1
|
Alsaleem TA, Kehail MA, Alzahrani AS, Alsaleem T, Alkhalifa AH, Alqahtani AM, Altalhi MH, Alkhamis HH, Alowaifeer AM, Alrefaei AF. Seasonal Distribution and Diversity of Non-Insect Arthropods in Arid Ecosystems: A Case Study from the King Abdulaziz Royal Reserve, Kingdom Saudi Arabia. BIOLOGY 2024; 13:1082. [PMID: 39765750 PMCID: PMC11673793 DOI: 10.3390/biology13121082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2024] [Revised: 12/18/2024] [Accepted: 12/20/2024] [Indexed: 01/11/2025]
Abstract
The biodiversity of invertebrate animals is largely affected by climatic changes. This study evaluates the seasonal abundance and diversity of non-insect arthropods in the King Abdulaziz Royal Reserve (KARR), Saudi Arabia, over four collection periods (summer, autumn, winter, and spring) during 2023. Sampling was conducted across multiple sites in the reserve using both active (manual collection and active surveying for the diurnal species) and passive (pitfall traps and malaise traps for the nocturnal species) methods. A total of 586 non-insect arthropod specimens were collected, representing four classes: Arachnida, Chilopoda, Branchiopoda, and Malacostraca. The results show that the most abundant species was the jumping spider Plexippus paykulli, which dominated collections across two seasons, with a peak abundance of 50.7% in late summer. Seasonal variations in non-insect arthropod diversity were observed, with a lower diversity recorded during January-March (4 species, and this may be attributed to this period revealing the lowest temperature reading recorded during the study period) and higher diversity in August-September (end of summer) and October-November (mid of autumn), with 14 species. Scorpions, particularly species from the families Buthidae and Scorpionidae, were common during the summer months, while solifuges and centipedes showed sporadic occurrences across seasons. These findings align with the results for arthropod distribution in arid regions, with temperature and resource availability as key drivers of biodiversity in desert environments because of their direct effects on the biochemical processes of these creatures. This study contributes valuable baseline data on the non-insect arthropod fauna of the KARR. The insights gained from this study can aid in conservation efforts and provide a foundation for further research on non-insect arthropod ecology in arid landscapes.
Collapse
Affiliation(s)
- Taghreed A. Alsaleem
- The King Abdulaziz Royal Reserve (KARR), Riyadh 12213, Saudi Arabia; (T.A.A.); (A.S.A.); (T.A.); (A.M.A.); (M.H.A.)
| | - Moutaman Ali Kehail
- Green Sustainability Company for Environmental Services (GSCES), Riyadh 13326, Saudi Arabia; (M.A.K.); (H.H.A.)
| | - Abdulrahaman S. Alzahrani
- The King Abdulaziz Royal Reserve (KARR), Riyadh 12213, Saudi Arabia; (T.A.A.); (A.S.A.); (T.A.); (A.M.A.); (M.H.A.)
| | - Turki Alsaleem
- The King Abdulaziz Royal Reserve (KARR), Riyadh 12213, Saudi Arabia; (T.A.A.); (A.S.A.); (T.A.); (A.M.A.); (M.H.A.)
| | - Areej H. Alkhalifa
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh 11671, Saudi Arabia;
| | - Abdulaziz M. Alqahtani
- The King Abdulaziz Royal Reserve (KARR), Riyadh 12213, Saudi Arabia; (T.A.A.); (A.S.A.); (T.A.); (A.M.A.); (M.H.A.)
| | - Mohammed H. Altalhi
- The King Abdulaziz Royal Reserve (KARR), Riyadh 12213, Saudi Arabia; (T.A.A.); (A.S.A.); (T.A.); (A.M.A.); (M.H.A.)
| | - Hussein H. Alkhamis
- Green Sustainability Company for Environmental Services (GSCES), Riyadh 13326, Saudi Arabia; (M.A.K.); (H.H.A.)
| | - Abdullah M. Alowaifeer
- The King Abdulaziz Royal Reserve (KARR), Riyadh 12213, Saudi Arabia; (T.A.A.); (A.S.A.); (T.A.); (A.M.A.); (M.H.A.)
| | - Abdulwahed Fahad Alrefaei
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| |
Collapse
|
2
|
Petrova M, Bogomolova E. The male reproductive system of the sea spider Phoxichilidium femoratum (Rathke, 1799). ARTHROPOD STRUCTURE & DEVELOPMENT 2024; 83:101404. [PMID: 39638667 DOI: 10.1016/j.asd.2024.101404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 11/21/2024] [Accepted: 11/21/2024] [Indexed: 12/07/2024]
Abstract
Sea spiders (Pycnogonida) are marine chelicerates. As a sister clade to Euchelicerata, Pycnogonida are an interesting group for comparative anatomy, however data on pycnogonid anatomy and biology remain scarce. This research provides a detailed account of the complete male reproductive system, gametogenesis, and sperm structure of a sea spider at the ultrastructural level. The male reproductive system of P. femoratum includes the testis, femoral, and ovigeral glands. The testis is typical of Pycnogonida: U-shaped with pedal outgrowths, opening with gonopores on legs 2-4. The testis lays within the horizontal septum, separated from it by ECM. The reproductive sinus is reduced. The ventral wall of the testis is germinative, spermatogenesis proceeds in cysts, all stages are evenly distributed throughout the whole testis. Sperm of P. femoratum is a typical sperm of animals with fertilization in mucus but without an acrosome. It lacks apomorphic euchelicerate features such as an acrosomal filament and implantation fossa. Femoral and ovigeral glands are sex-specific and likely related to reproduction. Ovigeral glands possibly secrete a fungicide substance, while the function of femoral glands remains obscure.
Collapse
Affiliation(s)
- Maria Petrova
- Department of Invertebrates Zoology, Faculty of Biology, Moscow State University, Vorob'evy gory 1, building 12, Moscow, 119992, Russia.
| | - Ekaterina Bogomolova
- Department of Invertebrates Zoology, Faculty of Biology, Moscow State University, Vorob'evy gory 1, building 12, Moscow, 119992, Russia.
| |
Collapse
|
3
|
Su ZH, Sasaki A, Minami H, Ozaki K. Arthropod Phylotranscriptomics With a Special Focus on the Basal Phylogeny of the Myriapoda. Genome Biol Evol 2024; 16:evae189. [PMID: 39219333 PMCID: PMC11436689 DOI: 10.1093/gbe/evae189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 08/08/2024] [Accepted: 08/22/2024] [Indexed: 09/04/2024] Open
Abstract
Arthropoda represents the most diverse animal phylum, but clarifying the phylogenetic relationships among arthropod taxa remains challenging given the numerous arthropod lineages that diverged over a short period of time. In order to resolve the most controversial aspects of deep arthropod phylogeny, focusing on the Myriapoda, we conducted phylogenetic analyses based on ten super-matrices comprised of 751 to 1,233 orthologous genes across 64 representative arthropod species, including 28 transcriptomes that were newly generated in this study. Our findings provide unambiguous support for the monophyly of the higher arthropod taxa, Chelicerata, Mandibulata, Myriapoda, Pancrustacea, and Hexapoda, while the Crustacea are paraphyletic, with the class Remipedia supported as the lineage most closely related to hexapods. Within the Hexapoda, our results largely affirm previously proposed phylogenetic relationships among deep hexapod lineages, except that the Paraneoptera (Hemiptera, Thysanoptera, and Psocodea) was recovered as a monophyletic lineage in some analyses. The results corroborated the recently proposed phylogenetic framework of the four myriapod classes, wherein Symphyla and Pauropoda, as well as Chilopoda and Diplopoda, are each proposed to be sister taxa. The findings provide important insights into understanding the phylogeny and evolution of arthropods.
Collapse
Affiliation(s)
- Zhi-Hui Su
- JT Biohistory Research Hall, Takatsuki, Osaka 569-1125, Japan
- Department of Biological Sciences, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
| | - Ayako Sasaki
- JT Biohistory Research Hall, Takatsuki, Osaka 569-1125, Japan
| | - Hiroaki Minami
- JT Biohistory Research Hall, Takatsuki, Osaka 569-1125, Japan
- Department of Biological Sciences, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
| | - Katsuhisa Ozaki
- JT Biohistory Research Hall, Takatsuki, Osaka 569-1125, Japan
| |
Collapse
|
4
|
Del Mouro L, Lerosey-Aubril R, Botting J, Coleman R, Gaines RR, Skabelund J, Weaver JC, Ortega-Hernández J. A new sponge from the Marjum Formation of Utah documents the Cambrian origin of the hexactinellid body plan. ROYAL SOCIETY OPEN SCIENCE 2024; 11:231845. [PMID: 39295920 PMCID: PMC11407857 DOI: 10.1098/rsos.231845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 05/22/2024] [Accepted: 08/05/2024] [Indexed: 09/21/2024]
Abstract
Modern poriferans are classified into four classes-Calcarea, Demospongiae, Hexactinellida and Homoscleromorpha-the recognition of which in fossil specimens almost exclusively relies on spicule morphology and arrangement. Early fossil representatives of the phylum Porifera are morphologically diverse, and many of them problematically display characteristics that are incompatible with the classification scheme developed for modern taxa. Critically, hexactine spicules-a diagnostic feature of hexactinellids among modern taxa-are found in various Cambrian and Ordovician taxa that cannot be accommodated within the hexactinellid body plan. Here we describe a new poriferan from the Drumian Marjum Formation of Utah, Polygoniella turrelli gen. et sp. nov., which exhibits a unique combination of complex anatomical features for a Cambrian form, including a syconoid-like organization, a thick body wall, and a multi-layered hexactin-based skeleton. The hexactinellid-like body wall architecture of this new species supports a Cambrian origin of the hexactinellid body plan and provides valuable insights into character evolution in early glass sponges.
Collapse
Affiliation(s)
- Lucas Del Mouro
- Department of Organismic and Evolutionary Biology and Museum of Comparative Zoology, Harvard University, Cambridge, MA 02138, USA
- Institute of Geosciences, University of São Paulo, São Paulo 05508-080, Brazil
| | - Rudy Lerosey-Aubril
- Department of Organismic and Evolutionary Biology and Museum of Comparative Zoology, Harvard University, Cambridge, MA 02138, USA
| | - Joseph Botting
- Amgueddfa Cymru, National Museum Wales, Cardiff CF10 3NP, UK
- Nanjing Institute of Geology and Palaeontology, Nanjing 210008, People's Republic of China
| | | | - Robert R Gaines
- Geology Department, Pomona College, Claremont, CA 91711, USA
| | | | - James C Weaver
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02218, USA
| | - Javier Ortega-Hernández
- Department of Organismic and Evolutionary Biology and Museum of Comparative Zoology, Harvard University, Cambridge, MA 02138, USA
| |
Collapse
|
5
|
Izquierdo-López A, Caron JB. The Cambrian Odaraia alata and the colonization of nektonic suspension-feeding niches by early mandibulates. Proc Biol Sci 2024; 291:20240622. [PMID: 39043240 PMCID: PMC11463219 DOI: 10.1098/rspb.2024.0622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 06/12/2024] [Accepted: 06/17/2024] [Indexed: 07/25/2024] Open
Abstract
The diversity of cephalic morphologies in mandibulates (myriapods and pancrustaceans) was key to their evolutionary success. A group of Cambrian bivalved arthropods called hymenocarines exhibit diagnostic mandibulate traits that illustrate this diversity, but many forms are still poorly known. These include the odaraiids, typified by Odaraia alata from the Burgess Shale (Wuliuan), characterized by its unique tubular carapace and rudder-like tail fan, and one of the largest Cambrian euarthropods at nearly 20 cm in length. Unfortunately, odaraiid cephalic anatomy has been largely unknown, limiting evolutionary scenarios and putting their mandibulate affinities into question. Here, we reinvestigate Odaraia based on new specimens from the Burgess Shale and describe exquisitely preserved mandibles with teeth and adjacent structures: a hypostome, maxillae and potential paragnaths. These structures can be homologized with those of Cambrian fuxianhuiids and extant mandibulates, and suggest that the ancestral mandibulate head could have had a limbless segment but retained its plasticity, allowing for limb re-expression within Pancrustacea. Furthermore, we show the presence of limbs with spinose endites which created a suspension-feeding structure. This discovery provides morphological evidence for suspension feeding among large Cambrian euarthropods and evinces the increasing exploitation of planktonic resources in Cambrian pelagic food webs.
Collapse
Affiliation(s)
- Alejandro Izquierdo-López
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, OntarioM5S 3B2, Canada
- Department of Natural History, Royal Ontario Museum, Toronto, OntarioM5S 2C6, Canada
| | - Jean-Bernard Caron
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, OntarioM5S 3B2, Canada
- Department of Natural History, Royal Ontario Museum, Toronto, OntarioM5S 2C6, Canada
- Department of Earth Sciences, University of Toronto, Toronto, OntarioM5S 3B1, Canada
| |
Collapse
|
6
|
Petrova M, Bogomolova E. The female reproductive system of the sea spider Phoxichilidium femoratum (Rathke, 1799). ARTHROPOD STRUCTURE & DEVELOPMENT 2024; 81:101370. [PMID: 38848644 DOI: 10.1016/j.asd.2024.101370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 05/26/2024] [Accepted: 05/29/2024] [Indexed: 06/09/2024]
Abstract
Sea spiders (Pycnogonida) are marine chelicerates. Current pycnogonid phylogeny based on molecular data remains uncertain and contradicts traditional morphological perspectives. To resolve this conflict, understanding their inner anatomy is crucial. The reproductive system of sea spiders shows promise as a source of phylogenetic signal, yet our knowledge in this area is limited. This study presents the first description of the whole female reproductive system of a sea spider at the ultrastructural level. We suggest a more detailed functional regionalization of the ovary based on the ovarian wall ultrastructure and distribution of oocyte developmental stages. Meiosis begins in the germarium, and oocytes progress to the vitellarium through a transportational zone. Vitellogenic oocytes extend through the vitellarium wall, connected with it by a stalk - specialized cells. Balbiani bodies are present in early vitellogenic oocytes but dissipate later. The formation of the vitelline envelope, yolk, and fertilization envelope involves functionally diverse RER vesicles. The study also identifies a reproductive sinus as a separate haemocoel compartment that may enhance nutrient concentration near vitellogenic oocytes. Additionally, oviduct and gonopore glands are described in the female of P. femoratum, although their specific functions and prevalence in other sea spider species remain unclear.
Collapse
Affiliation(s)
- Maria Petrova
- Department of Invertebrates Zoology, Faculty of Biology, Moscow State University, Vorob'evy Gory 1, Building 12, Moscow, 119992, Russia.
| | - Ekaterina Bogomolova
- Department of Invertebrates Zoology, Faculty of Biology, Moscow State University, Vorob'evy Gory 1, Building 12, Moscow, 119992, Russia.
| |
Collapse
|
7
|
Zhang C, Liu Y, Ortega-Hernández J, Wolfe JM, Jin C, Mai H, Hou X, Guo J, Zhai D. Three-dimensional morphology of the biramous appendages in Isoxys from the early Cambrian of South China, and its implications for early euarthropod evolution. Proc Biol Sci 2023; 290:20230335. [PMID: 37072042 PMCID: PMC10113025 DOI: 10.1098/rspb.2023.0335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2023] Open
Abstract
Early euarthropod evolution involved a major transition from lobopodian-like taxa to organisms featuring a segmented, well-sclerotized trunk (arthrodization) and limbs (arthropodization). However, the precise origin of a completely arthrodized trunk and arthropodized ventral biramous appendages remain controversial, as well as the early onset of anterior-posterior limb differentiation in stem-group euarthropods. New fossil material and micro-computed tomography inform the detailed morphology of the arthropodized biramous appendages in the carapace-bearing euarthropod Isoxys curvirostratus from the early Cambrian Chengjiang biota. In addition to well-developed grasping frontal appendages, I. curvirostratus possesses two batches of morphologically and functionally distinct biramous limbs. The first batch consists of four pairs of short cephalic appendages with robust endites with a feeding function, whereas the second batch has more elongate trunk appendages for locomotion. Critically, our new material shows that the trunk of I. curvirostratus was not arthrodized. The results of our phylogenetic analyses recover isoxyids as some of the earliest branching sclerotized euarthropods, and strengthens the hypothesis that arthropodized biramous appendages evolved before full body arthrodization.
Collapse
Affiliation(s)
- Caixia Zhang
- Yunnan Key Laboratory for Palaeobiology, Institute of Palaeontology, Yunnan University, Kunming 650091, People's Republic of China
- MEC International Joint Laboratory for Palaeobiology and Palaeoenvironment, Yunnan University, Waihuan South Road, Chenggong District, Kunming 650500, People's Republic of China
| | - Yu Liu
- Yunnan Key Laboratory for Palaeobiology, Institute of Palaeontology, Yunnan University, Kunming 650091, People's Republic of China
- MEC International Joint Laboratory for Palaeobiology and Palaeoenvironment, Yunnan University, Waihuan South Road, Chenggong District, Kunming 650500, People's Republic of China
- Management Committee of the Chengjiang Fossil Site World Heritage, Chengjiang 652599, People's Republic of China
| | - Javier Ortega-Hernández
- Museum of Comparative Zoology and Department of Organismic and Evolutionary Biology, Harvard University, 26 Oxford Street, Cambridge, MA 02138, USA
| | - Joanna M Wolfe
- Museum of Comparative Zoology and Department of Organismic and Evolutionary Biology, Harvard University, 26 Oxford Street, Cambridge, MA 02138, USA
| | - Changfei Jin
- Yunnan Key Laboratory for Palaeobiology, Institute of Palaeontology, Yunnan University, Kunming 650091, People's Republic of China
- MEC International Joint Laboratory for Palaeobiology and Palaeoenvironment, Yunnan University, Waihuan South Road, Chenggong District, Kunming 650500, People's Republic of China
| | - Huijuan Mai
- Yunnan Key Laboratory for Palaeobiology, Institute of Palaeontology, Yunnan University, Kunming 650091, People's Republic of China
- MEC International Joint Laboratory for Palaeobiology and Palaeoenvironment, Yunnan University, Waihuan South Road, Chenggong District, Kunming 650500, People's Republic of China
| | - Xianguang Hou
- Yunnan Key Laboratory for Palaeobiology, Institute of Palaeontology, Yunnan University, Kunming 650091, People's Republic of China
- MEC International Joint Laboratory for Palaeobiology and Palaeoenvironment, Yunnan University, Waihuan South Road, Chenggong District, Kunming 650500, People's Republic of China
| | - Jin Guo
- Yunnan Key Laboratory for Palaeobiology, Institute of Palaeontology, Yunnan University, Kunming 650091, People's Republic of China
- MEC International Joint Laboratory for Palaeobiology and Palaeoenvironment, Yunnan University, Waihuan South Road, Chenggong District, Kunming 650500, People's Republic of China
- Management Committee of the Chengjiang Fossil Site World Heritage, Chengjiang 652599, People's Republic of China
| | - Dayou Zhai
- Yunnan Key Laboratory for Palaeobiology, Institute of Palaeontology, Yunnan University, Kunming 650091, People's Republic of China
- MEC International Joint Laboratory for Palaeobiology and Palaeoenvironment, Yunnan University, Waihuan South Road, Chenggong District, Kunming 650500, People's Republic of China
| |
Collapse
|
8
|
Aria C, Vannier J, Park TYS, Gaines RR. Interpreting fossilized nervous tissues. Bioessays 2023; 45:e2200167. [PMID: 36693795 DOI: 10.1002/bies.202200167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 01/09/2023] [Accepted: 01/10/2023] [Indexed: 01/26/2023]
Abstract
Paleoneuranatomy is an emerging subfield of paleontological research with great potential for the study of evolution. However, the interpretation of fossilized nervous tissues is a difficult task and presently lacks a rigorous methodology. We critically review here cases of neural tissue preservation reported in Cambrian arthropods, following a set of fundamental paleontological criteria for their recognition. These criteria are based on a variety of taphonomic parameters and account for morphoanatomical complexity. Application of these criteria shows that firm evidence for fossilized nervous tissues is less abundant and detailed than previously reported, and we synthesize here evidence that has stronger support. We argue that the vascular system, and in particular its lacunae, may be central to the understanding of many of the fossilized peri-intestinal features known across Cambrian arthropods. In conclusion, our results suggest the need for caution in the interpretation of evidence for fossilized neural tissue, which will increase the accuracy of evolutionary scenarios. Also see the video abstract here: https://youtu.be/2_JlQepRTb0.
Collapse
Affiliation(s)
- Cédric Aria
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Ontario, Canada.,Department of Natural History, Royal Ontario Museum, Toronto, Ontario, Canada.,Shaanxi Key Laboratory of Early Life and Environments, State Key Laboratory of Continental Dynamics, Department of Geology, Northwest University, Xi'an, P. R. China
| | - Jean Vannier
- Université de Lyon, Université Lyon 1, ENS de Lyon, CNRS, UMR 5276 LGL-TPE, Bâtiment Géode, Villeurbanne, France
| | - Tae-Yoon S Park
- Division of Earth Sciences, Korea Polar Research Institute, Incheon, Republic of Korea
| | - Robert R Gaines
- Geology Department, Pomona College, Claremont, California, USA
| |
Collapse
|
9
|
Prokop J, Nel A, Engel MS. Diversity, Form, and Postembryonic Development of Paleozoic Insects. ANNUAL REVIEW OF ENTOMOLOGY 2023; 68:401-429. [PMID: 36689304 DOI: 10.1146/annurev-ento-120220-022637] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
While Mesozoic, Paleogene, and Neogene insect faunas greatly resemble the modern one, the Paleozoic fauna provides unique insights into key innovations in insect evolution, such as the origin of wings and modifications of postembryonic development including holometaboly. Deep-divergence estimates suggest that the majority of contemporary insect orders originated in the Late Paleozoic, but these estimates reflect divergences between stem groups of each lineage rather than the later appearance of the crown groups. The fossil record shows the initial radiations of the extant hyperdiverse clades during the Early Permian, as well as the specialized fauna present before the End Permian mass extinction. This review summarizes the recent discoveries related to the documented diversity of Paleozoic hexapods, as well as current knowledge about what has actually been verified from fossil evidence as it relates to postembryonic development and the morphology of different body parts.
Collapse
Affiliation(s)
- Jakub Prokop
- Department of Zoology, Faculty of Science, Charles University, Prague, Czech Republic;
| | - André Nel
- Institut de Systématique, Évolution, Biodiversité (ISYEB), Muséum national d'Histoire naturelle, CNRS, Sorbonne Université, EPHE, Université des Antilles, Paris, France;
| | - Michael S Engel
- Division of Entomology, University of Kansas Natural History Museum, Lawrence, Kansas, USA;
- Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, Kansas, USA
- Division of Invertebrate Zoology, American Museum of Natural History, New York, New York, USA
| |
Collapse
|
10
|
Abstract
Panarthropoda, the clade comprising the phyla Onychophora, Tardigrada and Euarthropoda, encompasses the largest majority of animal biodiversity. The relationships among the phyla are contested and resolution is key to understanding the evolutionary assembly of panarthropod bodyplans. Molecular phylogenetic analyses generally support monophyly of Onychophora and Euarthropoda to the exclusion of Tardigrada (Lobopodia hypothesis), which is also supported by some analyses of morphological data. However, analyses of morphological data have also been interpreted to support monophyly of Tardigrada and Euarthropoda to the exclusion of Onychophora (Tactopoda hypothesis). Support has also been found for a clade of Onychophora and Tardigrada that excludes Euarthropoda (Protarthropoda hypothesis). Here we show, using a diversity of phylogenetic inference methods, that morphological datasets cannot discriminate statistically between the Lobopodia, Tactopoda and Protarthropoda hypotheses. Since the relationships among the living clades of panarthropod phyla cannot be discriminated based on morphological data, we call into question the accuracy of morphology-based phylogenies of Panarthropoda that include fossil species and the evolutionary hypotheses based upon them.
Collapse
Affiliation(s)
- Ruolin Wu
- Bristol Palaeobiology Group, University of Bristol, Tyndall Avenue, Bristol BS8 1TQ, UK,School of Earth Sciences, University of Bristol, Tyndall Avenue, Bristol BS8 1TQ, UK
| | - Davide Pisani
- Bristol Palaeobiology Group, University of Bristol, Tyndall Avenue, Bristol BS8 1TQ, UK,School of Biological Sciences, Life Sciences Building, University of Bristol, Tyndall Avenue, Bristol BS8 1TQ, UK
| | - Philip C. J. Donoghue
- Bristol Palaeobiology Group, University of Bristol, Tyndall Avenue, Bristol BS8 1TQ, UK,School of Earth Sciences, University of Bristol, Tyndall Avenue, Bristol BS8 1TQ, UK
| |
Collapse
|
11
|
Izquierdo-López A, Caron JB. The problematic Cambrian arthropod Tuzoia and the origin of mandibulates revisited. ROYAL SOCIETY OPEN SCIENCE 2022; 9:220933. [PMID: 36483757 PMCID: PMC9727825 DOI: 10.1098/rsos.220933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Accepted: 11/10/2022] [Indexed: 06/17/2023]
Abstract
The origin of mandibulates, the hyperdiverse arthropod group that includes pancrustaceans and myriapods, dates back to the Cambrian. Bivalved arthropod groups such as hymenocarines have been argued to be early mandibulates, but many species are still poorly known, and their affinities remain uncertain. One of the most common and globally distributed Cambrian bivalved arthropods is Tuzoia. Originally described in 1912 from the Burgess Shale based on isolated carapaces, its full anatomy has remained largely unknown. Here, we describe new specimens of Tuzoia from the Canadian Burgess Shale (Wuliuan, Cambrian) showcasing exceptionally preserved soft tissues, allowing for the first comprehensive reconstruction of its anatomy, ecology and evolutionary affinities. The head bears antennae and differentiated cephalic appendages. The body is divided into a cephalothorax, a homonomous trunk bearing ca 10 pairs of legs with heptopodomerous endopods and enlarged basipods, and a tail fan with two pairs of caudal rami. These traits suggest that Tuzoia swam along the seafloor and used its spinose legs for predation or scavenging. Tuzoia is retrieved by a Bayesian phylogenetic analysis as an early mandibulate hymenocarine lineage, exemplifying the rapid diversification of this group in open marine environments during the Cambrian Explosion.
Collapse
Affiliation(s)
- Alejandro Izquierdo-López
- Ecology and Evolutionary Biology, University of Toronto, Toronto, Ontario, Canada, M5S 3B2
- Royal Ontario Museum, Toronto, Ontario, Canada, M5S 2C6
| | - Jean-Bernard Caron
- Ecology and Evolutionary Biology, University of Toronto, Toronto, Ontario, Canada, M5S 3B2
- Earth Sciences, University of Toronto, Toronto, Ontario, Canada, M5S 3B2
- Royal Ontario Museum, Toronto, Ontario, Canada, M5S 2C6
| |
Collapse
|
12
|
Strausfeld NJ, Hou X, Sayre ME, Hirth F. The lower Cambrian lobopodian Cardiodictyon resolves the origin of euarthropod brains. Science 2022; 378:905-909. [PMID: 36423269 DOI: 10.1126/science.abn6264] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
For more than a century, the origin and evolution of the arthropod head and brain have eluded a unifying rationale reconciling divergent morphologies and phylogenetic relationships. Here, clarification is provided by the fossilized nervous system of the lower Cambrian lobopodian Cardiodictyon catenulum, which reveals an unsegmented head and brain comprising three cephalic domains, distinct from the metameric ventral nervous system serving its appendicular trunk. Each domain aligns with one of three components of the foregut and with a pair of head appendages. Morphological correspondences with stem group arthropods and alignments of homologous gene expression patterns with those of extant panarthropods demonstrate that cephalic domains of C. catenulum predate the evolution of the euarthropod head yet correspond to neuromeres defining brains of living chelicerates and mandibulates.
Collapse
Affiliation(s)
| | - Xianguang Hou
- Yunnan Key Laboratory for Palaeobiology, Institute of Palaeontology, Yunnan University, Kunming, China
| | - Marcel E Sayre
- Lund Vision Group, Department of Biology, Lund University, Lund, Sweden
- Department of Biological Sciences, Macquarie University, Sydney, NSW, Australia
| | - Frank Hirth
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| |
Collapse
|
13
|
Vinther J. Evolution: The arthropod brain - a saga in three parts. Curr Biol 2022; 32:R833-R836. [PMID: 35944482 DOI: 10.1016/j.cub.2022.06.091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
Abstract
The arthropod brain comprises three segments and innervates three appendages. How it evolved has been a matter of intense debate. New Burgess Shale fossils preserving nervous tissue bring us closer to solving this mystery but evaluating the many hypotheses they could fit is not easy.
Collapse
Affiliation(s)
- Jakob Vinther
- Schools of Earth Sciences and Biological Sciences, University of Bristol, Life Sciences Building, 24 Tyndall Avenue, Bristol BS8 1TQ, UK. Jakob.Vinther,@,bristol.ac.uk
| |
Collapse
|
14
|
Moysiuk J, Caron JB. A three-eyed radiodont with fossilized neuroanatomy informs the origin of the arthropod head and segmentation. Curr Biol 2022; 32:3302-3316.e2. [PMID: 35809569 DOI: 10.1016/j.cub.2022.06.027] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 04/19/2022] [Accepted: 06/09/2022] [Indexed: 01/04/2023]
Abstract
In addition to being among the most iconic and bizarre-looking Cambrian animals, radiodonts are a group that offers key insight into the acquisition of the arthropod body plan by virtue of their phylogenetic divergence prior to all living members of the phylum. Nonetheless, radiodont fossils are rare and often fragmentary, and contentions over their interpretation have hindered resolution of important evolutionary conundrums. Here, we describe 268 specimens of Stanleycaris hirpex from the Cambrian Burgess Shale, including many exceptionally preserved whole-body specimens, informing the most complete reconstruction of a radiodont to date. The trunk region of Stanleycaris has up to 17 segments plus two pairs of filiform caudal blades. The recognition of dorsal sclerotic segmentation of the trunk cuticle and putative unganglionated nerve cords provides new insight into the relative timing of acquisition of segmental traits, the epitome of the arthropod body plan. In addition to the pair of stalked lateral eyes, the short head unexpectedly bears a large median eye situated behind a preocular sclerite on an anteriorly projecting head lobe. Upon re-evaluation, similar median eyes can be identified in other Cambrian panarthropods demonstrating a deep evolutionary continuity. The exquisitely preserved brain of Stanleycaris is consistent with the hypothesized deutocerebral innervation of the frontal appendages, reconciling neuroanatomical evidence with external morphology in support of an ancestrally bipartite head and brain for arthropods. We propose that the integration of this bipartite head prior to the acquisition of most segmental characters exclusively in the arthropod trunk may help explain its developmental differentiation.
Collapse
Affiliation(s)
- Joseph Moysiuk
- Department of Ecology and Evolutionary Biology, University of Toronto, 25 Willcocks Street, Toronto, ON M5S 3B2, Canada; Department of Natural History, Royal Ontario Museum, 100 Queen's Park, Toronto, ON M5S 2C6, Canada.
| | - Jean-Bernard Caron
- Department of Ecology and Evolutionary Biology, University of Toronto, 25 Willcocks Street, Toronto, ON M5S 3B2, Canada; Department of Natural History, Royal Ontario Museum, 100 Queen's Park, Toronto, ON M5S 2C6, Canada; Department of Earth Sciences, University of Toronto, 22 Ursula Franklin Street, Toronto, ON M5S 3B1, Canada.
| |
Collapse
|
15
|
Abdominal serial homologues of wings in Paleozoic insects. Curr Biol 2022; 32:3414-3422.e1. [PMID: 35772407 DOI: 10.1016/j.cub.2022.06.024] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 04/21/2022] [Accepted: 06/09/2022] [Indexed: 12/12/2022]
Abstract
The Late Paleozoic acquisition of wings in insects represents one of the key steps in arthropod evolution. While the origin of wings has been a contentious matter for nearly two centuries, recent evolutionary developmental studies suggest either the participation of both tergal and pleural tissues in the formation of wings1 or wings originated from exites of the most proximal leg podite incorporated into the insect body wall.2 The so-called "dual hypothesis" for wing origins finds support from studies of embryology, evo-devo, and genomics, although the degree of the presumed contribution from tergal and pleural tissues differ.3-6 Ohde et al.,7 confirmed a major role for tergal tissue in the formation of the cricket wing and suggested that "wings evolved from the pre-existing lateral terga of a wingless insect ancestor." Additional work has focused on identifying partial serially homologous structures of wings on the prothorax8,9 and abdominal segments.10 Thus, several studies have suggested that the prothoracic horns in scarab beetles,9 gin traps of tenebrionid and scarab beetle pupae,11,12 or abdominal tracheal gills of mayfly larvae1,13 evolved from serial homologues of wings. Here, we present critical information from abdominal lateral outgrowths (flaps) of Paleozoic palaeodictyopteran larvae, which show comparable structure to thoracic wings, consisting of cordate lateral outgrowths antero-basally hinged by muscle attachments. These flaps therefore most likely represent wing serial homologues. The presence of these paired outgrowths on abdominal segments I-IX in early diverging Pterygota likely corresponds to crustacean epipods14,15 and resembles a hypothesized ancestral body plan of a "protopterygote" model.
Collapse
|
16
|
Aria C. The origin and early evolution of arthropods. Biol Rev Camb Philos Soc 2022; 97:1786-1809. [PMID: 35475316 DOI: 10.1111/brv.12864] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 04/12/2022] [Accepted: 04/14/2022] [Indexed: 12/18/2022]
Abstract
The rise of arthropods is a decisive event in the history of life. Likely the first animals to have established themselves on land and in the air, arthropods have pervaded nearly all ecosystems and have become pillars of the planet's ecological networks. Forerunners of this saga, exceptionally well-preserved Palaeozoic fossils recently discovered or re-discovered using new approaches and techniques have elucidated the precocious appearance of extant lineages at the onset of the Cambrian explosion, and pointed to the critical role of the plankton and hard integuments in early arthropod diversification. The notion put forward at the beginning of the century that the acquisition of extant arthropod characters was stepwise and represented by the majority of Cambrian fossil taxa is being rewritten. Although some key traits leading to Euarthropoda are indeed well documented along a diversified phylogenetic stem, this stem led to several speciose and ecologically diverse radiations leaving descendants late into the Palaeozoic, and a large part, if not all of the Cambrian euarthropods can now be placed on either of the two extant lineages: Mandibulata and Chelicerata. These new observations and discoveries have altered our view on the nature and timing of the Cambrian explosion and clarified diagnostic characters at the origin of extant arthropods, but also raised new questions, especially with respect to cephalic plasticity. There is now strong evidence that early arthropods shared a homologous frontalmost appendage, coined here the cheira, which likely evolved into antennules and chelicerae, but other aspects, such as brain and labrum evolution, are still subject to active debate. The early evolution of panarthropods was generally driven by increased mastication and predation efficiency and sophistication, but a wealth of recent studies have also highlighted the prevalent role of suspension-feeding, for which early panarthropods developed their own adaptive feedback through both specialized appendages and the diversification of small, morphologically differentiated larvae. In a context of general integumental differentiation and hardening across Cambrian metazoans, arthrodization of body and limbs notably prompted two diverging strategies of basipod differentiation, which arguably became founding criteria in the divergence of total-groups Mandibulata and Chelicerata. The kinship of trilobites and their relatives remains a source of disagreement, but a recent topological solution, termed the 'deep split', could embed Artiopoda as sister taxa to chelicerates and constitute definitive support for Arachnomorpha. Although Cambrian fossils have been critical to all these findings, data of exceptional quality have also been accumulating from other Palaeozoic Konservat-Lagerstätten, and a better integration of this information promises a much more complete and elaborate picture of early arthropod evolution in the near future. From the broader perspective of a total-evidence approach to the understanding of life's history, and despite persisting systematic debates and new interpretative challenges, various advances based on palaeontological evidence open the prospect of finally using the full potential of the most diverse animal phylum to investigate macroevolutionary patterns and processes.
Collapse
Affiliation(s)
- Cédric Aria
- State Key Laboratory of Palaeobiology and Stratigraphy, Nanjing Institute of Geology and Palaeontology and Center for Excellence in Life and Palaeoenvironment, Chinese Academy of Sciences, Nanjing, 210008, P. R. China.,Shaanxi Key Laboratory of Early Life and Environments, Northwest University, Xi'an, 710069, P.R. China
| |
Collapse
|
17
|
Lev O, Edgecombe GD, Chipman AD. Serial Homology and Segment Identity in the Arthropod Head. Integr Org Biol 2022; 4:obac015. [PMID: 35620450 PMCID: PMC9128542 DOI: 10.1093/iob/obac015] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The anterior-most unit of the crown-group arthropod body plan includes three segments, the pre-gnathal segments, that contain three neuromeres that together comprise the brain. Recent work on the development of this anterior region has shown that its three units exhibit many developmental differences to the more posterior segments, to the extent that they should not be considered serial homologs. Building on this revised understanding of the development of the pre-gnathal segments, we suggest a novel scenario for arthropod head evolution. We posit an expansion of an ancestral single-segmented head at the transition from Radiodonta to Deuteropoda in the arthropod stem group. The expanded head subdivided into three segmental units, each maintaining some of the structures of the ancestral head. This scenario is consistent with what we know of head evolution from the fossil record and helps reconcile some of the debates about early arthropod evolution.
Collapse
Affiliation(s)
- Oren Lev
- The Dept. of Ecology, Evolution & Behavior, The Silberman Institute of Life Sciences, The Hebrew University of Jerusalem
| | - Gregory D Edgecombe
- Department of Earth Sciences, The Natural History Museum, Cromwell Road, London SW7 5BD, UK
| | - Ariel D Chipman
- The Dept. of Ecology, Evolution & Behavior, The Silberman Institute of Life Sciences, The Hebrew University of Jerusalem
| |
Collapse
|
18
|
Frankowski K, Miyazaki K, Brenneis G. A microCT-based atlas of the central nervous system and midgut in sea spiders (Pycnogonida) sheds first light on evolutionary trends at the family level. Front Zool 2022; 19:14. [PMID: 35361245 PMCID: PMC8973786 DOI: 10.1186/s12983-022-00459-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 03/18/2022] [Indexed: 11/18/2022] Open
Abstract
Background Pycnogonida (sea spiders) is the sister group of all other extant chelicerates (spiders, scorpions and relatives) and thus represents an important taxon to inform early chelicerate evolution. Notably, phylogenetic analyses have challenged traditional hypotheses on the relationships of the major pycnogonid lineages (families), indicating external morphological traits previously used to deduce inter-familial affinities to be highly homoplastic. This erodes some of the support for phylogenetic information content in external morphology and calls for the study of additional data classes to test and underpin in-group relationships advocated in molecular analyses. In this regard, pycnogonid internal anatomy remains largely unexplored and taxon coverage in the studies available is limited. Results Based on micro-computed X-ray tomography and 3D reconstruction, we created a comprehensive atlas of in-situ representations of the central nervous system and midgut layout in all pycnogonid families. Beyond that, immunolabeling for tubulin and synapsin was used to reveal selected details of ganglionic architecture. The ventral nerve cord consistently features an array of separate ganglia, but some lineages exhibit extended composite ganglia, due to neuromere fusion. Further, inter-ganglionic distances and ganglion positions relative to segment borders vary, with an anterior shift in several families. Intersegmental nerves target longitudinal muscles and are lacking if the latter are reduced. Across families, the midgut displays linear leg diverticula. In Pycnogonidae, however, complex multi-branching diverticula occur, which may be evolutionarily correlated with a reduction of the heart. Conclusions Several gross neuroanatomical features are linked to external morphology, including intersegmental nerve reduction in concert with trunk segment fusion, or antero-posterior ganglion shifts in partial correlation to trunk elongation/compaction. Mapping on a recent phylogenomic phylogeny shows disjunct distributions of these traits. Other characters show no such dependency and help to underpin closer affinities in sub-branches of the pycnogonid tree, as exemplified by the tripartite subesophageal ganglion of Pycnogonidae and Rhynchothoracidae. Building on this gross anatomical atlas, future studies should now aim to leverage the full potential of neuroanatomy for phylogenetic interrogation by deciphering pycnogonid nervous system architecture in more detail, given that pioneering work on neuron subsets revealed complex character sets with unequivocal homologies across some families. Supplementary Information The online version contains supplementary material available at 10.1186/s12983-022-00459-8.
Collapse
Affiliation(s)
- Karina Frankowski
- Zoologisches Institut und Museum, AG Cytologie und Evolutionsbiologie, Universität Greifswald, Soldmannstraße 23, 17489, Greifswald, Germany
| | - Katsumi Miyazaki
- Department of Environmental Science, Faculty of Science, Niigata University, 8050 Ikarashi 2-no-cho, Niigata, 950-2181, Japan
| | - Georg Brenneis
- Zoologisches Institut und Museum, AG Cytologie und Evolutionsbiologie, Universität Greifswald, Soldmannstraße 23, 17489, Greifswald, Germany.
| |
Collapse
|
19
|
Ballesteros JA, Santibáñez-López CE, Baker CM, Benavides LR, Cunha TJ, Gainett G, Ontano AZ, Setton EVW, Arango CP, Gavish-Regev E, Harvey MS, Wheeler WC, Hormiga G, Giribet G, Sharma PP. Comprehensive species sampling and sophisticated algorithmic approaches refute the monophyly of Arachnida. Mol Biol Evol 2022; 39:6522129. [PMID: 35137183 PMCID: PMC8845124 DOI: 10.1093/molbev/msac021] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Deciphering the evolutionary relationships of Chelicerata (arachnids, horseshoe crabs, and allied taxa) has proven notoriously difficult, due to their ancient rapid radiation and the incidence of elevated evolutionary rates in several lineages. Although conflicting hypotheses prevail in morphological and molecular data sets alike, the monophyly of Arachnida is nearly universally accepted, despite historical lack of support in molecular data sets. Some phylotranscriptomic analyses have recovered arachnid monophyly, but these did not sample all living orders, whereas analyses including all orders have failed to recover Arachnida. To understand this conflict, we assembled a data set of 506 high-quality genomes and transcriptomes, sampling all living orders of Chelicerata with high occupancy and rigorous approaches to orthology inference. Our analyses consistently recovered the nested placement of horseshoe crabs within a paraphyletic Arachnida. This result was insensitive to variation in evolutionary rates of genes, complexity of the substitution models, and alternative algorithmic approaches to species tree inference. Investigation of sources of systematic bias showed that genes and sites that recover arachnid monophyly are enriched in noise and exhibit low information content. To test the impact of morphological data, we generated a 514-taxon morphological data matrix of extant and fossil Chelicerata, analyzed in tandem with the molecular matrix. Combined analyses recovered the clade Merostomata (the marine orders Xiphosura, Eurypterida, and Chasmataspidida), but merostomates appeared nested within Arachnida. Our results suggest that morphological convergence resulting from adaptations to life in terrestrial habitats has driven the historical perception of arachnid monophyly, paralleling the history of numerous other invertebrate terrestrial groups.
Collapse
Affiliation(s)
- Jesús A Ballesteros
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Carlos E Santibáñez-López
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, WI, 53706, USA
- Department of Biology, Western Connecticut State University, Danbury, CT, 06810, USA
| | - Caitlin M Baker
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, WI, 53706, USA
- Department of Organismic and Evolutionary Biology, Museum of Comparative Zoology, Harvard University, Cambridge, MA, 02138, USA
| | - Ligia R Benavides
- Department of Organismic and Evolutionary Biology, Museum of Comparative Zoology, Harvard University, Cambridge, MA, 02138, USA
| | - Tauana J Cunha
- Department of Organismic and Evolutionary Biology, Museum of Comparative Zoology, Harvard University, Cambridge, MA, 02138, USA
- Smithsonian Tropical Research Institute, Panama City, Panama
| | - Guilherme Gainett
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Andrew Z Ontano
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Emily V W Setton
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Claudia P Arango
- Office for Research, Griffith University, Nathan, Queensland, 4111, Australia
| | - Efrat Gavish-Regev
- National Natural History Collections, The Hebrew University of Jerusalem, Jerusalem, 9190401, Israel
| | - Mark S Harvey
- Collections & Research, Western Australian Museum, Welshpool, Western Australia, 6106, Australia
- School of Biological Sciences, University of Western, Crawley, Western Australia, 6009, Australia; Australia
| | - Ward C Wheeler
- Division of Invertebrate Zoology, American Museum of Natural History, New York, NY, 10024, USA
| | - Gustavo Hormiga
- Department of Biological Sciences, George Washington University, Washington, DC, 20052, USA
| | - Gonzalo Giribet
- Department of Organismic and Evolutionary Biology, Museum of Comparative Zoology, Harvard University, Cambridge, MA, 02138, USA
| | - Prashant P Sharma
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, WI, 53706, USA
| |
Collapse
|
20
|
Brenneis G. The visual pathway in sea spiders (Pycnogonida) displays a simple serial layout with similarities to the median eye pathway in horseshoe crabs. BMC Biol 2022; 20:27. [PMID: 35086529 PMCID: PMC8796508 DOI: 10.1186/s12915-021-01212-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 12/14/2021] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Phylogenomic studies over the past two decades have consolidated the major branches of the arthropod tree of life. However, especially within the Chelicerata (spiders, scorpions, and kin), interrelationships of the constituent taxa remain controversial. While sea spiders (Pycnogonida) are firmly established as sister group of all other extant representatives (Euchelicerata), euchelicerate phylogeny itself is still contested. One key issue concerns the marine horseshoe crabs (Xiphosura), which recent studies recover either as sister group of terrestrial Arachnida or nested within the latter, with significant impact on postulated terrestrialization scenarios and long-standing paradigms of ancestral chelicerate traits. In potential support of a nested placement, previous neuroanatomical studies highlighted similarities in the visual pathway of xiphosurans and some arachnopulmonates (scorpions, whip scorpions, whip spiders). However, contradictory descriptions of the pycnogonid visual system hamper outgroup comparison and thus character polarization. RESULTS To advance the understanding of the pycnogonid brain and its sense organs with the aim of elucidating chelicerate visual system evolution, a wide range of families were studied using a combination of micro-computed X-ray tomography, histology, dye tracing, and immunolabeling of tubulin, the neuropil marker synapsin, and several neuroactive substances (including histamine, serotonin, tyrosine hydroxylase, and orcokinin). Contrary to previous descriptions, the visual system displays a serial layout with only one first-order visual neuropil connected to a bilayered arcuate body by catecholaminergic interneurons. Fluorescent dye tracing reveals a previously reported second visual neuropil as the target of axons from the lateral sense organ instead of the eyes. CONCLUSIONS Ground pattern reconstruction reveals remarkable neuroanatomical stasis in the pycnogonid visual system since the Ordovician or even earlier. Its conserved layout exhibits similarities to the median eye pathway in euchelicerates, especially in xiphosurans, with which pycnogonids share two median eye pairs that differentiate consecutively during development and target one visual neuropil upstream of the arcuate body. Given multiple losses of median and/or lateral eyes in chelicerates, and the tightly linked reduction of visual processing centers, interconnections between median and lateral visual neuropils in xiphosurans and arachnopulmonates are critically discussed, representing a plausible ancestral condition of taxa that have retained both eye types.
Collapse
Affiliation(s)
- Georg Brenneis
- Universität Greifswald, Zoologisches Institut und Museum, AG Cytologie und Evolutionsbiologie, Soldmannstraße 23, 17489, Greifswald, Germany.
| |
Collapse
|
21
|
Ortega-Hernández J, Lerosey-Aubril R, Losso SR, Weaver JC. Neuroanatomy in a middle Cambrian mollisoniid and the ancestral nervous system organization of chelicerates. Nat Commun 2022; 13:410. [PMID: 35058474 PMCID: PMC8776822 DOI: 10.1038/s41467-022-28054-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 12/17/2021] [Indexed: 11/09/2022] Open
Abstract
Recent years have witnessed a steady increase in reports of fossilized nervous tissues among Cambrian total-group euarthropods, which allow reconstructing the early evolutionary history of these animals. Here, we describe the central nervous system of the stem-group chelicerate Mollisonia symmetrica from the mid-Cambrian Burgess Shale. The fossilized neurological anatomy of M. symmetrica includes optic nerves connected to a pair of lateral eyes, a putative condensed cephalic synganglion, and a metameric ventral nerve cord. Each trunk tergite is associated with a condensed ganglion bearing lateral segmental nerves, and linked by longitudinal connectives. The nervous system is preserved as reflective carbonaceous films underneath the phosphatized digestive tract. Our results suggest that M. symmetrica illustrates the ancestral organization of stem-group Chelicerata before the evolution of the derived neuroanatomical characters observed in Cambrian megacheirans and extant representatives. Our findings reveal a conflict between the phylogenetic signals provided by neuroanatomical and appendicular data, which we interpret as evidence of mosaic evolution in the chelicerate stem-lineage.
Collapse
Affiliation(s)
- Javier Ortega-Hernández
- Museum of Comparative Zoology and Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, 02138, USA.
| | - Rudy Lerosey-Aubril
- Museum of Comparative Zoology and Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, 02138, USA
| | - Sarah R Losso
- Museum of Comparative Zoology and Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, 02138, USA
| | - James C Weaver
- Wyss Institute for Biologically Inspired Engineering, Harvard University, 60 Oxford Street, Cambridge, MA, 02138, USA
| |
Collapse
|
22
|
Fisher CR, Kratovil JD, Angelini DR, Jockusch EL. Out from under the wing: reconceptualizing the insect wing gene regulatory network as a versatile, general module for body-wall lobes in arthropods. Proc Biol Sci 2021; 288:20211808. [PMID: 34933597 PMCID: PMC8692954 DOI: 10.1098/rspb.2021.1808] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 11/29/2021] [Indexed: 12/24/2022] Open
Abstract
Body plan evolution often occurs through the differentiation of serially homologous body parts, particularly in the evolution of arthropod body plans. Recently, homeotic transformations resulting from experimental manipulation of gene expression, along with comparative data on the expression and function of genes in the wing regulatory network, have provided a new perspective on an old question in insect evolution: how did the insect wing evolve? We investigated the metamorphic roles of a suite of 10 wing- and body-wall-related genes in a hemimetabolous insect, Oncopeltus fasciatus. Our results indicate that genes involved in wing development in O. fasciatus play similar roles in the development of adult body-wall flattened cuticular evaginations. We found extensive functional similarity between the development of wings and other bilayered evaginations of the body wall. Overall, our results support the existence of a versatile development module for building bilayered cuticular epithelial structures that pre-dates the evolutionary origin of wings. We explore the consequences of reconceptualizing the canonical wing-patterning network as a bilayered body-wall patterning network, including consequences for long-standing debates about wing homology, the origin of wings and the origin of novel bilayered body-wall structures. We conclude by presenting three testable predictions that result from this reconceptualization.
Collapse
Affiliation(s)
- Cera R. Fisher
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT, USA
| | - Justin D. Kratovil
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT, USA
| | | | - Elizabeth L. Jockusch
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT, USA
| |
Collapse
|
23
|
Zhu X, Lerosey-Aubril R, Ortega-Hernández J. Furongian (Jiangshanian) occurrences of radiodonts in Poland and South China and the fossil record of the Hurdiidae. PeerJ 2021; 9:e11800. [PMID: 34386302 PMCID: PMC8312493 DOI: 10.7717/peerj.11800] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 06/26/2021] [Indexed: 11/22/2022] Open
Abstract
The Furongian period represents an important gap in the fossil record of most groups of non-biomineralizing organisms, owing to a scarcity of Konservat-Lagerstätten of that age. The most significant of these deposits, the Jiangshanian strata of the Sandu Formation near Guole Township (Guangxi, South China), have yielded a moderately abundant, but taxonomically diverse soft-bodied fossil assemblage, which provides rare insights into the evolution of marine life at that time. In this contribution, we report the first discovery of a radiodont fossil from the Guole Konservat-Lagerstätte. The specimen is an incomplete frontal appendage of a possibly new representative of the family Hurdiidae. It is tentatively interpreted as composed of seven podomeres, six of which bearing laminiform endites. The best preserved of these endites is especially long, and it bears short auxiliary spines that greatly vary in size. This is the second occurrence of hurdiids and more generally radiodonts in the Furongian, the first being the external mould of an oral cone from Jiangshanian strata of the Wiśniówka Sandstone Formation in Poland. Restudy of this Polish specimen confirms that it belongs to a hurdiid radiodont and best compares to Peytoia. The family Hurdiidae includes the oldest (basal Cambrian Epoch 2) and youngest (Early Ordovician, possibly Early Devonian) representatives of the Radiodonta and as such, has the longest stratigraphical range of the group. Yet, hurdiids only became prominent components of marine ecosystems during the middle Cambrian (Miaolingian), and their fossil record in younger strata remains limited.
Collapse
Affiliation(s)
- Xuejian Zhu
- Nanjing Institute of Geology and Palaeontology, Chinese Academy of Sciences, State Key Laboratory of Palaeobiology and Stratigraphy, Nanjing, China
| | - Rudy Lerosey-Aubril
- Harvard University, Department of Organismic and Evolutionary Biology and Museum of Comparative Zoology, Cambridge, MA, USA
| | - Javier Ortega-Hernández
- Harvard University, Department of Organismic and Evolutionary Biology and Museum of Comparative Zoology, Cambridge, MA, USA
| |
Collapse
|
24
|
Budd GE. The origin and evolution of the euarthropod labrum. ARTHROPOD STRUCTURE & DEVELOPMENT 2021; 62:101048. [PMID: 33862532 DOI: 10.1016/j.asd.2021.101048] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 02/24/2021] [Accepted: 02/25/2021] [Indexed: 05/16/2023]
Abstract
A widely (although not universally) accepted model of arthropod head evolution postulates that the labrum, a structure seen in almost all living euarthropods, evolved from an anterior pair of appendages homologous to the frontal appendages of onychophorans. However, the implications of this model for the interpretation of fossil arthropods have not been fully integrated into reconstructions of the euarthropod stem group, which remains in a state of some disorder. Here I review the evidence for the nature and evolution of the labrum from living taxa, and reconsider how fossils should be interpreted in the light of this. Identification of the segmental identity of head appendage in fossil arthropods remains problematic, and often rests ultimately on unproven assertions. New evidence from the Cambrian stem-group euarthropod Parapeytoia is presented to suggest that an originally protocerebral appendage persisted well up into the upper stem-group of the euarthropods, which prompts a re-evaluation of widely-accepted segmental homologies and the interpretation of fossil central nervous systems. Only a protocerebral brain was implicitly present in a large part of the euarthropod stem group, and the deutocerebrum must have been a relatively late addition.
Collapse
Affiliation(s)
- Graham E Budd
- Department of Earth Sciences, Palaeobiology Programme, Uppsala University, Villavägen 16, Uppsala, SE 752 36, Sweden.
| |
Collapse
|