike Wang
- Hangzhou Academy of Agricultural Sciences, Hangzhou 310024, China.
| | - Yan Yang
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, National Engineering Research Center of Edible Fungi, Shanghai 201403, China.
| |
Collapse
|
3
|
Shi B, Phan TK, Poon IKH. Extracellular vesicles from the dead: the final message. Trends Cell Biol 2024:S0962-8924(24)00205-8. [PMID: 39438206 DOI: 10.1016/j.tcb.2024.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 09/11/2024] [Accepted: 09/23/2024] [Indexed: 10/25/2024]
Abstract
Communication between dying and neighbouring cells is vital to ensure appropriate processes such as tissue repair or inflammation are initiated in response to cell death. As a mechanism to aid intercellular communication, cells undergoing apoptosis can release membrane-bound extracellular vesicles (EVs) called apoptotic-cell-derived EVs (ApoEVs) that can influence downstream processes through biomolecules within or on ApoEVs. ApoEVs are broadly categorised based on size as either large ApoEVs known as apoptotic bodies (ApoBDs) or small ApoEVs (s-ApoEVs). Notably, the mechanisms of ApoBD and s-ApoEV formation are different, and the functions of these two ApoEV subsets are distinct. This Review focuses on the biogenesis and functional properties of both ApoBDs and s-ApoEVs, particularly in the context of cell clearance, cell signalling and disease progression.
Collapse
Affiliation(s)
- Bo Shi
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria, Australia; Research Centre for Extracellular Vesicles, La Trobe University, Victoria, Australia
| | - Thanh Kha Phan
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria, Australia; Research Centre for Extracellular Vesicles, La Trobe University, Victoria, Australia.
| | - Ivan K H Poon
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria, Australia; Research Centre for Extracellular Vesicles, La Trobe University, Victoria, Australia.
| |
Collapse
|
4
|
Vatankhah A, Moghaddam SH, Afshari S, Afshari AR, Kesharwani P, Sahebkar A. Recent update on anti-tumor mechanisms of valproic acid in glioblastoma multiforme. Pathol Res Pract 2024; 263:155636. [PMID: 39395298 DOI: 10.1016/j.prp.2024.155636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 09/30/2024] [Accepted: 10/02/2024] [Indexed: 10/14/2024]
Abstract
Glioblastoma multiforme (GBM) is a malignant tumor of the brain that is considered to be incurable. Currently, surgical removal of tumors, chemotherapy with temozolomide, and radiation treatment remain established options for treatment. Nevertheless, the prognosis of those with GBM continues to be poor owing to the inherent characteristics of tumor growth and spread, as well as the resistance to treatment. To effectively deal with the present circumstances, it is vital to do extensive study to understand GBM thoroughly. The following piece provides a concise overview of the most recent advancements in using valproic acid, an antiseizure medication licensed by the FDA, for treating GBM. In this review, we outline the most recent developments of valproic acid in treating GBM, as well as its fundamental mechanisms and practical consequences. Our goal is to provide a greater understanding of the clinical use of valproic acid as a potential therapeutic agent for GBM.
Collapse
Affiliation(s)
- Abulfazl Vatankhah
- School of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | | | - Sadaf Afshari
- Student Research Committee, Faculty of Dentistry, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amir R Afshari
- Department of Basic Sciences, Faculty of Medicine, Mashhad Medical Sciences, Islamic Azad University, Mashhad, Iran; Natural Products and Medicinal Plants Research Center, North Khorasan University of Medical Sciences, Bojnurd, Iran; Department of Physiology and Pharmacology, Faculty of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran.
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India.
| | - Amirhossein Sahebkar
- Center for Global health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India; Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
5
|
Eity TA, Bhuia MS, Chowdhury R, Ahmmed S, Salehin Sheikh, Akter R, Islam MT. Therapeutic Efficacy of Quercetin and Its Nanoformulation Both the Mono- or Combination Therapies in the Management of Cancer: An Update with Molecular Mechanisms. J Trop Med 2024; 2024:5594462. [PMID: 39380577 PMCID: PMC11461079 DOI: 10.1155/2024/5594462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 09/12/2024] [Indexed: 10/10/2024] Open
Abstract
Quercetin, a major representative of the flavonol subclass found abundantly in almost all edible vegetables and fruits, showed remarkable therapeutic properties and was beneficial in numerous degenerative diseases by preventing lipid peroxidation. Quercetin is beneficial in different diseases, such as atherosclerosis and chronic inflammation. This study aims to find out the anticancer activities of quercetin and to determine different mechanisms and pathways which are responsible for the anticancer effect. It also revealed the biopharmaceutical, toxicological characteristics, and clinical utilization of quercetin to evaluate its suitability for further investigations as a reliable anticancer drug. All of the relevant data concerning this compound with cancer was collected using different scientific search engines, including PubMed, Springer Link, Wiley Online, Web of Science, SciFinder, ScienceDirect, and Google Scholar. This review demonstrated that quercetin showed strong anticancer properties, including apoptosis, inhibition of cell proliferation, autophagy, cell cycle arrest, inhibition of angiogenesis, and inhibition of invasion and migration against various types of cancer. Findings also revealed that quercetin could significantly moderate and regulate different pathways, including PI3K/AKT-mTORC1 pathway, JAK/STAT signaling system, MAPK signaling pathway, MMP signaling pathway, NF-κB pathway, and p-Camk2/p-DRP1 pathway. However, this study found that quercetin showed poor oral bioavailability due to reduced absorption; this limitation is overcome by applying nanotechnology (nanoformulation of quercetin). Moreover, different investigations revealed that quercetin expressed no toxic effect in the investigated subjects. Based on the view of these findings, it is demonstrated that quercetin might be considered a reliable chemotherapeutic drug candidate in the treatment of different cancers. However, more clinical studies are suggested to establish the proper therapeutic efficacy, safety, and human dose.
Collapse
Affiliation(s)
- Tanzila Akter Eity
- Department of Biotechnology and Genetic EngineeringBangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, Gopalganj 8100, Bangladesh
- Phytochemistry and Biodiversity Research LaboratoryBioLuster Research Center Ltd., Gopalganj, Gopalganj 8100, Bangladesh
| | - Md. Shimul Bhuia
- Phytochemistry and Biodiversity Research LaboratoryBioLuster Research Center Ltd., Gopalganj, Gopalganj 8100, Bangladesh
- Department of PharmacyBangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, Gopalganj 8100, Bangladesh
| | - Raihan Chowdhury
- Phytochemistry and Biodiversity Research LaboratoryBioLuster Research Center Ltd., Gopalganj, Gopalganj 8100, Bangladesh
- Department of PharmacyBangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, Gopalganj 8100, Bangladesh
| | - Shakil Ahmmed
- Phytochemistry and Biodiversity Research LaboratoryBioLuster Research Center Ltd., Gopalganj, Gopalganj 8100, Bangladesh
- Department of Biochemistry and Molecular BiologyBangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Salehin Sheikh
- Phytochemistry and Biodiversity Research LaboratoryBioLuster Research Center Ltd., Gopalganj, Gopalganj 8100, Bangladesh
- Department of PharmacyBangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, Gopalganj 8100, Bangladesh
| | - Rima Akter
- Phytochemistry and Biodiversity Research LaboratoryBioLuster Research Center Ltd., Gopalganj, Gopalganj 8100, Bangladesh
- Biotechnology and Genetic Engineering DisciplineKhulna University, Khulna 9208, Bangladesh
| | - Muhammad Torequl Islam
- Phytochemistry and Biodiversity Research LaboratoryBioLuster Research Center Ltd., Gopalganj, Gopalganj 8100, Bangladesh
- Department of PharmacyBangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, Gopalganj 8100, Bangladesh
- Pharmacy DisciplineKhulna University, Khulna 9208, Bangladesh
| |
Collapse
|
6
|
Ahmad N, Chen L, Yuan Z, Ma X, Yang X, Wang Y, Zhao Y, Jin H, Khaidamah N, Wang J, Lu J, Liu Z, Wu M, Wang Q, Qi Y, Wang C, Zhao Y, Piao Y, Huang R, Diao Y, Deng S, Shu X. Pyrimidine compounds BY4003 and BY4008 inhibit glioblastoma cells growth via modulating JAK3/STAT3 signaling pathway. Neurotherapeutics 2024; 21:e00431. [PMID: 39153914 DOI: 10.1016/j.neurot.2024.e00431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 08/02/2024] [Accepted: 08/02/2024] [Indexed: 08/19/2024] Open
Abstract
Glioblastoma (GBM) is a brain tumor characterized by its aggressive and invasive properties. It is found that STAT3 is abnormally activated in GBM, and inhibiting STAT3 signaling can effectively suppress tumor progression. In this study, novel pyrimidine compounds, BY4003 and BY4008, were synthesized to target the JAK3/STAT3 signaling pathway, and their therapeutic efficacy and mechanisms of action were evaluated and compared with Tofacitinib in U251, A172, LN428 and patient-derived glioblastoma cells. The ADP-Glo™ kinase assay was utilized to assessed the inhibitory effects of BY4003 and BY4008 on JAK3, a crucial member of the JAK family. The results showed that both compounds significantly inhibited JAK3 enzyme activity, with IC50 values in the nanomolar range. The antiproliferative effects of BY4003, BY4008, and Tofacitinib on GBM and patient-derived glioblastoma cells were evaluated by MTT and H&E assays. The impact of BY4003 and BY4008 on GBM cell migration and apoptosis induction was assessed through wound healing, transwell, and TUNEL assays. STAT3-regulated protein expression and relative mRNA levels were analyzed by western blotting, immunocytochemistry, immunofluorescence, and qRT-PCR. It was found that BY4003, BY4008 and Tofacitinib could inhibit U251, A172, LN428 and patient-derived glioblastoma cells growth and proliferation. Results showed decreased expression of STAT3-associated proteins, including p-STAT3, CyclinD1, and Bcl-2, and increased expression of Bax, a pro-apoptotic protein, as well as significant down-regulation of STAT3 and STAT3-related genes. These findings suggested that BY4003 and BY4008 could inhibit GBM growth by suppressing the JAK3/STAT3 signaling pathway, providing valuable insights into the therapeutic development of GBM.
Collapse
Affiliation(s)
- Nisar Ahmad
- College of Pharmacy, Dalian Medical University, Dalian 116044, China; College of Basic Medical Science, Dalian Medical University, Dalian 116044, China; Institute of Integrative Medicine, Dalian Medical University, Dalian 116044, China
| | - Lixue Chen
- College of Pharmacy, Dalian Medical University, Dalian 116044, China
| | - Zixi Yuan
- College of Pharmacy, Dalian Medical University, Dalian 116044, China
| | - Xiaodong Ma
- College of Pharmacy, Dalian Medical University, Dalian 116044, China; Key Laboratories for Basic and Applied Research on Pharmacodynamic Substances of Traditional Chinese Medicine of Liaoning Province, Dalian Medical University, Dalian 116044, China
| | - Xiaobo Yang
- College of Pharmacy, Dalian Medical University, Dalian 116044, China.
| | - Yinan Wang
- College of Pharmacy, Dalian Medical University, Dalian 116044, China; Institute of Integrative Medicine, Dalian Medical University, Dalian 116044, China; The First Affiliated Hospital of Dalian Medical University, Dalian 116044, China
| | - Yongshun Zhao
- The First Affiliated Hospital of Dalian Medical University, Dalian 116044, China
| | - Huan Jin
- College of Pharmacy, Dalian Medical University, Dalian 116044, China
| | - Najib Khaidamah
- College of Pharmacy, Dalian Medical University, Dalian 116044, China; Institute of Integrative Medicine, Dalian Medical University, Dalian 116044, China
| | - Jinan Wang
- College of Pharmacy, Dalian Medical University, Dalian 116044, China
| | - Jiashuo Lu
- College of Pharmacy, Dalian Medical University, Dalian 116044, China
| | - Ziqi Liu
- College of Pharmacy, Dalian Medical University, Dalian 116044, China
| | - Moli Wu
- College of Basic Medical Science, Dalian Medical University, Dalian 116044, China
| | - Qian Wang
- College of Basic Medical Science, Dalian Medical University, Dalian 116044, China
| | - Yan Qi
- College of Pharmacy, Dalian Medical University, Dalian 116044, China
| | - Chong Wang
- College of Pharmacy, Dalian Medical University, Dalian 116044, China
| | - Yupu Zhao
- College of Pharmacy, Dalian Medical University, Dalian 116044, China
| | - Yang Piao
- College of Pharmacy, Dalian Medical University, Dalian 116044, China
| | - Rujie Huang
- College of Pharmacy, Dalian Medical University, Dalian 116044, China
| | - Yunpeng Diao
- College of Pharmacy, Dalian Medical University, Dalian 116044, China; Key Laboratories for Basic and Applied Research on Pharmacodynamic Substances of Traditional Chinese Medicine of Liaoning Province, Dalian Medical University, Dalian 116044, China
| | - Sa Deng
- College of Pharmacy, Dalian Medical University, Dalian 116044, China
| | - Xiaohong Shu
- College of Pharmacy, Dalian Medical University, Dalian 116044, China; Institute of Integrative Medicine, Dalian Medical University, Dalian 116044, China; Key Laboratories for Basic and Applied Research on Pharmacodynamic Substances of Traditional Chinese Medicine of Liaoning Province, Dalian Medical University, Dalian 116044, China.
| |
Collapse
|
7
|
Tarr J, Salovich JM, Aichinger M, Jeon K, Veerasamy N, Sensintaffar JL, Arnhof H, Samwer M, Christov PP, Kim K, Wunberg T, Schweifer N, Trapani F, Arnold A, Martin F, Zhao B, Miriyala N, Sgubin D, Fogarty S, Moore WJ, Stott GM, Olejniczak ET, Engelhardt H, Rudolph D, Lee T, McConnell DB, Fesik SW. Discovery of a Myeloid Cell Leukemia 1 (Mcl-1) Inhibitor That Demonstrates Potent In Vivo Activities in Mouse Models of Hematological and Solid Tumors. J Med Chem 2024; 67:14370-14393. [PMID: 39102508 PMCID: PMC11345828 DOI: 10.1021/acs.jmedchem.4c01188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 07/10/2024] [Accepted: 07/15/2024] [Indexed: 08/07/2024]
Abstract
Myeloid cell leukemia 1 (Mcl-1) is a key regulator of the intrinsic apoptosis pathway. Overexpression of Mcl-1 is correlated with high tumor grade, poor survival, and both intrinsic and acquired resistance to cancer therapies. Herein, we disclose the structure-guided design of a small molecule Mcl-1 inhibitor, compound 26, that binds to Mcl-1 with subnanomolar affinity, inhibits growth in cell culture assays, and possesses low clearance in mouse and dog pharmacokinetic (PK) experiments. Evaluation of 26 as a single agent in Mcl-1 sensitive hematological and solid tumor xenograft models resulted in regressions. Co-treatment of Mcl-1-sensitive and Mcl-1 insensitive lung cancer derived xenografts with 26 and docetaxel or topotecan, respectively, resulted in an enhanced tumor response. These findings support the premise that pro-apoptotic priming of tumor cells by other therapies in combination with Mcl-1 inhibition may significantly expand the subset of cancers in which Mcl-1 inhibitors may prove beneficial.
Collapse
Affiliation(s)
- James
C. Tarr
- Department
of Biochemistry, Vanderbilt University School
of Medicine, 2215 Garland Avenue, 607 Light Hall, Nashville, Tennessee 37232-0146, United States
| | - James M. Salovich
- Department
of Biochemistry, Vanderbilt University School
of Medicine, 2215 Garland Avenue, 607 Light Hall, Nashville, Tennessee 37232-0146, United States
| | - Martin Aichinger
- Discovery
Research, Boehringer Ingelheim Regional
Center Vienna GmbH & Co KG, 1120 Vienna, Austria
| | - KyuOk Jeon
- Department
of Biochemistry, Vanderbilt University School
of Medicine, 2215 Garland Avenue, 607 Light Hall, Nashville, Tennessee 37232-0146, United States
| | - Nagarathanam Veerasamy
- Department
of Biochemistry, Vanderbilt University School
of Medicine, 2215 Garland Avenue, 607 Light Hall, Nashville, Tennessee 37232-0146, United States
| | - John L. Sensintaffar
- Department
of Biochemistry, Vanderbilt University School
of Medicine, 2215 Garland Avenue, 607 Light Hall, Nashville, Tennessee 37232-0146, United States
| | - Heribert Arnhof
- Discovery
Research, Boehringer Ingelheim Regional
Center Vienna GmbH & Co KG, 1120 Vienna, Austria
| | - Matthias Samwer
- Discovery
Research, Boehringer Ingelheim Regional
Center Vienna GmbH & Co KG, 1120 Vienna, Austria
| | - Plamen P. Christov
- Molecular
Design and Synthesis Center, Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, Tennessee 37323-0146, United States
| | - Kwangho Kim
- Molecular
Design and Synthesis Center, Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, Tennessee 37323-0146, United States
| | - Tobias Wunberg
- Discovery
Research, Boehringer Ingelheim Regional
Center Vienna GmbH & Co KG, 1120 Vienna, Austria
| | - Norbert Schweifer
- Discovery
Research, Boehringer Ingelheim Regional
Center Vienna GmbH & Co KG, 1120 Vienna, Austria
| | - Francesca Trapani
- Discovery
Research, Boehringer Ingelheim Regional
Center Vienna GmbH & Co KG, 1120 Vienna, Austria
| | - Allison Arnold
- Department
of Biochemistry, Vanderbilt University School
of Medicine, 2215 Garland Avenue, 607 Light Hall, Nashville, Tennessee 37232-0146, United States
| | - Florian Martin
- Discovery
Research, Boehringer Ingelheim Regional
Center Vienna GmbH & Co KG, 1120 Vienna, Austria
| | - Bin Zhao
- Department
of Biochemistry, Vanderbilt University School
of Medicine, 2215 Garland Avenue, 607 Light Hall, Nashville, Tennessee 37232-0146, United States
| | - Nagaraju Miriyala
- Department
of Biochemistry, Vanderbilt University School
of Medicine, 2215 Garland Avenue, 607 Light Hall, Nashville, Tennessee 37232-0146, United States
| | - Danielle Sgubin
- Department
of Biochemistry, Vanderbilt University School
of Medicine, 2215 Garland Avenue, 607 Light Hall, Nashville, Tennessee 37232-0146, United States
| | - Stuart Fogarty
- Department
of Biochemistry, Vanderbilt University School
of Medicine, 2215 Garland Avenue, 607 Light Hall, Nashville, Tennessee 37232-0146, United States
| | - William J. Moore
- Leidos
Biomedical Research, Frederick National
Laboratory for Cancer Research, Frederick, Maryland 21701-4907, United States
| | - Gordon M. Stott
- Leidos
Biomedical Research, Frederick National
Laboratory for Cancer Research, Frederick, Maryland 21701-4907, United States
| | - Edward T. Olejniczak
- Department
of Biochemistry, Vanderbilt University School
of Medicine, 2215 Garland Avenue, 607 Light Hall, Nashville, Tennessee 37232-0146, United States
| | - Harald Engelhardt
- Discovery
Research, Boehringer Ingelheim Regional
Center Vienna GmbH & Co KG, 1120 Vienna, Austria
| | - Dorothea Rudolph
- Discovery
Research, Boehringer Ingelheim Regional
Center Vienna GmbH & Co KG, 1120 Vienna, Austria
| | - Taekyu Lee
- Department
of Biochemistry, Vanderbilt University School
of Medicine, 2215 Garland Avenue, 607 Light Hall, Nashville, Tennessee 37232-0146, United States
| | - Darryl B. McConnell
- Discovery
Research, Boehringer Ingelheim Regional
Center Vienna GmbH & Co KG, 1120 Vienna, Austria
| | - Stephen W. Fesik
- Department
of Biochemistry, Vanderbilt University School
of Medicine, 2215 Garland Avenue, 607 Light Hall, Nashville, Tennessee 37232-0146, United States
| |
Collapse
|
8
|
Salimizadeh Z, Enferadi ST, Majidizadeh T, Mahjoubi F. Cytotoxicity of alkaloids isolated from Peganum harmala seeds on HCT116 human colon cancer cells. Mol Biol Rep 2024; 51:732. [PMID: 38872006 DOI: 10.1007/s11033-024-09655-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 05/20/2024] [Indexed: 06/15/2024]
Abstract
BACKGROUND The present study aimed to elucidate the potential anticancer activity and mechanism of P. harmala's alkaloid extract, harmine (HAR), and harmaline (HAL) in HCT-116 colorectal cancer cells. METHODS AND RESULTS P. harmala's alkaloid was extracted from harmala seeds. HCT-116 cells were treated with P. harmala's alkaloid extract, HAR and HAL. Cytotoxicity was determined by MTT assay, apoptotic activity detected via flow cytometry and acridine orange (AO)/ethidium bromide (EB) dual staining, and cell cycle distribution analyzed with flow cytometry. The mRNA expression of Bcl-2-associated X protein (Bax) and glycogen synthase kinase-3 beta (GSK3β) was measured by real-time PCR. Furthermore, the expression of Bax, Bcl-2, GSK3β and p53 proteins, were determined by western blotting. The findings indicated that, P. harmala's alkaloids extract, HAR and HAL were significantly cytotoxic toward HCT116 cells after 24 and 48 h of treatment. We showed that P. harmala's alkaloid extract induce apoptosis and cell cycle arrest at G2 phase in the HCT116 cell line. Downregulation of GSK3β and Bcl-2 and upregulation of Bax and p53 were observed. CONCLUSION The findings of this study indicate that the P. harmala's alkaloid extract has anticancer activity and may be further investigated to develop future anticancer chemotherapeutic agents.
Collapse
Affiliation(s)
- Zahra Salimizadeh
- Department of Medical Genetic, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| | - Sattar Tahmasebi Enferadi
- Department of Plant Biotechnology, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| | - Tayebeh Majidizadeh
- Department of Medical Genetic, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| | - Frouzandeh Mahjoubi
- Department of Medical Genetic, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran.
| |
Collapse
|
9
|
Pandya DV, Parikh RV, Gena RM, Kothari NR, Parekh PS, Chorawala MR, Jani MA, Yadav MR, Shah PA. The scaffold protein disabled 2 (DAB2) and its role in tumor development and progression. Mol Biol Rep 2024; 51:701. [PMID: 38822973 DOI: 10.1007/s11033-024-09653-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 05/20/2024] [Indexed: 06/03/2024]
Abstract
BACKGROUND Disabled 2 (DAB2) is a multifunctional protein that has emerged as a critical component in the regulation of tumor growth. Its dysregulation is implicated in various types of cancer, underscoring its importance in understanding the molecular mechanisms underlying tumor development and progression. This review aims to unravel the intricate molecular mechanisms by which DAB2 exerts its tumor-suppressive functions within cancer signaling pathways. METHODS AND RESULTS We conducted a comprehensive review of the literature focusing on the structure, expression, physiological functions, and tumor-suppressive roles of DAB2. We provide an overview of the structure, expression, and physiological functions of DAB2. Evidence supporting DAB2's role as a tumor suppressor is explored, highlighting its ability to inhibit cell proliferation, induce apoptosis, and modulate key signaling pathways involved in tumor suppression. The interaction between DAB2 and key oncogenes is examined, elucidating the interplay between DAB2 and oncogenic signaling pathways. We discuss the molecular mechanisms underlying DAB2-mediated tumor suppression, including its involvement in DNA damage response and repair, regulation of cell cycle progression and senescence, and modulation of epithelial-mesenchymal transition (EMT). The review explores the regulatory networks involving DAB2, covering post-translational modifications, interactions with other tumor suppressors, and integration within complex signaling networks. We also highlight the prognostic significance of DAB2 and its role in pre-clinical studies of tumor suppression. CONCLUSION This review provides a comprehensive understanding of the molecular mechanisms by which DAB2 exerts its tumor-suppressive functions. It emphasizes the significance of DAB2 in cancer signaling pathways and its potential as a target for future therapeutic interventions.
Collapse
Affiliation(s)
- Disha V Pandya
- Department of Pharmacology and Pharmacy Practice, L. M. College of Pharmacy, Opp. Gujarat University, Ahmedabad, Gujarat, 380009, India
| | - Rajsi V Parikh
- Department of Pharmacology and Pharmacy Practice, L. M. College of Pharmacy, Opp. Gujarat University, Ahmedabad, Gujarat, 380009, India
| | - Ruhanahmed M Gena
- Department of Pharmacology and Pharmacy Practice, L. M. College of Pharmacy, Opp. Gujarat University, Ahmedabad, Gujarat, 380009, India
| | - Nirjari R Kothari
- Department of Pharmacology and Pharmacy Practice, L. M. College of Pharmacy, Opp. Gujarat University, Ahmedabad, Gujarat, 380009, India
| | - Priyajeet S Parekh
- Pharmacy Practice Division, AV Pharma LLC, 1545 University Blvd N Ste A, Jacksonville, FL, 32211, USA
| | - Mehul R Chorawala
- Department of Pharmacology and Pharmacy Practice, L. M. College of Pharmacy, Opp. Gujarat University, Ahmedabad, Gujarat, 380009, India.
| | - Maharsh A Jani
- Pharmacy Practice Division, Anand Niketan, Shilaj, Ahmedabad, Gujarat, 380059, India
| | - Mayur R Yadav
- Department of Pharmacy Practice and Administration, Western University of Health Science, 309 E Second St, Pomona, CA, 91766, USA
| | - Palak A Shah
- Department of Pharmacology and Pharmacy Practice, K. B. Institute of Pharmaceutical Education and Research, Gandhinagar, Gujarat, 382023, India
| |
Collapse
|
10
|
Sun J, Durmaz AD, Babu A, Macabenta F, Stathopoulos A. Two sequential gene expression programs bridged by cell division support long-distance collective cell migration. Development 2024; 151:dev202262. [PMID: 38646822 PMCID: PMC11165717 DOI: 10.1242/dev.202262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 04/08/2024] [Indexed: 04/23/2024]
Abstract
The precise assembly of tissues and organs relies on spatiotemporal regulation of gene expression to coordinate the collective behavior of cells. In Drosophila embryos, the midgut musculature is formed through collective migration of caudal visceral mesoderm (CVM) cells, but how gene expression changes as cells migrate is not well understood. Here, we have focused on ten genes expressed in the CVM and the cis-regulatory sequences controlling their expression. Although some genes are continuously expressed, others are expressed only early or late during migration. Late expression relates to cell cycle progression, as driving string/Cdc25 causes earlier division of CVM cells and accelerates the transition to late gene expression. In particular, we found that the cell cycle effector transcription factor E2F1 is a required input for the late gene CG5080. Furthermore, whereas late genes are broadly expressed in all CVM cells, early gene transcripts are polarized to the anterior or posterior ends of the migrating collective. We show this polarization requires transcription factors Snail, Zfh1 and Dorsocross. Collectively, these results identify two sequential gene expression programs bridged by cell division that support long-distance directional migration of CVM cells.
Collapse
Affiliation(s)
- Jingjing Sun
- California Institute of Technology, Division of Biology and Biological Engineering, 1200 East California Boulevard, Pasadena, CA 91125, USA
| | - Ayse Damla Durmaz
- California Institute of Technology, Division of Biology and Biological Engineering, 1200 East California Boulevard, Pasadena, CA 91125, USA
- Faculty of Biology, Ludwig-Maximilians Universität München, München, 82152 DE, Germany
| | - Aswini Babu
- California Institute of Technology, Division of Biology and Biological Engineering, 1200 East California Boulevard, Pasadena, CA 91125, USA
| | - Frank Macabenta
- California Institute of Technology, Division of Biology and Biological Engineering, 1200 East California Boulevard, Pasadena, CA 91125, USA
- California State University, Monterey Bay, Seaside, CA 93955, USA
| | - Angelike Stathopoulos
- California Institute of Technology, Division of Biology and Biological Engineering, 1200 East California Boulevard, Pasadena, CA 91125, USA
| |
Collapse
|
11
|
Nalli Y, Bashir Mir K, Amin T, Gannedi V, Jameel E, Goswami A, Ali A. Divergent synthesis of fractionated Cannabis sativa extract led to multiple cannabinoids C-&O-glycosides with anti-proliferative/anti-metastatic properties. Bioorg Chem 2024; 143:107030. [PMID: 38091718 DOI: 10.1016/j.bioorg.2023.107030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 11/25/2023] [Accepted: 12/08/2023] [Indexed: 01/24/2024]
Abstract
Here, we present an interesting, previously unreported method for fractionating a particular class of cannabinoids from the crude leaf extract of Cannabis sativa using HP-20 resins. In this study, we report a novel method of divergent synthesis of fractionated Cannabis sativa extract, which allows the generation of multiple cannabinoids C- and O-glycosides which react with the glycosyl donor 2,3,4,6-tetra-O-acetyl-d-mannosyl trichloroacetimidate (TAMTA) to create eight C- and O-β-d-cannabinoids glycosides (COCG), which are separated by HPLC and whose structures are characterized by 1D, 2D NMR, and mass spectrometry. These glycosides exhibit improved anti-proliferative and anti-metastatic effects against numerous cancer cell lines in vitro and are more water-soluble and stable than their parent cannabinoids. The in vitro testing of the pure cannabinoids (1-4) and their C- & O-glycosides (1a-4a) and 1b-4b exhibited anti-proliferative and anti-metastatic activities against a panel of eight human cancer cell lines in contrast to their respective parent molecules. Different cancer cell lines' IC50 values varied significantly when their cell viability was compared. In addition to the others, compounds 2a, 3a, 4a, and 2b, 3b were highly potent, with IC50values ranging from 0.74 µM (3a) to 51.40 µM (4a).Although2a(1.42 µM) and3a(0.74 µM) exhibited lower IC50values in the MiaPaca-2 cell line than4a(2.58 µM). But, in addition to the comparable anti-clonogenic activity of4ain MiaPaca-2 and Panc-1 cells, it manifested remarkable anti-invasive activity than either 2a or 3a.In contrast to 2a, 2b, 3a, and 3b and their respective parent compounds,4ahad substantial anti-invasive/anti-metastatic capabilities and possessed anti-proliferative activity.The effects of 4a treatment on MiaPaca-2 and Panc-1 cells include a dose-dependent increase in the expression of E-cadherin and a significant decrease in the expression of Zeb-1, Vimentin, and Snail1. Our results demonstrate that divergent synthesis of fractionated Cannabis sativa extract is a feasible and efficient strategy to produce a library of novel cannabinoid glycosides with improved pharmacological properties and potential anticancer benefits.
Collapse
Affiliation(s)
- Yedukondalu Nalli
- Natural Products and Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu 180001, India; Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, India
| | - Khalid Bashir Mir
- Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu 180001, India
| | - Tanzeeba Amin
- Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu 180001, India
| | - Veeranjaneyulu Gannedi
- BCC-324 Beckman Center For Chemical Sciences, The Scripps Research Institute 10650 N Torrey Pines Rd, La Jolla, CA 92037, United States
| | - Ehtesham Jameel
- Medicinal & Process Chemistry Division, CSIR-Central Drug Research Institute (CDRI), Sector 10, Jankipuram Extension, Lucknow 226031, Uttar Pradesh, India
| | - Anindya Goswami
- Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu 180001, India
| | - Asif Ali
- Natural Products and Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu 180001, India; Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, India; Medicinal & Process Chemistry Division, CSIR-Central Drug Research Institute (CDRI), Sector 10, Jankipuram Extension, Lucknow 226031, Uttar Pradesh, India.
| |
Collapse
|
12
|
Kopiasz Ł, Dziendzikowska K, Oczkowski M, Harasym J, Gromadzka-Ostrowska J. Low-molar-mass oat beta-glucan impacts autophagy and apoptosis in early stages of induced colorectal carcinogenesis in rats. Int J Biol Macromol 2024; 254:127832. [PMID: 37924897 DOI: 10.1016/j.ijbiomac.2023.127832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 10/25/2023] [Accepted: 10/30/2023] [Indexed: 11/06/2023]
Abstract
Oat beta-glucan is one of the soluble dietary fibre fractions with a wide spectrum of biological activities such as anti-inflammatory and anti-tumour properties. In the present study, the effect of low-molar-mass oat beta-glucan isolate (OβGl) on the level of autophagy and apoptosis in the colorectum of rats with induced early stages of colorectal cancer was investigated. Forty-five male Sprague-Dawley rats were divided into two main groups: control and azoxymethane-induced early-stage colorectal carcinogenesis (CRC). Both groups were divided into three dietary subgroups fed standard feed without OβGl (OβGl-), with 1 % of OβGl (OβGl+1 %) or with 3 % of OβGl (OβGl+3 %). The expression of autophagy (LC3B, beclin-1) and apoptosis (caspase-3, cleaved caspase-3, BAX, BCL-2 and PARP-1) markers was determined by immunohistochemistry, Western blot and PCR analysis. The obtained results showed that the expression of LC3B, caspase-3 and cleaved caspase-3 in the CRC mucosa, and LC3B-II expression in the CRC wall were higher in the OβGl+3 % compared to the OβGl- rats. A higher BAX/BCL-2 ratio was also observed in the CRC OβGl+1 % rats compared to the other CRC animals. In summary, OβGl+3 % has a modulatory effect, stimulating autophagy and the extrinsic apoptosis pathway, while OβGl+1 % has a stimulatory effect on the intrinsic apoptosis pathway.
Collapse
Affiliation(s)
- Łukasz Kopiasz
- Department of Dietetics, Institute of Human Nutrition Sciences, Warsaw University of Life Sciences, 02-776 Warsaw, Poland.
| | - Katarzyna Dziendzikowska
- Department of Dietetics, Institute of Human Nutrition Sciences, Warsaw University of Life Sciences, 02-776 Warsaw, Poland.
| | - Michał Oczkowski
- Department of Dietetics, Institute of Human Nutrition Sciences, Warsaw University of Life Sciences, 02-776 Warsaw, Poland.
| | - Joanna Harasym
- Department of Biotechnology and Food Analysis, Wroclaw University of Economics and Business, 53-345 Wroclaw, Poland.
| | - Joanna Gromadzka-Ostrowska
- Department of Dietetics, Institute of Human Nutrition Sciences, Warsaw University of Life Sciences, 02-776 Warsaw, Poland.
| |
Collapse
|
13
|
Manousakis E, Miralles CM, Esquerda MG, Wright RHG. CDKN1A/p21 in Breast Cancer: Part of the Problem, or Part of the Solution? Int J Mol Sci 2023; 24:17488. [PMID: 38139316 PMCID: PMC10743848 DOI: 10.3390/ijms242417488] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 12/11/2023] [Accepted: 12/12/2023] [Indexed: 12/24/2023] Open
Abstract
Cyclin-dependent kinase inhibitor 1A (Cip1/Waf1/CDKN1A/p21) is a well-established protein, primarily recognised for its pivotal role in the cell cycle, where it induces cell cycle arrest by inhibiting the activity of cyclin-dependent kinases (CDKs). Over the years, extensive research has shed light on various additional mechanisms involving CDKN1A/p21, implicating it in processes such as apoptosis, DNA damage response (DDR), and the regulation of stem cell fate. Interestingly, p21 can function either as an oncogene or as a tumour suppressor in these contexts. Complicating matters further, the expression of CDKN1A/p21 is elevated in certain tumour types while downregulated in others. In this comprehensive review, we provide an overview of the multifaceted functions of CDKN1A/p21, present clinical data pertaining to cancer patients, and delve into potential strategies for targeting CDKN1A/p21 as a therapeutic approach to cancer. Manipulating CDKN1A/p21 shows great promise for therapy given its involvement in multiple cancer hallmarks, such as sustained cell proliferation, the renewal of cancer stem cells (CSCs), epithelial-mesenchymal transition (EMT), cell migration, and resistance to chemotherapy. Given the dual role of CDKN1A/p21 in these processes, a more in-depth understanding of its specific mechanisms of action and its regulatory network is imperative to establishing successful therapeutic interventions.
Collapse
Affiliation(s)
| | | | | | - Roni H. G. Wright
- Basic Sciences Department, Faculty of Medicine and Health Sciences, Universitat Internacional de Catalunya, 08195 Barcelona, Spain
| |
Collapse
|
14
|
Mironov VF, Dimukhametov MN, Nemtarev AV, Pashirova TN, Tsepaeva OV, Voloshina AD, Vyshtakalyuk AB, Litvinov IA, Lyubina AP, Sapunova AS, Abramova DF, Zobov VV. Novel Mitochondria-Targeted Amphiphilic Aminophosphonium Salts and Lipids Nanoparticles: Synthesis, Antitumor Activity and Toxicity. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2840. [PMID: 37947686 PMCID: PMC10649961 DOI: 10.3390/nano13212840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 10/17/2023] [Accepted: 10/24/2023] [Indexed: 11/12/2023]
Abstract
The creation of mitochondria-targeted vector systems is a new tool for the treatment of socially significant diseases. Phosphonium groups provide targeted delivery of drugs through biological barriers to organelles. For this purpose, a new class of alkyl(diethylAmino)(Phenyl) Phosphonium halides (APPs) containing one, two, or three diethylamino groups was obtained by the reaction of alkyl iodides (bromides) with (diethylamino)(phenyl)phosphines under mild conditions (20 °C) and high yields (93-98%). The structure of APP was established by NMR and XRD. A high in vitro cytotoxicity of APPs against M-HeLa, HuTu 80, PC3, DU-145, PANC-1, and MCF-7 lines was found. The selectivity index is in the range of 0.06-4.0 μM (SI 17-277) for the most active APPs. The effect of APPs on cancer cells is characterized by hyperproduction of ROS and depolarization of the mitochondrial membrane. APPs induce apoptosis, proceeding along the mitochondrial pathway. Incorporation of APPs into lipid systems (liposomes and solid lipid nanoparticles) improves cytotoxicity toward tumor cells and decrease toxicity against normal cell lines. The IC50s of lipid systems are lower than for the reference drug DOX, with a high SI (30-56) toward MCF-7 and DU-145. APPs exhibit high selective activity against Gram-positive bacteria S. aureus 209P and B. segeus 8035, including methicillin-resistant S. aureus (MRSA-1, MRSA-2), comparable to the activity of the fluoroquinolone antibiotic norfloxacin. A moderate in vivo toxicity in CD-1 mice was established for the lead APP.
Collapse
Affiliation(s)
- Vladimir F. Mironov
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, 8 Arbuzov St., 420088 Kazan, Russia; (M.N.D.); (A.V.N.); (T.N.P.); (O.V.T.); (A.D.V.); (A.B.V.); (I.A.L.); (A.P.L.); (A.S.S.); (D.F.A.); (V.V.Z.)
- Alexander Butlerov Institute of Chemistry, Kazan (Volga Region) Federal University, 18 Kremlevskaya St., 420008 Kazan, Russia
| | - Mudaris N. Dimukhametov
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, 8 Arbuzov St., 420088 Kazan, Russia; (M.N.D.); (A.V.N.); (T.N.P.); (O.V.T.); (A.D.V.); (A.B.V.); (I.A.L.); (A.P.L.); (A.S.S.); (D.F.A.); (V.V.Z.)
| | - Andrey V. Nemtarev
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, 8 Arbuzov St., 420088 Kazan, Russia; (M.N.D.); (A.V.N.); (T.N.P.); (O.V.T.); (A.D.V.); (A.B.V.); (I.A.L.); (A.P.L.); (A.S.S.); (D.F.A.); (V.V.Z.)
- Alexander Butlerov Institute of Chemistry, Kazan (Volga Region) Federal University, 18 Kremlevskaya St., 420008 Kazan, Russia
| | - Tatiana N. Pashirova
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, 8 Arbuzov St., 420088 Kazan, Russia; (M.N.D.); (A.V.N.); (T.N.P.); (O.V.T.); (A.D.V.); (A.B.V.); (I.A.L.); (A.P.L.); (A.S.S.); (D.F.A.); (V.V.Z.)
| | - Olga V. Tsepaeva
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, 8 Arbuzov St., 420088 Kazan, Russia; (M.N.D.); (A.V.N.); (T.N.P.); (O.V.T.); (A.D.V.); (A.B.V.); (I.A.L.); (A.P.L.); (A.S.S.); (D.F.A.); (V.V.Z.)
| | - Alexandra D. Voloshina
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, 8 Arbuzov St., 420088 Kazan, Russia; (M.N.D.); (A.V.N.); (T.N.P.); (O.V.T.); (A.D.V.); (A.B.V.); (I.A.L.); (A.P.L.); (A.S.S.); (D.F.A.); (V.V.Z.)
| | - Alexandra B. Vyshtakalyuk
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, 8 Arbuzov St., 420088 Kazan, Russia; (M.N.D.); (A.V.N.); (T.N.P.); (O.V.T.); (A.D.V.); (A.B.V.); (I.A.L.); (A.P.L.); (A.S.S.); (D.F.A.); (V.V.Z.)
| | - Igor A. Litvinov
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, 8 Arbuzov St., 420088 Kazan, Russia; (M.N.D.); (A.V.N.); (T.N.P.); (O.V.T.); (A.D.V.); (A.B.V.); (I.A.L.); (A.P.L.); (A.S.S.); (D.F.A.); (V.V.Z.)
| | - Anna P. Lyubina
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, 8 Arbuzov St., 420088 Kazan, Russia; (M.N.D.); (A.V.N.); (T.N.P.); (O.V.T.); (A.D.V.); (A.B.V.); (I.A.L.); (A.P.L.); (A.S.S.); (D.F.A.); (V.V.Z.)
| | - Anastasiia S. Sapunova
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, 8 Arbuzov St., 420088 Kazan, Russia; (M.N.D.); (A.V.N.); (T.N.P.); (O.V.T.); (A.D.V.); (A.B.V.); (I.A.L.); (A.P.L.); (A.S.S.); (D.F.A.); (V.V.Z.)
| | - Dinara F. Abramova
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, 8 Arbuzov St., 420088 Kazan, Russia; (M.N.D.); (A.V.N.); (T.N.P.); (O.V.T.); (A.D.V.); (A.B.V.); (I.A.L.); (A.P.L.); (A.S.S.); (D.F.A.); (V.V.Z.)
| | - Vladimir V. Zobov
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, 8 Arbuzov St., 420088 Kazan, Russia; (M.N.D.); (A.V.N.); (T.N.P.); (O.V.T.); (A.D.V.); (A.B.V.); (I.A.L.); (A.P.L.); (A.S.S.); (D.F.A.); (V.V.Z.)
| |
Collapse
|
15
|
Gupta SRR, Mittal P, Kundu B, Singh A, Singh IK. Silibinin: an inhibitor for a high-expressed BCL-2A1/BFL1 protein, linked with poor prognosis in breast cancer. J Biomol Struct Dyn 2023:1-11. [PMID: 37837418 DOI: 10.1080/07391102.2023.2268176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 09/29/2023] [Indexed: 10/16/2023]
Abstract
Breast cancer (BC) accounts for 30% of all diagnosed cases of cancer in women and remains a leading cause of cancer-related deaths among women worldwide. The current study looks for a protein from the anti-apoptotic/pro-survival BCL-2 family whose overexpression reduces survivability in BC patients and a potential inhibitor for the protein. We found BCL-2A1/BFL1 protein with high expression linked to low survivability in BC. The protein shows prognosis in 8 out of 29 categories, whereas no other family member manifests this property. Out of 7379 compounds, three small molecules (CHEMBL9509, CHEMBL2104550 and CHEMBL3545011) form an H-bond with BCL-2A1/BFL1 protein's unique residue Cys55. Of the three small molecules, we found CHEMBL9509 (Silibinin) to be a potent inhibitor. The compound forms a stable H-bond with the residue Cys55 with the lowest binding energy compared to the other two compounds. It remains stable in the BH3 binding region for more than 100 ns, whereas the other two detach from the region. Additionally, the compound is found to be better than Venetoclax and Nematoclax. We firmly believe in the compound CHEMBL9509 potency to halt BC's progression by inhibiting the BCL-2A1/BFL1 protein, increasing patients' survivability.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Shradheya R R Gupta
- Molecular Biology Research Laboratory, Department of Zoology, Deshbandhu College, University of Delhi, New Delhi, India
| | - Pooja Mittal
- Molecular Biology Research Laboratory, Department of Zoology, Deshbandhu College, University of Delhi, New Delhi, India
- Norris Comprehensive Cancer Center, Division of Medical Oncology, University of Southern California, Los Angeles, USA
| | - Bishwajit Kundu
- Kusuma School of Biological Science, Indian Institute of Technology Delhi, New Delhi, India
| | - Archana Singh
- Department of Plant Molecular Biology, University of Delhi (South Campus), New Delhi, India
| | - Indrakant K Singh
- Molecular Biology Research Laboratory, Department of Zoology, Deshbandhu College, University of Delhi, New Delhi, India
- Norris Comprehensive Cancer Center, Division of Medical Oncology, University of Southern California, Los Angeles, USA
- Institute of Eminence, Delhi School of Public Health, University of Delhi, Delhi, India
| |
Collapse
|
16
|
Praphasawat R, Thakaew S, Rawangkan A, Thongboontho R, Sooksaen P, Laovittayangkoon S, Klajing W, Jaengpromma P, Kunsorn P, Suwannalert P, Payuhakrit W. Anticancer and Antimutagenic Properties of Pogonatherum paniceum on Colorectal Cancer Cells. World J Oncol 2023; 14:266-276. [PMID: 37560340 PMCID: PMC10409559 DOI: 10.14740/wjon1602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 06/27/2023] [Indexed: 08/11/2023] Open
Abstract
Background Pogonatherum paniceum (P. paniceum) (Lam.) Hack. plays an important role in detoxification. However, its anticancer activity has not yet been elucidated. The aim of our study was to examine the suppressive proliferation, anti-migration and mutagenic/antimutagenic properties of P. paniceum. Moreover, we set out to determine the cellular mechanism underlying its antiproliferation. Methods To investigate P. paniceum's anticancer ability, HCT116 and HT29 cell lines were treated with a water extract containing P. paniceum, and then the cell viability was examined using the trypan blue exclusion method which were compared to HEK293 (non-cancerous cells). The anticancer effects were investigated by MTS (3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium) and colony formation assay. Apoptosis induction, cell cycle distribution, and migration abilities were assessed by cell death detection enzyme-linked immunoassay (ELISA), flow cytometry, and wound healing assay. Finally, the mutagenicity and antimutagenicity were evaluated using the micronucleus assay. Results Treatment with P. paniceum caused a loss of cell viability in HCT116 and HT29 cells (not found in HEK293), which had an IC50 (half-maximal inhibitory concentration) of 1,156.2 and 1,207.0 µg/mL, respectively. We found that P. paniceum significantly inhibited the proliferative function of HCT116 and HT29 cells. To find the mechanism that exerts a suppressive proliferation effect on P. paniceum, we determined the DNA fragmentation and cell cycle distribution. We also found that P. paniceum treatment increased apoptosis and arrested of the cell cycle at G0/G1 remarkably when compared with the control group. Moreover, P. paniceum could decrease the migration of HCT116 and HT29 cancer cells. Finally, the treatment of P. paniceum did not induce micronucleus formation but did decrease the micronucleus frequency against mutagen-mitomycin C. Conclusions P. paniceum did not possess any toxicity (cytotoxic and mutagenic) but has the potential for anticancer activity against human colorectal cells by increasing apoptosis, which leads to the suppression of cell proliferation. P. paniceum also inhibits cell migration and exerts antimutagenicity, thereby suggesting that P. paniceum might be useful for colorectal cancer treatment.
Collapse
Affiliation(s)
- Ratsada Praphasawat
- Department of Pathology, School of Medicine, University of Phayao, Phayao, Thailand
| | - Sinittra Thakaew
- Division of Microbiology, School of Medical Sciences, University of Phayao, Phayao, Thailand
| | - Anchalee Rawangkan
- Division of Microbiology, School of Medical Sciences, University of Phayao, Phayao, Thailand
| | - Rungthip Thongboontho
- Division of Biochemistry, School of Medical Science, University of Phayao, Phayao, Thailand
| | - Pornchai Sooksaen
- Department of Pathology, School of Medicine, University of Phayao, Phayao, Thailand
| | - Sarunya Laovittayangkoon
- Expert Centre of Innovative Herbal Products (InnoHerb), Thailand Institute of Scientific and Technological Research (TISTR), Techno Polis, Khlong Luang District, Pathum Thani, Thailand
| | - Warangkhana Klajing
- Department of Traditional Chinese Medicine, School of Public Health, University of Phayao, Phayao, Thailand
| | - Pongnared Jaengpromma
- Department of Traditional Chinese Medicine, School of Public Health, University of Phayao, Phayao, Thailand
| | - Paween Kunsorn
- Department of Pathobiology, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Prasit Suwannalert
- Department of Pathobiology, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Witchuda Payuhakrit
- Department of Pathobiology, Faculty of Science, Mahidol University, Bangkok, Thailand
| |
Collapse
|
17
|
Hom LM, Sun S, Campbell J, Liu P, Culbert S, Murphy IM, Schafer ZT. A role for fibroblast-derived SASP factors in the activation of pyroptotic cell death in mammary epithelial cells. J Biol Chem 2023; 299:104922. [PMID: 37321449 PMCID: PMC10404679 DOI: 10.1016/j.jbc.2023.104922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 05/17/2023] [Accepted: 06/01/2023] [Indexed: 06/17/2023] Open
Abstract
In normal tissue homeostasis, bidirectional communication between different cell types can shape numerous biological outcomes. Many studies have documented instances of reciprocal communication between fibroblasts and cancer cells that functionally change cancer cell behavior. However, less is known about how these heterotypic interactions shape epithelial cell function in the absence of oncogenic transformation. Furthermore, fibroblasts are prone to undergo senescence, which is typified by an irreversible cell cycle arrest. Senescent fibroblasts are also known to secrete various cytokines into the extracellular space; a phenomenon that is termed the senescence-associated secretory phenotype (SASP). While the role of fibroblast-derived SASP factors on cancer cells has been well studied, the impact of these factors on normal epithelial cells remains poorly understood. We discovered that treatment of normal mammary epithelial cells with conditioned media from senescent fibroblasts (SASP CM) results in a caspase-dependent cell death. This capacity of SASP CM to cause cell death is maintained across multiple senescence-inducing stimuli. However, the activation of oncogenic signaling in mammary epithelial cells mitigates the ability of SASP CM to induce cell death. Despite the reliance of this cell death on caspase activation, we discovered that SASP CM does not cause cell death by the extrinsic or intrinsic apoptotic pathway. Instead, these cells die by an NLRP3, caspase-1, and gasdermin D-dependent induction of pyroptosis. Taken together, our findings reveal that senescent fibroblasts can cause pyroptosis in neighboring mammary epithelial cells, which has implications for therapeutic strategies that perturb the behavior of senescent cells.
Collapse
Affiliation(s)
- Lisa M Hom
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, USA
| | - Seunghoon Sun
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, USA
| | - Jamie Campbell
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, USA
| | - Pinyan Liu
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, USA
| | - Shannon Culbert
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, USA
| | - Ireland M Murphy
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, USA
| | - Zachary T Schafer
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, USA.
| |
Collapse
|
18
|
Nandi S, Mondal A, Ghosh A, Mukherjee S, Das C. Lnc-ing epigenetic mechanisms with autophagy and cancer drug resistance. Adv Cancer Res 2023; 160:133-203. [PMID: 37704287 DOI: 10.1016/bs.acr.2023.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2023]
Abstract
Long noncoding RNAs (lncRNAs) comprise a diverse class of RNA molecules that regulate various physiological processes and have been reported to be involved in several human pathologies ranging from neurodegenerative disease to cancer. Therapeutic resistance is a major hurdle for cancer treatment. Over the past decade, several studies has emerged on the role of lncRNAs in cancer drug resistance and many trials have been conducted employing them. LncRNAs also regulate different cell death pathways thereby maintaining a fine balance of cell survival and death. Autophagy is a complex cell-killing mechanism that has both cytoprotective and cytotoxic roles. Similarly, autophagy can lead to the induction of both chemosensitization and chemoresistance in cancer cells upon therapeutic intervention. Recently the role of lncRNAs in the regulation of autophagy has also surfaced. Thus, lncRNAs can be used in cancer therapeutics to alleviate the challenges of chemoresistance by targeting the autophagosomal axis. In this chapter, we discuss about the role of lncRNAs in autophagy-mediated cancer drug resistance and its implication in targeted cancer therapy.
Collapse
Affiliation(s)
- Sandhik Nandi
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, Kolkata, India; Homi Bhabha National Institute, Mumbai, India
| | - Atanu Mondal
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, Kolkata, India; Homi Bhabha National Institute, Mumbai, India
| | - Aritra Ghosh
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, Kolkata, India; Indian Institute of Science Education and Research, Kolkata, India
| | - Shravanti Mukherjee
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, Kolkata, India
| | - Chandrima Das
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, Kolkata, India; Homi Bhabha National Institute, Mumbai, India.
| |
Collapse
|
19
|
Jiang X, Li G, Zhu B, Zang J, Lan T, Jiang R, Wang B. p20BAP31 induces cell apoptosis via both AIF caspase-independent and the ROS/JNK mitochondrial pathway in colorectal cancer. Cell Mol Biol Lett 2023; 28:25. [PMID: 36977989 PMCID: PMC10052827 DOI: 10.1186/s11658-023-00434-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 03/01/2023] [Indexed: 03/30/2023] Open
Abstract
Abstract
Background
During cell apoptosis, the C-terminus of BAP31 is cleaved by caspase-8 and generates p20BAP31, which has been shown to induce an apoptotic pathway between the endoplasmic reticulum (ER) and mitochondria. However, the underlying mechanisms of p20BAP31 in cell apoptosis remains unclear.
Methods
We compared the effects of p20BAP31 on cell apoptosis in six cell lines and selected the most sensitive cells. Functional experiments were conducted, including Cell Counting Kit 8 (CCK-8), reactive oxygen species (ROS), and mitochondrial membrane potential (MMP) assay. Then, cell cycle and apoptosis were investigated by flow cytometry and verified by immunoblotting. Next, NOX inhibitors (ML171 and apocynin), ROS scavenger (NAC), JNK inhibitor (SP600125), and caspase inhibitor (Z-VAD-FMK) were used to further investigate the underlying mechanisms of p20BAP31 on cell apoptosis. Finally, apoptosis-inducing factor (AIF) translocation from the mitochondria to the nuclei was verified by immunoblotting and immunofluorescence assay.
Results
We found that overexpression of p20BAP31 indeed induced apoptosis and had a much greater sensitivity in HCT116 cells. Furthermore, the overexpression of p20BAP31 inhibited cell proliferation by causing S phase arrest. Further study revealed that p20BAP31 reduced MMP, with a significant increase in ROS levels, accompanied by the activation of the MAPK signaling pathway. Importantly, the mechanistic investigation indicated that p20BAP31 induces mitochondrial-dependent apoptosis by activating the ROS/JNK signaling pathway and induces caspase-independent apoptosis by promoting the nuclear translocation of AIF.
Conclusions
p20BAP31 induced cell apoptosis via both the ROS/JNK mitochondrial pathway and AIF caspase-independent pathway. Compared with antitumor drugs that are susceptible to drug resistance, p20BAP31 has unique advantages for tumor therapy.
Collapse
|
20
|
Hom LM, Sun S, Campbell J, Liu P, Culbert S, Murphy IM, Schafer ZT. A role for fibroblast-derived SASP factors in the activation of pyroptotic cell death in mammary epithelial cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.21.529458. [PMID: 36865231 PMCID: PMC9980130 DOI: 10.1101/2023.02.21.529458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
In normal tissue homeostasis, bidirectional communication between different cell types can shape numerous biological outcomes. Many studies have documented instances of reciprocal communication between fibroblasts and cancer cells that functionally change cancer cell behavior. However, less is known about how these heterotypic interactions shape epithelial cell function in the absence of oncogenic transformation. Furthermore, fibroblasts are prone to undergo senescence, which is typified by an irreversible cell cycle arrest. Senescent fibroblasts are also known to secrete various cytokines into the extracellular space; a phenomenon that is termed the senescence-associated secretory phenotype (SASP). While the role of fibroblast derived SASP factors on cancer cells has been well studied, the impact of these factors on normal epithelial cells remains poorly understood. We discovered that treatment of normal mammary epithelial cells with conditioned media (CM) from senescent fibroblasts (SASP CM) results in a caspase-dependent cell death. This capacity of SASP CM to cause cell death is maintained across multiple senescence-inducing stimuli. However, the activation of oncogenic signaling in mammary epithelial cells mitigates the ability of SASP CM to induce cell death. Despite the reliance of this cell death on caspase activation, we discovered that SASP CM does not cause cell death by the extrinsic or intrinsic apoptotic pathway. Instead, these cells die by an NLRP3, caspase-1, and gasdermin D (GSDMD)-dependent induction of pyroptosis. Taken together, our findings reveal that senescent fibroblasts can cause pyroptosis in neighboring mammary epithelial cells, which has implications for therapeutic strategies that perturb the behavior of senescent cells.
Collapse
|
21
|
Martins-Gomes C, Nunes FM, Silva AM. Modulation of Cell Death Pathways for Cellular Protection and Anti-Tumoral Activity: The Role of Thymus spp. Extracts and Their Bioactive Molecules. Int J Mol Sci 2023; 24:ijms24021691. [PMID: 36675206 PMCID: PMC9864824 DOI: 10.3390/ijms24021691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/06/2023] [Accepted: 01/10/2023] [Indexed: 01/18/2023] Open
Abstract
Natural products used for their health-promoting properties have accompanied the evolution of humanity. Nowadays, as an effort to scientifically validate the health-promoting effects described by traditional medicine, an ever-growing number of bioactivities are being described for natural products and the phytochemicals that constitute them. Among them, medicinal plants and more specifically the Thymus genus spp., arise as products already present in the diet and with high acceptance, that are a source of phytochemicals with high pharmacological value. Phenolic acids, flavonoid glycoside derivatives, and terpenoids from Thymus spp. have been described for their ability to modulate cell death and survival pathways, much-valued bioactivities in the pharmaceutical industry, that continually sought-after new formulations to prevent undesired cell death or to control cell proliferation. Among these, wound treatment, protection from endogenous/exogenous toxic molecules, or the induction of selective cell death, such as the search for new anti-tumoral agents, arise as main objectives. This review summarizes and discusses studies on Thymus spp., as well as on compounds present in their extracts, with regard to their health-promoting effects involving the modulation of cell death or survival signaling pathways. In addition, studies regarding the main bioactive molecules and their cellular molecular targets were also reviewed. Concerning cell survival and proliferation, Thymus spp. present themselves as an option for new formulations designed for wound healing and protection against chemicals-induced toxicity. However, Thymus spp. extracts and some of their compounds regulate cell death, presenting anti-tumoral activity. Therefore Thymus spp. is a rich source of compounds with nutraceutical and pharmaceutical value.
Collapse
Affiliation(s)
- Carlos Martins-Gomes
- Centre for Research and Technology of Agro-Environmental and Biological Sciences (CITAB), Cell Biology and Biochemistry Lab, University of Trás-os-Montes and Alto Douro (UTAD), Quinta de Prados, 5001-801 Vila Real, Portugal
- Chemistry Research Centre-Vila Real (CQ-VR), Food and Wine Chemistry Lab, UTAD Quinta de Prados, 5001-801 Vila Real, Portugal
| | - Fernando M. Nunes
- Chemistry Research Centre-Vila Real (CQ-VR), Food and Wine Chemistry Lab, UTAD Quinta de Prados, 5001-801 Vila Real, Portugal
- Department of Chemistry, School of Life Sciences and Environment, UTAD, 5001-801 Vila Real, Portugal
| | - Amélia M. Silva
- Centre for Research and Technology of Agro-Environmental and Biological Sciences (CITAB), Cell Biology and Biochemistry Lab, University of Trás-os-Montes and Alto Douro (UTAD), Quinta de Prados, 5001-801 Vila Real, Portugal
- Department of Biology and Environment, School of Life Sciences and Environment, UTAD, 5001-801 Vila Real, Portugal
- Correspondence: ; Tel.: +351-259-350-921
| |
Collapse
|
22
|
Winter JM, Fresenius HL, Cunningham CN, Wei P, Keys HR, Berg J, Bott A, Yadav T, Ryan J, Sirohi D, Tripp SR, Barta P, Agarwal N, Letai A, Sabatini DM, Wohlever ML, Rutter J. Collateral deletion of the mitochondrial AAA+ ATPase ATAD1 sensitizes cancer cells to proteasome dysfunction. eLife 2022; 11:82860. [PMID: 36409067 DOI: 10.7554/elife.82860] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Accepted: 11/20/2022] [Indexed: 11/23/2022] Open
Abstract
The tumor suppressor gene PTEN is the second most commonly deleted gene in cancer. Such deletions often include portions of the chromosome 10q23 locus beyond the bounds of PTEN itself, which frequently disrupts adjacent genes. Coincidental loss of PTEN-adjacent genes might impose vulnerabilities that could either affect patient outcome basally or be exploited therapeutically. Here, we describe how the loss of ATAD1, which is adjacent to and frequently co-deleted with PTEN, predisposes cancer cells to apoptosis triggered by proteasome dysfunction and correlates with improved survival in cancer patients. ATAD1 directly and specifically extracts the pro-apoptotic protein BIM from mitochondria to inactivate it. Cultured cells and mouse xenografts lacking ATAD1 are hypersensitive to clinically used proteasome inhibitors, which activate BIM and trigger apoptosis. This work furthers our understanding of mitochondrial protein homeostasis and could lead to new therapeutic options for the hundreds of thousands of cancer patients who have tumors with chromosome 10q23 deletion.
Collapse
Affiliation(s)
- Jacob M Winter
- Department of Biochemistry, University of Utah, Salt Lake City, United States
| | - Heidi L Fresenius
- Department of Chemistry & Biochemistry, University of Toledo, Toledo, United States
| | - Corey N Cunningham
- Department of Biochemistry, University of Utah, Salt Lake City, United States
| | - Peng Wei
- Department of Biochemistry, University of Utah, Salt Lake City, United States
| | - Heather R Keys
- Whitehead Institute for Biomedical Research, Cambridge, United States
| | - Jordan Berg
- Department of Biochemistry, University of Utah, Salt Lake City, United States
| | - Alex Bott
- Department of Biochemistry, University of Utah, Salt Lake City, United States
| | - Tarun Yadav
- Department of Biochemistry, University of Utah, Salt Lake City, United States
| | - Jeremy Ryan
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, United States
| | - Deepika Sirohi
- University of Utah and ARUP Laboratories, Salt Lake City, United States
| | - Sheryl R Tripp
- University of Utah and ARUP Laboratories, Salt Lake City, United States
| | - Paige Barta
- Department of Biochemistry, University of Utah, Salt Lake City, United States
| | - Neeraj Agarwal
- Huntsman Cancer Institute, University of Utah, Salt Lake City, United States
| | - Anthony Letai
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, United States
| | - David M Sabatini
- Department of Biology, Massachusetts Institute of Technology, Cambridge, United States
| | - Matthew L Wohlever
- Department of Chemistry & Biochemistry, University of Toledo, Toledo, United States
| | - Jared Rutter
- Department of Biochemistry, University of Utah, Salt Lake City, United States.,Huntsman Cancer Institute, University of Utah, Salt Lake City, United States.,Howard Hughes Medical Institute, Salt Lake City, United States
| |
Collapse
|
23
|
McNamara MC, Hosios AM, Torrence ME, Zhao T, Fraser C, Wilkinson M, Kwiatkowski DJ, Henske EP, Wu CL, Sarosiek KA, Valvezan AJ, Manning BD. Reciprocal effects of mTOR inhibitors on pro-survival proteins dictate therapeutic responses in tuberous sclerosis complex. iScience 2022; 25:105458. [PMID: 36388985 PMCID: PMC9663903 DOI: 10.1016/j.isci.2022.105458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 09/30/2022] [Accepted: 10/23/2022] [Indexed: 11/13/2022] Open
Abstract
mTORC1 is aberrantly activated in cancer and in the genetic tumor syndrome tuberous sclerosis complex (TSC), which is caused by loss-of-function mutations in the TSC complex, a negative regulator of mTORC1. Clinically approved mTORC1 inhibitors, such as rapamycin, elicit a cytostatic effect that fails to eliminate tumors and is rapidly reversible. We sought to determine the effects of mTORC1 on the core regulators of intrinsic apoptosis. In TSC2-deficient cells and tumors, we find that mTORC1 inhibitors shift cellular dependence from MCL-1 to BCL-2 and BCL-XL for survival, thereby altering susceptibility to BH3 mimetics that target specific pro-survival BCL-2 proteins. The BCL-2/BCL-XL inhibitor ABT-263 synergizes with rapamycin to induce apoptosis in TSC-deficient cells and in a mouse tumor model of TSC, resulting in a more complete and durable response. These data expose a therapeutic vulnerability in regulation of the apoptotic machinery downstream of mTORC1 that promotes a cytotoxic response to rapamycin.
Collapse
Affiliation(s)
- Molly C. McNamara
- Department of Molecular Metabolism, Harvard T.H. Chan School of Public Health, 677 Huntington Avenue, Boston, MA, USA
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Aaron M. Hosios
- Department of Molecular Metabolism, Harvard T.H. Chan School of Public Health, 677 Huntington Avenue, Boston, MA, USA
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Margaret E. Torrence
- Department of Molecular Metabolism, Harvard T.H. Chan School of Public Health, 677 Huntington Avenue, Boston, MA, USA
| | - Ting Zhao
- Department of Urology, Massachusetts General Hospital, Boston, MA, USA
- Department of Pathology, Harvard Medical School, Boston, MA, USA
| | - Cameron Fraser
- Department of Environmental Health, Harvard T. H. Chan School of Public Health, Boston, MA 02215, USA
| | - Meghan Wilkinson
- Department of Molecular Metabolism, Harvard T.H. Chan School of Public Health, 677 Huntington Avenue, Boston, MA, USA
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - David J. Kwiatkowski
- Division of Pulmonary and Critical Care Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Elizabeth P. Henske
- Division of Pulmonary and Critical Care Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Chin-Lee Wu
- Department of Urology, Massachusetts General Hospital, Boston, MA, USA
- Department of Pathology, Harvard Medical School, Boston, MA, USA
| | - Kristopher A. Sarosiek
- Department of Environmental Health, Harvard T. H. Chan School of Public Health, Boston, MA 02215, USA
| | - Alexander J. Valvezan
- Department of Molecular Metabolism, Harvard T.H. Chan School of Public Health, 677 Huntington Avenue, Boston, MA, USA
| | - Brendan D. Manning
- Department of Molecular Metabolism, Harvard T.H. Chan School of Public Health, 677 Huntington Avenue, Boston, MA, USA
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
24
|
Capecitabine-loaded Bacterial Membrane Vesicles Derived from Enterococcus faecalis Promotes Apoptosis in HT-29 Colon Cancer Cells. Biochem Eng J 2022. [DOI: 10.1016/j.bej.2022.108722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
25
|
Krawiec K, Strzałka P, Czemerska M, Wiśnik A, Zawlik I, Wierzbowska A, Pluta A. Targeting Apoptosis in AML: Where Do We Stand? Cancers (Basel) 2022; 14:cancers14204995. [PMID: 36291779 PMCID: PMC9600036 DOI: 10.3390/cancers14204995] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 10/01/2022] [Accepted: 10/08/2022] [Indexed: 12/03/2022] Open
Abstract
Simple Summary In patients with acute myeloid leukemia (AML), genetic mutations can cause cells to evade regulated cell death (RCD), resulting in excessive cell proliferation. The best-known form of RCD is apoptosis, which prevents the emergence of cancer cells; disturbances in this process are an important factor in the development and progression of AML. Clearly, it is essential to understand the mechanisms of apoptosis to establish a personalized, patient-specific approach in AML therapy. Therefore, this paper comprehensively reviews the current range of AML treatment approaches related to apoptosis and highlights other promising concepts such as neddylation. Abstract More than 97% of patients with acute myeloid leukemia (AML) demonstrate genetic mutations leading to excessive proliferation combined with the evasion of regulated cell death (RCD). The most prominent and well-defined form of RCD is apoptosis, which serves as a defense mechanism against the emergence of cancer cells. Apoptosis is regulated in part by the BCL-2 family of pro- and anti-apoptotic proteins, whose balance can significantly determine cell survival. Apoptosis evasion plays a key role in tumorigenesis and drug resistance, and thus in the development and progression of AML. Research on the structural and biochemical aspects of apoptosis proteins and their regulators offers promise for new classes of targeted therapies and strategies for therapeutic intervention. This review provides a comprehensive overview of current AML treatment options related to the mechanism of apoptosis, particularly its mitochondrial pathway, and other promising concepts such as neddylation. It pays particular attention to clinically-relevant aspects of current and future AML treatment approaches, highlighting the molecular basis of individual therapies.
Collapse
Affiliation(s)
- Kinga Krawiec
- Department of Hematology, Medical University of Lodz, 93-513 Lodz, Poland
- Copernicus Multi-Specialist Oncology and Traumatology Center, 93-513 Lodz, Poland
| | - Piotr Strzałka
- Department of Hematology, Medical University of Lodz, 93-513 Lodz, Poland
- Copernicus Multi-Specialist Oncology and Traumatology Center, 93-513 Lodz, Poland
| | - Magdalena Czemerska
- Department of Hematology, Medical University of Lodz, 93-513 Lodz, Poland
- Copernicus Multi-Specialist Oncology and Traumatology Center, 93-513 Lodz, Poland
| | - Aneta Wiśnik
- Copernicus Multi-Specialist Oncology and Traumatology Center, 93-513 Lodz, Poland
| | - Izabela Zawlik
- Institute of Medical Sciences, College of Medical Sciences, University of Rzeszow, 35-310 Rzeszow, Poland
- Laboratory of Molecular Biology, Centre for Innovative Research in Medical and Natural Sciences, College of Medical Sciences, University of Rzeszow, 35-310 Rzeszow, Poland
| | - Agnieszka Wierzbowska
- Department of Hematology, Medical University of Lodz, 93-513 Lodz, Poland
- Copernicus Multi-Specialist Oncology and Traumatology Center, 93-513 Lodz, Poland
| | - Agnieszka Pluta
- Department of Hematology, Medical University of Lodz, 93-513 Lodz, Poland
- Copernicus Multi-Specialist Oncology and Traumatology Center, 93-513 Lodz, Poland
- Correspondence:
| |
Collapse
|
26
|
Winter JM, Yadav T, Rutter J. Stressed to death: Mitochondrial stress responses connect respiration and apoptosis in cancer. Mol Cell 2022; 82:3321-3332. [PMID: 35961309 PMCID: PMC9481690 DOI: 10.1016/j.molcel.2022.07.012] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 06/27/2022] [Accepted: 07/18/2022] [Indexed: 11/30/2022]
Abstract
Mitochondrial energetics and respiration have emerged as important factors in how cancer cells respond to or evade apoptotic signals. The study of the functional connection between these two processes may provide insight into following questions old and new: how might we target respiration or downstream signaling pathways to amplify apoptotic stress in the context of cancer therapy? Why are respiration and apoptotic regulation housed in the same organelle? Here, we briefly review mitochondrial respiration and apoptosis and then focus on how the intersection of these two processes is regulated by cytoplasmic signaling pathways such as the integrated stress response.
Collapse
Affiliation(s)
- Jacob M Winter
- Department of Biochemistry, Spencer Fox Eccles School of Medicine, The University of Utah, Salt Lake City, UT, USA
| | - Tarun Yadav
- Department of Biochemistry, Spencer Fox Eccles School of Medicine, The University of Utah, Salt Lake City, UT, USA; Department of Biology, Indian Institute of Science Education and Research, Pune, Maharashtra, India
| | - Jared Rutter
- Department of Biochemistry, Spencer Fox Eccles School of Medicine, The University of Utah, Salt Lake City, UT, USA; Howard Hughes Medical Institute, Chevy Chase, MD, USA; Huntsman Cancer Institute, The University of Utah, Salt Lake City, UT, USA.
| |
Collapse
|
27
|
Gebreegziabher Amare M, Westrick NM, Keller NP, Kabbage M. The conservation of IAP-like proteins in fungi, and their potential role in fungal programmed cell death. Fungal Genet Biol 2022; 162:103730. [PMID: 35998750 DOI: 10.1016/j.fgb.2022.103730] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 08/07/2022] [Indexed: 11/30/2022]
Abstract
Programmed cell death (PCD) is a tightly regulated process which is required for survival and proper development of all cellular life. Despite this ubiquity, the precise molecular underpinnings of PCD have been primarily characterized in animals. Attempts to expand our understanding of this process in fungi have proven difficult as core regulators of animal PCD are apparently absent in fungal genomes, with the notable exception of a class of proteins referred to as inhibitors of apoptosis proteins (IAPs). These proteins are characterized by the conservation of a distinct Baculovirus IAP Repeat (BIR) domain and animal IAPs are known to regulate a number of processes, including cellular death, development, organogenesis, immune system maturation, host-pathogen interactions and more. IAP homologs are broadly conserved throughout the fungal kingdom, but our understanding of both their mechanism and role in fungal development/virulence is still unclear. In this review, we provide a broad and comparative overview of IAP function across taxa, with a particular focus on fungal processes regulated by IAPs. Furthermore, their putative modes of action in the absence of canonical interactors will be discussed.
Collapse
Affiliation(s)
| | - Nathaniel M Westrick
- Department of Plant Pathology, University of Wisconsin - Madison, Madison, WI, USA
| | - Nancy P Keller
- Department of Plant Pathology, University of Wisconsin - Madison, Madison, WI, USA
| | - Mehdi Kabbage
- Department of Plant Pathology, University of Wisconsin - Madison, Madison, WI, USA.
| |
Collapse
|
28
|
Dome A, Dymova M, Richter V, Stepanov G. Post-Transcriptional Modifications of RNA as Regulators of Apoptosis in Glioblastoma. Int J Mol Sci 2022; 23:9272. [PMID: 36012529 PMCID: PMC9408889 DOI: 10.3390/ijms23169272] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 08/16/2022] [Accepted: 08/16/2022] [Indexed: 11/17/2022] Open
Abstract
This review is devoted to changes in the post-transcriptional maturation of RNA in human glioblastoma cells, which leads to disruption of the normal course of apoptosis in them. The review thoroughly highlights the latest information on both post-transcriptional modifications of certain regulatory RNAs, associated with the process of apoptosis, presents data on the features of apoptosis in glioblastoma cells, and shows the relationship between regulatory RNAs and the apoptosis in tumor cells. In conclusion, potential target candidates are presented that are necessary for the development of new drugs for the treatment of glioblastoma.
Collapse
Affiliation(s)
| | - Maya Dymova
- Institute of Chemical Biology and Fundamental Medicine of the Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia
| | | | | |
Collapse
|
29
|
Lan M, Kong Z, Liu F, Zou T, Li L, Cai T, Tian H, Cai Y. Activating caspase-8/Bid/ROS signaling to promote apoptosis of breast cancer cells by folate-modified albumin baicalin-loaded nanoparticles. NANOTECHNOLOGY 2022; 33:435101. [PMID: 34330116 DOI: 10.1088/1361-6528/ac197b] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Accepted: 07/30/2021] [Indexed: 06/13/2023]
Abstract
Abnormal apoptosis can lead to uncontrolled cell growth, aberrant homeostasis or the accumulation of mutations. Therapeutic agents that re-establish the normal functions of apoptotic signaling pathways offer an attractive strategy for the treatment of breast cancer. Baicalin (BA) is one of the natural compounds with anti-proliferation and pro-apoptosis activities against numerous tumor cells. However, low bioavailability restricts the clinical application of BA. In order to improve its therapeutic efficacy and study the mechanism of actions, active targeting delivery systems were developed for targeting tumor environment and selective cell killing effects. It emphasized on the construction of folate-conjugated albumin nanoparticles loaded with baicalin (FA-BSANPs/BA) and mechanisms of which on the promotion of breast cancer apoptosis. The physicochemical properties and structural characteristics of FA-BSANPs/BA were investigated. Cell experiments were carried out to study the targeted anti-breast cancer effects of FA-BSANPs/BA and its mechanism. The results showed that FA-BSANPs/BA was successfully constructed with stable structural characteristics and sustained release effects. Cellular uptake and MTT showed that it increased targeted uptake efficiency and cytotoxicity. Flow cytometry and western blot confirmed that it promoted apoptosis by increasing the expression of caspase-8 and ROS, and decreasing the level of Bid. It is suggested that the pro-apoptotic mechanism of FA-BSANPs/BA is related to regulation of key proteins in extrinsic apoptotic pathway. In conclusion, FA-BSANPs/BA is a good delivery carrier and significantly inhibits the breast cancer growth compared with free BA. The mechanism of FA-BSANPs/BA promoting apoptosis of breast cancer may be due to its action on the caspase-8/Bid/ROS pathway.
Collapse
Affiliation(s)
- Meng Lan
- College of Pharmacy, Jinan University, Guangzhou 510632, People's Republic of China
| | - Zhaodi Kong
- College of Pharmacy, Jinan University, Guangzhou 510632, People's Republic of China
| | - Fengjie Liu
- College of Pharmacy, Jinan University, Guangzhou 510632, People's Republic of China
| | - Tengteng Zou
- College of Pharmacy, Jinan University, Guangzhou 510632, People's Republic of China
| | - Lihong Li
- College of Pharmacy, Jinan University, Guangzhou 510632, People's Republic of China
| | - Tiange Cai
- College of Life Science, Liaoning University, Shenyang 110036, People's Republic of China
| | - Huaqin Tian
- Foshan Hospital of Traditional Chinese Medicine, Foshan, 528000, People's Republic of China
| | - Yu Cai
- College of Pharmacy, Jinan University, Guangzhou 510632, People's Republic of China
- Guangdong Key Lab of Traditional Chinese Medicine Information Technology, Jinan University, Guangzhou, 510632, People's Republic of China
| |
Collapse
|
30
|
Protocatechuic acid as a potent anticarcinogenic compound in purple rice bran against diethylnitrosamine-initiated rat hepatocarcinogenesis. Sci Rep 2022; 12:10548. [PMID: 35732709 PMCID: PMC9217852 DOI: 10.1038/s41598-022-14888-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 06/14/2022] [Indexed: 11/15/2022] Open
Abstract
Our previous study demonstrated that purple rice bran extract (PRBE) could inhibit diethylnitrosamine (DEN)-induced hepatocarcinogenesis. Protocatechuic acid (PCA) is the major phenolic acid contained in the PRBE. Therefore, this study aimed to determine whether PCA is an anticarcinogenic compound in purple rice extract. Rats were intraperitoneally injected with DEN to induce glutathione S-transferase placental form (GST-P)-positive foci. Rats were fed with PRBE at 500 mg kg−1 body weight or PCA at 4 mg kg−1 body weight for 5 and 15 weeks. PCA administration attenuated DEN-induced hepatic GST-P positive foci to a degree similar to PRBE. The molecular mechanisms of PCA in the initiation stage were correlated with reduced activity of cytochrome P450 reductase and induction of glutathione S-transferase. In addition, PCA also downregulated the expression of TNF-α and IL-1β genes in rat liver. These genes are associated with the inhibition of inflammation. In the promotion stage, PCA suppressed cell proliferation correlated with the downregulation of Cyclin D1 expression. Moreover, it also induced apoptosis, indicated by increased expression of P53 and Bad genes, and decreased the expression of the anti-apoptotic Bcl-xl in DEN-initiated rats. These findings suggest that PCA is an active compound in the anticarcinogenic action of purple rice bran.
Collapse
|
31
|
Molecular mechanisms of tumour budding and its association with microenvironment in colorectal cancer. Clin Sci (Lond) 2022; 136:521-535. [PMID: 35445707 DOI: 10.1042/cs20210886] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 03/15/2022] [Accepted: 03/28/2022] [Indexed: 12/12/2022]
Abstract
Colorectal cancer (CRC) is the third most common cancer worldwide. Poor survival of CRC associated with the development of tumour metastasis led to the investigation of the potential biomarkers to predict outcomes in CRC patients. Tumour budding (TB) is a well-known independent prognostic marker for poor survival and disease metastasis. Therefore, it has been suggested that TB status is included in routine clinicopathological factors for risk assessment in CRC. In contrast with a vast majority of studies regarding the prognostic power of TB, there is no clear evidence pertaining to the underlying molecular mechanism driving this phenotype, or an understanding of TB relationship with the tumour microenvironment (TME). The aim of the present study is to present a comprehensive review of TB and tumour cell signalling pathways together with the cross-talk of immune cells that could drive TB formation in CRC.
Collapse
|
32
|
Chitosan-Sodium alginate-Polyethylene glycol-Crocin nanocomposite treatment inhibits esophageal cancer KYSE-150 cell growth via inducing apoptotic cell death. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.103844] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
|
33
|
Fadzelly AM, Yazan R, Azlen-Che R, Kartinee K, Johnson S, Yuan-Han T, Abdulmannan F, Mohammed SE. Methyl gallate isolated from Mangifera pajang kernel induces proliferation inhibition and apoptosis in MCF-7 breast cancer cells via oxidative stress. Asian Pac J Trop Biomed 2022. [DOI: 10.4103/2221-1691.340562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
34
|
Alnomasy S, Albalawi A, Althobaiti N, Alhasani R. Anti-tumor effects and cellular mechanisms of Pistacia atlantica methanolic extract against Ehrlich solid tumor in mice. Asian Pac J Trop Biomed 2022. [DOI: 10.4103/2221-1691.335695] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
35
|
Wang N, Yang B, Jin J, He Y, Wu X, Yang Y, Zhou W, He Z. Circular RNA circ_0040823 inhibits the proliferation of acute myeloid leukemia cells and induces apoptosis by regulating miR-516b/PTEN. J Gene Med 2021; 24:e3404. [PMID: 34913223 DOI: 10.1002/jgm.3404] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 11/26/2021] [Accepted: 12/13/2021] [Indexed: 11/08/2022] Open
Abstract
OBJECTIVE Endogenous circular RNAs (circRNAs) and microRNAs (miRNAs) have been shown to regulate the pathogenesis of acute myeloid leukemia (AML). The current study aimed to identify the role of circRNA 0040823 (circ_0040823) in AML. METHODS Microarray datasets were analyzed to identify differentially expressed circRNAs in AML patients. Peripheral blood samples were obtained from healthy volunteers and AML patients for the measurement of circ_0040823 and miR-516b levels. The overexpression or knockdown of a target gene in AML cells was achieved by the transfection with lentiviral vectors or small interfering RNAs. BALB/c nude mice were inoculated with AML cells and monitored for tumor growth. Dual-luciferase reporter assay, RNA immunoprecipitation, and RNA pull-down assay were used to determine the binding relationship between circRNA and miRNA. RESULTS circ_0040823 was significantly downregulated in AML patients and leukemia cells. Overexpression of circ_0040823 inhibited AML cell proliferation, and induced apoptosis and cell cycle arrest. Upregulation of circ_0040823 also repressed the growth of xenograft tumors in vivo. circ_0040823 acted as a miR-516b sponge and regulated key cellular events in leukemia cells via downregulating miR-516b. Moreover, tumor suppressor phosphatase and tensin homolog (PTEN) was a downstream target of miR-516b. The inhibition of miR-516b impaired the proliferation capacity of leukemia cells and induced apoptosis, while PTEN deficiency attenuated these effects. CONCLUSION This study showed that circ_0040823 inhibited proliferation and induced apoptosis of AML cells by sponging miR-516b, thereby diminishing the regulatory effect of miR-516b on PTEN. These findings identified circ_0040823/miR-516b/PTEN as a new therapeutic target for AML.
Collapse
Affiliation(s)
- Nianxue Wang
- Department of Immunology, Guizhou Medical University, Guiyang City, Guizhou Province, China
| | - Bin Yang
- Department of Central Laboratory, Guizhou Provincial People's Hospital, Guiyang City, Guizhou Province, China
| | - Jiao Jin
- Department of Pediatric Hematology, Affiliated Hospital of Guizhou Medical University, Guiyang City, Guizhou Province, China
| | - Yu He
- Department of Central Laboratory, Guizhou Provincial People's Hospital, Guiyang City, Guizhou Province, China
| | - Xijun Wu
- Department of Clinical Lab, The Second People's Hospital of Guiyang, Guiyang City, Guizhou Province, China
| | - Yichen Yang
- Department of Central Laboratory, Guizhou Provincial People's Hospital, Guiyang City, Guizhou Province, China
| | - Weijun Zhou
- Department of Immunology, Guizhou Medical University, Guiyang City, Guizhou Province, China
| | - Zhixu He
- Department of Pediatric Hematology, Affiliated Hospital of Guizhou Medical University, Guiyang City, Guizhou Province, China.,Department of Pediatrics, Affiliated Hospital of Zunyi Medical University, Zunyi City, Guizhou Province, China
| |
Collapse
|
36
|
Lu X, Yan G, Klauck SM, Fleischer E, Klinger A, Sugimoto Y, Shan L, Efferth T. Cytotoxicity of 4-hydroxy-N-(naphthalen-1-yl)-2-oxo-2H-chromene-3-carboxamide in multidrug-resistant cancer cells through activation of PERK/eIF2α/ATF4 pathway. Biochem Pharmacol 2021; 193:114788. [PMID: 34582772 DOI: 10.1016/j.bcp.2021.114788] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 09/22/2021] [Accepted: 09/22/2021] [Indexed: 02/06/2023]
Abstract
After decades of research, multidrug resistance (MDR) remains a huge challenge in cancer treatment. In this study, the cytotoxic of 4-hydroxy-N-(naphthalen-1-yl)-2-oxo-2H-chromene-3-carboxamide (MCC1734) has been investigated towards multidrug-resistant cancer cell lines. MCC1734 exerted cytotoxicity on cell lines expressing different mechanisms of drug resistance (P-glycoprotein, BCRP, ABCB5, EGFR, p53 knockout) to a different extent. Interestingly, sensitive CCRF-CEM cells and multidrug-resistant P-gp-overexpressing CEM/ADR5000 cells represented similar sensitivity towards MCC1734, indicating MCC1734 can bypass P-gp-mediated resistance. Microarray-based mRNA expression revealed that MCC1734 affected cells by multiple pathways, including cell cycle regulation, mitochondrial dysfunction, apoptosis signaling, and EIF2 signaling. MCC1734 stimulated the generation of excessive reactive oxygen species and the collapse of mitochondria membrane potential in CCRF-CEM cells, companied by the arrest of the cell cycle in the G2M phase and apoptosis induction as determined by flow cytometry. In addition, our immunoblotting analysis highlighted that MCC1734 triggered endoplasmic reticulum (ER) stress, evidenced by the activation of p-PERK, p-eIF2α, ATF4 and CHOP. The anti-cancer effects of MCC1734 were further observed in vivo using human xenograft tumors transplanted to zebrafish, providing further support for MCC1734 as a promising new candidate for cancer drug development.
Collapse
Affiliation(s)
- Xiaohua Lu
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Staudinger Weg 5, 55128 Mainz, Germany
| | - Ge Yan
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Staudinger Weg 5, 55128 Mainz, Germany
| | - Sabine M Klauck
- Division of Cancer Genome Research, German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), and National Center for Tumor Diseases (NCT), Heidelberg, Germany
| | | | | | - Yoshikazu Sugimoto
- Division of Chemotherapy, Faculty of Pharmacy, Keio University, Tokyo, Japan
| | - Letian Shan
- The First Affiliated Hospital, Zhejiang Chinese Medical University, Hangzhou, China
| | - Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Staudinger Weg 5, 55128 Mainz, Germany.
| |
Collapse
|
37
|
Synergistic Anti-proliferative Effects of Lenalidomide and Dexamethasone on the HT-29 Cell Line Through Apoptotic Genes. INTERNATIONAL JOURNAL OF CANCER MANAGEMENT 2021. [DOI: 10.5812/ijcm.101811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background: Colorectal cancer (CRC) is the third most common cancer among men and the second most common type of cancer among women worldwide. The resistance of tumor cells to apoptosis is caused by changes in the expression of anti-apoptotic or pro-apoptotic proteins. Histone deacetylase inhibitors (HDACi) are known to cause changes in gene expression. Objectives: The present study aimed at investigating the anti-proliferative effects of lenalidomide (LEN) as HDACi and dexamethasone (DEX) on the human colon cancer HT-29 cell line. Methods: The HT-29 cell line was treated with various concentrations of LEN and DEX individually and in combination for 24, 48, and 72 hours. Cytotoxicity was evaluated by MTT assay. The half-maximal inhibitory concentration (IC50) was measured, and quantitative real-time polymerase chain reaction (qRT-PCR) was also performed to examine the expression of Bcl2, Bax, Fas, and FasL genes. Results: The combination of LEN (1000 µM) with DEX (100 µM) showed potent synergistic anti-proliferative activities in a time- and dose-dependent manner. The combination of these drugs induced cell death by affecting the extrinsic and intrinsic apoptotic gene expression profiles. Conclusions: The combination of LEN with DEX can be proposed as a new therapeutic approach for CRC.
Collapse
|
38
|
He F, Zhang S, Li Y, Chen X, Du Z, Shao C, Ding K. The structure elucidation of novel arabinogalactan LRP1-S2 against pancreatic cancer cells growth in vitro and in vivo. Carbohydr Polym 2021; 267:118172. [PMID: 34119144 DOI: 10.1016/j.carbpol.2021.118172] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 04/23/2021] [Accepted: 05/01/2021] [Indexed: 10/21/2022]
Abstract
The fruit of Lycium ruthenicum Murr is used as traditional medicine and functional food. Previously we reported that one RG-I pectin from this fruit might inhibit pancreatic cancer cells growth. We further hypothesized that there might be other type of polysaccharides in this fruit also have anti-tumor effect. Here, we showed novel structure of a homogeneous polysaccharide named LRP1-S2 from this fruit and its anti-pancreatic cancer effect. Structure analyses suggested that LRP1-S2 was a novel arabinogalactan with the molecular weight (Mw) of 17.0 kDa. Bioactivity test showed that LRP1-S2 might attenuate the proliferation of pancreatic cancer cells in vitro and in vivo without significant cytotoxicity to normal pancreatic HPDE6-C7 cells and LO2 liver cells. Mechanism study indicated that it might induce apoptosis of BxPC-3 by inactivating P38 MAPK/NF-κB and GSK-3β/β-Catenin signaling pathways. These results suggested that LRP1-S2 could be a potential anti-tumor leading compound for functional food and new drug development. CHEMICAL COMPOUNDS: arabinogalactan, pectin, galactan, arabinan, RN-1, HH1-1, LRP1-S2, LRP3-S1.
Collapse
Affiliation(s)
- Fei He
- Glycochemistry and Glycobiology Lab, Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, PR China; University of Chinese Academy of Science, No.19A Yuquan Road, Beijing 100049, PR China
| | - Shihai Zhang
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, No. 138 Xianlin Avenue, Nanjing 210023, PR China
| | - Yanan Li
- Glycochemistry and Glycobiology Lab, Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, PR China; University of Chinese Academy of Science, No.19A Yuquan Road, Beijing 100049, PR China
| | - Xia Chen
- Glycochemistry and Glycobiology Lab, Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, PR China; University of Chinese Academy of Science, No.19A Yuquan Road, Beijing 100049, PR China
| | - Zhenyun Du
- Glycochemistry and Glycobiology Lab, Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, PR China; University of Chinese Academy of Science, No.19A Yuquan Road, Beijing 100049, PR China
| | - Chenghao Shao
- Department of General Surgery, Changzheng Hospital, Naval Medical University (Second Military Medical University), No.415 Fengyang Road, Shanghai 200003, PR China.
| | - Kan Ding
- Glycochemistry and Glycobiology Lab, Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, PR China; University of Chinese Academy of Science, No.19A Yuquan Road, Beijing 100049, PR China; School of Chinese Materia Medica, Nanjing University of Chinese Medicine, No. 138 Xianlin Avenue, Nanjing 210023, PR China.
| |
Collapse
|
39
|
Kmiecik AM, Dzięgiel P, Podhorska-Okołów M. Nucleobindin-2/Nesfatin-1-A New Cancer Related Molecule? Int J Mol Sci 2021; 22:ijms22158313. [PMID: 34361082 PMCID: PMC8348729 DOI: 10.3390/ijms22158313] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Revised: 07/29/2021] [Accepted: 07/29/2021] [Indexed: 01/03/2023] Open
Abstract
Cancer is a heterogeneous disease, and even tumors with similar clinicopathological characteristics show different biology, behavior, and treatment responses. As a result, there is an urgent need to define new prognostic and predictive markers to make treatment options more personalized. According to the latest findings, nucleobindin-2/nesfatin-1 (NUCB2/NESF-1) is an important factor in cancer development and progression. Nucleobindin-2 is a precursor protein of nesfatin-1. As NUCB2 and nesfatin-1 are colocalized in each tissue, their expression is often analyzed together as NUCB2. The metabolic function of NUCB2/NESF-1 is related to food intake, glucose metabolism, and the regulation of immune, cardiovascular and endocrine systems. Recently, it has been demonstrated that high expression of NUCB2/NESF-1 is associated with poor outcomes and promotes cell proliferation, migration, and invasion in, e.g., breast, colon, prostate, endometrial, thyroid, bladder cancers, or glioblastoma. Interestingly, nesfatin-1 is also considered an inhibitor of the proliferation of human adrenocortical carcinoma and ovarian epithelial carcinoma cells. These conflicting results make NUCB2/NESF-1 an interesting target of study in the context of cancer progression. The present review is the first to describe NUCB2/NESF-1 as a new prognostic and predictive marker in cancers.
Collapse
Affiliation(s)
- Alicja M. Kmiecik
- Division of Histology and Embryology, Department of Human Morphology and Embryology, Wroclaw Medical University, 50-368 Wroclaw, Poland;
- Correspondence: ; Tel.: +48-7-1784-1365; Fax: +48-7-1784-0082
| | - Piotr Dzięgiel
- Division of Histology and Embryology, Department of Human Morphology and Embryology, Wroclaw Medical University, 50-368 Wroclaw, Poland;
- Department of Physiotherapy, University School of Physical Education, 51-612 Wroclaw, Poland
| | | |
Collapse
|
40
|
Inde Z, Croker BA, Yapp C, Joshi GN, Spetz J, Fraser C, Qin X, Xu L, Deskin B, Ghelfi E, Webb G, Carlin AF, Zhu YP, Leibel SL, Garretson AF, Clark AE, Duran JM, Pretorius V, Crotty-Alexander LE, Li C, Lee JC, Sodhi C, Hackam DJ, Sun X, Hata AN, Kobzik L, Miller J, Park JA, Brownfield D, Jia H, Sarosiek KA. Age-dependent regulation of SARS-CoV-2 cell entry genes and cell death programs correlates with COVID-19 severity. SCIENCE ADVANCES 2021; 7:eabf8609. [PMID: 34407940 PMCID: PMC8373124 DOI: 10.1126/sciadv.abf8609] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 06/25/2021] [Indexed: 05/02/2023]
Abstract
Novel coronavirus disease 2019 (COVID-19) severity is highly variable, with pediatric patients typically experiencing less severe infection than adults and especially the elderly. The basis for this difference is unclear. We find that mRNA and protein expression of angiotensin-converting enzyme 2 (ACE2), the cell entry receptor for the novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) that causes COVID-19, increases with advancing age in distal lung epithelial cells. However, in humans, ACE2 expression exhibits high levels of intra- and interindividual heterogeneity. Further, cells infected with SARS-CoV-2 experience endoplasmic reticulum stress, triggering an unfolded protein response and caspase-mediated apoptosis, a natural host defense system that halts virion production. Apoptosis of infected cells can be selectively induced by treatment with apoptosis-modulating BH3 mimetic drugs. Notably, epithelial cells within young lungs and airways are more primed to undergo apoptosis than those in adults, which may naturally hinder virion production and support milder COVID-19 severity.
Collapse
Affiliation(s)
- Zintis Inde
- Molecular and Integrative Physiological Sciences Program, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Harvard Program in Therapeutic Science, Harvard Medical School, Boston, MA, USA
| | - Ben A Croker
- Department of Pediatrics, University of California San Diego, La Jolla, CA, USA
| | - Clarence Yapp
- Harvard Program in Therapeutic Science, Harvard Medical School, Boston, MA, USA
- Image and Data Analysis Core, Harvard Medical School, Boston, MA, USA
| | - Gaurav N Joshi
- Molecular and Integrative Physiological Sciences Program, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Harvard Program in Therapeutic Science, Harvard Medical School, Boston, MA, USA
- Integrated Cellular Imaging Core, Emory University, Atlanta, GA, USA
| | - Johan Spetz
- Molecular and Integrative Physiological Sciences Program, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Harvard Program in Therapeutic Science, Harvard Medical School, Boston, MA, USA
| | - Cameron Fraser
- Molecular and Integrative Physiological Sciences Program, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Harvard Program in Therapeutic Science, Harvard Medical School, Boston, MA, USA
| | - Xingping Qin
- Molecular and Integrative Physiological Sciences Program, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Harvard Program in Therapeutic Science, Harvard Medical School, Boston, MA, USA
| | - Le Xu
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Brian Deskin
- Molecular and Integrative Physiological Sciences Program, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Elisa Ghelfi
- Molecular and Integrative Physiological Sciences Program, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Gabrielle Webb
- Molecular and Integrative Physiological Sciences Program, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Aaron F Carlin
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Yanfang Peipei Zhu
- Department of Pediatrics, University of California San Diego, La Jolla, CA, USA
| | - Sandra L Leibel
- Department of Pediatrics, University of California San Diego, La Jolla, CA, USA
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
- Sanford Consortium for Regenerative Medicine, La Jolla, CA, USA
| | - Aaron F Garretson
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Alex E Clark
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Jason M Duran
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Victor Pretorius
- Department of Surgery, University of California San Diego, La Jolla, CA, USA
| | | | - Chendi Li
- Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Jamie Casey Lee
- Department of Pediatrics, University of California San Diego, La Jolla, CA, USA
| | - Chhinder Sodhi
- Department of Surgery, Johns Hopkins University, Baltimore, MD, USA
| | - David J Hackam
- Department of Surgery, Johns Hopkins University, Baltimore, MD, USA
| | - Xin Sun
- Department of Pediatrics, University of California San Diego, La Jolla, CA, USA
| | - Aaron N Hata
- Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Lester Kobzik
- Molecular and Integrative Physiological Sciences Program, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Jeffrey Miller
- Molecular and Integrative Physiological Sciences Program, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Jin-Ah Park
- Molecular and Integrative Physiological Sciences Program, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Douglas Brownfield
- Molecular and Integrative Physiological Sciences Program, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Hongpeng Jia
- Department of Surgery, Johns Hopkins University, Baltimore, MD, USA
| | - Kristopher A Sarosiek
- Molecular and Integrative Physiological Sciences Program, Harvard T.H. Chan School of Public Health, Boston, MA, USA.
- Harvard Program in Therapeutic Science, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
41
|
Mittal P, Singh S, Sinha R, Shrivastava A, Singh A, Singh IK. Myeloid cell leukemia 1 (MCL-1): Structural characteristics and application in cancer therapy. Int J Biol Macromol 2021; 187:999-1018. [PMID: 34339789 DOI: 10.1016/j.ijbiomac.2021.07.166] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 07/24/2021] [Accepted: 07/26/2021] [Indexed: 12/20/2022]
Abstract
Apoptosis, a major hallmark of cancer cells, regulates cellular fate and homeostasis. BCL-2 (B-cell CLL/Lymphoma 2) protein family is popularly known to mediate the intrinsic mode of apoptosis, of which MCL-1 is a crucial member. Myeloid cell leukemia 1 (MCL-1) is an anti-apoptotic oncoprotein and one of the most investigated members of the BCL-2 family. It is commonly known to be genetically altered, aberrantly overexpressed, and primarily associated with drug resistance in various human cancers. Recent advancements in the development of selective MCL-1 inhibitors and evaluating their effectiveness in cancer treatment establish its popularity as a molecular target. The overall aim is the selective induction of apoptosis in cancer cells by using a single or combination of BCL-2 family inhibitors. Delineating the precise molecular mechanisms associated with MCL-1-mediated cancer progression will certainly improve the efficacy of clinical interventions aimed at MCL-1 and hence patient survival. This review is structured to highlight the structural characteristics of MCL-1, its specific interactions with NOXA, MCL-1-regulatory microRNAs, and at the same time focus on the emerging therapeutic strategies targeting our protein of interest (MCL-1), alone or in combination with other treatments.
Collapse
Affiliation(s)
- Pooja Mittal
- Molecular Biology Research Lab, Department of Zoology, Deshbandhu College, University of Delhi, Kalkaji, New Delhi 110019, India
| | - Sujata Singh
- Molecular Biology Research Lab, Department of Zoology, Deshbandhu College, University of Delhi, Kalkaji, New Delhi 110019, India
| | - Rajesh Sinha
- Department of Dermatology, University of Alabama, Birmingham 35205, United States of America
| | - Anju Shrivastava
- Department of Zoology, University of Delhi, New Delhi, 110007, India
| | - Archana Singh
- Department of Botany, Hans Raj College, University of Delhi, New Delhi 110007, India.
| | - Indrakant Kumar Singh
- Molecular Biology Research Lab, Department of Zoology, Deshbandhu College, University of Delhi, Kalkaji, New Delhi 110019, India.
| |
Collapse
|
42
|
Peng YB, He W, Niu Q, Tao C, Zhong XL, Tan CP, Zhao P. Mitochondria-targeted cyclometalated rhodium(III) complexes: synthesis, characterization and anticancer research. Dalton Trans 2021; 50:9068-9075. [PMID: 34113944 DOI: 10.1039/d1dt01053k] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Over the past few decades, the landscape of inorganic medicinal chemistry has been dominated by investigations on platinum or ruthenium, while the research based on other metal centers such as rhodium has been relatively insufficient. In this work, a series of cyclometalated rhodium(iii) complexes with imidazo[4,5-f][1,10]phenanthroline containing different aromatic rings were synthesized and characterized. Notably, all the complexes displayed stronger anticancer activity against various cancer cells compared with cisplatin. A mechanism study revealed that the rhodium complexes accumulated in the mitochondria, elevated the levels of mitochondrial reactive oxygen species (ROS) and released cytochrome c, indicating severe mitochondrial damage during the anticancer activity. Further studies illustrated that the rhodium complexes caused cell cycle arrest at the G2/M phase, upregulated the expression of p53 and reduced the ratio of B-cell lymphoma-2 (Bcl-2)/Bcl-2-associated x (Bax), which ultimately resulted in cellular apoptosis. Overall, through mitochondrial pathways, these Rh(iii) complexes could induce cellular apoptosis to a larger extent than cisplatin and should be paid close attention as promising chemotherapeutic drugs in anticancer research.
Collapse
Affiliation(s)
- Yan-Bo Peng
- School of Chemistry and Chemical Engineering, Guangdong Pharmaceutical University, Education Mega Centre, No. 280, Waihuandong Road, Guangzhou 510006, P.R. China. and MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, P.R. China.
| | - Wei He
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, P.R. China.
| | - Qiang Niu
- School of Chemistry and Chemical Engineering, Guangdong Pharmaceutical University, Education Mega Centre, No. 280, Waihuandong Road, Guangzhou 510006, P.R. China.
| | - Can Tao
- School of Chemistry and Chemical Engineering, Guangdong Pharmaceutical University, Education Mega Centre, No. 280, Waihuandong Road, Guangzhou 510006, P.R. China.
| | - Xiao-Lan Zhong
- College of Materials and Energy, South China Agricultural University, Guangzhou 510642, P.R. China
| | - Cai-Ping Tan
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, P.R. China.
| | - Ping Zhao
- School of Chemistry and Chemical Engineering, Guangdong Pharmaceutical University, Education Mega Centre, No. 280, Waihuandong Road, Guangzhou 510006, P.R. China.
| |
Collapse
|
43
|
Sreenivasan K, Ianni A, Künne C, Strilic B, Günther S, Perdiguero E, Krüger M, Spuler S, Offermanns S, Gómez-Del Arco P, Redondo JM, Munoz-Canoves P, Kim J, Braun T. Attenuated Epigenetic Suppression of Muscle Stem Cell Necroptosis Is Required for Efficient Regeneration of Dystrophic Muscles. Cell Rep 2021; 31:107652. [PMID: 32433961 PMCID: PMC7242912 DOI: 10.1016/j.celrep.2020.107652] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 01/20/2020] [Accepted: 04/21/2020] [Indexed: 12/11/2022] Open
Abstract
Somatic stem cells expand massively during tissue regeneration, which might require control of cell fitness, allowing elimination of non-competitive, potentially harmful cells. How or if such cells are removed to restore organ function is not fully understood. Here, we show that a substantial fraction of muscle stem cells (MuSCs) undergo necroptosis because of epigenetic rewiring during chronic skeletal muscle regeneration, which is required for efficient regeneration of dystrophic muscles. Inhibition of necroptosis strongly enhances suppression of MuSC expansion in a non-cell-autonomous manner. Prevention of necroptosis in MuSCs of healthy muscles is mediated by the chromatin remodeler CHD4, which directly represses the necroptotic effector Ripk3, while CHD4-dependent Ripk3 repression is dramatically attenuated in dystrophic muscles. Loss of Ripk3 repression by inactivation of Chd4 causes massive necroptosis of MuSCs, abolishing regeneration. Our study demonstrates how programmed cell death in MuSCs is tightly controlled to achieve optimal tissue regeneration. Necroptotic cell death of MuSCs is essential for efficient muscle regeneration Inhibition of necroptosis exacerbates adverse crosstalk among mdx muscle stem cells The CHD4/NuRD complex directly represses Ripk3-dependent necroptosis Attenuated recruitment of CHD4 to Ripk3 locus lowers necroptosis threshold in dystrophy
Collapse
Affiliation(s)
- Krishnamoorthy Sreenivasan
- Department of Cardiac Development and Remodeling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Alessandro Ianni
- Department of Cardiac Development and Remodeling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Carsten Künne
- Department of Cardiac Development and Remodeling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Boris Strilic
- Department of Pharmacology, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Stefan Günther
- Department of Cardiac Development and Remodeling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Eusebio Perdiguero
- Department of Experimental & Health Sciences, University Pompeu Fabra (UPF), CIBERNED, ICREA, 08003 Barcelona, Spain
| | - Marcus Krüger
- Department of Cardiac Development and Remodeling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany; CECAD Research Center, Joseph-Stelzmann-Strasse 26, 50931 Cologne, Germany
| | - Simone Spuler
- Experimental and Clinical Research Center (ECRC), University Clinic Charité Berlin, Berlin, Germany
| | - Stefan Offermanns
- Department of Pharmacology, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany; German Center for Cardiovascular Research (DZHK)
| | - Pablo Gómez-Del Arco
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), 28019 Madrid, Spain; Institute of Rare Diseases Research, Instituto de Salud Carlos III, Madrid, Spain
| | - Juan Miguel Redondo
- Gene Regulation in Cardiovascular Remodelling & Inflammation Laboratory, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), 28029 Madrid, Spain
| | - Pura Munoz-Canoves
- Department of Experimental & Health Sciences, University Pompeu Fabra (UPF), CIBERNED, ICREA, 08003 Barcelona, Spain; Centro Nacional de Investigaciones Cardiovasculares (CNIC), 28019 Madrid, Spain
| | - Johnny Kim
- Department of Cardiac Development and Remodeling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany; German Center for Cardiovascular Research (DZHK).
| | - Thomas Braun
- Department of Cardiac Development and Remodeling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany; German Center for Cardiovascular Research (DZHK); German Center for Lung Research (DZL).
| |
Collapse
|
44
|
Minina EA, Dauphinee AN, Ballhaus F, Gogvadze V, Smertenko AP, Bozhkov PV. Apoptosis is not conserved in plants as revealed by critical examination of a model for plant apoptosis-like cell death. BMC Biol 2021; 19:100. [PMID: 33980238 PMCID: PMC8117276 DOI: 10.1186/s12915-021-01018-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 04/01/2021] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Animals and plants diverged over one billion years ago and evolved unique mechanisms for many cellular processes, including cell death. One of the most well-studied cell death programmes in animals, apoptosis, involves gradual cell dismantling and engulfment of cellular fragments, apoptotic bodies, through phagocytosis. However, rigid cell walls prevent plant cell fragmentation and thus apoptosis is not applicable for executing cell death in plants. Furthermore, plants are devoid of the key components of apoptotic machinery, including phagocytosis as well as caspases and Bcl-2 family proteins. Nevertheless, the concept of plant "apoptosis-like programmed cell death" (AL-PCD) is widespread. This is largely due to superficial morphological resemblances between plant cell death and apoptosis, and in particular between protoplast shrinkage in plant cells killed by various stimuli and animal cell volume decrease preceding fragmentation into apoptotic bodies. RESULTS Here, we provide a comprehensive spatio-temporal analysis of cytological and biochemical events occurring in plant cells subjected to heat shock at 40-55 °C and 85 °C, the experimental conditions typically used to trigger AL-PCD and necrotic cell death, respectively. We show that cell death under both conditions was not accompanied by membrane blebbing or formation of apoptotic bodies, as would be expected during apoptosis. Instead, we observed instant and irreversible permeabilization of the plasma membrane and ATP depletion. These processes did not depend on mitochondrial functionality or the presence of Ca2+ and could not be prevented by an inhibitor of ferroptosis. We further reveal that the lack of protoplast shrinkage at 85 °C, the only striking morphological difference between cell deaths induced by 40-55 °C or 85 °C heat shock, is a consequence of the fixative effect of the high temperature on intracellular contents. CONCLUSIONS We conclude that heat shock-induced cell death is an energy-independent process best matching definition of necrosis. Although the initial steps of this necrotic cell death could be genetically regulated, classifying it as apoptosis or AL-PCD is a terminological misnomer. Our work supports the viewpoint that apoptosis is not conserved across animal and plant kingdoms and demonstrates the importance of focusing on plant-specific aspects of cell death pathways.
Collapse
Affiliation(s)
- Elena A Minina
- Department of Molecular Sciences, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, P.O. Box 7015, SE-750 07, Uppsala, Sweden.
- COS, Heidelberg University, Im Neuenheimer Feld 230, 69120, Heidelberg, Germany.
| | - Adrian N Dauphinee
- Department of Molecular Sciences, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, P.O. Box 7015, SE-750 07, Uppsala, Sweden
| | - Florentine Ballhaus
- Department of Molecular Sciences, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, P.O. Box 7015, SE-750 07, Uppsala, Sweden
| | - Vladimir Gogvadze
- Institute of Environmental Medicine, Division of Toxicology, Karolinska Institutet, Box 210, SE-171 77, Stockholm, Sweden
- Faculty of Medicine, MV Lomonosov Moscow State University, 119991, Moscow, Russia
| | - Andrei P Smertenko
- Institute of Biological Chemistry, College of Human, Agricultural, and Natural Resource Sciences, Washington State University, Pullman, WA, 99164, USA
| | - Peter V Bozhkov
- Department of Molecular Sciences, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, P.O. Box 7015, SE-750 07, Uppsala, Sweden.
| |
Collapse
|
45
|
Mehrotra N, Kharbanda S, Singh H. BH3 mimetics in cancer therapy and their future perspectives with nanodelivery. Nanomedicine (Lond) 2021; 16:1067-1070. [PMID: 33904325 DOI: 10.2217/nnm-2021-0059] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Affiliation(s)
- Neha Mehrotra
- Centre for Biomedical Engineering, Indian Institute of Technology Delhi & All Indian Institute of Medical Sciences, New Delhi, Delhi 110016, India
| | - Surender Kharbanda
- Dana Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Harpal Singh
- Centre for Biomedical Engineering, Indian Institute of Technology Delhi & All Indian Institute of Medical Sciences, New Delhi, Delhi 110016, India
| |
Collapse
|
46
|
Mielczarek-Palacz A, Jasińska S, Strzelec A. Evaluation of the Potential Diagnostic Utility of the Determination of Selected Caspases-Markers Involved in the Regulation of Apoptosis-In Patients with Ovarian Cancer. Diagnostics (Basel) 2021; 11:704. [PMID: 33919909 PMCID: PMC8070894 DOI: 10.3390/diagnostics11040704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 04/11/2021] [Accepted: 04/12/2021] [Indexed: 11/25/2022] Open
Abstract
Ovarian cancer remains a major diagnostic and therapeutic problem in modern gynecological oncology. For this reason, research which focuses on the search for new diagnostic markers and the assessment of their possible usefulness in clinical practice is still being conducted. The aim of this study was to evaluate serum levels of caspase-3, caspase-8, and caspase-9 in women with ovarian cancer. Patients with ovarian serous cystadenoma (Cystadenoma serosum) and papillary serous cystadenocarcinoma (Cystadenocarcinoma papillare serosum IIIC) were included in the study, as well as healthy women who constituted the control group. The results of the study revealed a statistically significantly decreased mean serum levels of caspase-3, caspase-8, and caspase-9 in women with ovarian cancer as compared to the control group (p ˂ 0.001), which indicates the involvement of the studied parameters in immune system disturbances occurring in the process of apoptosis by the extrinsic and intrinsic pathway and may be one of the mechanisms of immunosuppression accompanying these tumors. Determination of serum levels of examined caspases and CA 125 antigen in women with ovarian cancer in combination with other markers may prove useful in the future in the diagnosis of ovarian cancer, but this requires further studies.
Collapse
Affiliation(s)
- Aleksandra Mielczarek-Palacz
- Department of Immunology and Serology, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, 40-055 Katowice, Poland; (S.J.); (A.S.)
| | | | | |
Collapse
|
47
|
Deng L, Zhai X, Liang P, Cui H. Overcoming TRAIL Resistance for Glioblastoma Treatment. Biomolecules 2021; 11:biom11040572. [PMID: 33919846 PMCID: PMC8070820 DOI: 10.3390/biom11040572] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Revised: 04/11/2021] [Accepted: 04/12/2021] [Indexed: 12/14/2022] Open
Abstract
The tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) shows a promising therapeutic potential in cancer treatment as it exclusively causes apoptosis in a broad spectrum of cancer cells through triggering the extrinsic apoptosis pathway via binding to cognate death receptors, with negligible toxicity in normal cells. However, most cancers, including glioblastoma multiforme (GBM), display TRAIL resistance, hindering its application in clinical practice. Recent studies have unraveled novel mechanisms in regulating TRAIL-induced apoptosis in GBM and sought effective combinatorial modalities to sensitize GBM to TRAIL treatment, establishing pre-clinical foundations and the reasonable expectation that the TRAIL/TRAIL death receptor axis could be harnessed to treat GBM. In this review, we will revisit the status quo of the mechanisms of TRAIL resistance and emerging strategies for sensitizing GBM to TRAIL-induced apoptosis and also discuss opportunities of TRAIL-based combinatorial therapies in future clinical use for GBM treatment.
Collapse
Affiliation(s)
- Longfei Deng
- Cancer Center, Medical Research Institute, Southwest University, Chongqing 400716, China;
| | - Xuan Zhai
- Department of Neurosurgery, Children’s Hospital of Chongqing Medical University, Chongqing 400014, China;
| | - Ping Liang
- Department of Neurosurgery, Children’s Hospital of Chongqing Medical University, Chongqing 400014, China;
- Correspondence: (P.L.); (H.C.)
| | - Hongjuan Cui
- Cancer Center, Medical Research Institute, Southwest University, Chongqing 400716, China;
- Department of Neurosurgery, Children’s Hospital of Chongqing Medical University, Chongqing 400014, China;
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China
- Correspondence: (P.L.); (H.C.)
| |
Collapse
|
48
|
Bcl-2 Family of Proteins in the Control of Mitochondrial Calcium Signalling: An Old Chap with New Roles. Int J Mol Sci 2021; 22:ijms22073730. [PMID: 33918511 PMCID: PMC8038216 DOI: 10.3390/ijms22073730] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 03/29/2021] [Accepted: 03/31/2021] [Indexed: 12/12/2022] Open
Abstract
Bcl-2 family proteins are considered as one of the major regulators of apoptosis. Indeed, this family is known to control the mitochondrial outer membrane permeabilization (MOMP): a central step in the mitochondrial pathway of apoptosis. However, in recent years Bcl-2 family members began to emerge as a new class of intracellular calcium (Ca2+) regulators. At mitochondria-ER contacts (MERCs) these proteins are able to interact with major Ca2+ transporters, thus controlling mitochondrial Ca2+ homeostasis and downstream Ca2+ signalling pathways. Beyond the regulation of cell survival, this Bcl-2-dependent control over the mitochondrial Ca2+ dynamics has far-reaching consequences on the physiology of the cell. Here, we review how the Bcl-2 family of proteins mechanistically regulate mitochondrial Ca2+ homeostasis and how this regulation orchestrates cell death/survival decisions as well as the non-apoptotic process of cell migration.
Collapse
|
49
|
Wylot M, Whittaker DTE, Wren SAC, Bothwell JH, Hughes L, Griffin JL. Monitoring apoptosis in intact cells by high-resolution magic angle spinning 1 H NMR spectroscopy. NMR IN BIOMEDICINE 2021; 34:e4456. [PMID: 33398876 DOI: 10.1002/nbm.4456] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 11/09/2020] [Accepted: 11/13/2020] [Indexed: 06/12/2023]
Abstract
Apoptosis maintains an equilibrium between cell proliferation and cell death. Many diseases, including cancer, develop because of defects in apoptosis. A known metabolic marker of apoptosis is a notable increase in 1 H NMR-observable resonances associated with lipids stored in lipid droplets. However, standard one-dimensional NMR experiments allow the quantification of lipid concentration only, without providing information about physical characteristics such as the size of lipid droplets, viscosity of the cytosol, or cytoskeletal rigidity. This additional information can improve monitoring of apoptosis-based cancer treatments in intact cells and provide us with mechanistic insight into why these changes occur. In this paper, we use high-resolution magic angle spinning (HRMAS) 1 H NMR spectroscopy to monitor lipid concentrations and apparent diffusion coefficients of mobile lipid in intact cells treated with the apoptotic agents cisplatin or etoposide. We also use solution-state NMR spectroscopy to study changes in lipid profiles of organic solvent cell extracts. Both NMR techniques show an increase in the concentration of lipids but the relative changes are 10 times larger by HRMAS 1 H NMR spectroscopy. Moreover, the apparent diffusion rates of lipids in apoptotic cells measured by HRMAS 1 H NMR spectroscopy decrease significantly as compared with control cells. Slower diffusion rates of mobile lipids in apoptotic cells correlate well with the formation of larger lipid droplets as observed by microscopy. We also compared the mean lipid droplet displacement values calculated from the two methods. Both methods showed shorter displacements of lipid droplets in apoptotic cells. Our results demonstrate that the NMR-based diffusion experiments on intact cells discriminate between control and apoptotic cells. Apparent diffusion measurements in conjunction with 1 H NMR spectroscopy-derived lipid signals provide a novel means of following apoptosis in intact cells. This method could have potential application in enhancing drug discovery by monitoring drug treatments in vitro, particularly for agents that cause portioning of lipids such as apoptosis.
Collapse
Affiliation(s)
- Marta Wylot
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - David T E Whittaker
- Early Chemical Development, Pharmaceutical Sciences, R&D, AstraZeneca, Macclesfield, UK
| | - Stephen A C Wren
- New Modalities & Parenteral Development, Pharmaceutical Technology & Development, Operations, AstraZeneca, Macclesfield, UK
| | | | - Leslie Hughes
- New Modalities & Parenteral Development, Pharmaceutical Technology & Development, Operations, AstraZeneca, Macclesfield, UK
| | - Julian L Griffin
- Department of Biochemistry, University of Cambridge, Cambridge, UK
- Section of Biomolecular Medicine, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| |
Collapse
|
50
|
Chakraborty S, Mir KB, Seligson ND, Nayak D, Kumar R, Goswami A. Integration of EMT and cellular survival instincts in reprogramming of programmed cell death to anastasis. Cancer Metastasis Rev 2021; 39:553-566. [PMID: 32020420 DOI: 10.1007/s10555-020-09866-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Apoptosis is a tightly controlled, coordinated cellular event responsible for inducing programmed cell death to rid the body of defective or unfit cells. Inhibition of apoptosis is, therefore, an essential process for cancer cells to harness. Genomic variants in apoptotic-controlling genes are highly prevalent in cancer and have been identified to induce pro-proliferation and pro-survival pathways, rendering cancer cells resistant to apoptosis. Traditional understanding of apoptosis defines it as an irreversible process; however, growing evidence suggests that apoptosis is a reversible process from which cells can escape, even after the activation of its most committed stages. The mechanism invoked to reverse apoptosis has been termed anastasis and poses challenges for the development and utilization of chemotherapeutic agents. Anastasis has also been identified as a mechanism by which cells can recover from apoptotic lesions and revert back to its previous functioning state. In this review, we intend to focus the attention of the reader on the comprehensive role of survival, metastasis, and epithelial mesenchymal transition (EMT), as well as DNA damage repair mechanisms in promoting anastasis. Additionally, we will emphasize the mechanistic consequences of anastasis on drug resistance and recent rational therapeutic approaches designed to combat this resistance.
Collapse
Affiliation(s)
- Souneek Chakraborty
- Cancer Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Jammu, 180001, India.,Academy of Scientific & Innovative Research (AcSIR), CSIR- Indian Institute of Integrative Medicine, Canal Road, Jammu, 180001, India
| | - Khalid Bashir Mir
- Cancer Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Jammu, 180001, India.,Academy of Scientific & Innovative Research (AcSIR), CSIR- Indian Institute of Integrative Medicine, Canal Road, Jammu, 180001, India
| | - Nathan D Seligson
- Department of Pharmacotherapy and Translational Research, The University of Florida, Jacksonville, FL, USA.,Department of Hematology and Oncology, Nemours Children's Specialty Care, Jacksonville, FL, USA
| | - Debasis Nayak
- College of Pharmacy, The Ohio State University, 540 Riffe Building, 496 West 12th Ave, Columbus, OH, 43210, USA
| | - Rakesh Kumar
- School of Biotechnology, Shri Mata Vaishno Devi University, Katra, 182320, India
| | - Anindya Goswami
- Cancer Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Jammu, 180001, India. .,Academy of Scientific & Innovative Research (AcSIR), CSIR- Indian Institute of Integrative Medicine, Canal Road, Jammu, 180001, India.
| |
Collapse
|